1
|
Chen S, Li M, Zhang R, Ye L, Jiang Y, Jiang X, Peng H, Wang Z, Guo Z, Chen L, Zhang R, Niu Y, Aschner M, Li D, Chen W. Type 1 diabetes and diet-induced obesity predispose C57BL/6J mice to PM 2.5-induced lung injury: a comparative study. Part Fibre Toxicol 2023; 20:10. [PMID: 37069663 PMCID: PMC10108512 DOI: 10.1186/s12989-023-00526-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/11/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Pre-existing metabolic diseases may predispose individuals to particulate matter (PM)-induced adverse health effects. However, the differences in susceptibility of various metabolic diseases to PM-induced lung injury and their underlying mechanisms have yet to be fully elucidated. RESULTS Type 1 diabetes (T1D) murine models were constructed by streptozotocin injection, while diet-induced obesity (DIO) models were generated by feeding 45% high-fat diet 6 weeks prior to and throughout the experiment. Mice were subjected to real-ambient PM exposure in Shijiazhuang City, China for 4 weeks at a mean PM2.5 concentration of 95.77 µg/m3. Lung and systemic injury were assessed, and the underlying mechanisms were explored through transcriptomics analysis. Compared with normal diet (ND)-fed mice, T1D mice exhibited severe hyperglycemia with a blood glucose of 350 mg/dL, while DIO mice displayed moderate obesity and marked dyslipidemia with a slightly elevated blood glucose of 180 mg/dL. T1D and DIO mice were susceptible to PM-induced lung injury, manifested by inflammatory changes such as interstitial neutrophil infiltration and alveolar septal thickening. Notably, the acute lung injury scores of T1D and DIO mice were higher by 79.57% and 48.47%, respectively, than that of ND-fed mice. Lung transcriptome analysis revealed that increased susceptibility to PM exposure was associated with perturbations in multiple pathways including glucose and lipid metabolism, inflammatory responses, oxidative stress, cellular senescence, and tissue remodeling. Functional experiments confirmed that changes in biomarkers of macrophage (F4/80), lipid peroxidation (4-HNE), cellular senescence (SA-β-gal), and airway repair (CCSP) were most pronounced in the lungs of PM-exposed T1D mice. Furthermore, pathways associated with xenobiotic metabolism showed metabolic state- and tissue-specific perturbation patterns. Upon PM exposure, activation of nuclear receptor (NR) pathways and inhibition of the glutathione (GSH)-mediated detoxification pathway were evident in the lungs of T1D mice, and a significant upregulation of NR pathways was present in the livers of T1D mice. CONCLUSIONS These differences might contribute to differential susceptibility to PM exposure between T1D and DIO mice. These findings provide new insights into the health risk assessment of PM exposure in populations with metabolic diseases.
Collapse
Affiliation(s)
- Shen Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Miao Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Rui Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Lizhu Ye
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yue Jiang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xinhang Jiang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hui Peng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ziwei Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhanyu Guo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Liping Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yujie Niu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Daochuan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
2
|
Garcia-Gonzalez MA, Vallejo-Ruiz V, Atonal-Flores F, Flores-Hernandez J, Torres-Ramírez O, Diaz-Fonsecae A, Perez Vizcaino F, Lopez-Lopez JG. Sildenafil prevents right ventricular hypertrophy and improves heart rate variability in rats with pulmonary hypertension secondary to experimental diabetes. Clin Exp Hypertens 2022; 44:355-365. [DOI: 10.1080/10641963.2022.2050743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Miguel Angel Garcia-Gonzalez
- Departamento de Farmacia, Benemerita Universidad Autonoma de Puebla, Laboratorio de Farmacia Clinica, Edificio FCQ10, Ciudad Universitaria, Col. Jardines de San Manuel, Puebla, Mexico
| | - Veronica Vallejo-Ruiz
- Instituto Mexicano del Seguro Social, Centro de Investigación Biomédica de Oriente, Laboratorio de Biología Molecular, Puebla, Mexico
| | - Fausto Atonal-Flores
- Departamento de Fisiología, Benemérita Universidad Autónoma de Puebla, Facultad de Medicina, Metepec, Mexico
| | - Jorge Flores-Hernandez
- Laboratorio de Neuromodulación, Benemerita Universidad Autonoma de Puebla, Fisiología, Puebla,Mexico
| | - Oswaldo Torres-Ramírez
- Departamento de Farmacia, Benemérita Universidad Autónoma de Puebla, Facultad de Ciencias Químicas, Puebla, Mexico
| | - Alfonso Diaz-Fonsecae
- Departamento de Farmacia, Benemérita Universidad Autónoma de Puebla, Facultad de Ciencias Químicas, Puebla, Mexico
| | - Francisco Perez Vizcaino
- Departamento de Farmacología y Toxicología, Universidad Complutense de Madrid, Escuela de Medicina, Puebla,Mexico
| | - Jose Gustavo Lopez-Lopez
- Departamento de Farmacia, Benemerita Universidad Autonoma de Puebla, Laboratorio de Farmacia Clinica, Edificio FCQ10, Ciudad Universitaria, Col. Jardines de San Manuel, Puebla, Mexico
| |
Collapse
|
3
|
López Y López G, Tepox Galicia AY, Atonal Flores F, Flores Hernández J, Pérez Vizcaino F, Villa Mancera AE, Miguél GG, Reynoso Palomar A. Echocardiographic follow-up to right ventricular modifications in secondary pulmonary hypertension to diabetes in rats. Clin Exp Hypertens 2021; 43:242-253. [PMID: 33349077 DOI: 10.1080/10641963.2020.1860077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/27/2020] [Accepted: 12/02/2020] [Indexed: 10/22/2022]
Abstract
Clinical studies suggest that diabetes is a risk factor in the development of pulmonary arterial hypertension. The increase in blood pressure in the pulmonary area is characterized by the increase in the afterload and hypertrophy of the right ventricle. The objective of this study was to conduct a longitudinal follow-up of the morphological and functional changes in the right ventricle in a rat model with pulmonary arterial hypertension secondary to diabetes. Male Sprague Dawley rats were randomly divided into a control group (saline solution) and a diabetic group (60 mg/kg with streptozotocin). For 12 weeks, an echocardiography for longitudinal (in vivo) image analysis of the pulmonary pressure was performed at the same time as the evaluation of myocardial remodeling and right ventricular. After this period, the pulmonary pressure was measured by means of a pulmonary artery catheterization, and the presence of hypertrophy was determined by means of the Fulton index. The plasma concentration of brain natriuretic peptide was measured by means of the ELISA technique. It was found that the diabetic rats showed an increase in pressure in the pulmonary arteries, an increase in the Fulton index, and an increase in brain natriuretic peptide. The echocardiographic follow-up showed that the diabetic rats presented an increase in the pulmonary artery from the fourth week, while hypertrophy and right ventricular systolic dysfunction occurred until the twelfth week. In conclusion, pulmonary arterial hypertension induced by experimental diabetes generated hypertrophy and systolic dysfunction of the right ventricle.
Collapse
Affiliation(s)
- Gustavo López Y López
- Clinical Pharmacy Laboratory, Faculty of Chemical Sciences, University City, Autonomous University of Puebla , Mexico
| | - Ana Yessica Tepox Galicia
- Clinical Pharmacy Laboratory, Faculty of Chemical Sciences, University City, Autonomous University of Puebla , Mexico
| | - Fausto Atonal Flores
- Department of Physiology, Faculty of Medicine, Autonomous University of Puebla , Mexico
| | | | | | - Abel E Villa Mancera
- Research Laboratory in Physiology and Pharmacology, Faculty of Veterinary Medicine and Zootechnics, Autonomous University of Puebla , Mexico
| | - García González Miguél
- Clinical Pharmacy Laboratory, Faculty of Chemical Sciences, University City, Autonomous University of Puebla , Mexico
| | - Alejandro Reynoso Palomar
- Research Laboratory in Physiology and Pharmacology, Faculty of Veterinary Medicine and Zootechnics, Autonomous University of Puebla , Mexico
| |
Collapse
|
4
|
Fuso L, Pitocco D, Antonelli-Incalzi R. Diabetic lung, an underrated complication from restrictive functional pattern to pulmonary hypertension. Diabetes Metab Res Rev 2019; 35:e3159. [PMID: 30909316 DOI: 10.1002/dmrr.3159] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/12/2019] [Accepted: 03/19/2019] [Indexed: 12/15/2022]
Abstract
In patients with type 1 and type 2 diabetes mellitus (DM), respiratory function abnormalities have been reported with regard to lung volumes, pulmonary diffusing capacity, control of ventilation, bronchomotor tone, and neuroadrenergic bronchial innervation. Indeed, the decrease in lung volumes and the impairment of diffusing capacity might have important clinical implications. Furthermore, there is an increasing evidence of a link between DM and pulmonary hypertension (PH) related to an involvement of the pulmonary vascular structures. These findings support the view of the lung as target organ in DM. In this paper, we briefly describe the main derangements of the respiratory system in DM and the inherent mechanisms.
Collapse
Affiliation(s)
- Leonello Fuso
- Pneumology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Dario Pitocco
- Diabetes Care Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | | |
Collapse
|
5
|
Soloviev A, Ivanova I, Melnyk M, Dobrelia N, Khromov A. Hypoxic pulmonary vasoconstriction is lacking in rats with type 1 diabetes. Clin Exp Pharmacol Physiol 2019; 46:1022-1029. [PMID: 31314914 DOI: 10.1111/1440-1681.13137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 11/28/2022]
Abstract
Hypoxic pulmonary vasoconstriction (HPV) is the most important feature of intact lung circulation that matches local blood perfusion to ventilation. The main goal of this work was to study the effects of diabetes on the development of HPV in rats. The experimental design comprised diabetes mellitus induction by streptozotocin, video-morphometric measurements of the lumen area of intrapulmonary arteries (iPAs) using perfused lung tissue slices and patch-clamp techniques. It was shown that iPA lumen size was significantly reduced under physical and chemical hypoxia (7-10 mm Hg) in normal iPA, but, on the contrary, it clearly increased in diabetic lung slices. The amplitude of the outward K+ current in diabetic iPAs smooth muscle cells (SMCs) was two-fold greater than that seen in healthy cells. Chemical hypoxia led to significant decrease in the amplitude of the K+ outward current in healthy iPA SMCs while it was without effect in diabetic cells. The data obtained clearly indicate a significant dysregulation of vascular tone in pulmonary circulation under diabetes, ie diabetes damages the adaptive mechanism for regulating blood flow from poorly ventilated to better ventilated regions of the lung under hypoxia. This effect could be clinically important for patients with diabetes who have acute or chronic lung diseases associated with the lack of blood oxygenation.
Collapse
Affiliation(s)
- Anatoly Soloviev
- Institute of Pharmacology and Toxicology, National Academy of Medical Sciences, Kyiv, Ukraine
| | - Irina Ivanova
- Institute of Pharmacology and Toxicology, National Academy of Medical Sciences, Kyiv, Ukraine
| | - Mariia Melnyk
- Institute of Pharmacology and Toxicology, National Academy of Medical Sciences, Kyiv, Ukraine.,Bogomoletz Institute of Physiology, National Academy of Science of Ukraine, Kyiv, Ukraine
| | - Nataliia Dobrelia
- Institute of Pharmacology and Toxicology, National Academy of Medical Sciences, Kyiv, Ukraine
| | - Alexander Khromov
- Institute of Pharmacology and Toxicology, National Academy of Medical Sciences, Kyiv, Ukraine
| |
Collapse
|
6
|
Morales-Cano D, Callejo M, Barreira B, Mondejar-Parreño G, Esquivel-Ruiz S, Ramos S, Martín MÁ, Cogolludo A, Moreno L, Perez-Vizcaino F. Elevated pulmonary arterial pressure in Zucker diabetic fatty rats. PLoS One 2019; 14:e0211281. [PMID: 30689673 PMCID: PMC6349336 DOI: 10.1371/journal.pone.0211281] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/10/2019] [Indexed: 02/07/2023] Open
Abstract
Diabetes is a very strong predictor of chronic systemic vascular diseases and acute cardiovascular events. Recently, associations between metabolic disorders and pulmonary hypertension have also been reported in both humans and animal models. In order to get some further insight into the relationship of pulmonary hypertension with obesity, insulin resistance and hyperglycemia, herein we have used the Zucker diabetic fatty rats (ZDF/clr-lepr fa) at 20 weeks fed a standard diet and compared to their lean Zucker littermates (ZL). ZDF rats were obese, had elevated plasma glucose levels and insulin resistance, i.e. a clinically relevant model of type 2 diabetes. They presented elevated systolic, diastolic and mean pulmonary arterial pressures and a parallel increase in the Fulton index. Systemic arterial pressures were also increased but the left ventricle plus septum weight was similar in both groups and the heart rate was reduced. Wall media thickening was observed in the small pulmonary arteries from the ZDF rats. Isolated pulmonary arteries mounted in a wire myograph showed similar vasoconstrictor responses to phenylephrine and 5-HT and similar responses to the endothelium-dependent vasodilator acetylcholine. However, the iNOS inhibitor 1400W enhanced the vasoconstrictor responses in ZDF but not in ZL rats. The protein expression of eNOS and iNOS was not significantly different in the lungs of the two groups. The lung expression of Bmpr2 mRNA was downregulated. However, the mRNA expression of Kcna5, Kcnk3, Kcnq1, Kcnq4 or Kcnq5, which encode for the potassium channels Kv1.5, TASK-1, Kv7.1, Kv7.4 and Kv7.5, respectively, was similar in ZL and ZDF rats. In conclusion, ZDF rats show increased pulmonary arterial pressure, right ventricular hypertrophy, pulmonary arterial medial thickening and downregulated lung Bmpr2 despite leptin resistance. These changes were mild but are consistent with the view that diabetes is a risk factor for pulmonary hypertension.
Collapse
Affiliation(s)
- Daniel Morales-Cano
- Departament of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Maria Callejo
- Departament of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Bianca Barreira
- Departament of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Gema Mondejar-Parreño
- Departament of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Sergio Esquivel-Ruiz
- Departament of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Sonia Ramos
- Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - María Ángeles Martín
- Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Ciber de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Angel Cogolludo
- Departament of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Laura Moreno
- Departament of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Francisco Perez-Vizcaino
- Departament of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
- * E-mail:
| |
Collapse
|
7
|
Xu N, Wang Q, Jiang S, Wang Q, Hu W, Zhou S, Zhao L, Xie L, Chen J, Wellstein A, Lai EY. Fenofibrate improves vascular endothelial function and contractility in diabetic mice. Redox Biol 2018; 20:87-97. [PMID: 30296701 PMCID: PMC6174921 DOI: 10.1016/j.redox.2018.09.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/11/2018] [Accepted: 09/27/2018] [Indexed: 11/25/2022] Open
Abstract
Fenofibrate, a peroxisome proliferator-activated receptors α (PPARα) agonist, reduces vascular complications of diabetic patients but its protective mechanisms are not fully understood. Here we tested the hypothesis that fenofibrate improves vascular endothelial dysfunction by balancing endothelium-dependent relaxation and contractility of the aorta in diabetes mellitus (DM). In streptozotocin-induced diabetic mice, eight weeks of fenofibrate treatment (100 mg/Kg/d) improved endothelium dependent relaxation in the macro- and microvessels, increased nitric oxide (NO) levels, reduced renal damage markers and effects of the vasoconstrictor prostaglandin. Levels of superoxide dismutase and catalase were both reduced and hydrogen peroxide was increased in vehicle-treated DM, but these changes were reversed by fenofibrate treatment. Vasodilation of the aorta after fenofibrate treatment was reversed by PPARα or AMPKα inhibitors. Western blots showed that fenofibrate treatment elevated PPARα expression, induced liver kinase B1 (LKB1) translocation from the nucleus to the cytoplasm and activated AMP-activated protein kinase-α (AMPKα), thus activating endothelial NO synthase (eNOS). Also, fenofibrate treatment decreased NF-κB p65 and cyclooxygenase 2 proteins in aortas. Finally, incubation with indomethacin in vitro improved aortic contractility in diabetic mice. Overall, our results show that fenofibrate treatment in diabetic mice normalizes endothelial function by balancing vascular reactivity via increasing NO production and suppressing the vasoconstrictor prostaglandin, suggesting mechanism of action of fenofibrate in mediating diabetic vascular complications. Fenofibrate improves diabetic endothelial function is via PPAR/LKB1/AMPK/eNOS signal. Fenofibrate reduces diabetic endothelial contractility is via NF-κB/COX-2 pathway. Diabetes-associated oxidative stress is attenuated by fenofibrate treatment.
Collapse
Affiliation(s)
- Nan Xu
- Department of Physiology, School of Basic Medical Sciences, and Kidney Disease Center of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qin Wang
- Department of Physiology, School of Basic Medical Sciences, and Kidney Disease Center of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shan Jiang
- Department of Physiology, School of Basic Medical Sciences, and Kidney Disease Center of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qijing Wang
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Weipeng Hu
- Department of Physiology, School of Basic Medical Sciences, and Kidney Disease Center of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Suhan Zhou
- Department of Physiology, School of Basic Medical Sciences, and Kidney Disease Center of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Liang Zhao
- Department of Physiology, School of Basic Medical Sciences, and Kidney Disease Center of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lanyu Xie
- Medical college, Nanchang University, Nanchang 330000, China
| | - Jianghua Chen
- Department of Physiology, School of Basic Medical Sciences, and Kidney Disease Center of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Anton Wellstein
- Lombardi Cancer Center, Georgetown University, Washington, DC 20007, USA
| | - En Yin Lai
- Department of Physiology, School of Basic Medical Sciences, and Kidney Disease Center of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
8
|
Willson C, Watanabe M, Tsuji-Hosokawa A, Makino A. Pulmonary vascular dysfunction in metabolic syndrome. J Physiol 2018; 597:1121-1141. [PMID: 30125956 DOI: 10.1113/jp275856] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/30/2018] [Indexed: 12/20/2022] Open
Abstract
Metabolic syndrome is a critically important precursor to the onset of many diseases, such as cardiovascular disease, and cardiovascular disease is the leading cause of death worldwide. The primary risk factors of metabolic syndrome include hyperglycaemia, abdominal obesity, dyslipidaemia, and high blood pressure. It has been well documented that metabolic syndrome alters vascular endothelial and smooth muscle cell functions in the heart, brain, kidney and peripheral vessels. However, there is less information available regarding how metabolic syndrome can affect pulmonary vascular function and ultimately increase an individual's risk of developing various pulmonary vascular diseases, such as pulmonary hypertension. Here, we review in detail how metabolic syndrome affects pulmonary vascular function.
Collapse
Affiliation(s)
- Conor Willson
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | - Makiko Watanabe
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | | | - Ayako Makino
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
9
|
Comparison of Pulmonary and Systemic NO- and PGI 2-Dependent Endothelial Function in Diabetic Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4036709. [PMID: 29967661 PMCID: PMC6008763 DOI: 10.1155/2018/4036709] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/03/2018] [Accepted: 04/16/2018] [Indexed: 12/16/2022]
Abstract
Diabetes increases the risk of pulmonary hypertension and is associated with alterations in pulmonary vascular function. Still, it is not clear whether alterations in the phenotype of pulmonary endothelium induced by diabetes are distinct, as compared to peripheral endothelium. In the present work, we characterized differences between diabetic complications in the lung and aorta in db/db mice with advanced diabetes. Male, 20-week-old db/db mice displayed increased HbA1c and glucose concentration compatible with advanced diabetes. Diabetic lungs had signs of mild fibrosis, and pulmonary endothelium displayed significantly ultrastructural changes. In the isolated, perfused lung from db/db mice, filtration coefficient (Kf,c) and contractile response to TXA2 analogue were enhanced, while endothelial NO-dependent modulation of pulmonary response to hypoxic ventilation and cumulative production of NO2− were impaired, with no changes in immunostaining for eNOS expression. In turn, 6-keto-PGF1α release from the isolated lung from db/db mice was increased, as well as immunostaining of thrombomodulin (CD141). In contrast to the lung, NO-dependent, acetylcholine-induced vasodilation, ionophore-stimulated NO2− generation, and production of 6-keto-PGF1α were all impaired in aortic rings from db/db mice. Although eNOS immunostaining was not changed, that of CD141 was clearly lowered. Interestingly, diabetes-induced nitration of proteins in aorta was higher than that in the lungs. In summary, diabetes induced marked ultrastructural changes in pulmonary endothelium that were associated with the increased permeability of pulmonary microcirculation, impaired NO-dependent vascular function, with compensatory increase in PGI2 production, and increased CD141 expression. In contrast, endothelial dysfunction in the aorta was featured by impaired NO-, PGI2-dependent function and diminished CD141 expression.
Collapse
|
10
|
Stojanović M, Prostran M, Janković R, Radenković M. Clarification of serotonin-induced effects in peripheral artery disease observed through the femoral artery response in models of diabetes and vascular occlusion: The role of calcium ions. Clin Exp Pharmacol Physiol 2017; 44:749-759. [PMID: 28429868 DOI: 10.1111/1440-1681.12770] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/31/2017] [Accepted: 04/13/2017] [Indexed: 11/28/2022]
Abstract
Recent findings have demonstrated that serotonin is an important participant in the development and progression of peripheral artery diseases. Taking this into consideration, the goals of this study were to investigate the effects of serotonin on isolated Wistar rat femoral arteries in both healthy and diabetic animals, with and without artery occlusion, with a particular focus on determining the role of calcium in this process. Contraction experiments with serotonin on intact and denuded femoral artery rings, in the presence or absence of nifedipine and ouabain (both separately, or in combination), as well as Ca2+ -free Krebs-Ringer bicarbonate solution were performed. The serotonin-induced results were concentration dependent, but only in healthy animals. The endothelium-dependent contraction of the femoral artery was assessed. In healthy animals, the endothelium-reliant part of contraction was dependent on the extracellular calcium, while the smooth muscle-related part was instead dependent on the intracellular calcium. In diabetic animals, both nifedipine and ouabain influenced serotonin-induced vascular effects by blocking intracellular calcium pathways. However, this was diminished after the simultaneous administration of both blockers.
Collapse
Affiliation(s)
- Marko Stojanović
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milica Prostran
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Radmila Janković
- Institute of Pathology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Miroslav Radenković
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
11
|
Gao Y, Chen T, Raj JU. Endothelial and Smooth Muscle Cell Interactions in the Pathobiology of Pulmonary Hypertension. Am J Respir Cell Mol Biol 2016; 54:451-60. [PMID: 26744837 DOI: 10.1165/rcmb.2015-0323tr] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In the pulmonary vasculature, the endothelial and smooth muscle cells are two key cell types that play a major role in the pathobiology of pulmonary vascular disease and pulmonary hypertension. The normal interactions between these two cell types are important for the homeostasis of the pulmonary circulation, and any aberrant interaction between them may lead to various disease states including pulmonary vascular remodeling and pulmonary hypertension. It is well recognized that the endothelial cell can regulate the function of the underlying smooth muscle cell by releasing various bioactive agents such as nitric oxide and endothelin-1. In addition to such paracrine regulation, other mechanisms exist by which there is cross-talk between these two cell types, including communication via the myoendothelial injunctions and information transfer via extracellular vesicles. Emerging evidence suggests that these nonparacrine mechanisms play an important role in the regulation of pulmonary vascular tone and the determination of cell phenotype and that they are critically involved in the pathobiology of pulmonary hypertension.
Collapse
Affiliation(s)
- Yuansheng Gao
- 1 Department of Physiology and Pathophysiology, Health Science Center, Peking University, Beijing, China; and
| | - Tianji Chen
- 2 Department of Pediatrics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - J Usha Raj
- 2 Department of Pediatrics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
12
|
Matsumoto T, Goulopoulou S, Taguchi K, Tostes RC, Kobayashi T. Constrictor prostanoids and uridine adenosine tetraphosphate: vascular mediators and therapeutic targets in hypertension and diabetes. Br J Pharmacol 2015; 172:3980-4001. [PMID: 26031319 DOI: 10.1111/bph.13205] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/16/2015] [Accepted: 05/19/2015] [Indexed: 12/22/2022] Open
Abstract
Vascular dysfunction plays a pivotal role in the development of systemic complications associated with arterial hypertension and diabetes. The endothelium, or more specifically, various factors derived from endothelial cells tightly regulate vascular function, including vascular tone. In physiological conditions, there is a balance between endothelium-derived factors, that is, relaxing factors (endothelium-derived relaxing factors; EDRFs) and contracting factors (endothelium-derived contracting factors; EDCFs), which mediate vascular homeostasis. However, in disease states, such as diabetes and arterial hypertension, there is an imbalance between EDRF and EDCF, with a reduction of EDRF signalling and an increase of EDCF signalling. Among EDCFs, COX-derived vasoconstrictor prostanoids play an important role in the development of vascular dysfunction associated with hypertension and diabetes. Moreover, uridine adenosine tetraphosphate (Up4 A), identified as an EDCF in 2005, also modulates vascular function. However, the role of Up4 A in hypertension- and diabetes-associated vascular dysfunction is unclear. In the present review, we focused on experimental and clinical evidence that implicate these two EDCFs (vasoconstrictor prostanoids and Up4 A) in vascular dysfunction associated with hypertension and diabetes.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, Japan
| | - Styliani Goulopoulou
- Department of Integrative Physiology and Anatomy, Obstetrics and Gynecology, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, Japan
| | - Rita C Tostes
- Department of Pharmacology, Ribeirao Preto Medical School University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, Japan
| |
Collapse
|
13
|
Gopal DM, Santhanakrishnan R, Wang YC, Ayalon N, Donohue C, Rahban Y, Perez AJ, Downing J, Liang CS, Gokce N, Colucci WS, Ho JE. Impaired right ventricular hemodynamics indicate preclinical pulmonary hypertension in patients with metabolic syndrome. J Am Heart Assoc 2015; 4:e001597. [PMID: 25758604 PMCID: PMC4392440 DOI: 10.1161/jaha.114.001597] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Metabolic disease can lead to intrinsic pulmonary hypertension in experimental models. The contributions of metabolic syndrome (MetS) and obesity to pulmonary hypertension and right ventricular dysfunction in humans remain unclear. We investigated the association of MetS and obesity with right ventricular structure and function in patients without cardiovascular disease. Methods and Results A total of 156 patients with MetS (mean age 44 years, 71% women, mean body mass index 40 kg/m2), 45 similarly obese persons without MetS, and 45 nonobese controls underwent echocardiography, including pulsed wave Doppler measurement of pulmonary artery acceleration time (PAAT) and ejection time. Pulmonary artery systolic pressure was estimated from PAAT using validated equations. MetS was associated with lower tricuspid valve e′ (right ventricular diastolic function parameter), shorter PAAT, shorter ejection time, and larger pulmonary artery diameter compared with controls (P<0.05 for all). Estimated pulmonary artery systolic pressure based on PAAT was 42±12 mm Hg in participants with MetS compared with 32±9 and 32±10 mm Hg in obese and nonobese controls (P for ANOVA <0.0001). After adjustment for age, sex, hypertension, diabetes, body mass index, and triglycerides, MetS remained associated with a 20‐ms–shorter PAAT (β=−20.4, SE=6.5, P=0.002 versus obese). This association persisted after accounting for left ventricular structure and function and after exclusion of participants with obstructive sleep apnea. Conclusions MetS is associated with abnormal right ventricular and pulmonary artery hemodynamics, as shown by shorter PAAT and subclinical right ventricular diastolic dysfunction. Estimated pulmonary artery systolic pressures are higher in MetS and preclinical metabolic heart disease and raise the possibility that pulmonary hypertension contributes to the pathophysiology of metabolic heart disease.
Collapse
Affiliation(s)
- Deepa M Gopal
- Cardiology Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (D.M.G.)
| | - Rajalakshmi Santhanakrishnan
- Cardiovascular Medicine Section, Boston University School of Medicine, Boston, MA (R.S., N.A., C.D., A.J.P., J.D., C.L., N.G., W.S.C., J.E.H.)
| | - Yi-Chih Wang
- Cardiovascular Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan (Y.C.W.)
| | - Nir Ayalon
- Cardiovascular Medicine Section, Boston University School of Medicine, Boston, MA (R.S., N.A., C.D., A.J.P., J.D., C.L., N.G., W.S.C., J.E.H.)
| | - Courtney Donohue
- Cardiovascular Medicine Section, Boston University School of Medicine, Boston, MA (R.S., N.A., C.D., A.J.P., J.D., C.L., N.G., W.S.C., J.E.H.)
| | - Youssef Rahban
- Department of Medicine, Boston University School of Medicine, Boston, MA (Y.R.)
| | - Alejandro J Perez
- Cardiovascular Medicine Section, Boston University School of Medicine, Boston, MA (R.S., N.A., C.D., A.J.P., J.D., C.L., N.G., W.S.C., J.E.H.)
| | - Jill Downing
- Cardiovascular Medicine Section, Boston University School of Medicine, Boston, MA (R.S., N.A., C.D., A.J.P., J.D., C.L., N.G., W.S.C., J.E.H.)
| | - Chang-seng Liang
- Cardiovascular Medicine Section, Boston University School of Medicine, Boston, MA (R.S., N.A., C.D., A.J.P., J.D., C.L., N.G., W.S.C., J.E.H.)
| | - Noyan Gokce
- Cardiovascular Medicine Section, Boston University School of Medicine, Boston, MA (R.S., N.A., C.D., A.J.P., J.D., C.L., N.G., W.S.C., J.E.H.)
| | - Wilson S Colucci
- Cardiovascular Medicine Section, Boston University School of Medicine, Boston, MA (R.S., N.A., C.D., A.J.P., J.D., C.L., N.G., W.S.C., J.E.H.)
| | - Jennifer E Ho
- Cardiovascular Medicine Section, Boston University School of Medicine, Boston, MA (R.S., N.A., C.D., A.J.P., J.D., C.L., N.G., W.S.C., J.E.H.)
| |
Collapse
|
14
|
Morales-Cano D, Menendez C, Moreno E, Moral-Sanz J, Barreira B, Galindo P, Pandolfi R, Jimenez R, Moreno L, Cogolludo A, Duarte J, Perez-Vizcaino F. The flavonoid quercetin reverses pulmonary hypertension in rats. PLoS One 2014; 9:e114492. [PMID: 25460361 PMCID: PMC4252144 DOI: 10.1371/journal.pone.0114492] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 11/10/2014] [Indexed: 11/19/2022] Open
Abstract
Quercetin is a dietary flavonoid which exerts vasodilator, antiplatelet and antiproliferative effects and reduces blood pressure, oxidative status and end-organ damage in humans and animal models of systemic hypertension. We hypothesized that oral quercetin treatment might be protective in a rat model of pulmonary arterial hypertension. Three weeks after injection of monocrotaline, quercetin (10 mg/kg/d per os) or vehicle was administered for 10 days to adult Wistar rats. Quercetin significantly reduced mortality. In surviving animals, quercetin decreased pulmonary arterial pressure, right ventricular hypertrophy and muscularization of small pulmonary arteries. Classic biomarkers of pulmonary arterial hypertension such as the downregulated expression of lung BMPR2, Kv1.5, Kv2.1, upregulated survivin, endothelial dysfunction and hyperresponsiveness to 5-HT were unaffected by quercetin. Quercetin significantly restored the decrease in Kv currents, the upregulation of 5-HT2A receptors and reduced the Akt and S6 phosphorylation. In vitro, quercetin induced pulmonary artery vasodilator effects, inhibited pulmonary artery smooth muscle cell proliferation and induced apoptosis. In conclusion, quercetin is partially protective in this rat model of PAH. It delayed mortality by lowering PAP, RVH and vascular remodeling. Quercetin exerted effective vasodilator effects in isolated PA, inhibited cell proliferation and induced apoptosis in PASMCs. These effects were associated with decreased 5-HT2A receptor expression and Akt and S6 phosphorylation and partially restored Kv currents. Therefore, quercetin could be useful in the treatment of PAH.
Collapse
Affiliation(s)
- Daniel Morales-Cano
- Department of Pharmacology, School of Medicine, University Complutense of Madrid, Madrid, Spain
- Ciber Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Carmen Menendez
- Department of Pharmacology, School of Medicine, University Complutense of Madrid, Madrid, Spain
- Ciber Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Enrique Moreno
- Department of Pharmacology, School of Medicine, University Complutense of Madrid, Madrid, Spain
- Ciber Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Javier Moral-Sanz
- Department of Pharmacology, School of Medicine, University Complutense of Madrid, Madrid, Spain
- Ciber Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Bianca Barreira
- Department of Pharmacology, School of Medicine, University Complutense of Madrid, Madrid, Spain
- Ciber Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Pilar Galindo
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain
| | - Rachele Pandolfi
- Department of Pharmacology, School of Medicine, University Complutense of Madrid, Madrid, Spain
- Ciber Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Rosario Jimenez
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain
| | - Laura Moreno
- Department of Pharmacology, School of Medicine, University Complutense of Madrid, Madrid, Spain
- Ciber Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Angel Cogolludo
- Department of Pharmacology, School of Medicine, University Complutense of Madrid, Madrid, Spain
- Ciber Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain
| | - Francisco Perez-Vizcaino
- Department of Pharmacology, School of Medicine, University Complutense of Madrid, Madrid, Spain
- Ciber Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
15
|
Cyclooxygenase 2, toll-like receptor 4 and interleukin 1β mRNA expression in atherosclerotic plaques of type 2 diabetic patients. Inflamm Res 2014; 63:851-8. [PMID: 25095741 DOI: 10.1007/s00011-014-0759-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/08/2014] [Accepted: 07/15/2014] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES AND DESIGN Inflammation has a prominent role in the development of atherosclerosis. Type 2 diabetes could contribute to atherosclerosis development by promoting inflammation. This status might accelerate changes in intrinsic vascular wall cells and favor plaque formation. Cyclooxygenase 2 (COX-2) is highly expressed in atherosclerotic plaques. COX-2 gene expression is promoted through activation of toll-like receptor 4 (TLR4) and pro-inflammatory cytokine interleukin 1β (IL1-β). Aim of this study is to investigate whether expression profiles of pro-inflammatory genes such as COX-2, TLR4 and IL1-β in atherosclerotic plaques are altered in type 2 diabetes (T2D). METHODS Total RNA was isolated from plaques of atherosclerotic patients and expression of COX-2, TLR4, IL1-β analyzed using real-time PCR. Histological analysis was performed on sections of the plaque to establish the degree of instability. RESULTS Statistically significant differences in mRNA expression of COX-2 and IL1-β were found in plaques of T2D compared with non-T2D patients. A multi-variable linear regression model suggests that COX-2 mRNA expression is affected by T2D pathology and IL1-β mRNA expression in atherosclerotic plaques. CONCLUSIONS Our results support the hypothesis that T2D pathology contributes in vivo to increase the inflammatory process associated with the atherosclerotic plaque formation, as shown by an increment of COX-2 and IL1-β mRNA expression.
Collapse
|
16
|
Moral-Sanz J, Lopez-Lopez JG, Menendez C, Moreno E, Barreira B, Morales-Cano D, Escolano L, Fernandez-Segoviano P, Villamor E, Cogolludo A, Perez-Vizcaino F, Moreno L. Different patterns of pulmonary vascular disease induced by type 1 diabetes and moderate hypoxia in rats. Exp Physiol 2012; 97:676-86. [PMID: 22247283 DOI: 10.1113/expphysiol.2011.062257] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Although type 1 and type 2 diabetes are strongly associated with systemic cardiovascular morbidity, the relationship with pulmonary vascular disease had been almost disregarded until recent epidemiological data revealed that diabetes might be a risk factor for pulmonary hypertension. Recent experimental studies suggest that diabetes induces changes in lung function insufficient to elevate pulmonary pressure. The aim of this study was to assess the effects of diabetes on the sensitivity to other risk factors for pulmonary hypertension. We therefore analysed the effects of the combination of diabetes with exposure to moderate hypoxia on classical markers of pulmonary hypertension. Control (saline-treated) and diabetic (70 mg kg(-1) streptozotocin-treated) male Wistar-Kyoto rats were followed for 4 weeks and exposed to normoxia or moderate normobaric hypoxia (14%) for another 2 weeks. Hypoxia, but not diabetes, strongly reduced voltage-gated potassium currents, whereas diabetes, but not hypoxia, induced pulmonary artery endothelial dysfunction. Both factors independently induced pulmonary vascular remodelling and downregulated the lung bone morphogenetic protein receptor type 2. However, diabetes, but not hypoxia, induced pulmonary infiltration of macrophages, which was markedly increased when both factors were combined. Diabetes plus hypoxia induced a modest increase in diastolic and mean pulmonary artery pressure and right ventricular weight, while each of the two factors alone had no significant effect. The pattern of changes in markers of pulmonary hypertension was different for moderate hypoxia and diabetes, with no synergic effect except for macrophage recruitment, and the combination of both factors was required to induce a moderate elevation in pulmonary arterial pressure.
Collapse
Affiliation(s)
- Javier Moral-Sanz
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico, San Carlos (IdISSC), Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Friedman SE, Andrus BW. Obesity and pulmonary hypertension: a review of pathophysiologic mechanisms. J Obes 2012; 2012:505274. [PMID: 22988490 PMCID: PMC3439985 DOI: 10.1155/2012/505274] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 07/18/2012] [Indexed: 01/05/2023] Open
Abstract
Pulmonary hypertension (PH) is a potentially life-threatening condition arising from a wide variety of pathophysiologic mechanisms. Effective treatment requires a systematic diagnostic approach to identify all reversible mechanisms. Many of these mechanisms are relevant to those afflicted with obesity. The unique mechanisms of PH in the obese include obstructive sleep apnea, obesity hypoventilation syndrome, anorexigen use, cardiomyopathy of obesity, and pulmonary thromboembolic disease. Novel mechanisms of PH in the obese include endothelial dysfunction and hyperuricemia. A wide range of effective therapies exist to mitigate the disability of PH in the obese.
Collapse
Affiliation(s)
- Scott E. Friedman
- Section of Cardiology, Heart and Vascular Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
- Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Bruce W. Andrus
- Section of Cardiology, Heart and Vascular Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
- Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
- *Bruce W. Andrus:
| |
Collapse
|