1
|
Izat N, Kaplan O, Çelebier M, Sahin S. An Isolated Perfused Rat Liver Model: Simultaneous LC-MS Quantification of Pitavastatin, Coproporphyrin I, and Coproporphyrin III Levels in the Rat Liver and Bile. ACS OMEGA 2024; 9:19250-19260. [PMID: 38708282 PMCID: PMC11064166 DOI: 10.1021/acsomega.4c00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/21/2024] [Accepted: 04/04/2024] [Indexed: 05/07/2024]
Abstract
The isolated perfused rat liver (IPRL) model provides a mechanistic understanding of the organic-anion-transporting polypeptide (OATP/Oatp)-mediated pharmacokinetics in the preclinical evaluation, which often requires the use of control substrates (i.e., pitavastatin) and monitoring endogenous biomarkers (coproporphyrin I and III). This study aimed to develop and validate an LC-MS method allowing the simultaneous quantification of pitavastatin, coproporphyrin I (CPI), and coproporphyrin III (CPIII) in rat liver perfusion matrices (perfusate, liver homogenate, bile). The analysis was performed on a C18 column at 60 °C with 20 μL of sample injection. The mobile phases consisted of water with 0.1% formic acid and acetonitrile with 0.1% formic acid with a gradient flow of 0.5 mL/min. The assay was validated according to the ICH M10 Bioanalytical Method Validation Guideline (2022) for selectivity, calibration curve and range, matrix effect, carryover, accuracy, precision, and reinjection reproducibility. The method allowing the simultaneous quantification of pitavastatin, CPI, and CPIII was selective without having carryover and matrix effects. The linear calibration curves were obtained within various calibration ranges for three analytes in different matrices. Accuracy and precision values fulfilled the required limits. After 60 min perfusion with pitavastatin (1 μM), the cumulative amounts of pitavastatin in the liver and bile were 5.770 ± 1.504 and 0.852 ± 0.430 nmol/g liver, respectively. CPIII was a more dominant marker than CPI in both liver (0.028 ± 0.017 vs 0.013 ± 0.008 nmol/g liver) and bile (0.016 ± 0.011 vs 0.009 ± 0.007 nmol/g liver). The novel and validated bioanalytical method can be applied in further IPRL preparations investigating Oatp-mediated pharmacokinetics and DDIs.
Collapse
Affiliation(s)
- Nihan Izat
- Department
of Pharmaceutical Technology, Hacettepe
University Faculty of Pharmacy, Ankara 06800, Turkey
| | - Ozan Kaplan
- Department
of Analytical Chemistry, Hacettepe University
Faculty of Pharmacy, Ankara 06100, Turkey
| | - Mustafa Çelebier
- Department
of Analytical Chemistry, Hacettepe University
Faculty of Pharmacy, Ankara 06100, Turkey
| | - Selma Sahin
- Department
of Pharmaceutical Technology, Hacettepe
University Faculty of Pharmacy, Ankara 06800, Turkey
| |
Collapse
|
2
|
Milani N, Parrott N, Galetin A, Fowler S, Gertz M. In silico modeling and simulation of organ-on-a-chip systems to support data analysis and a priori experimental design. CPT Pharmacometrics Syst Pharmacol 2024; 13:524-543. [PMID: 38356302 PMCID: PMC11015085 DOI: 10.1002/psp4.13110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/22/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
Organ-on-a-chip (OoC) systems are a promising new class of in vitro devices that can combine various tissues, cultured in different compartments, linked by media flow. The properties of these novel in vitro systems linked to increased physiological relevance of culture conditions may lead to more in vivo-relevant cell phenotypes, enabling better in vitro pharmacology and toxicology assessment. Improved cell activities combined with longer lasting cultures offer opportunities to improve the characterization of absorption, distribution, metabolism, and excretion (ADME) processes, potentially leading to more accurate prediction of human pharmacokinetics (PKs). The inclusion of barrier tissue elements and metabolically competent tissue types results in complex concentration-time profiles (in vitro PK) for test drugs and their metabolites that require appropriate mathematical modeling of in vitro data for parameter estimation. In particular, modeling is critical to estimate in vitro ADME parameters when multiple different tissues are combined in a single device. Therefore, sophisticated in silico data analysis and a priori experimental design are highly recommended for OoC experiments in a manner not needed with standard ADME screening. The design of the experiment should be optimized based on an investigation of the structural characteristics of the in vitro system, the ADME features of the test compound and any available knowledge of cell phenotypes. This tutorial aims to provide such a modeling framework to inform experimental design and refine parameter estimation in a Gut-Liver OoC (the most studied multi-organ systems to predict the oral drug PKs) to improve translatability of data generated in such complex cellular systems.
Collapse
Affiliation(s)
- Nicoló Milani
- Pharmaceutical Sciences, Roche Pharma Research and Early DevelopmentRoche Innovation Center BaselBaselSwitzerland
- Division of Pharmacy and Optometry, Centre for Applied Pharmacokinetic Research, School of Health SciencesUniversity of ManchesterManchesterUK
| | - Neil Parrott
- Pharmaceutical Sciences, Roche Pharma Research and Early DevelopmentRoche Innovation Center BaselBaselSwitzerland
| | - Aleksandra Galetin
- Division of Pharmacy and Optometry, Centre for Applied Pharmacokinetic Research, School of Health SciencesUniversity of ManchesterManchesterUK
| | - Stephen Fowler
- Pharmaceutical Sciences, Roche Pharma Research and Early DevelopmentRoche Innovation Center BaselBaselSwitzerland
| | - Michael Gertz
- Pharmaceutical Sciences, Roche Pharma Research and Early DevelopmentRoche Innovation Center BaselBaselSwitzerland
| |
Collapse
|
3
|
Schulz JA, Stresser DM, Kalvass JC. Plasma Protein-Mediated Uptake and Contradictions to the Free Drug Hypothesis: A Critical Review. Drug Metab Rev 2023:1-34. [PMID: 36971325 DOI: 10.1080/03602532.2023.2195133] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
According to the free drug hypothesis (FDH), only free, unbound drug is available to interact with biological targets. This hypothesis is the fundamental principle that continues to explain the vast majority of all pharmacokinetic and pharmacodynamic processes. Under the FDH, the free drug concentration at the target site is considered the driver of pharmacodynamic activity and pharmacokinetic processes. However, deviations from the FDH are observed in hepatic uptake and clearance predictions, where observed unbound intrinsic hepatic clearance (CLint,u) is larger than expected. Such deviations are commonly observed when plasma proteins are present and form the basis of the so-called plasma protein-mediated uptake effect (PMUE). This review will discuss the basis of plasma protein binding as it pertains to hepatic clearance based on the FDH, as well as several hypotheses that may explain the underlying mechanisms of PMUE. Notably, some, but not all, potential mechanisms remained aligned with the FDH. Finally, we will outline possible experimental strategies to elucidate PMUE mechanisms. Understanding the mechanisms of PMUE and its potential contribution to clearance underprediction is vital to improving the drug development process.
Collapse
|
4
|
Wright SH, Secomb TW. Novel method for kinetic analysis applied to transport by the uniporter OCT2. Am J Physiol Renal Physiol 2022; 323:F370-F387. [PMID: 35862650 PMCID: PMC9423780 DOI: 10.1152/ajprenal.00106.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/22/2022] Open
Abstract
The kinetics of solute transport shed light on the roles these processes play in cellular physiology, and the absolute values of the kinetic parameters that quantitatively describe transport are increasingly used to model its impact on drug clearance. However, accurate assessment of transport kinetics is challenging. Although most carrier-mediated transport is adequately described by the Michaelis-Menten equation, its use presupposes that the rates of uptake used in the analysis of maximal rates of transport (Jmax) and half-saturation constants (Kt) reflect true unidirectional rates of influx from known concentrations of substrate. Most experimental protocols estimate the initial rate of transport from net substrate accumulation determined at a single time point (typically between 0.5 and 5 min) and assume it reflects unidirectional influx. However, this approach generally results in systematic underestimates of Jmax and overestimates of Kt; the former primarily due to the unaccounted impact of efflux of accumulated substrate, and the latter due to the influence of unstirred water layers. Here, we describe the bases of these time-dependent effects and introduce a computational model that analyzes the time course of net substrate uptake at several concentrations to calculate Jmax and Kt for unidirectional influx, taking into account the influence of unstirred water layers and mediated efflux. This method was then applied to calculate the kinetics of transport of 1-methyl-4-phenylpryridinium and metformin by renal organic cation transporter 2 as expressed in cultured Chinese hamster ovary cells.NEW & NOTEWORTHY Here, we describe a mathematical model that uses the time course of net substrate uptake into cells from several increasing concentrations to calculate unique kinetic parameters [maximal rates of transport (Jmax) and half-saturation constants (Kt)] of the process. The method is the first to take into consideration the common complicating factors of unstirred layers and carrier-mediated efflux in the experimental determination of transport kinetics.
Collapse
Affiliation(s)
- Stephen H Wright
- Department of Physiology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Timothy W Secomb
- Department of Physiology, College of Medicine, University of Arizona, Tucson, Arizona
| |
Collapse
|
5
|
Golding M, Light O, Williamson B, Ménochet K. Use of selective substrates and inhibitors to rapidly characterise batches of cryopreserved primary human hepatocytes for assessment of active uptake liability in drug discovery and development. Xenobiotica 2022; 52:868-877. [PMID: 36121307 DOI: 10.1080/00498254.2022.2124388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The use of hepatocytes to predict human hepatic metabolic clearance is the gold standard approach. However whilst enzymes are well characterised, knowledge gaps remain for transporters. Furthermore, methods to study specific transporter involvement are often complicated by overlapping substrate specificity. Selective substrates and inhibitors would aid investigations into clinically relevant pharmacokinetic effects. However, to date no consensus has been reached.This work defines selective hepatic uptake transporter substrates and inhibitors for the six main human hepatocyte transporters (OATP1B1, OATP1B3, OATP2B1, NTCP, OAT2 & OCT1), and demonstrates their use to rapidly characterise batches of human hepatocytes for uptake transporter activity. Hepatic uptake was determined across a range of substrate concentrations, allowing the definition of kinetic parameters and hence active and passive components. Systematic investigations identified a specific substrate and inhibitor for each transporter, with no overlap between the specificity of substrate and inhibitor for any given transporter.Early characterisation of compound interactions with uptake transporters will aid in early risk assessment and chemistry design. Hence, this work further highlights the feasibility of a refined methodology for rapid compound characterisation for the application of static and dynamic models, for early clinical risk assessment and guidance for the clinical development plan.
Collapse
Affiliation(s)
| | - Oliver Light
- Immunology Therapeutic Area, UCB Biopharma, Slough, UK
| | | | | |
Collapse
|
6
|
Milani N, Parrott N, Ortiz Franyuti D, Godoy P, Galetin A, Gertz M, Fowler S. Application of a gut-liver-on-a-chip device and mechanistic modelling to the quantitative in vitro pharmacokinetic study of mycophenolate mofetil. LAB ON A CHIP 2022; 22:2853-2868. [PMID: 35833849 DOI: 10.1039/d2lc00276k] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microphysiological systems (MPS) consisting of multiple linked organ-on-a-chip (OoC) components are highly promising tools with potential to provide more relevant in vitro to in vivo translation of drug disposition, efficacy and toxicity. A gut-liver OoC system was employed with Caco2 cells in co-culture with HT29 cells in the intestinal compartment and single donor primary hepatocytes in the hepatic compartment for the investigation of intestinal permeability, metabolism (intestinal and hepatic) and potential interplay of those processes. The prodrug mycophenolate mofetil was tested for quantitative evaluation of the gut-liver OoC due to the contribution of both gut and liver in its metabolism. Conversion of mycophenolate mofetil to active drug mycophenolic acid and further metabolism to a glucuronide metabolite was assessed over time in the gut apical, gut basolateral and liver compartments. Mechanistic modelling of experimental data was performed to estimate clearance and permeability parameters for the prodrug, active drug and glucuronide metabolite. Integration of gut-liver OoC data with in silico modelling allowed investigation of the complex combination of intestinal and hepatic processes, which is not possible with standard single tissue in vitro systems. A comprehensive evaluation of the mechanistic model, including structural model and parameter identifiability and global sensitivity analysis, enabled a robust experimental design and estimation of in vitro pharmacokinetic parameters. We propose that similar methodologies may be applied to other multi-organ microphysiological systems used for drug metabolism studies or wherever quantitative knowledge of changing drug concentration with time enables better understanding of biological effect.
Collapse
Affiliation(s)
- Nicoló Milani
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland.
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, UK
| | - Neil Parrott
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| | - Daniela Ortiz Franyuti
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| | - Patricio Godoy
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, UK
| | - Michael Gertz
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| | - Stephen Fowler
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| |
Collapse
|
7
|
Docci L, Milani N, Ramp T, Romeo AA, Godoy P, Franyuti DO, Krähenbühl S, Gertz M, Galetin A, Parrott N, Fowler S. Exploration and application of a liver-on-a-chip device in combination with modelling and simulation for quantitative drug metabolism studies. LAB ON A CHIP 2022; 22:1187-1205. [PMID: 35107462 DOI: 10.1039/d1lc01161h] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Microphysiological systems (MPS) are complex and more physiologically realistic cellular in vitro tools that aim to provide more relevant human in vitro data for quantitative prediction of clinical pharmacokinetics while also reducing the need for animal testing. The PhysioMimix liver-on-a-chip integrates medium flow with hepatocyte culture and has the potential to be adopted for in vitro studies investigating the hepatic disposition characteristics of drug candidates. The current study focusses on liver-on-a-chip system exploration for multiple drug metabolism applications. Characterization of cytochrome P450 (CYP), UDP-glucuronosyl transferase (UGT) and aldehyde oxidase (AO) activities was performed using 15 drugs and in vitro to in vivo extrapolation (IVIVE) was assessed for 12 of them. Next, the utility of the liver-on-a-chip for estimation of the fraction metabolized (fm) via specific biotransformation pathways of quinidine and diclofenac was established. Finally, the metabolite identification opportunities were also explored using efavirenz as an example drug with complex primary and secondary metabolism involving a combination of CYP, UGT and sulfotransferase enzymes. A key aspect of these investigations was the application of mathematical modelling for improved parameter calculation. Such approaches will be required for quantitative assessment of metabolism and/or transporter processes in systems where medium flow and system compartments result in non-homogeneous drug concentrations. In particular, modelling was used to explore the effect of evaporation from the medium and it was found that the intrinsic clearance (CLint) might be underestimated by up to 40% for low clearance compounds if evaporation is not accounted for. Modelling of liver-on-a-chip in vitro data also enhanced the approach to fm estimation allowing objective assessment of metabolism models of different complexity. The resultant diclofenac fm,UGT of 0.64 was highly comparable with values reported previously in the literature. The current study demonstrates the integration of mathematical modelling with experimental liver-on-a-chip studies and illustrates how this approach supports generation of high quality of data from complex in vitro cellular systems.
Collapse
Affiliation(s)
- Luca Docci
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland.
- Clinical Pharmacology & Toxicology, University Hospital, Schanzenstrasse 55, 4031, Basel, Switzerland
| | - Nicolò Milani
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland.
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Thomas Ramp
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| | - Andrea A Romeo
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| | - Patricio Godoy
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| | - Daniela Ortiz Franyuti
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| | - Stephan Krähenbühl
- Clinical Pharmacology & Toxicology, University Hospital, Schanzenstrasse 55, 4031, Basel, Switzerland
| | - Michael Gertz
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Neil Parrott
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| | - Stephen Fowler
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| |
Collapse
|
8
|
Relationship between plasma and intracellular concentrations of bedaquiline and its M2 metabolite in South African patients with rifampin-resistant TB. Antimicrob Agents Chemother 2021; 65:e0239920. [PMID: 34370588 PMCID: PMC8522761 DOI: 10.1128/aac.02399-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bedaquiline is recommended for the treatment of all patients with rifampin-resistant tuberculosis (RR-TB). Bedaquiline accumulates within cells, but its intracellular pharmacokinetics have not been characterized, which may have implications for dose optimization. We developed a novel assay using high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) to measure the intracellular concentrations of bedaquiline and its primary metabolite M2 in patients with RR-TB in South Africa. Twenty-one participants were enrolled and underwent sparse sampling of plasma and peripheral blood mononuclear cells (PBMCs) at months 1, 2, and 6 of treatment and at 3 and 6 months after bedaquiline treatment completion. Intensive sampling was performed at month 2. We used noncompartmental analysis to describe plasma and intracellular exposures and a population pharmacokinetic model to explore the relationship between plasma and intracellular pharmacokinetics and the effects of key covariates. Bedaquiline concentrations from month 1 to month 6 of treatment ranged from 94.7 to 2,540 ng/ml in plasma and 16.2 to 5,478 ng/ml in PBMCs, and concentrations of M2 over the 6-month treatment period ranged from 34.3 to 496 ng/ml in plasma and 109.2 to 16,764 ng/ml in PBMCs. Plasma concentrations of bedaquiline were higher than those of M2, but intracellular concentrations of M2 were considerably higher than those of bedaquiline. In the pharmacokinetic modeling, we estimated a linear increase in the intracellular-plasma accumulation ratio for bedaquiline and M2, reaching maximum effect after 2 months of treatment. The typical intracellular-plasma ratios 1 and 2 months after start of treatment were 0.61 (95% confidence interval [CI]: 0.42 to 0.92) and 1.10 (95% CI: 0.74 to 1.63) for bedaquiline and 12.4 (95% CI: 8.8 to 17.8) and 22.2 (95% CI: 15.6 to 32.3) for M2. The intracellular-plasma ratios for both bedaquiline and M2 were decreased by 54% (95% CI: 24 to 72%) in HIV-positive patients compared to HIV-negative patients. Bedaquiline and M2 were detectable in PBMCs 6 months after treatment discontinuation. M2 accumulated at higher concentrations intracellularly than bedaquiline, supporting in vitro evidence that M2 is the main inducer of phospholipidosis.
Collapse
|
9
|
Izat N, Kaplan O, Celebier M, Sahin S. Bioanalytical Method Validation of an RP-HPLC Method for Determination of Rifampicin in Liver Perfusion Studies. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916999200526115445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The number of validated quantification methods for rifampicin, a prototypical Oatp inhibitor, in biological rat samples was limited.
Objective:
This study was conducted to validate a modified reversed-phase liquid chromatographic method for the determination of rifampicin in rat liver tissue according to the current ICH M10 Bioanalytical Method Validation Draft Guideline (2019) for application to samples of in situ rat liver perfusion studies.
Methods:
Liver tissue samples were obtained from recirculatory in situ rat liver perfusion studies. The
analysis was performed on a C18 column with a mobile phase composed of 0.05 M phosphate buffer
(pH 4.58): acetonitrile (55:45, v/v). The assay was validated for selectivity, calibration curve and
range, matrix effect, carry-over, accuracy and precision, reinjection reproducibility, and stability.
Results:
he method was considered selective and stable, without having carry-over and matrix effects.
The calibration curve was linear (R2: 0.9983) within the calibration range (0.5-60 ppm). Accuracy and
precision values fulfilled the required limits. Liver concentrations of rifampicin in liver tissue, obtained
after 60 min perfusion with 10 μM and 50 μM of rifampicin, were 45.1 ± 11.2 and 313.4 ± 84.4 μM,
respectively.
Conclusion:
The bioanalytical method validation was completed and the method was successfully applied for the determination of rifampicin in rat liver tissue.
Collapse
Affiliation(s)
- Nihan Izat
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara,Turkey
| | - Ozan Kaplan
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara,Turkey
| | - Mustafa Celebier
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara,Turkey
| | - Selma Sahin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara,Turkey
| |
Collapse
|
10
|
Scotcher D, Melillo N, Tadimalla S, Darwich AS, Ziemian S, Ogungbenro K, Schütz G, Sourbron S, Galetin A. Physiologically Based Pharmacokinetic Modeling of Transporter-Mediated Hepatic Disposition of Imaging Biomarker Gadoxetate in Rats. Mol Pharm 2021; 18:2997-3009. [PMID: 34283621 PMCID: PMC8397403 DOI: 10.1021/acs.molpharmaceut.1c00206] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
Physiologically based
pharmacokinetic (PBPK) models are increasingly
used in drug development to simulate changes in both systemic and
tissue exposures that arise as a result of changes in enzyme and/or
transporter activity. Verification of these model-based simulations
of tissue exposure is challenging in the case of transporter-mediated
drug–drug interactions (tDDI), in particular as these may lead
to differential effects on substrate exposure in plasma and tissues/organs
of interest. Gadoxetate, a promising magnetic resonance imaging (MRI)
contrast agent, is a substrate of organic-anion-transporting polypeptide
1B1 (OATP1B1) and multidrug resistance-associated protein 2 (MRP2).
In this study, we developed a gadoxetate PBPK model and explored the
use of liver-imaging data to achieve and refine in vitro–in
vivo extrapolation (IVIVE) of gadoxetate hepatic transporter kinetic
data. In addition, PBPK modeling was used to investigate gadoxetate
hepatic tDDI with rifampicin i.v. 10 mg/kg. In vivo dynamic contrast-enhanced
(DCE) MRI data of gadoxetate in rat blood, spleen, and liver were
used in this analysis. Gadoxetate in vitro uptake kinetic data were
generated in plated rat hepatocytes. Mean (%CV) in vitro hepatocyte
uptake unbound Michaelis–Menten constant (Km,u) of gadoxetate was 106 μM (17%) (n = 4 rats), and active saturable uptake accounted for 94% of total
uptake into hepatocytes. PBPK–IVIVE of these data (bottom-up
approach) captured reasonably systemic exposure, but underestimated
the in vivo gadoxetate DCE–MRI profiles and elimination from
the liver. Therefore, in vivo rat DCE–MRI liver data were subsequently
used to refine gadoxetate transporter kinetic parameters in the PBPK
model (top-down approach). Active uptake into the hepatocytes refined
by the liver-imaging data was one order of magnitude higher than the
one predicted by the IVIVE approach. Finally, the PBPK model was fitted
to the gadoxetate DCE–MRI data (blood, spleen, and liver) obtained
with and without coadministered rifampicin. Rifampicin was estimated
to inhibit active uptake transport of gadoxetate into the liver by
96%. The current analysis highlighted the importance of gadoxetate
liver data for PBPK model refinement, which was not feasible when
using the blood data alone, as is common in PBPK modeling applications.
The results of our study demonstrate the utility of organ-imaging
data in evaluating and refining PBPK transporter IVIVE to support
the subsequent model use for quantitative evaluation of hepatic tDDI.
Collapse
Affiliation(s)
- Daniel Scotcher
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester M13 9PL, U.K
| | - Nicola Melillo
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester M13 9PL, U.K
| | - Sirisha Tadimalla
- Division of Medical Physics, University of Leeds, Leeds LS2 9JT, U.K
| | - Adam S Darwich
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester M13 9PL, U.K
| | - Sabina Ziemian
- MR & CT Contrast Media Research, Bayer AG, Berlin 13342, Germany
| | - Kayode Ogungbenro
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester M13 9PL, U.K
| | - Gunnar Schütz
- MR & CT Contrast Media Research, Bayer AG, Berlin 13342, Germany
| | - Steven Sourbron
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2TN, U.K
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester M13 9PL, U.K
| |
Collapse
|
11
|
Yadav J, El Hassani M, Sodhi J, Lauschke VM, Hartman JH, Russell LE. Recent developments in in vitro and in vivo models for improved translation of preclinical pharmacokinetics and pharmacodynamics data. Drug Metab Rev 2021; 53:207-233. [PMID: 33989099 DOI: 10.1080/03602532.2021.1922435] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Improved pharmacokinetics/pharmacodynamics (PK/PD) prediction in the early stages of drug development is essential to inform lead optimization strategies and reduce attrition rates. Recently, there have been significant advancements in the development of new in vitro and in vivo strategies to better characterize pharmacokinetic properties and efficacy of drug leads. Herein, we review advances in experimental and mathematical models for clearance predictions, advancements in developing novel tools to capture slowly metabolized drugs, in vivo model developments to capture human etiology for supporting drug development, limitations and gaps in these efforts, and a perspective on the future in the field.
Collapse
Affiliation(s)
- Jaydeep Yadav
- Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc., Boston, MA, USA
| | | | - Jasleen Sodhi
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jessica H Hartman
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | | |
Collapse
|
12
|
Morse BL, Fallon JK, Kolur A, Hogan AT, Smith PC, Hillgren KM. Comparison of Hepatic Transporter Tissue Expression in Rodents and Interspecies Hepatic OCT1 Activity. AAPS J 2021; 23:58. [PMID: 33903987 DOI: 10.1208/s12248-021-00583-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/16/2021] [Indexed: 11/30/2022] Open
Abstract
Hepatic clearance may be uptake rate limited by organic anion transporting polypeptides (OATPs) and organic cation transporter 1 (OCT1). While comparison of OATP activity has been investigated across species, little has been reported for OCT1. Additionally, while data on interspecies transporter expression in the liver exist, quantitative comparison of these transporters in multiple tissues is lacking. In the current research, the pharmacokinetics of OCT1 substrates (sumatriptan and metformin) were assessed in Oct knockout rats for comparison with previous Oct1/2-/- mice data and OCT1 pharmacogenetics in humans. Effect of OCT1 inhibitors verapamil and erlotinib on OCT1 substrate liver partitioning was also evaluated in rats. Expression of 18 transporters, including Oatps and Octs, in 9 tissues from mice and rats was quantitated using nanoLC/MS-MS, along with uptake transporters in hepatocytes from 5 species. Interspecies differences in OCT1 activity were further evaluated via uptake of OCT1 substrates in hepatocytes with corresponding in vivo liver partitioning in rodents and monkey. In Oct1-/- rats, sumatriptan hepatic clearance and liver partitioning decreased; however, metformin pharmacokinetics were unaffected. OCT1 inhibitor coadministration decreased sumatriptan liver partitioning. In rodents, Oatp expression was highest in the liver, although comparable expression of Oatps in other tissues was determined. Expression of Octs was highest in the kidney, with liver Oct1 expression comparably lower than Oatps. Liver partitioning of OCT1 substrates was lower in rodents than in monkey, in agreement with the highest OCT1 expression and uptake of OCT1 substrates in monkey hepatocytes. Species-dependent OCT1 activity requires consideration when translating preclinical data to the clinic.
Collapse
Affiliation(s)
- Bridget L Morse
- Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA.
| | - John K Fallon
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anil Kolur
- Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Andrew T Hogan
- Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Philip C Smith
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kathleen M Hillgren
- Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| |
Collapse
|
13
|
Effects of Probenecid on Hepatic and Renal Disposition of Hexadecanedioate, an Endogenous Substrate of Organic Anion Transporting Polypeptide 1B in Rats. J Pharm Sci 2021; 110:2274-2284. [PMID: 33607188 DOI: 10.1016/j.xphs.2021.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 01/02/2023]
Abstract
The aim of the present study was to investigate changes in plasma concentrations and tissue distribution of endogenous substrates of organic anion transporting polypeptide (OATP) 1B, hexadecanedioate (HDA), octadecanedioate (ODA), tetradecanedioate (TDA), and coproporphyrin-III, induced by its weak inhibitor, probenecid (PBD), in rats. PBD increased the plasma concentrations of these four compounds regardless of bile duct cannulation, whereas liver-to-plasma (Kp,liver) and kidney-to-plasma concentration ratios of HDA and TDA were reduced. Similar effects of PBD on plasma concentrations and Kp,liver of HDA, ODA, and TDA were observed in kidney-ligated rats, suggesting a minor contribution of renal disposition to the overall distribution of these three compounds. Tissue uptake clearance of deuterium-labeled HDA (d-HDA) in liver was 16-fold higher than that in kidney, and was reduced by 80% by PBD. This was compatible with inhibition by PBD of d-HDA uptake in isolated rat hepatocytes. Such inhibitory effects of PBD were also observed in the human OATP1B1-mediated uptake of d-HDA. Overall, the disposition of HDA is mainly determined by hepatic OATP-mediated uptake, which is inhibited by PBD. HDA might, thus, be a biomarker for OATPs minimally affected by urinary and biliary elimination in rats.
Collapse
|
14
|
Izat N, Sahin S. Hepatic transporter-mediated pharmacokinetic drug-drug interactions: Recent studies and regulatory recommendations. Biopharm Drug Dispos 2021; 42:45-77. [PMID: 33507532 DOI: 10.1002/bdd.2262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 12/16/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022]
Abstract
Transporter-mediated drug-drug interactions are one of the major mechanisms in pharmacokinetic-based drug interactions and correspondingly affecting drugs' safety and efficacy. Regulatory bodies underlined the importance of the evaluation of transporter-mediated interactions as a part of the drug development process. The liver is responsible for the elimination of a wide range of endogenous and exogenous compounds via metabolism and biliary excretion. Therefore, hepatic uptake transporters, expressed on the sinusoidal membranes of hepatocytes, and efflux transporters mediating the transport from hepatocytes to the bile are determinant factors for pharmacokinetics of drugs, and hence, drug-drug interactions. In parallel with the growing research interest in this area, regulatory guidances have been updated with detailed assay models and criteria. According to well-established preclinical results, observed or expected hepatic transporter-mediated drug-drug interactions can be taken into account for clinical studies. In this paper, various methods including in vitro, in situ, in vivo, in silico approaches, and combinational concepts and several clinical studies on the assessment of transporter-mediated drug-drug interactions were reviewed. Informative and effective evaluation by preclinical tools together with the integration of pharmacokinetic modeling and simulation can reduce unexpected clinical outcomes and enhance the success rate in drug development.
Collapse
Affiliation(s)
- Nihan Izat
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Selma Sahin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
15
|
Takita H, Barnett S, Zhang Y, Ménochet K, Shen H, Ogungbenro K, Galetin A. PBPK Model of Coproporphyrin I: Evaluation of the Impact of SLCO1B1 Genotype, Ethnicity, and Sex on its Inter-Individual Variability. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2021; 10:137-147. [PMID: 33289952 PMCID: PMC7894406 DOI: 10.1002/psp4.12582] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022]
Abstract
Coproporphyrin I (CPI) is an endogenous biomarker of OATP1B activity and associated drug-drug interactions. In this study, a minimal physiologically-based pharmacokinetic model was developed to investigate the impact of OATP1B1 genotype (c.521T>C), ethnicity, and sex on CPI pharmacokinetics and interindividual variability in its baseline. The model implemented mechanistic descriptions of CPI hepatic transport between liver blood and liver tissue and renal excretion. Key model parameters (e.g., endogenous CPI synthesis rate, and CPI hepatic uptake clearance) were estimated by fitting the model simultaneously to three independent CPI clinical datasets (plasma and urine data) obtained from white (n = 16, men and women) and Asian-Indian (n = 26, all men) subjects, with c.521 variants (TT, TC, and CC). The optimized CPI model successfully described the observed data using c.521T>C genotype, ethnicity, and sex as covariates. CPI hepatic active was 79% lower in 521CC relative to the wild type and 42% lower in Asian-Indians relative to white subjects, whereas CPI synthesis was 23% higher in male relative to female subjects. Parameter sensitivity analysis showed marginal impact of the assumption of CPI synthesis site (blood or liver), resulting in comparable recovery of plasma and urine CPI data. Lower magnitude of CPI-drug interaction was simulated in 521CC subjects, suggesting the risk of underestimation of CPI-drug interaction without prior OATP1B1 genotyping. The CPI model incorporates key covariates contributing to interindividual variability in its baseline and highlights the utility of the CPI modeling to facilitate the design of prospective clinical studies to maximize the sensitivity of this biomarker.
Collapse
Affiliation(s)
- Hiroyuki Takita
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Laboratory for Safety Assessment and ADME, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Shelby Barnett
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Yueping Zhang
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, New Jersey, USA
| | | | - Hong Shen
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, New Jersey, USA
| | - Kayode Ogungbenro
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
16
|
Korzekwa K. Case Study 5: Predicting the Drug Interaction Potential for Inhibition of CYP2C8 by Montelukast. Methods Mol Biol 2021; 2342:685-693. [PMID: 34272712 DOI: 10.1007/978-1-0716-1554-6_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Predicting drug-drug interactions (DDIs) from in vitro data is made difficult by not knowing concentrations of substrate and inhibitor at the target site. For in vivo targets, this is understandable, since intracellular concentrations can differ from extracellular concentrations. More vexing is that the concentration of the drug at the target for some in vitro assays can also be unknown. This uncertainty has resulted in standard in vitro practices that cannot accurately predict human pharmacokinetics. This case study highlights the impact of drug distribution, both in vitro and in vivo, with the example of the drug interaction potential of montelukast.
Collapse
Affiliation(s)
- Ken Korzekwa
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Feng B, Pemberton R, Dworakowski W, Ye Z, Zetterberg C, Wang G, Morikawa Y, Kumar S. Evaluation of the Utility of PXB Chimeric Mice for Predicting Human Liver Partitioning of Hepatic Organic Anion-Transporting Polypeptide Transporter Substrates. Drug Metab Dispos 2020; 49:254-264. [PMID: 33376106 DOI: 10.1124/dmd.120.000276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/08/2020] [Indexed: 11/22/2022] Open
Abstract
The ability to predict human liver-to-plasma unbound partition coefficient (Kpuu) is important to estimate unbound liver concentration for drugs that are substrates of hepatic organic anion-transporting peptide (OATP) transporters with asymmetric distribution into the liver relative to plasma. Herein, we explored the utility of PXB chimeric mice with humanized liver that are highly repopulated with human hepatocytes to predict human hepatic disposition of OATP substrates, including rosuvastatin, pravastatin, pitavastatin, valsartan, and repaglinide. In vitro total uptake clearance and transporter-mediated active uptake clearance in C57 mouse hepatocytes were greater than in PXB chimeric mouse hepatocytes for rosuvastatin, pravastatin, pitavastatin, and valsartan. Consistent with in vitro uptake data, enhanced hepatic uptake and resulting total systemic clearance were observed with the above four compounds in severely compromised immune-deficient (SCID) control mice compared with the PXB chimeric mice, which suggest that mouse has a stronger transporter-mediated hepatic uptake than human. In vivo liver-to-plasma Kpuu from PXB chimeric and SCID control mice were also compared, and rosuvastatin and pravastatin Kpuu in SCID mice were more than 10-fold higher than that in PXB chimeric mice, whereas pitavastatin, valsartan, and repaglinide Kpuu in SCID mice were comparable with Kpuu in PXB chimeric mice. Finally, PXB chimeric mouse liver-to-plasma Kpuu values were compared with the reported human Kpuu, and a good correlation was observed as the PXB Kpuu vales were within 3-fold of human Kpuu Our results indicate that PXB mice could be a useful tool to delineate hepatic uptake and enable prediction of human liver-to-plasma Kpuu of hepatic uptake transporter substrates. SIGNIFICANCE STATEMENT: We evaluated PXB mouse with humanized liver for its ability to predict human liver disposition of five organic anion-transporting polypeptide transporter substrates. Both in vitro and in vivo data suggest that mouse liver has a stronger transporter-mediated hepatic uptake than the humanized liver in PXB mouse. More importantly, PXB liver-to-plasma unbound partition coefficient (Kpuu) values were compared with the reported human Kpuu, and a good correlation was observed. PXB mice could be a useful tool to project human liver-to-plasma Kpuu of hepatic uptake transporter substrates.
Collapse
Affiliation(s)
- Bo Feng
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| | - Rachel Pemberton
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| | - Wojciech Dworakowski
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| | - Zhengqi Ye
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| | - Craig Zetterberg
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| | - Guanyu Wang
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| | - Yoshio Morikawa
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| | - Sanjeev Kumar
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| |
Collapse
|
18
|
Yoshikado T, Lee W, Toshimoto K, Morita K, Kiriake A, Chu X, Lee N, Kimoto E, Varma MVS, Kikuchi R, Scialis RJ, Shen H, Ishiguro N, Lotz R, Li AP, Maeda K, Kusuhara H, Sugiyama Y. Evaluation of Hepatic Uptake of OATP1B Substrates by Short Term-Cultured Plated Human Hepatocytes: Comparison With Isolated Suspended Hepatocytes. J Pharm Sci 2020; 110:376-387. [PMID: 33122051 DOI: 10.1016/j.xphs.2020.10.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022]
Abstract
Hepatic uptake clearance has been measured in suspended human hepatocytes (SHH). Plated human hepatocytes (PHH) after short-term culturing are increasingly employed to study hepatic transport driven mainly by its higher throughput. To know pros/cons of both systems, the hepatic uptake clearances of several organic anion transporting polypeptide 1B substrates were compared between PHH and SHH by determining the initial uptake velocities or through dynamic model-based analyses. For cerivastatin, pitavastatin and rosuvastatin, initial uptake clearances (PSinf) obtained using PHH were comparable to those using SHH, while cell-to-medium concentration (C/M) ratios were 2.7- to 5.4-fold higher. For pravastatin and dehydropravastatin, hydrophilic compounds with low uptake/cellular binding, their PSinf and C/M ratio in PHH were 1.8- to 3.2-fold lower than those in SHH. These hydrophilic substrates are more prone to wash-off during the uptake study using PHH, which may explain the apparently lower uptake than SHH. The C/M ratios obtained using PHH were stable over an extended time, making PHH suitable to estimate the C/M ratios and hepatocyte-to-medium unbound concentration ratios (Kp,uu). In conclusion, PHH is useful in evaluating hepatic uptake/efflux clearances and Kp,uu of OATP1B substrates in a high-throughput manner, however, a caution is warranted for hydrophilic drugs with low uptake/cellular binding.
Collapse
Affiliation(s)
- Takashi Yoshikado
- Sugiyama Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, RIKEN, Yokohama, Kanagawa, Japan; Laboratory of Clinical Pharmacology, Yokohama University of Pharmacy, Yokohama, Kanagawa, Japan
| | - Wooin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Korea
| | - Kota Toshimoto
- Sugiyama Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, RIKEN, Yokohama, Kanagawa, Japan
| | - Kiyoe Morita
- Sugiyama Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, RIKEN, Yokohama, Kanagawa, Japan
| | - Aya Kiriake
- Sugiyama Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, RIKEN, Yokohama, Kanagawa, Japan
| | | | - Nora Lee
- Daewoong Pharmaceutical Co., Ltd, Seoul, Korea
| | - Emi Kimoto
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc, Groton, CT, USA
| | - Manthena V S Varma
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc, Groton, CT, USA
| | | | | | - Hong Shen
- Bristol Myers Squibb, Princeton, NJ, USA
| | - Naoki Ishiguro
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co., Ltd, Kobe, Hyogo, Japan
| | - Ralf Lotz
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharma GmbH & Co., KG, Biberach an der Riss, Germany
| | - Albert P Li
- In Vitro ADMET Laboratories Inc, Columbia, MA, USA
| | - Kazuya Maeda
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, RIKEN, Yokohama, Kanagawa, Japan.
| |
Collapse
|
19
|
Docci L, Klammers F, Ekiciler A, Molitor B, Umehara K, Walter I, Krähenbühl S, Parrott N, Fowler S. In Vitro to In Vivo Extrapolation of Metabolic Clearance for UGT Substrates Using Short-Term Suspension and Long-Term Co-cultured Human Hepatocytes. AAPS JOURNAL 2020; 22:131. [DOI: 10.1208/s12248-020-00482-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/10/2020] [Indexed: 01/08/2023]
|
20
|
Scotcher D, Arya V, Yang X, Zhao P, Zhang L, Huang S, Rostami‐Hodjegan A, Galetin A. Mechanistic Models as Framework for Understanding Biomarker Disposition: Prediction of Creatinine-Drug Interactions. CPT Pharmacometrics Syst Pharmacol 2020; 9:282-293. [PMID: 32410382 PMCID: PMC7239336 DOI: 10.1002/psp4.12508] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/17/2020] [Indexed: 12/15/2022] Open
Abstract
Creatinine is widely used as a biomarker of glomerular filtration, and, hence, renal function. However, transporter-mediated secretion also contributes to its renal clearance, albeit to a lesser degree. Inhibition of these transporters causes transient serum creatinine elevation, which can be mistaken as impaired renal function. The current study developed mechanistic models of creatinine kinetics within physiologically based framework accounting for multiple transporters involved in creatinine renal elimination, assuming either unidirectional or bidirectional-OCT2 transport (driven by electrochemical gradient). Robustness of creatinine models was assessed by predicting creatinine-drug interactions with 10 perpetrators; performance evaluation accounted for 5% intra-individual variability in serum creatinine. Models showed comparable predictive performances of the maximum steady-state effect regardless of OCT2 directionality assumptions. However, only the bidirectional-OCT2 model successfully predicted the minimal effect of ranitidine. The dynamic nature of models provides clear advantage to static approaches and most advanced framework for evaluating interplay between multiple processes in creatinine renal disposition.
Collapse
Affiliation(s)
- Daniel Scotcher
- Centre for Applied Pharmacokinetic ResearchUniversity of ManchesterManchesterUK
| | - Vikram Arya
- Office of Clinical PharmacologyOffice of Translational SciencesCentre for Drug Evaluation and ResearchUS Food and Drug AdministrationSilver SpringMarylandUSA
| | - Xinning Yang
- Office of Clinical PharmacologyOffice of Translational SciencesCentre for Drug Evaluation and ResearchUS Food and Drug AdministrationSilver SpringMarylandUSA
| | - Ping Zhao
- Office of Clinical PharmacologyOffice of Translational SciencesCentre for Drug Evaluation and ResearchUS Food and Drug AdministrationSilver SpringMarylandUSA
- Present address:
Bill & Melinda Gates FoundationSeattleWashingtonUSA
| | - Lei Zhang
- Office of Research and StandardsOffice of Generic DrugsCentre for Drug Evaluation and Research, US Food and Drug AdministrationSilver SpringMarylandUSA
| | - Shiew‐Mei Huang
- Office of Clinical PharmacologyOffice of Translational SciencesCentre for Drug Evaluation and ResearchUS Food and Drug AdministrationSilver SpringMarylandUSA
| | - Amin Rostami‐Hodjegan
- Centre for Applied Pharmacokinetic ResearchUniversity of ManchesterManchesterUK
- CertaraSheffieldUK
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic ResearchUniversity of ManchesterManchesterUK
| |
Collapse
|
21
|
Leedale JA, Kyffin JA, Harding AL, Colley HE, Murdoch C, Sharma P, Williams DP, Webb SD, Bearon RN. Multiscale modelling of drug transport and metabolism in liver spheroids. Interface Focus 2020; 10:20190041. [PMID: 32194929 PMCID: PMC7061947 DOI: 10.1098/rsfs.2019.0041] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2019] [Indexed: 12/22/2022] Open
Abstract
In early preclinical drug development, potential candidates are tested in the laboratory using isolated cells. These in vitro experiments traditionally involve cells cultured in a two-dimensional monolayer environment. However, cells cultured in three-dimensional spheroid systems have been shown to more closely resemble the functionality and morphology of cells in vivo. While the increasing usage of hepatic spheroid cultures allows for more relevant experimentation in a more realistic biological environment, the underlying physical processes of drug transport, uptake and metabolism contributing to the spatial distribution of drugs in these spheroids remain poorly understood. The development of a multiscale mathematical modelling framework describing the spatio-temporal dynamics of drugs in multicellular environments enables mechanistic insight into the behaviour of these systems. Here, our analysis of cell membrane permeation and porosity throughout the spheroid reveals the impact of these properties on drug penetration, with maximal disparity between zonal metabolism rates occurring for drugs of intermediate lipophilicity. Our research shows how mathematical models can be used to simulate the activity and transport of drugs in hepatic spheroids and in principle any organoid, with the ultimate aim of better informing experimentalists on how to regulate dosing and culture conditions to more effectively optimize drug delivery.
Collapse
Affiliation(s)
- Joseph A Leedale
- EPSRC Liverpool Centre for Mathematics in Healthcare, Department of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL, UK
| | - Jonathan A Kyffin
- Department of Applied Mathematics, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Amy L Harding
- School of Clinical Dentistry, University of Sheffield, Claremont Crescent, Sheffield S10 2TA, UK
| | - Helen E Colley
- School of Clinical Dentistry, University of Sheffield, Claremont Crescent, Sheffield S10 2TA, UK
| | - Craig Murdoch
- School of Clinical Dentistry, University of Sheffield, Claremont Crescent, Sheffield S10 2TA, UK
| | - Parveen Sharma
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool L69 3GE, UK
| | - Dominic P Williams
- AstraZeneca, IMED Biotech Unit, Drug Safety and Metabolism, Cambridge Science Park, Cambridge CB4 0FZ, UK
| | - Steven D Webb
- EPSRC Liverpool Centre for Mathematics in Healthcare, Department of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL, UK.,Department of Applied Mathematics, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Rachel N Bearon
- EPSRC Liverpool Centre for Mathematics in Healthcare, Department of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL, UK
| |
Collapse
|
22
|
Taskar KS, Pilla Reddy V, Burt H, Posada MM, Varma M, Zheng M, Ullah M, Emami Riedmaier A, Umehara KI, Snoeys J, Nakakariya M, Chu X, Beneton M, Chen Y, Huth F, Narayanan R, Mukherjee D, Dixit V, Sugiyama Y, Neuhoff S. Physiologically-Based Pharmacokinetic Models for Evaluating Membrane Transporter Mediated Drug-Drug Interactions: Current Capabilities, Case Studies, Future Opportunities, and Recommendations. Clin Pharmacol Ther 2019; 107:1082-1115. [PMID: 31628859 PMCID: PMC7232864 DOI: 10.1002/cpt.1693] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/27/2019] [Indexed: 12/11/2022]
Abstract
Physiologically-based pharmacokinetic (PBPK) modeling has been extensively used to quantitatively translate in vitro data and evaluate temporal effects from drug-drug interactions (DDIs), arising due to reversible enzyme and transporter inhibition, irreversible time-dependent inhibition, enzyme induction, and/or suppression. PBPK modeling has now gained reasonable acceptance with the regulatory authorities for the cytochrome-P450-mediated DDIs and is routinely used. However, the application of PBPK for transporter-mediated DDIs (tDDI) in drug development is relatively uncommon. Because the predictive performance of PBPK models for tDDI is not well established, here, we represent and discuss examples of PBPK analyses included in regulatory submission (the US Food and Drug Administration (FDA), the European Medicines Agency (EMA), and the Pharmaceuticals and Medical Devices Agency (PMDA)) across various tDDIs. The goal of this collaborative effort (involving scientists representing 17 pharmaceutical companies in the Consortium and from academia) is to reflect on the use of current databases and models to address tDDIs. This challenges the common perceptions on applications of PBPK for tDDIs and further delves into the requirements to improve such PBPK predictions. This review provides a reflection on the current trends in PBPK modeling for tDDIs and provides a framework to promote continuous use, verification, and improvement in industrialization of the transporter PBPK modeling.
Collapse
Affiliation(s)
- Kunal S Taskar
- GlaxoSmithKline, DMPK, In Vitro In Vivo Translation, GSK R&D, Ware, UK
| | - Venkatesh Pilla Reddy
- AstraZeneca, Modelling and Simulation, Early Oncology DMPK, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Howard Burt
- Simcyp-Division, Certara UK Ltd., Sheffield, UK
| | | | | | - Ming Zheng
- Bristol-Myers Squibb Company, Princeton, New Jersey, USA
| | | | | | | | - Jan Snoeys
- Janssen Research and Development, Beerse, Belgium
| | | | - Xiaoyan Chu
- Merck Sharp & Dohme Corp., Kenilworth, New Jersey, USA
| | | | - Yuan Chen
- Genentech, San Francisco, California, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Kulkarni P, Korzekwa K, Nagar S. A hybrid model to evaluate the impact of active uptake transport on hepatic distribution of atorvastatin in rats. Xenobiotica 2019; 50:536-544. [PMID: 31530243 DOI: 10.1080/00498254.2019.1668982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
1. Mathematical modeling remains a useful tool to study the impact of transporters on overall and intracellular drug disposition. The impact of organic anion transporter protein mediated uptake on atorvastatin systemic and intracellular pharmacokinetics, specifically distribution volume, was studied in rats with mathematical modeling and conducting in vivo pharmacokinetic studies for atorvastatin in presence and absence of rifampicin. A previously developed 5-compartment explicit membrane model for the liver was combined with a compartmental model to develop a semi-physiological hybrid model for atorvastatin disposition. 2. Rifampicin treatment resulted in a decrease in systemic clearance and steady-state distribution volume, and an increase in half-life of atorvastatin. The hybrid model predicted higher unbound intracellular liver atorvastatin concentrations than unbound plasma concentrations in both rifampicin treated and untreated groups, indicating involvement of uptake transporters. The intracellular unbound concentrations during the distributive phase were unaffected by rifampicin. The dependence of clearance on blood flow as well as hepatic uptake for atorvastatin (a moderate-to-high extraction ratio drug) can explain this lack of change in intracellular concentrations if there is incomplete inhibition of transport at the tested rifampicin dose. 3. The hybrid model successfully allowed the evaluation of effect of active uptake on intracellular and plasma atorvastatin disposition.
Collapse
Affiliation(s)
- Priyanka Kulkarni
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Ken Korzekwa
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Swati Nagar
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| |
Collapse
|
24
|
Cheong EJY, Teo DWX, Chua DXY, Chan ECY. Systematic Development and Verification of a Physiologically Based Pharmacokinetic Model of Rivaroxaban. Drug Metab Dispos 2019; 47:1291-1306. [DOI: 10.1124/dmd.119.086918] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 08/28/2019] [Indexed: 12/22/2022] Open
|
25
|
Carter SJ, Ferecskó AS, King L, Ménochet K, Parton T, Chappell MJ. A mechanistic modelling approach for the determination of the mechanisms of inhibition by cyclosporine on the uptake and metabolism of atorvastatin in rat hepatocytes using a high throughput uptake method. Xenobiotica 2019; 50:415-426. [PMID: 31389297 DOI: 10.1080/00498254.2019.1652781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Determine the inhibition mechanism through which cyclosporine inhibits the uptake and metabolism of atorvastatin in fresh rat hepatocytes using mechanistic models applied to data generated using a high throughput oil spin method.Atorvastatin was incubated in fresh rat hepatocytes (0.05-150 nmol/ml) with or without 20 min pre-incubation with 10 nmol/ml cyclosporine and sampled over 0.25-60 min using a high throughput oil spin method. Micro-rate constant and macro-rate constant mechanistic models were ranked based on goodness of fit values.The best fitting model to the data was a micro-rate constant mechanistic model including non-competitive inhibition of uptake and competitive inhibition of metabolism by cyclosporine (Model 2). The association rate constant for atorvastatin was 150-fold greater than the dissociation rate constant and 10-fold greater than the translocation into the cell. The association and dissociation rate constants for cyclosporine were 7-fold smaller and 10-fold greater, respectively, than atorvastatin. The simulated atorvastatin-transporter-cyclosporine complex derived using the micro-rate constant parameter estimates increased in line with the incubation concentration of atorvastatin.The increased amount of data generated with the high throughput oil spin method, combined with a micro-rate constant mechanistic model helps to explain the inhibition of uptake by cyclosporine following pre-incubation.
Collapse
Affiliation(s)
- Simon J Carter
- Biomedical and Biological Systems Laboratory, School of Engineering, University of Warwick, Coventry, United Kingdom
| | | | | | | | | | - Michael J Chappell
- Biomedical and Biological Systems Laboratory, School of Engineering, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
26
|
Accounting for inter-correlation between enzyme abundance: a simulation study to assess implications on global sensitivity analysis within physiologically-based pharmacokinetics. J Pharmacokinet Pharmacodyn 2019; 46:137-154. [PMID: 30905037 DOI: 10.1007/s10928-019-09627-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 03/12/2019] [Indexed: 10/27/2022]
Abstract
Physiologically based pharmacokinetic (PBPK) models often include several sets of correlated parameters, such as organ volumes and blood flows. Because of recent advances in proteomics, it has been demonstrated that correlations are also present between abundances of drug-metabolising enzymes in the liver. As the focus of population PBPK has shifted the emphasis from the average individual to theoretically conceivable extremes, reliable estimation of the extreme cases has become paramount. We performed a simulation study to assess the impact of the correlation between the abundances of two enzymes on the pharmacokinetics of drugs that are substrate of both, under assumptions of presence or lack of such correlations. We considered three semi-physiological models representing the cases of: (1) intravenously administered drugs metabolised by two enzymes expressed in the liver; (2) orally administered drugs metabolised by CYP3A4 expressed in the liver and gut wall; (3) intravenously administered drugs that are substrates of CYP3A4 and OATP1B1 in the liver. Finally, the impact of considering or ignoring correlation between enzymatic abundances on global sensitivity analysis (GSA) was investigated using variance based GSA on a reduced PBPK model for repaglinide, substrate of CYP3A4 and CYP2C8. Implementing such correlations can increase the confidence interval for population pharmacokinetic parameters (e.g., AUC, bioavailability) and impact the GSA results. Ignoring these correlations could lead to the generation of implausible parameters combinations and to an incorrect estimation of pharmacokinetic related parameters. Thus, known correlations should always be considered in building population PBPK models.
Collapse
|
27
|
Riede J, Umehara KI, Schweigler P, Huth F, Schiller H, Camenisch G, Poller B. Examining P-gp efflux kinetics guided by the BDDCS - Rational selection of in vitro assay designs and mathematical models. Eur J Pharm Sci 2019; 132:132-141. [PMID: 30857914 DOI: 10.1016/j.ejps.2019.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/08/2019] [Accepted: 03/08/2019] [Indexed: 12/11/2022]
Abstract
The generation of reliable kinetic parameters to describe P-glycoprotein (P-gp) activity is essential for predicting the impact of efflux transport on gastrointestinal drug absorption. The compound-specific selection of in vitro assay designs and ensuing data analysis methods is explored in this manuscript. We measured transcellular permeability and cellular uptake of five P-gp substrates in Caco-2 and LLC-PK1 MDR1 cells. Kinetic parameters of P-gp-mediated efflux transport (Km, Vmax) were derived from conventional and mechanistic compartmental models. The estimated apparent Km values based on medium concentrations in the conventional permeability model indicated significant differences between the cell lines. The respective intrinsic Km values based on unbound intracellular concentrations in the mechanistic compartmental models were significantly lower and comparable between cell lines and assay formats. Non-specific binding or lysosomal trapping were shown to cause discrepancies in the kinetic parameters obtained from different assay formats. A guidance for the selection of in vitro assays and kinetic assessment methods is proposed in line with the Biopharmaceutics Drug Disposition Classification System (BDDCS). The recommendations are expected to aid the acquisition of robust and reproducible kinetic parameters of P-gp-mediated efflux transport.
Collapse
Affiliation(s)
- Julia Riede
- Division of PK Sciences, Novartis Institutes for BioMedical Research, CH-4056 Basel, Switzerland
| | - Ken-Ichi Umehara
- Division of PK Sciences, Novartis Institutes for BioMedical Research, CH-4056 Basel, Switzerland
| | - Patrick Schweigler
- Division of PK Sciences, Novartis Institutes for BioMedical Research, CH-4056 Basel, Switzerland
| | - Felix Huth
- Division of PK Sciences, Novartis Institutes for BioMedical Research, CH-4056 Basel, Switzerland
| | - Hilmar Schiller
- Division of PK Sciences, Novartis Institutes for BioMedical Research, CH-4056 Basel, Switzerland
| | - Gian Camenisch
- Division of PK Sciences, Novartis Institutes for BioMedical Research, CH-4056 Basel, Switzerland
| | - Birk Poller
- Division of PK Sciences, Novartis Institutes for BioMedical Research, CH-4056 Basel, Switzerland.
| |
Collapse
|
28
|
Matsunaga N, Ufuk A, Morse BL, Bedwell DW, Bao J, Mohutsky MA, Hillgren KM, Hall SD, Houston JB, Galetin A. Hepatic Organic Anion Transporting Polypeptide-Mediated Clearance in the Beagle Dog: Assessing In Vitro-In Vivo Relationships and Applying Cross-Species Empirical Scaling Factors to Improve Prediction of Human Clearance. Drug Metab Dispos 2018; 47:215-226. [PMID: 30593544 DOI: 10.1124/dmd.118.084194] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023] Open
Abstract
In the present study, the beagle dog was evaluated as a preclinical model to investigate organic anion transporting polypeptide (OATP)-mediated hepatic clearance. In vitro studies were performed with nine OATP substrates in three lots of plated male dog hepatocytes ± OATP inhibitor cocktail to determine total uptake clearance (CLuptake) and total and unbound cell-to-medium concentration ratio (Kpuu). In vivo intrinsic hepatic clearances (CLint,H) were determined following intravenous drug administration (0.1 mg/kg) in male beagle dogs. The in vitro parameters were compared with those previously reported in plated human, monkey, and rat hepatocytes; the ability of cross-species scaling factors to improve prediction of human in vivo clearance was assessed. CLuptake in dog hepatocytes ranged from 9.4 to 135 µl/min/106 cells for fexofenadine and telmisartan, respectively. Active process contributed >75% to CLuptake for 5/9 drugs. Rosuvastatin and valsartan showed Kpuu > 10, whereas cerivastatin, pitavastatin, repaglinide, and telmisartan had Kpuu < 5. The extent of hepatocellular binding in dog was consistent with other preclinical species and humans. The bias (2.73-fold) obtained from comparison of predicted versus in vivo dog CLint,H was applied as an average empirical scaling factor (ESFav) for in vitro-in vivo extrapolation of human CLint,H The ESFav based on dog reduced underprediction of human CLint,H for the same data set (geometric mean fold error = 2.1), highlighting its utility as a preclinical model to investigate OATP-mediated uptake. The ESFav from all preclinical species resulted in comparable improvement of human clearance prediction, in contrast to drug-specific empirical scalars, rationalized by species differences in expression and/or relative contribution of particular transporters to drug hepatic uptake.
Collapse
Affiliation(s)
- Norikazu Matsunaga
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.M., A.U., J.B.H., A.G.); Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Osaka, Japan (N.M.); and Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (B.L.M., D.W.B., J.B., M.A.M., K.M.H., S.D.H.)
| | - Ayşe Ufuk
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.M., A.U., J.B.H., A.G.); Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Osaka, Japan (N.M.); and Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (B.L.M., D.W.B., J.B., M.A.M., K.M.H., S.D.H.)
| | - Bridget L Morse
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.M., A.U., J.B.H., A.G.); Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Osaka, Japan (N.M.); and Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (B.L.M., D.W.B., J.B., M.A.M., K.M.H., S.D.H.)
| | - David W Bedwell
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.M., A.U., J.B.H., A.G.); Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Osaka, Japan (N.M.); and Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (B.L.M., D.W.B., J.B., M.A.M., K.M.H., S.D.H.)
| | - Jingqi Bao
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.M., A.U., J.B.H., A.G.); Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Osaka, Japan (N.M.); and Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (B.L.M., D.W.B., J.B., M.A.M., K.M.H., S.D.H.)
| | - Michael A Mohutsky
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.M., A.U., J.B.H., A.G.); Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Osaka, Japan (N.M.); and Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (B.L.M., D.W.B., J.B., M.A.M., K.M.H., S.D.H.)
| | - Kathleen M Hillgren
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.M., A.U., J.B.H., A.G.); Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Osaka, Japan (N.M.); and Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (B.L.M., D.W.B., J.B., M.A.M., K.M.H., S.D.H.)
| | - Stephen D Hall
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.M., A.U., J.B.H., A.G.); Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Osaka, Japan (N.M.); and Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (B.L.M., D.W.B., J.B., M.A.M., K.M.H., S.D.H.)
| | - J Brian Houston
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.M., A.U., J.B.H., A.G.); Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Osaka, Japan (N.M.); and Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (B.L.M., D.W.B., J.B., M.A.M., K.M.H., S.D.H.)
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.M., A.U., J.B.H., A.G.); Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Osaka, Japan (N.M.); and Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (B.L.M., D.W.B., J.B., M.A.M., K.M.H., S.D.H.)
| |
Collapse
|
29
|
Gouliarmou V, Lostia AM, Coecke S, Bernasconi C, Bessems J, Dorne JL, Ferguson S, Testai E, Remy UG, Brian Houston J, Monshouwer M, Nong A, Pelkonen O, Morath S, Wetmore BA, Worth A, Zanelli U, Zorzoli MC, Whelan M. Establishing a systematic framework to characterise in vitro methods for human hepatic metabolic clearance. Toxicol In Vitro 2018; 53:233-244. [DOI: 10.1016/j.tiv.2018.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 07/17/2018] [Accepted: 08/08/2018] [Indexed: 12/26/2022]
|
30
|
De Bruyn T, Ufuk A, Cantrill C, Kosa RE, Bi YA, Niosi M, Modi S, Rodrigues AD, Tremaine LM, Varma MVS, Galetin A, Houston JB. Predicting Human Clearance of Organic Anion Transporting Polypeptide Substrates Using Cynomolgus Monkey: In Vitro–In Vivo Scaling of Hepatic Uptake Clearance. Drug Metab Dispos 2018; 46:989-1000. [DOI: 10.1124/dmd.118.081315] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/26/2018] [Indexed: 12/17/2022] Open
|
31
|
Hunt CA, Erdemir A, Lytton WW, Gabhann FM, Sander EA, Transtrum MK, Mulugeta L. The Spectrum of Mechanism-Oriented Models and Methods for Explanations of Biological Phenomena. Processes (Basel) 2018; 6. [PMID: 34262852 PMCID: PMC8277120 DOI: 10.3390/pr6050056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Developing and improving mechanism-oriented computational models to better explain biological phenomena is a dynamic and expanding frontier. As the complexity of targeted phenomena has increased, so too has the diversity in methods and terminologies, often at the expense of clarity, which can make reproduction challenging, even problematic. To encourage improved semantic and methodological clarity, we describe the spectrum of Mechanism-oriented Models being used to develop explanations of biological phenomena. We cluster explanations of phenomena into three broad groups. We then expand them into seven workflow-related model types having distinguishable features. We name each type and illustrate with examples drawn from the literature. These model types may contribute to the foundation of an ontology of mechanism-based biomedical simulation research. We show that the different model types manifest and exert their scientific usefulness by enhancing and extending different forms and degrees of explanation. The process starts with knowledge about the phenomenon and continues with explanatory and mathematical descriptions. Those descriptions are transformed into software and used to perform experimental explorations by running and examining simulation output. The credibility of inferences is thus linked to having easy access to the scientific and technical provenance from each workflow stage.
Collapse
Affiliation(s)
- C. Anthony Hunt
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94143, USA
- Correspondence: ; Tel.: +1-415-476-2455
| | - Ahmet Erdemir
- Department of Biomedical Engineering and Computational Biomodeling Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - William W. Lytton
- Departments of Neurology and Physiology and Pharmacology, SUNY Downstate Medical Center, Department Neurology, Kings County Hospital Center, Brooklyn, NY 11203, USA
| | - Feilim Mac Gabhann
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Edward A. Sander
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Mark K. Transtrum
- Department of Physics and Astronomy, Brigham Young University, Provo, UT 84602, USA
| | | |
Collapse
|
32
|
Mitra P, Weinheimer S, Michalewicz M, Taub ME. Prediction and Quantification of Hepatic Transporter-Mediated Uptake of Pitavastatin Utilizing a Combination of the Relative Activity Factor Approach and Mechanistic Modeling. Drug Metab Dispos 2018; 46:953-963. [PMID: 29666154 DOI: 10.1124/dmd.118.080614] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/12/2018] [Indexed: 12/21/2022] Open
Abstract
Quantification of the fraction transported (ft) by a particular transporter will facilitate more robust estimations of transporter interactions. Using pitavastatin as a model uptake transporter substrate, we investigated the utility of the relative activity factor (RAF) approach and mechanistic modeling to estimate ft in hepatocytes. The transporters evaluated were organic anion-transporting polypeptides OATP1B1 and OATP1B3 and sodium-taurocholate cotransporting polypeptide. Transporter-expressing human embryonic kidney 293 cells and human hepatocytes were used for determining RAF values, which were then incorporated into the mechanistic model to simulate hepatocyte uptake of pitavastatin over time. There was excellent agreement between simulated and observed hepatocyte uptake of pitavastatin, indicating the suitability of this approach for translation of uptake from individual transporter-expressing cells to more holistic in vitro models. Subsequently, ft values were determined. The largest contributor to hepatocyte uptake of pitavastatin was OATP1B1, which correlates with what is known about the in vivo disposition of pitavastatin. The ft values were then used for evaluating in vitro-in vivo correlations of hepatic uptake inhibition with OATP inhibitors rifampicin and cyclosporine. Predictions were compared with previously reported plasma exposure changes of pitavastatin with these inhibitors. Although hepatic uptake inhibition of pitavastatin was 2-3-fold underpredicted, incorporation of scaling factors (SFs) into RAF values significantly improved the predictive ability. We propose that calibration of hepatocytes with standard transporter substrates and inhibitors would allow for determination of system-specific SFs, which could subsequently be used for refining predictions of clinical DDI potential for new chemical entities that undergo active hepatic uptake.
Collapse
Affiliation(s)
- Pallabi Mitra
- Drug Metabolism and Pharmacokinetics Department, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut
| | - Samantha Weinheimer
- Drug Metabolism and Pharmacokinetics Department, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut
| | - Meeghan Michalewicz
- Drug Metabolism and Pharmacokinetics Department, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut
| | - Mitchell E Taub
- Drug Metabolism and Pharmacokinetics Department, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut
| |
Collapse
|
33
|
Ufuk A, Kosa RE, Gao H, Bi YA, Modi S, Gates D, Rodrigues AD, Tremaine LM, Varma MVS, Houston JB, Galetin A. In Vitro-In Vivo Extrapolation of OATP1B-Mediated Drug-Drug Interactions in Cynomolgus Monkey. J Pharmacol Exp Ther 2018; 365:688-699. [PMID: 29643253 DOI: 10.1124/jpet.118.247767] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/06/2018] [Indexed: 12/31/2022] Open
Abstract
Hepatic organic anion-transporting polypeptides (OATP) 1B1 and 1B3 are clinically relevant transporters associated with significant drug-drug interactions (DDIs) and safety concerns. Given that OATP1Bs in cynomolgus monkey share >90% degree of gene and amino acid sequence homology with human orthologs, we evaluated the in vitro-in vivo translation of OATP1B-mediated DDI risk using this preclinical model. In vitro studies using plated cynomolgus monkey hepatocytes showed active uptake Km values of 2.0 and 3.9 µM for OATP1B probe substrates, pitavastatin and rosuvastatin, respectively. Rifampicin inhibited pitavastatin and rosuvastatin active uptake in monkey hepatocytes with IC50 values of 3.0 and 0.54 µM, respectively, following preincubation with the inhibitor. Intravenous pharmacokinetics of 2H4-pitavastatin and 2H6-rosuvastatin (0.2 mg/kg) and the oral pharmacokinetics of cold probes (2 mg/kg) were studied in cynomolgus monkeys (n = 4) without or with coadministration of single oral ascending doses of rifampicin (1, 3, 10, and 30 mg/kg). A rifampicin dose-dependent reduction in i.v. clearance of statins was observed. Additionally, oral pitavastatin and rosuvastatin plasma exposure increased up to 19- and 15-fold at the highest dose of rifampicin, respectively. Use of in vitro IC50 obtained following 1 hour preincubation with rifampicin (0.54 µM) predicted correctly the change in mean i.v. clearance and oral exposure of statins as a function of mean unbound maximum plasma concentration of rifampicin. This study demonstrates quantitative translation of in vitro OATP1B IC50 to predict DDIs using cynomolgus monkey as a preclinical model and provides further confidence in application of in vitro hepatocyte data for the prediction of clinical OATP1B-mediated DDIs.
Collapse
Affiliation(s)
- Ayşe Ufuk
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, United Kingdom (A.U., J.B.H., A.G.); and Pharmacokinetics, Dynamics, and Metabolism (R.E.K., H.G., Y.-A.B., A.D.R., L.M.T., M.V.S.V.) and Research Formulations, Pharmaceutical Sciences (S.M., D.G.), Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut
| | - Rachel E Kosa
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, United Kingdom (A.U., J.B.H., A.G.); and Pharmacokinetics, Dynamics, and Metabolism (R.E.K., H.G., Y.-A.B., A.D.R., L.M.T., M.V.S.V.) and Research Formulations, Pharmaceutical Sciences (S.M., D.G.), Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut
| | - Hongying Gao
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, United Kingdom (A.U., J.B.H., A.G.); and Pharmacokinetics, Dynamics, and Metabolism (R.E.K., H.G., Y.-A.B., A.D.R., L.M.T., M.V.S.V.) and Research Formulations, Pharmaceutical Sciences (S.M., D.G.), Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut
| | - Yi-An Bi
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, United Kingdom (A.U., J.B.H., A.G.); and Pharmacokinetics, Dynamics, and Metabolism (R.E.K., H.G., Y.-A.B., A.D.R., L.M.T., M.V.S.V.) and Research Formulations, Pharmaceutical Sciences (S.M., D.G.), Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut
| | - Sweta Modi
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, United Kingdom (A.U., J.B.H., A.G.); and Pharmacokinetics, Dynamics, and Metabolism (R.E.K., H.G., Y.-A.B., A.D.R., L.M.T., M.V.S.V.) and Research Formulations, Pharmaceutical Sciences (S.M., D.G.), Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut
| | - Dana Gates
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, United Kingdom (A.U., J.B.H., A.G.); and Pharmacokinetics, Dynamics, and Metabolism (R.E.K., H.G., Y.-A.B., A.D.R., L.M.T., M.V.S.V.) and Research Formulations, Pharmaceutical Sciences (S.M., D.G.), Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut
| | - A David Rodrigues
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, United Kingdom (A.U., J.B.H., A.G.); and Pharmacokinetics, Dynamics, and Metabolism (R.E.K., H.G., Y.-A.B., A.D.R., L.M.T., M.V.S.V.) and Research Formulations, Pharmaceutical Sciences (S.M., D.G.), Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut
| | - Larry M Tremaine
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, United Kingdom (A.U., J.B.H., A.G.); and Pharmacokinetics, Dynamics, and Metabolism (R.E.K., H.G., Y.-A.B., A.D.R., L.M.T., M.V.S.V.) and Research Formulations, Pharmaceutical Sciences (S.M., D.G.), Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut
| | - Manthena V S Varma
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, United Kingdom (A.U., J.B.H., A.G.); and Pharmacokinetics, Dynamics, and Metabolism (R.E.K., H.G., Y.-A.B., A.D.R., L.M.T., M.V.S.V.) and Research Formulations, Pharmaceutical Sciences (S.M., D.G.), Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut
| | - J Brian Houston
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, United Kingdom (A.U., J.B.H., A.G.); and Pharmacokinetics, Dynamics, and Metabolism (R.E.K., H.G., Y.-A.B., A.D.R., L.M.T., M.V.S.V.) and Research Formulations, Pharmaceutical Sciences (S.M., D.G.), Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, United Kingdom (A.U., J.B.H., A.G.); and Pharmacokinetics, Dynamics, and Metabolism (R.E.K., H.G., Y.-A.B., A.D.R., L.M.T., M.V.S.V.) and Research Formulations, Pharmaceutical Sciences (S.M., D.G.), Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut
| |
Collapse
|
34
|
Keemink J, Deferm N, De Bruyn T, Augustijns P, Bouillon T, Annaert P. Effect of Cryopreservation on Enzyme and Transporter Activities in Suspended and Sandwich Cultured Rat Hepatocytes. AAPS JOURNAL 2018; 20:33. [PMID: 29468289 DOI: 10.1208/s12248-018-0188-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/03/2018] [Indexed: 12/11/2022]
Abstract
Freshly-isolated rat hepatocytes are commonly used as tools for hepatic drug disposition. From an ethical point of view, it is important to maximize the use of isolated hepatocytes by cryopreservation. The present study compared overall hepatocyte functionality as well as activity of the organic anion transporting polypeptide (Oatp), multidrug resistance-associated protein 2 (Mrp2), and UDP-glucuronosyltransferase 1 (Ugt1), in in vitro models established with cryopreserved and freshly-isolated hepatocytes. A similar culture time-dependent decline in cellular functionality, as assessed by urea production, was observed in sandwich-cultured hepatocytes (SCH) obtained from freshly-isolated and cryopreserved cells. Concentration-dependent uptake kinetics of the Oatp substrate sodium fluorescein in suspended hepatocytes (SH) or SCH were not significantly affected by cryopreservation. Mrp2-mediated biliary excretion of 5 (and 6)-carboxy-2',7'-dichlorofluorescein by SCH was assessed with semi-quantitative fluorescence imaging: biliary excretion index values increased between day 3 and day 4, but did not differ significantly between cryopreserved and freshly-isolated hepatocytes. Finally, telmisartan disposition was evaluated in SCH to simultaneously explore Oatp, Ugt1, and Mrp2 activity. In order to distinguish between the susceptibilities of the individual disposition pathways to cryopreservation, a mechanistic cellular disposition model was developed. Basolateral and canalicular efflux as well as glucuronidation of telmisartan were affected by cryopreservation. In contrast, the disposition parameters of telmisartan-glucuronide were not impacted by cryopreservation. Overall, the relative contribution of the rate-determining processes (uptake, metabolism, efflux) remained unaltered between cryopreserved and freshly-isolated hepatocytes, indicating that cryopreserved hepatocytes are a suitable alternative for freshly-isolated hepatocytes when studying these cellular disposition pathways.
Collapse
Affiliation(s)
- Janneke Keemink
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, Gasthuisberg O&N2 Herestraat 49-box 921, 3000, Leuven, Belgium.,Drug Delivery, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Neel Deferm
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, Gasthuisberg O&N2 Herestraat 49-box 921, 3000, Leuven, Belgium
| | - Tom De Bruyn
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, Gasthuisberg O&N2 Herestraat 49-box 921, 3000, Leuven, Belgium.,Genentech, Inc, South San Francisco, California, USA
| | - Patrick Augustijns
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, Gasthuisberg O&N2 Herestraat 49-box 921, 3000, Leuven, Belgium
| | - Thomas Bouillon
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, Gasthuisberg O&N2 Herestraat 49-box 921, 3000, Leuven, Belgium
| | - Pieter Annaert
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, Gasthuisberg O&N2 Herestraat 49-box 921, 3000, Leuven, Belgium.
| |
Collapse
|
35
|
Harrison J, De Bruyn T, Darwich AS, Houston JB. Simultaneous Assessment In Vitro of Transporter and Metabolic Processes in Hepatic Drug Clearance: Use of a Media Loss Approach. Drug Metab Dispos 2018; 46:405-414. [PMID: 29439129 DOI: 10.1124/dmd.117.079590] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/29/2018] [Indexed: 12/23/2022] Open
Abstract
Hepatocyte drug depletion-time assays are well established for determination of metabolic clearance in vitro. The present study focuses on the refinement and evaluation of a "media loss" assay, an adaptation of the conventional depletion assay involving centrifugation of hepatocytes prior to sampling, allowing estimation of uptake in addition to metabolism. Using experimental procedures consistent with a high throughput, a selection of 12 compounds with a range of uptake and metabolism characteristics (atorvastatin, cerivastatin, clarithromycin, erythromycin, indinavir, pitavastatin, repaglinide, rosuvastatin, saquinavir, and valsartan, with two control compounds-midazolam and tolbutamide) were investigated in the presence and absence of the cytochrome P450 inhibitor 1-aminobenzotriazole and organic anion transporter protein inhibitor rifamycin SV in rat hepatocytes. Data were generated simultaneously for a given drug, and provided, through the use of a mechanistic cell model, clearance terms characterizing metabolism, active and passive uptake, together with intracellular binding and partitioning parameters. Results were largely consistent with the particular drug characteristics, with active uptake, passive diffusion, and metabolic clearances ranging between 0.4 and 777, 3 and 383, and 2 and 236 μl/min per milligram protein, respectively. The same experiments provided total and unbound drug cellular partition coefficients ranging between 3.8 and 254 and 2.3 and 8.3, respectively, and intracellular unbound fractions between 0.014 and 0.263. Following in vitro-in vivo extrapolation, the lowest prediction bias was noted using uptake clearance, compared with metabolic clearance or apparent clearance from the media loss assay alone. This approach allows rapid and comprehensive characterization of hepatocyte drug disposition valuable for prediction of hepatic processes in vivo.
Collapse
Affiliation(s)
- James Harrison
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom (J.H., T.D.B., A.S.D., J.B.H.) and Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California (T.D.B.)
| | - Tom De Bruyn
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom (J.H., T.D.B., A.S.D., J.B.H.) and Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California (T.D.B.)
| | - Adam S Darwich
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom (J.H., T.D.B., A.S.D., J.B.H.) and Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California (T.D.B.)
| | - J Brian Houston
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom (J.H., T.D.B., A.S.D., J.B.H.) and Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California (T.D.B.)
| |
Collapse
|
36
|
Xie C, Gao X, Sun D, Zhang Y, Krausz KW, Qin X, Gonzalez FJ. Metabolic Profiling of the Novel Hypoxia-Inducible Factor 2 α Inhibitor PT2385 In Vivo and In Vitro. Drug Metab Dispos 2018; 46:336-345. [PMID: 29363499 DOI: 10.1124/dmd.117.079723] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/18/2018] [Indexed: 12/13/2022] Open
Abstract
PT2385 is a first-in-class, selective small-molecule inhibitor of hypoxia-inducible factor-2α (HIF-2α) developed for the treatment of advanced clear cell renal cell carcinoma. Preclinical results demonstrated that PT2385 has potent antitumor efficacy in mouse xenograft models of kidney cancer. It also has activity toward metabolic disease in a mouse model. However, no metabolism data are currently publically available. It is of great importance to characterize the metabolism of PT2385 and identify its effect on systemic homeostasis in mice. High-resolution mass spectrometry-based metabolomics was performed to profile the biotransformation of PT2385 and PT2385-induced changes in endogenous metabolites. Liver microsomes and recombinant drug-metabolizing enzymes were used to determine the mechanism of PT2385 metabolism. Real-time polymerase chain reaction analysis was employed to investigate the reason for the PT2385-induced bile acid dysregulation. A total of 12 metabolites of PT2385 was characterized, generated from hydroxylation (M1, M2), dihydroxylation and desaturation (M3, M4), oxidative-defluorination (M7), glucuronidation (M8), N-acetylcysteine conjugation (M9), and secondary methylation (M5, M6) and glucuronidation (M10, M11, and M12). CYP2C19 was the major contributor to the formation of M1, M2, and M7, UGT2B17 to M8, and UGT1A1/3 to M10-M12. The bile acid metabolites taurocholic acid and tauro-β-muricholic acid were elevated in serum and liver of mice after PT2385 treatment. Gene expression analysis further revealed that intestinal HIF-2α inhibition by PT2385 treatment upregulated the hepatic expression of CYP7A1, the rate-limiting enzyme in bile acid synthesis. This study provides metabolic data and an important reference basis for the safety evaluation and rational clinical application of PT2385.
Collapse
Affiliation(s)
- Cen Xie
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (C.X., X.G., D.S., Y.Z., K.W.K., F.J.G.); and Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, Shanxi, People's Republic of China (X.G., X.Q.)
| | - Xiaoxia Gao
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (C.X., X.G., D.S., Y.Z., K.W.K., F.J.G.); and Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, Shanxi, People's Republic of China (X.G., X.Q.)
| | - Dongxue Sun
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (C.X., X.G., D.S., Y.Z., K.W.K., F.J.G.); and Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, Shanxi, People's Republic of China (X.G., X.Q.)
| | - Youbo Zhang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (C.X., X.G., D.S., Y.Z., K.W.K., F.J.G.); and Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, Shanxi, People's Republic of China (X.G., X.Q.)
| | - Kristopher W Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (C.X., X.G., D.S., Y.Z., K.W.K., F.J.G.); and Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, Shanxi, People's Republic of China (X.G., X.Q.)
| | - Xuemei Qin
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (C.X., X.G., D.S., Y.Z., K.W.K., F.J.G.); and Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, Shanxi, People's Republic of China (X.G., X.Q.)
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (C.X., X.G., D.S., Y.Z., K.W.K., F.J.G.); and Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, Shanxi, People's Republic of China (X.G., X.Q.)
| |
Collapse
|
37
|
Li R, Kimoto E, Niosi M, Tess DA, Lin J, Tremaine LM, Di L. A Study on Pharmacokinetics of Bosentan with Systems Modeling, Part 2: Prospectively Predicting Systemic and Liver Exposure in Healthy Subjects. Drug Metab Dispos 2018; 46:357-366. [PMID: 29330219 DOI: 10.1124/dmd.117.078808] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/08/2018] [Indexed: 12/18/2022] Open
Abstract
Predicting human pharmacokinetics of novel compounds is a critical step in drug discovery and clinical study design but continues to be a challenging task for hepatic transporter substrates, particularly in predicting their liver exposures. In this study, using bosentan as an example, we prospectively predicted systemic exposure and the (pseudo) steady-state unbound liver-to-unbound plasma ratio (Kpuu) in healthy subjects using 1) a mechanistic approach solely based on in vitro hepatocyte assays and 2) an approach based on hepatic process rates from monkey in vivo data but Michaelis-Menten constants from in vitro data. Both methods reasonably match the observed human systemic time course data, but the second method leads to better prediction accuracy. In addition, the second method can predict a human Kpuu value that is close to the value deduced using clinical data. We also generated rat and monkey liver Kpuu values in terminal studies. However, these directly measured animal values are different from the deduced human value.
Collapse
Affiliation(s)
- Rui Li
- Systems Modeling and Simulation, Medicine Design, Pfizer Worldwide R&D, Cambridge, Massachusetts (R.L.); and Pharmacokinetics, Dynamics, and Metabolism, Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut (E.K., M.N., D.A.T., J.L., L.M.T., L.D.)
| | - Emi Kimoto
- Systems Modeling and Simulation, Medicine Design, Pfizer Worldwide R&D, Cambridge, Massachusetts (R.L.); and Pharmacokinetics, Dynamics, and Metabolism, Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut (E.K., M.N., D.A.T., J.L., L.M.T., L.D.)
| | - Mark Niosi
- Systems Modeling and Simulation, Medicine Design, Pfizer Worldwide R&D, Cambridge, Massachusetts (R.L.); and Pharmacokinetics, Dynamics, and Metabolism, Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut (E.K., M.N., D.A.T., J.L., L.M.T., L.D.)
| | - David A Tess
- Systems Modeling and Simulation, Medicine Design, Pfizer Worldwide R&D, Cambridge, Massachusetts (R.L.); and Pharmacokinetics, Dynamics, and Metabolism, Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut (E.K., M.N., D.A.T., J.L., L.M.T., L.D.)
| | - Jian Lin
- Systems Modeling and Simulation, Medicine Design, Pfizer Worldwide R&D, Cambridge, Massachusetts (R.L.); and Pharmacokinetics, Dynamics, and Metabolism, Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut (E.K., M.N., D.A.T., J.L., L.M.T., L.D.)
| | - Larry M Tremaine
- Systems Modeling and Simulation, Medicine Design, Pfizer Worldwide R&D, Cambridge, Massachusetts (R.L.); and Pharmacokinetics, Dynamics, and Metabolism, Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut (E.K., M.N., D.A.T., J.L., L.M.T., L.D.)
| | - Li Di
- Systems Modeling and Simulation, Medicine Design, Pfizer Worldwide R&D, Cambridge, Massachusetts (R.L.); and Pharmacokinetics, Dynamics, and Metabolism, Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut (E.K., M.N., D.A.T., J.L., L.M.T., L.D.)
| |
Collapse
|
38
|
Pandey A, Kar SK. Rapid Eye Movement sleep deprivation of rat generates ROS in the hepatocytes and makes them more susceptible to oxidative stress. ACTA ACUST UNITED AC 2018; 11:245-253. [PMID: 30746042 PMCID: PMC6361303 DOI: 10.5935/1984-0063.20180039] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Background Rapid Eye Movement sleep deprivation (REMSD) of rats causes inflammation of
the liver and apoptotic cell death of neurons and hepatocytes. Studies also
suggest that REM sleep deprivation can cause muscle as well as cardiac
injury and neurodegenerative diseases. Objective and methods The aim of this research was to determine whether REM sleep deprivation of
rats would increase the levels of reactive oxygen species (ROS) in the
hepatocytes and create oxidative stress in them. We selectively deprived the
rats for REM sleep using the standard flower pot method. Results We observed that when rats were subjected to REM sleep deprivation, the
levels of ROS in their hepatocytes increased ~184.33% compared to large
platform control (LPC) group by day 9 of deprivation, but it returned
towards normal level (~49.27%) after recovery sleep for 5 days. Nitric oxide
synthase (iNOS) gene expression and protein levels as determined by
real-time PCR and western blot analysis respectively were found to be
elevated in hepatocytes of REM sleep deprived rats as compared to the LPC
group. The level of nitric oxide (NO) in the hepatocytes of REMSD rats also
increased by ~404.40% as compared to the LPC group but sleep recovery for 5
days normalized the effect (~135.35% compared to LPC group). We used a large
platform control group as a reference group to compare with the REM sleep
deprived group as the effect on the hepatocytes of both LPC group and cage
control groups were not significantly different. Discussion We have analyzed the oxidative stress generated in the hepatocytes of rats
due to REM sleep deprivation and further consequences of it. REMS
deprivation not only increased the levels of ROS in the hepatocytes but also
induced iNOS and NO in them. REM sleep deprived hepatocytes became more
susceptible to oxidative stresses on further exposures. Furthermore, our
study has great pathological and physiological.
Collapse
Affiliation(s)
- Atul Pandey
- Jawaharlal Nehru University, School of Biotechnology - New Delhi - Delhi - India.,The Hebrew University of Jerusalem, Department of Ecology, Evolution and Behavior - Jerusalem - Jerusalem - Israel
| | - Santosh K Kar
- Jawaharlal Nehru University, School of Biotechnology - New Delhi - Delhi - India.,Kallinga Institute of Industrial Technology, School of Biotechnology - Bhubaneshwar - Bhubneshwar - India
| |
Collapse
|
39
|
Morse BL, MacGuire JG, Marino AM, Zhao Y, Fox M, Zhang Y, Shen H, Griffith Humphreys W, Marathe P, Lai Y. Physiologically Based Pharmacokinetic Modeling of Transporter-Mediated Hepatic Clearance and Liver Partitioning of OATP and OCT Substrates in Cynomolgus Monkeys. AAPS JOURNAL 2017; 19:1878-1889. [PMID: 29019117 DOI: 10.1208/s12248-017-0151-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/19/2017] [Indexed: 01/11/2023]
Abstract
In the present investigations, we evaluate in vitro hepatocyte uptake and partitioning for the prediction of in vivo clearance and liver partitioning. Monkeys were intravenously co-dosed with rosuvastatin and bosentan, substrates of the organic anion transporting polypeptides (OATPs), and metformin, a substrate of organic cation transporter 1 (OCT1). Serial plasma and liver samples were collected over time. Liver and plasma unbound fraction was determined using equilibrium dialysis. In vivo unbound partitioning (Kpu,u) for rosuvastatin, bosentan, and metformin, calculated from total concentrations in the liver and plasma, were 243, 553, and 15, respectively. A physiologically based pharmacokinetic monkey model that incorporates active and passive hepatic uptake was developed to fit plasma and liver concentrations. In addition, a two-compartment model was used to fit in vitro hepatic uptake curves in suspended monkey hepatocyte to determine active uptake, passive diffusion, and intracellular unbound fraction parameters. At steady-state in the model, in vitro Kpu,u was determined. The results demonstrated that in vitro values under-predicted in vivo active uptake for rosuvastatin, bosentan, and metformin by 6.7-, 28-, and 1.5-fold, respectively, while passive diffusion was over-predicted. In vivo Kpu,u values were under-predicted from in vitro data by 30-, 79-, and 3-fold. In conclusion, active uptake and liver partitioning in monkeys for OATP substrates were greatly under-predicted from in vitro hepatocyte uptake, while OCT-mediated uptake and partitioning scaled reasonably well from in vitro, demonstrating substrate- and transporter-dependent scaling factors. The combination of in vitro experimental and modeling approaches proved useful for assessing prediction of in vivo intracellular partitioning.
Collapse
Affiliation(s)
- Bridget L Morse
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, USA.,Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Jamus G MacGuire
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Anthony M Marino
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Yue Zhao
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Maxine Fox
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Yueping Zhang
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Hong Shen
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, USA
| | | | - Punit Marathe
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Yurong Lai
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, USA. .,Drug Metabolism, Gilead Sciences Inc., Foster City, California, 94404, USA.
| |
Collapse
|
40
|
Cantrill C, Houston JB. Understanding the Interplay Between Uptake and Efflux Transporters Within In Vitro Systems in Defining Hepatocellular Drug Concentrations. J Pharm Sci 2017; 106:2815-2825. [PMID: 28478131 DOI: 10.1016/j.xphs.2017.04.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 02/03/2023]
Abstract
One of the most holistic in vitro systems for prediction of intracellular drug concentrations is sandwich-cultured hepatocytes (SCH); however, a comprehensive evaluation of the utility of SCH to estimate uptake and biliary clearances and the need for additional kinetic parameters has yet to be carried out. Toward this end, we have selected 9 compounds (rosuvastatin, valsartan, fexofenadine, pravastatin, repaglinide, telmisartan, atorvastatin, saquinavir, and quinidine) to provide a range of physicochemical and hepatic disposition properties. Uptake clearances were determined in SCH and compared with conventional monolayer and suspension hepatocyte systems, previously reported by our laboratory. CLuptake ranged from 1 to 41 μL/min/106 cells in SCH which were significantly lower (1%-10%) compared with the other hepatocyte models. The hepatocyte-to-media unbound concentration ratio (Kpu) has been assessed and ranged 0.7-59, lower compared with other hepatocyte systems (8-280). Estimates of in vitro biliary clearance (CLbile) for 4 drugs were determined and were scaled to predict in vivo values using both intracellular concentration and media drug concentrations. These studies demonstrate that reduced uptake in rat SCH may limit drug access to canalicular efflux transport proteins and highlight the importance of elucidating the interplay between these proteins for accurate prediction of hepatic clearance.
Collapse
Affiliation(s)
- Carina Cantrill
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Biology, Medicine and Health Sciences, University of Manchester, UK
| | - J Brian Houston
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Biology, Medicine and Health Sciences, University of Manchester, UK.
| |
Collapse
|
41
|
Ellens H, Johnson M, Lawrence SK, Watson C, Chen L, Richards-Peterson LE. Prediction of the Transporter-Mediated Drug-Drug Interaction Potential of Dabrafenib and Its Major Circulating Metabolites. Drug Metab Dispos 2017; 45:646-656. [PMID: 28320730 DOI: 10.1124/dmd.116.073932] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/15/2016] [Indexed: 01/28/2023] Open
Abstract
The BRAF inhibitor dabrafenib was recently approved for the treatment of certain BRAF V600 mutation-positive tumors, either alone or in combination therapy with the mitogen-activated extracellular signal regulated kinase 1 (MEK1) and MEK2 inhibitor, trametinib. This article presents the dabrafenib transporter-mediated drug-drug interaction (DDI) risk assessment, which is currently an important part of drug development, regulatory submission, and drug registration. Dabrafenib and its major circulating metabolites (hydroxy-, carboxy-, and desmethyl-dabrafenib) were investigated as inhibitors of the clinically relevant transporters P-gp, BCRP, OATP1B1, OATP1B3, OCT2, OAT1, and OAT3. The DDI Guidance risk assessment decision criteria for inhibition of BCRP, OATP1B1 and OAT3 were slightly exceeded and therefore a minor DDI effect resulting from inhibition of these transporters remained possible. Biliary secretion is the major excretion pathway of dabrafenib-related material (71.1% of orally administered radiolabeled dose recovered in feces), whereas urinary excretion was observed as well (22.7% of the dose). In vitro uptake into human hepatocytes of the dabrafenib metabolites, but not of dabrafenib parent compound, was mediated, at least in part, by hepatic uptake transporters. The transporters responsible for uptake of the pharmacologically active hydroxy- and desmethyl dabrafenib could not be identified, whereas carboxy-dabrafenib was a substrate of several OATPs. Dabrafenib, hydroxy-, and desmethyl-dabrafenib were substrates of P-gp and BCRP, whereas carboxy-dabrafenib was not. Although a small increase in exposure to carboxy-dabrafenib upon inhibition of OATPs and an increase in exposure to desmethyl-dabrafenib upon inhibition of P-gp or BCRP cannot be excluded, the clinical significance of such increases is likely to be low.
Collapse
Affiliation(s)
- Harma Ellens
- Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, King of Prussia, Pennsylvania
| | - Marta Johnson
- Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, King of Prussia, Pennsylvania
| | - Sarah K Lawrence
- Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, King of Prussia, Pennsylvania
| | - Cory Watson
- Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, King of Prussia, Pennsylvania
| | - Liangfu Chen
- Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, King of Prussia, Pennsylvania
| | | |
Collapse
|
42
|
Ufuk A, Assmus F, Francis L, Plumb J, Damian V, Gertz M, Houston JB, Galetin A. In Vitro and in Silico Tools To Assess Extent of Cellular Uptake and Lysosomal Sequestration of Respiratory Drugs in Human Alveolar Macrophages. Mol Pharm 2017; 14:1033-1046. [PMID: 28252969 DOI: 10.1021/acs.molpharmaceut.6b00908] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Accumulation of respiratory drugs in human alveolar macrophages (AMs) has not been extensively studied in vitro and in silico despite its potential impact on therapeutic efficacy and/or occurrence of phospholipidosis. The current study aims to characterize the accumulation and subcellular distribution of drugs with respiratory indication in human AMs and to develop an in silico mechanistic AM model to predict lysosomal accumulation of investigated drugs. The data set included 9 drugs previously investigated in rat AM cell line NR8383. Cell-to-unbound medium concentration ratio (Kp,cell) of all drugs (5 μM) was determined to assess the magnitude of intracellular accumulation. The extent of lysosomal sequestration in freshly isolated human AMs from multiple donors (n = 5) was investigated for clarithromycin and imipramine (positive control) using an indirect in vitro method (±20 mM ammonium chloride, NH4Cl). The AM cell parameters and drug physicochemical data were collated to develop an in silico mechanistic AM model. Three in silico models differing in their description of drug membrane partitioning were evaluated; model (1) relied on octanol-water partitioning of drugs, model (2) used in vitro data to account for this process, and model (3) predicted membrane partitioning by incorporating AM phospholipid fractions. In vitro Kp,cell ranged >200-fold for respiratory drugs, with the highest accumulation seen for clarithromycin. A good agreement in Kp,cell was observed between human AMs and NR8383 (2.45-fold bias), highlighting NR8383 as a potentially useful in vitro surrogate tool to characterize drug accumulation in AMs. The mean Kp,cell of clarithromycin (81, CV = 51%) and imipramine (963, CV = 54%) were reduced in the presence of NH4Cl by up to 67% and 81%, respectively, suggesting substantial contribution of lysosomal sequestration and intracellular binding in the accumulation of these drugs in human AMs. The in vitro data showed variability in drug accumulation between individual human AM donors due to possible differences in lysosomal abundance, volume, and phospholipid content, which may have important clinical implications. Consideration of drug-acidic phospholipid interactions significantly improved the performance of the in silico models; use of in vitro Kp,cell obtained in the presence of NH4Cl as a surrogate for membrane partitioning (model (2)) captured the variability in clarithromycin and imipramine Kp,cell observed in vitro and showed the best ability to predict correctly positive and negative lysosomotropic properties. The developed mechanistic AM model represents a useful in silico tool to predict lysosomal and cellular drug concentrations based on drug physicochemical data and system specific properties, with potential application to other cell types.
Collapse
Affiliation(s)
- Ayşe Ufuk
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester , Manchester, U.K
| | - Frauke Assmus
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester , Manchester, U.K
| | - Laura Francis
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester , Manchester, U.K
| | - Jonathan Plumb
- Respiratory and Allergy Clinical Research Facility, University Hospital of South Manchester , Manchester, U.K
| | - Valeriu Damian
- Computational Modeling Sciences, DDS, GlaxoSmithKline , Upper Merion, Pennsylvania 19406, United States
| | - Michael Gertz
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester , Manchester, U.K.,Pharmaceutical Sciences, pRED, Roche Innovation Center , Basel, Switzerland
| | - J Brian Houston
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester , Manchester, U.K
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester , Manchester, U.K
| |
Collapse
|
43
|
Taskar KS, Mariappan TT, Kurawattimath V, Singh Gautam S, Radhakrishna Mullapudi TV, Sridhar SK, Kallem RR, Marathe P, Mandlekar S. Unmasking the Role of Uptake Transporters for Digoxin Uptake Across the Barriers of the Central Nervous System in Rat. J Cent Nerv Syst Dis 2017; 9:1179573517693596. [PMID: 28469522 PMCID: PMC5392048 DOI: 10.1177/1179573517693596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/22/2017] [Indexed: 12/23/2022] Open
Abstract
The role of uptake transporter (organic anion–transporting polypeptide [Oatp]) in the disposition of a P-glycoprotein (P-gp) substrate (digoxin) at the barriers of central nervous system, namely, the blood-brain barrier (BBB), blood-spinal cord barrier (BSCB), and brain-cerebrospinal fluid barrier (BCSFB), was studied using rat as a preclinical species. In vivo chemical inhibition of P-gp and Oatp was achieved using elacridar and rifampicin, respectively. Our findings show that (1) digoxin had a low brain-to-plasma concentration ratio (B/P) (0.07) in rat; (2) in the presence of elacridar, the B/P of digoxin increased by about 12-fold; (3) rifampicin administration alone did not change the digoxin B/P significantly when compared with digoxin B/P alone; (4) rifampicin administration along with elacridar resulted only in 6-fold increase in the B/P of digoxin; (5) similar fold changes and trends were seen with the spinal cord-to-plasma concentration ratio of digoxin, indicating the similarity between BBB and the BSCB; and (6) unlike BBB and BSCB, the presence of rifampicin further increased the cerebrospinal fluid-to-plasma concentration ratio (CSF/P) for digoxin, suggesting a differential orientation of the uptake transporters at the BCSFB (CSF to blood) compared with the BBB (blood to brain). The observations for digoxin uptake, at least at the BBB and the BSCB, advocate the importance of uptake transporters (Oatps). However, the activity of such uptake transporters became evident only after inhibition of the efflux transporter (P-gp).
Collapse
Affiliation(s)
- Kunal S Taskar
- Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb Research & Development Center (BBRC), Syngene International Limited, Bangalore, India.,Mechanistic Safety and Disposition, IVIVT, GlaxoSmithKline, Ware, UK
| | - T Thanga Mariappan
- Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb Research & Development Center (BBRC), Syngene International Limited, Bangalore, India
| | - Vishwanath Kurawattimath
- Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb Research & Development Center (BBRC), Syngene International Limited, Bangalore, India
| | - Shashyendra Singh Gautam
- Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb Research & Development Center (BBRC), Syngene International Limited, Bangalore, India
| | - T V Radhakrishna Mullapudi
- Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb Research & Development Center (BBRC), Syngene International Limited, Bangalore, India
| | - Srikanth K Sridhar
- Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb Research & Development Center (BBRC), Syngene International Limited, Bangalore, India
| | - Raja Reddy Kallem
- School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA
| | - Punit Marathe
- Pharmaceutical Candidate Optimization, Metabolism and Pharmacokinetics, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Sandhya Mandlekar
- Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb Research & Development Center (BBRC), Bristol-Myers Squibb India Ltd, Bangalore, India
| |
Collapse
|
44
|
Mateus A, Treyer A, Wegler C, Karlgren M, Matsson P, Artursson P. Intracellular drug bioavailability: a new predictor of system dependent drug disposition. Sci Rep 2017; 7:43047. [PMID: 28225057 PMCID: PMC5320532 DOI: 10.1038/srep43047] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/17/2017] [Indexed: 11/26/2022] Open
Abstract
Intracellular drug exposure is influenced by cell- and tissue-dependent expression of drug-transporting proteins and metabolizing enzymes. Here, we introduce the concept of intracellular bioavailability (Fic) as the fraction of extracellular drug available to bind intracellular targets, and we assess how Fic is affected by cellular drug disposition processes. We first investigated the impact of two essential drug transporters separately, one influx transporter (OATP1B1; SLCO1B1) and one efflux transporter (P-gp; ABCB1), in cells overexpressing these proteins. We showed that OATP1B1 increased Fic of its substrates, while P-gp decreased Fic. We then investigated the impact of the concerted action of multiple transporters and metabolizing enzymes in freshly-isolated human hepatocytes in culture configurations with different levels of expression and activity of these proteins. We observed that Fic was up to 35-fold lower in the configuration with high expression of drug-eliminating transporters and enzymes. We conclude that Fic provides a measurement of the net impact of all cellular drug disposition processes on intracellular bioavailable drug levels. Importantly, no prior knowledge of the involved drug distribution pathways is required, allowing for high-throughput determination of drug access to intracellular targets in highly defined cell systems (e.g., single-transporter transfectants) or in complex ones (including primary human cells).
Collapse
Affiliation(s)
- André Mateus
- Department of Pharmacy, Uppsala University, BMC, Box 580, Uppsala SE-751 23, Sweden
| | - Andrea Treyer
- Department of Pharmacy, Uppsala University, BMC, Box 580, Uppsala SE-751 23, Sweden
| | - Christine Wegler
- Department of Pharmacy, Uppsala University, BMC, Box 580, Uppsala SE-751 23, Sweden.,Cardiovascular and Metabolic Diseases Innovative Medicines, DMPK, AstraZeneca R&D, Mölndal SE-431 83, Sweden
| | - Maria Karlgren
- Department of Pharmacy, Uppsala University, BMC, Box 580, Uppsala SE-751 23, Sweden
| | - Pär Matsson
- Department of Pharmacy, Uppsala University, BMC, Box 580, Uppsala SE-751 23, Sweden
| | - Per Artursson
- Department of Pharmacy, Uppsala University, BMC, Box 580, Uppsala SE-751 23, Sweden.,Uppsala University Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), Department of Pharmacy, Uppsala University, Box 580, Uppsala SE-751 23, Sweden.,Science for Life Laboratory Drug Discovery and Development platform (SciLifelab DDD-P), Uppsala University, Uppsala SE-751 23, Sweden
| |
Collapse
|
45
|
Merlier F, Jellali R, Leclerc E. Online monitoring of hepatic rat metabolism by coupling a liver biochip and a mass spectrometer. Analyst 2017; 142:3747-3757. [DOI: 10.1039/c7an00973a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A microfluidic liver biochip was coupled with a mass spectrometer to detect in real time the drug metabolism of hepatocytes.
Collapse
Affiliation(s)
- Franck Merlier
- Sorbonne Universités
- FRE CNRS 3580
- Génie Enzymatique et Cellulaire
- Université de Technologie de Compiègne
- 60205 Compiègne Cedex
| | - Rachid Jellali
- Sorbonne Universités
- CNRS UMR 7338
- Laboratoire de Biomécanique et Bio ingénierie
- Université de Technologie de Compiègne
- Centre de Recherche de Royallieu
| | - Eric Leclerc
- Sorbonne Universités
- CNRS UMR 7338
- Laboratoire de Biomécanique et Bio ingénierie
- Université de Technologie de Compiègne
- Centre de Recherche de Royallieu
| |
Collapse
|
46
|
Sandwich-Cultured Hepatocytes as a Tool to Study Drug Disposition and Drug-Induced Liver Injury. J Pharm Sci 2016; 105:443-459. [PMID: 26869411 DOI: 10.1016/j.xphs.2015.11.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/06/2015] [Accepted: 11/09/2015] [Indexed: 12/21/2022]
Abstract
Sandwich-cultured hepatocytes (SCH) are metabolically competent and have proper localization of basolateral and canalicular transporters with functional bile networks. Therefore, this cellular model is a unique tool that can be used to estimate biliary excretion of compounds. SCH have been used widely to assess hepatobiliary disposition of endogenous and exogenous compounds and metabolites. Mechanistic modeling based on SCH data enables estimation of metabolic and transporter-mediated clearances, which can be used to construct physiologically based pharmacokinetic models for prediction of drug disposition and drug-drug interactions in humans. In addition to pharmacokinetic studies, SCH also have been used to study cytotoxicity and perturbation of biological processes by drugs and hepatically generated metabolites. Human SCH can provide mechanistic insights underlying clinical drug-induced liver injury (DILI). In addition, data generated in SCH can be integrated into systems pharmacology models to predict potential DILI in humans. In this review, applications of SCH in studying hepatobiliary drug disposition and bile acid-mediated DILI are discussed. An example is presented to show how data generated in the SCH model were used to establish a quantitative relationship between intracellular bile acids and cytotoxicity, and how this information was incorporated into a systems pharmacology model for DILI prediction.
Collapse
|
47
|
Kulkarni P, Korzekwa K, Nagar S. Intracellular Unbound Atorvastatin Concentrations in the Presence of Metabolism and Transport. J Pharmacol Exp Ther 2016; 359:26-36. [PMID: 27451408 DOI: 10.1124/jpet.116.235689] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/20/2016] [Indexed: 12/26/2022] Open
Abstract
Accurate prediction of drug target activity and rational dosing regimen design require knowledge of drug concentrations at the target. It is important to understand the impact of processes such as membrane permeability, partitioning, and active transport on intracellular drug concentrations. The present study aimed to predict intracellular unbound atorvastatin concentrations and characterize the effect of enzyme-transporter interplay on these concentrations. Single-pass liver perfusion studies were conducted in rats using atorvastatin (ATV, 1 µM) alone at 4°C and at 37°C in presence of rifampin (RIF, 20 µM) and 1-aminobenzotriazole (ABT, 1 mM), separately and in combination. The unbound intracellular ATV concentration was predicted with a five-compartment explicit membrane model using the parameterized diffusional influx clearance, active basolateral uptake clearance, and metabolic clearance. Chemical inhibition of uptake and metabolism at 37°C proved to be better controls relative to studies at 4°C. The predicted unbound intracellular concentration at the end of the 50-minute perfusion in the +ABT , +ABT+RIF, and the ATV-only groups was 6.5 µM, 0.58 µM, and 5.14 µM, respectively. The predicted total liver concentrations and amount recovered in bile were within 0.94-1.3 fold of the observed value in all groups. The fold difference in total liver concentration did not always extrapolate to the fold difference in predicted unbound concentration across groups. Together, these results support the use of compartmental modeling to predict intracellular concentrations in dynamic organ-based systems. These predictions can provide insight into the role of uptake transporters and metabolizing enzymes in determining drug tissue concentrations.
Collapse
Affiliation(s)
- Priyanka Kulkarni
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| | - Kenneth Korzekwa
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| | - Swati Nagar
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| |
Collapse
|
48
|
Scotcher D, Jones C, Posada M, Rostami-Hodjegan A, Galetin A. Key to Opening Kidney for In Vitro-In Vivo Extrapolation Entrance in Health and Disease: Part I: In Vitro Systems and Physiological Data. AAPS JOURNAL 2016; 18:1067-1081. [PMID: 27365096 DOI: 10.1208/s12248-016-9942-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/02/2016] [Indexed: 02/07/2023]
Abstract
The programme for the 2015 AAPS Annual Meeting and Exhibition (Orlando, FL; 25-29 October 2015) included a sunrise session presenting an overview of the state-of-the-art tools for in vitro-in vivo extrapolation (IVIVE) and mechanistic prediction of renal drug disposition. These concepts are based on approaches developed for prediction of hepatic clearance, with consideration of scaling factors physiologically relevant to kidney and the unique and complex structural organisation of this organ. Physiologically relevant kidney models require a number of parameters for mechanistic description of processes, supported by quantitative information on renal physiology (system parameters) and in vitro/in silico drug-related data. This review expands upon the themes raised during the session and highlights the importance of high quality in vitro drug data generated in appropriate experimental setup and robust system-related information for successful IVIVE of renal drug disposition. The different in vitro systems available for studying renal drug metabolism and transport are summarised and recent developments involving state-of-the-art technologies highlighted. Current gaps and uncertainties associated with system parameters related to human kidney for the development of physiologically based pharmacokinetic (PBPK) model and quantitative prediction of renal drug disposition, excretion, and/or metabolism are identified.
Collapse
Affiliation(s)
- Daniel Scotcher
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK
| | - Christopher Jones
- DMPK, Oncology iMed, AstraZeneca R&D Alderley Park, Macclesfield, Cheshire, UK
| | - Maria Posada
- Drug Disposition, Lilly Research Laboratories, Indianapolis, Indiana, 46203, USA
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK.,Simcyp Limited (a Certara Company), Blades Enterprise Centre, Sheffield, UK
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
49
|
Vildhede A, Mateus A, Khan EK, Lai Y, Karlgren M, Artursson P, Kjellsson MC. Mechanistic Modeling of Pitavastatin Disposition in Sandwich-Cultured Human Hepatocytes: A Proteomics-Informed Bottom-Up Approach. Drug Metab Dispos 2016; 44:505-16. [DOI: 10.1124/dmd.115.066746] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 02/01/2016] [Indexed: 01/04/2023] Open
|
50
|
Poulin P, Haddad S. Albumin and Uptake of Drugs in Cells: Additional Validation Exercises of a Recently Published Equation that Quantifies the Albumin-Facilitated Uptake Mechanism(s) in Physiologically Based Pharmacokinetic and Pharmacodynamic Modeling Research. J Pharm Sci 2015; 104:4448-4458. [DOI: 10.1002/jps.24676] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 09/18/2015] [Accepted: 09/18/2015] [Indexed: 11/06/2022]
|