1
|
Eddin LB, Meeran MFN, Subramanya SB, Jha NK, Ojha S. Therapeutic potential of agents targeting cannabinoid type 2 receptors in organ fibrosis. Pharmacol Res Perspect 2024; 12:e1219. [PMID: 39425446 PMCID: PMC11489134 DOI: 10.1002/prp2.1219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/08/2024] [Accepted: 04/24/2024] [Indexed: 10/21/2024] Open
Abstract
The endocannabinoid system has garnered attention as a potential therapeutic target in a range of pathological disorders. Cannabinoid receptors type 2 (CB2) are a class of G protein-coupled receptors responsible for transmitting intracellular signals triggered by both endogenous and exogenous cannabinoids, including those derived from plants (phytocannabinoids) or manufactured synthetically (synthetic cannabinoids). Recent recognition of the role of CB2 receptors in fibrosis has fueled interest in therapeutic targeting of CB2 receptors in fibrosis. Fibrosis is characterized by the alteration of the typical cellular composition within the tissue parenchyma, resulting from exposure to diverse etiological factors. The pivotal function of CB2 agonists has been widely recognized in the regulation of inflammation, fibrogenesis, and various other biological pathologies. The modulation of CB2 receptors, whether by enhancing their expression or activating their function, has the potential to provide benefits in numerous conditions, particularly by avoiding any associated adverse effects on the central nervous system. The sufficient activation of CB2 receptors resulted in the complete suppression of gene expression related to transforming growth factor β1 and its subsequent fibrogenic response. Multiple reports have also indicated the diverse functions that CB2 agonists possess in mitigating chronic inflammation and subsequent fibrosis development in various types of tissues. While currently in the preclinical stage, the advancement of CB2 compounds has garnered significant attention within the realm of drug discovery. This review presents a comprehensive synthesis of various independent experimental studies elucidating the pivotal role of identified natural and synthetic CB2 agonists in the pathophysiology of organ fibrosis, specifically in the cardiac, hepatic, and renal systems.
Collapse
Affiliation(s)
- Lujain Bader Eddin
- Department of Pharmacology and Therapeutics, College of Medicine and Health SciencesUnited Arab Emirates UniversityAl AinUAE
| | - M. F. Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health SciencesUnited Arab Emirates UniversityAl AinUAE
| | - Sandeep B. Subramanya
- Department of Physiology, College of Medicine and Health SciencesUnited Arab Emirates UniversityAl AinUAE
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical CollegeSaveetha Institute of Medical and Technical Sciences, Saveetha UniversityChennaiIndia
- School of Bioengineering & BiosciencesLovely Professional UniversityPhagwaraIndia
- Department of Biotechnology, School of Applied & Life Sciences (SALS)Uttaranchal UniversityDehradunIndia
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health SciencesUnited Arab Emirates UniversityAl AinUAE
- Zayed Bin Sultan Center for Health SciencesUnited Arab Emirates UniversityAl AinUAE
| |
Collapse
|
2
|
Salvail W, Salvail D, Chagnon F, Lesur O. Apelin-13 administration allows for norepinephrine sparing in a rat model of cecal ligation and puncture-induced septic shock. Intensive Care Med Exp 2024; 12:68. [PMID: 39103658 DOI: 10.1186/s40635-024-00650-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 07/21/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Infusion of exogenous catecholamines (i.e., norepinephrine [NE] and dobutamine) is a recommended treatment for septic shock with myocardial dysfunction. However, sustained catecholamine infusion is linked to cardiac toxicity and impaired responsiveness. Several pre-clinical and clinical studies have investigated the use of alternative vasopressors in the treatment of septic shock, with limited benefits and generally no effect on mortality. Apelin-13 (APL-13) is an endogenous positive inotrope and vasoactive peptide and has been demonstrated cardioprotective with vasomodulator and sparing life effects in animal models of septic shock. A primary objective of this study was to evaluate the NE-sparing effect of APL-13 infusion in an experimental sepsis-induced hypotension. METHODS For this goal, sepsis was induced by cecal ligation and puncture (CLP) in male rats and the arterial blood pressure (BP) monitored continuously via a carotid catheter. Monitoring, fluid resuscitation and experimental treatments were performed on conscious animals. Based on pilot assays, normal saline fluid resuscitation (2.5 mL/Kg/h) was initiated 3 h post-CLP and maintained up to the endpoint. Thus, titrated doses of NE, with or without fixed-doses of APL-13 or the apelin receptor antagonist F13A co-infusion were started when 20% decrease of systolic BP (SBP) from baseline was achieved, to restore SBP values ≥ 115 ± 1.5 mmHg (baseline average ± SEM). RESULTS A reduction in mean NE dose was observed with APL-13 but not F13A co-infusion at pre-determined treatment time of 4.5 ± 0.5 h (17.37 ± 1.74 µg/Kg/h [APL-13] vs. 25.64 ± 2.61 µg/Kg/h [Control NE] vs. 28.60 ± 4.79 µg/Kg/min [F13A], P = 0.0491). A 60% decrease in NE infusion rate over time was observed with APL-13 co-infusion, (p = 0.008 vs NE alone), while F13A co-infusion increased the NE infusion rate over time by 218% (p = 0.003 vs NE + APL-13). Associated improvements in cardiac function are likely mediated by (i) enhanced left ventricular end-diastolic volume (0.18 ± 0.02 mL [Control NE] vs. 0.30 ± 0.03 mL [APL-13], P = 0.0051), stroke volume (0.11 ± 0.01 mL [Control NE] vs. 0.21 ± 0.01 mL [APL-13], P < 0.001) and cardiac output (67.57 ± 8.63 mL/min [Control NE] vs. 112.20 ± 8.53 mL/min [APL-13], P = 0.0036), and (ii) a reduced effective arterial elastance (920.6 ± 81.4 mmHg/mL/min [Control NE] vs. 497.633.44 mmHg/mL/min. [APL-13], P = 0.0002). APL-13 administration was also associated with a decrease in lactate levels compared to animals only receiving NE (7.08 ± 0.40 [Control NE] vs. 4.78 ± 0.60 [APL-13], P < 0.01). CONCLUSION APL-13 exhibits NE-sparing benefits in the treatment of sepsis-induced shock, potentially reducing deleterious effects of prolonged exogenous catecholamine administration.
Collapse
Affiliation(s)
- William Salvail
- Centre de Recherche Clinique du CHU Sherbrooke (CRCHUS), CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- IPS Therapeutique Inc., Sherbrooke, QC, Canada
| | | | - Frédéric Chagnon
- Centre de Recherche Clinique du CHU Sherbrooke (CRCHUS), CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Olivier Lesur
- Centre de Recherche Clinique du CHU Sherbrooke (CRCHUS), CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
- Département de Soins Intensifs et Service de PneumologieCHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12th Avenue Nord, SherbrookeSherbrooke, QC, J1H 5N4, Canada.
- Département de Médecine, CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
3
|
Cinar R, Basu A, Arif M, Park JK, Zawatsky CN, Zuo BLG, Zuo MXG, O’Brien KJ, Behan M, Introne W, Iyer MR, Gahl WA, Malicdan MCV, Gochuico BR. Anandamide is an Early Blood Biomarker of Hermansky-Pudlak Syndrome Pulmonary Fibrosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.16.24307300. [PMID: 38798603 PMCID: PMC11118631 DOI: 10.1101/2024.05.16.24307300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Hermansky-Pudlak syndrome (HPS) is a group of rare genetic disorders, with several subtypes leading to fatal adult-onset pulmonary fibrosis (PF) and no effective treatment. Circulating biomarkers detecting early PF have not been identified. We investigated whether endocannabinoids could serve as blood biomarkers of PF in HPS. We measured endocannabinoids in the serum of HPS, IPF, and healthy human subjects and in a mouse model of HPSPF. Pulmonary function tests (PFT) were correlated with endocannabinoid measurements. In a pale ear mouse model of bleomycin-induced HPSPF, serum endocannabinoid levels were measured with and without treatment with zevaquenabant (MRI-1867), a peripheral CB1R and iNOS antagonist. In three separate cohorts, circulating anandamide levels were increased in HPS-1 patients with or without PF, compared to healthy volunteers. This increase was not observed in IPF patients or in HPS-3 patients, who do not have PF. Circulating anandamide (AEA) levels were negatively correlated with PFT. Furthermore, a longitudinal study over the course of 5-14 years with HPS-1 patients indicated that circulating AEA levels begin to increase with the fibrotic lung process even at the subclinical stages of HPSPF. In pale ear mice with bleomycin-induced HpsPF, serum AEA levels were significantly increased in the earliest stages of PF and remained elevated at a later fibrotic stage. Zevaquenabant treatment reduced the increased AEA levels and attenuated progression in bleomycin-induced HpsPF. Circulating AEA may be a prognostic blood biomarker for PF in HPS-1 patients. Further studies are indicated to evaluate endocannabinoids as potential surrogate biomarkers in progressive fibrotic lung diseases.
Collapse
Affiliation(s)
- Resat Cinar
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, 20852, USA
| | - Abhishek Basu
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, 20852, USA
| | - Muhammad Arif
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, 20852, USA
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, 20852, USA
| | - Joshua K. Park
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20852, USA
| | - Charles N. Zawatsky
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, 20852, USA
| | - Ben Long G. Zuo
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, 20852, USA
| | - Mei Xing G. Zuo
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, 20852, USA
| | - Kevin J. O’Brien
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Molly Behan
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wendy Introne
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Malliga R. Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, 20852, USA
| | - William A. Gahl
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - May Christine V. Malicdan
- NIH Undiagnosed Diseases Program and Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bernadette R. Gochuico
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
4
|
Carswell G, Chamberlin J, Bennett BD, Bushel PR, Chorley BN. Persistent gene expression and DNA methylation alterations linked to carcinogenic effects of dichloroacetic acid. Front Oncol 2024; 14:1389634. [PMID: 38764585 PMCID: PMC11099211 DOI: 10.3389/fonc.2024.1389634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/18/2024] [Indexed: 05/21/2024] Open
Abstract
Background Mechanistic understanding of transient exposures that lead to adverse health outcomes will enhance our ability to recognize biological signatures of disease. Here, we measured the transcriptomic and epigenomic alterations due to exposure to the metabolic reprogramming agent, dichloroacetic acid (DCA). Previously, we showed that exposure to DCA increased liver tumor incidence in B6C3F1 mice after continuous or early life exposures significantly over background level. Methods Using archived formalin-fixed liver samples, we utilized modern methodologies to measure gene expression and DNA methylation levels to link to previously generated phenotypic measures. Gene expression was measured by targeted RNA sequencing (TempO-seq 1500+ toxicity panel: 2754 total genes) in liver samples collected from 10-, 32-, 57-, and 78-week old mice exposed to deionized water (controls), 3.5 g/L DCA continuously in drinking water ("Direct" group), or DCA for 10-, 32-, or 57-weeks followed by deionized water until sample collection ("Stop" groups). Genome-scaled alterations in DNA methylation were measured by Reduced Representation Bisulfite Sequencing (RRBS) in 78-week liver samples for control, Direct, 10-week Stop DCA exposed mice. Results Transcriptomic changes were most robust with concurrent or adjacent timepoints after exposure was withdrawn. We observed a similar pattern with DNA methylation alterations where we noted attenuated differentially methylated regions (DMRs) in the 10-week Stop DCA exposure groups compared to the Direct group at 78-weeks. Gene pathway analysis indicated cellular effects linked to increased oxidative metabolism, a primary mechanism of action for DCA, closer to exposure windows especially early in life. Conversely, many gene signatures and pathways reversed patterns later in life and reflected more pro-tumorigenic patterns for both current and prior DCA exposures. DNA methylation patterns correlated to early gene pathway perturbations, such as cellular signaling, regulation and metabolism, suggesting persistence in the epigenome and possible regulatory effects. Conclusion Liver metabolic reprogramming effects of DCA interacted with normal age mechanisms, increasing tumor burden with both continuous and prior DCA exposure in the male B6C3F1 rodent model.
Collapse
Affiliation(s)
- Gleta Carswell
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - John Chamberlin
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
- Oak Ridge Institute for Science and Education, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Brian D. Bennett
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, United States
| | - Pierre R. Bushel
- Massive Genome Informatics Group, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, United States
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, United States
| | - Brian N. Chorley
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| |
Collapse
|
5
|
Reece AS, Bennett K, Hulse GK. Cannabis- and Substance-Related Carcinogenesis in Europe: A Lagged Causal Inferential Panel Regression Study. J Xenobiot 2023; 13:323-385. [PMID: 37489337 PMCID: PMC10366890 DOI: 10.3390/jox13030024] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023] Open
Abstract
Recent European data facilitate an epidemiological investigation of the controversial cannabis-cancer relationship. Of particular concern were prior findings associating high-dose cannabis use with reproductive problems and potential genetic impacts. Cancer incidence data age-standardised to the world population was obtained from the European Cancer Information System 2000-2020 and many European national cancer registries. Drug use data were obtained from the European Monitoring Centre for Drugs and Drug Addiction. Alcohol and tobacco consumption was sourced from the WHO. Median household income was taken from the World bank. Cancer rates in high-cannabis-use countries were significantly higher than elsewhere (β-estimate = 0.4165, p = 3.54 × 10-115). Eighteen of forty-one cancers (42,675 individual rates) were significantly associated with cannabis exposure at bivariate analysis. Twenty-five cancers were linked in inverse-probability-weighted multivariate models. Temporal lagging in panel models intensified these effects. In multivariable models, cannabis was a more powerful correlate of cancer incidence than tobacco or alcohol. Reproductive toxicity was evidenced by the involvement of testis, ovary, prostate and breast cancers and because some of the myeloid and lymphoid leukaemias implicated occur in childhood, indicating inherited intergenerational genotoxicity. Cannabis is a more important carcinogen than tobacco and alcohol and fulfills epidemiological qualitative and quantitative criteria for causality for 25/41 cancers. Reproductive and transgenerational effects are prominent. These findings confirm the clinical and epidemiological salience of cannabis as a major multigenerational community carcinogen.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Kellie Bennett
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- Faculty of Health Sciences, Curtin University, 208 Kent St., Bentley, Perth, WA 6102, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
6
|
Medrano-Bosch M, Simón-Codina B, Jiménez W, Edelman ER, Melgar-Lesmes P. Monocyte-endothelial cell interactions in vascular and tissue remodeling. Front Immunol 2023; 14:1196033. [PMID: 37483594 PMCID: PMC10360188 DOI: 10.3389/fimmu.2023.1196033] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Monocytes are circulating leukocytes of innate immunity derived from the bone marrow that interact with endothelial cells under physiological or pathophysiological conditions to orchestrate inflammation, angiogenesis, or tissue remodeling. Monocytes are attracted by chemokines and specific receptors to precise areas in vessels or tissues and transdifferentiate into macrophages with tissue damage or infection. Adherent monocytes and infiltrated monocyte-derived macrophages locally release a myriad of cytokines, vasoactive agents, matrix metalloproteinases, and growth factors to induce vascular and tissue remodeling or for propagation of inflammatory responses. Infiltrated macrophages cooperate with tissue-resident macrophages during all the phases of tissue injury, repair, and regeneration. Substances released by infiltrated and resident macrophages serve not only to coordinate vessel and tissue growth but cellular interactions as well by attracting more circulating monocytes (e.g. MCP-1) and stimulating nearby endothelial cells (e.g. TNF-α) to expose monocyte adhesion molecules. Prolonged tissue accumulation and activation of infiltrated monocytes may result in alterations in extracellular matrix turnover, tissue functions, and vascular leakage. In this review, we highlight the link between interactions of infiltrating monocytes and endothelial cells to regulate vascular and tissue remodeling with a special focus on how these interactions contribute to pathophysiological conditions such as cardiovascular and chronic liver diseases.
Collapse
Affiliation(s)
- Mireia Medrano-Bosch
- Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Blanca Simón-Codina
- Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Wladimiro Jiménez
- Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Elazer R. Edelman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Pedro Melgar-Lesmes
- Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
7
|
Qiu Y, Zhao Y, Hu T, Yang M, Li F, Li C, Gu W, Yang X, Zhao S, Tao H. Development of Yin-Yang ligand for cannabinoid receptors. Bioorg Chem 2023; 133:106377. [PMID: 36731294 DOI: 10.1016/j.bioorg.2023.106377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/22/2023]
Abstract
Cannabinoid receptors (CBs), including CB1 and CB2, are the key components of a lipid signaling endocannabinoid system (ECS). Development of synthetic cannabinoids has been attractive to modulate ECS functions. CB1 and CB2 are structurally closely related subtypes but with distinct functions. While most efforts focus on the development of selective ligands for single subtype to circumvent the undesired off-target effect, Yin-Yang ligands with opposite pharmacological activities simultaneously on two subtypes, offer unique therapeutic potential. Herein we report the development of a new Yin-Yang ligand which functions as an antagonist for CB1 and concurrently an agonist for CB2. We found that in the pyrazole-cored scaffold, the arm of N1-phenyl group could be a switch, modification of which yielded various ligands with distinct activities. As such, the ortho-morpholine substitution exerted the desired Yin-Yang bifunctionality which, based on the docking study and molecular dynamic simulation, was proposed to be resulted from the hydrogen bonding with S173 and S285 in CB1 and CB2, respectively. Our results demonstrated the feasibility of structure guided ligand evolution for challenging Yin-Yang ligand.
Collapse
Affiliation(s)
- Yanli Qiu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yitian Zhao
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tao Hu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Meifang Yang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fei Li
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Cuixia Li
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Weiliang Gu
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaodi Yang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Houchao Tao
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
8
|
Chen J, Li Z, Zhao Q, Chen L. Roles of apelin/APJ system in cancer: Biomarker, predictor, and emerging therapeutic target. J Cell Physiol 2022; 237:3734-3751. [DOI: 10.1002/jcp.30845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Jiawei Chen
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology University of South China Hengyang Hunan China
| | - Zhiyue Li
- Health Management Center, The Third Xiangya Hospital Central South University Changsha Hunan Province China
| | - Qun Zhao
- Department of Orthopedics Third Xiangya Hospital of Central South University Changsha Hunan China
| | - Linxi Chen
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology University of South China Hengyang Hunan China
| |
Collapse
|
9
|
Effects of active, inactive, and derivatives of Akkermansia muciniphila on the expression of the endocannabinoid system and PPARs genes. Sci Rep 2022; 12:10031. [PMID: 35705595 PMCID: PMC9200819 DOI: 10.1038/s41598-022-13840-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/30/2022] [Indexed: 12/29/2022] Open
Abstract
This study aimed to investigate the effects of active and heat-inactivated forms of Akkermansia muciniphila, bacterium-derived outer membrane vesicles (OMVs), and cell-free supernatant on the transcription of endocannabinoid system (ECS) members, including cannabinoid receptors 1 and 2 (CB1 and CB2), fatty acid amide hydrolase (FAAH), and peroxisome proliferator-activated receptors (PPARs) genes (i.e., α, β/δ, and δ) in Caco-2 and HepG-2 cell lines. After the inoculation of A. muciniphila in brain heart infusion enriched medium, OMVs and cell-free supernatant were extracted. For the investigation of the effects of bacteria and its derivatives on the expression of ECS and PPARs genes, the aforementioned cells were treated by active and heat-inactivated bacteria, OMVs, and cell-free supernatant. Quantitative real-time polymerase chain reaction analysis revealed that both forms of the bacterium, bacterial-derived OMVs, and cell-free supernatant could affect the expression of CB1, CB2, FAAH, and PPARs genes (i.e., α, β/δ, and δ) significantly (P < 0.05). Considering the engagement of the aforementioned genes in metabolic pathways, it might be suggested that both forms of the bacterium, OMVs, and cell-free supernatant might have the potential to serve as a probiotic, paraprobiotic, and postbiotic candidate to prevent obesity, metabolic disorders, and liver diseases.
Collapse
|
10
|
Carson JP, Robinson MW, Ramm GA, Gobert GN. Synthetic peptides derived from the Schistosoma mansoni secretory protein Sm16 induce contrasting responses in hepatic stellate cells. Exp Parasitol 2022; 236-237:108255. [DOI: 10.1016/j.exppara.2022.108255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/04/2022]
|
11
|
Carson JP, Robinson MW, Ramm GA, Gobert GN. RNA sequencing of LX-2 cells treated with TGF-β1 identifies genes associated with hepatic stellate cell activation. Mol Biol Rep 2021; 48:7677-7688. [PMID: 34648138 PMCID: PMC8604886 DOI: 10.1007/s11033-021-06774-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/14/2021] [Indexed: 11/10/2022]
Abstract
Background Hepatic stellate cells (HSCs) are liver-resident myofibroblast precursors responsible for the production of collagen and maintenance of the hepatic extracellular matrix (ECM). As such, they are generally associated with fibrotic liver diseases. HSCs become “activated” in response to tissue damage or pathogen invasion, a process most commonly driven by transforming growth factor-β1 (TGF-β1). Despite this, the full extent of TGF-β1 signalling in these cells is poorly understood. Clarifying the range and diversity of this signalling will further improve our understanding of the process of HSC activation. Methods and results RNA sequencing was used to quantitate the transcriptomic changes induced in LX-2 cells, an activated human HSC line, following TGF-b1 treatment. In total, 5,258 genes were found to be significantly differentially expressed with a false discovery rate cut-off of < 0.1. The topmost deregulated of these genes included those with no currently characterised role in either HSC activation or fibrotic processes, including CIITA and SERPINB2. In silico analysis revealed the prominent signalling pathways downstream of TGF-β1 in LX-2 cells. Conclusions In this study, we describe the genes and signalling pathways significantly deregulated in LX-2 cells following TGF-β1 treatment. We identified several highly deregulated genes with no currently characterised role in HSC activation, which may represent novel mediators of fibrotic responses in HSCs or the liver macroenvironment. This work may be of use in the identification of new markers of liver fibrosis and could provide insight into prospective genes or pathways that might be targeted for the amelioration of fibrotic liver disease in the future.
Collapse
Affiliation(s)
- Jack P. Carson
- School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, BT9 5DL Belfast, UK
| | - Mark W. Robinson
- School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, BT9 5DL Belfast, UK
| | - Grant A. Ramm
- QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Locked Bag 2000, QLD 4029 Brisbane, Australia
- Faculty of Medicine, The University of Queensland, Level 6, Oral Health Centre (Building), Herston Road, 4006 Herston, QLD Australia
| | - Geoffrey N. Gobert
- School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, BT9 5DL Belfast, UK
| |
Collapse
|
12
|
Cinar R, Park JK, Zawatsky CN, Coffey NJ, Bodine SP, Abdalla J, Yokoyama T, Jourdan T, Jay L, Zuo MXG, O'Brien KJ, Huang J, Mackie K, Alimardanov A, Iyer MR, Gahl WA, Kunos G, Gochuico BR, Malicdan MCV. CB 1 R and iNOS are distinct players promoting pulmonary fibrosis in Hermansky-Pudlak syndrome. Clin Transl Med 2021; 11:e471. [PMID: 34323400 PMCID: PMC8255071 DOI: 10.1002/ctm2.471] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
Hermansky-Pudlak syndrome (HPS) is a rare genetic disorder which, in its most common and severe form, HPS-1, leads to fatal adult-onset pulmonary fibrosis (PF) with no effective treatment. We evaluated the role of the endocannabinoid/CB1 R system and inducible nitric oxide synthase (iNOS) for dual-target therapeutic strategy using human bronchoalveolar lavage fluid (BALF), lung samples from patients with HPS and controls, HPS-PF patient-derived lung fibroblasts, and bleomycin-induced PF in pale ear mice (HPS1ep/ep ). We found overexpression of CB1 R and iNOS in fibrotic lungs of HPSPF patients and bleomycin-infused pale ear mice. The endocannabinoid anandamide was elevated in BALF and negatively correlated with pulmonary function parameters in HPSPF patients and pale ear mice with bleomycin-induced PF. Simultaneous targeting of CB1 R and iNOS by MRI-1867 yielded greater antifibrotic efficacy than inhibiting either target alone by attenuating critical pathologic pathways. Moreover, MRI-1867 treatment abrogated bleomycin-induced increases in lung levels of the profibrotic interleukin-11 via iNOS inhibition and reversed mitochondrial dysfunction via CB1 R inhibition. Dual inhibition of CB1 R and iNOS is an effective antifibrotic strategy for HPSPF.
Collapse
Affiliation(s)
- Resat Cinar
- Section on Fibrotic DisordersNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthMarylandUSA
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
| | - Joshua K. Park
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
| | - Charles N. Zawatsky
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
| | - Nathan J. Coffey
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
| | - Steven P. Bodine
- Section of Human Biochemical GeneticsMedical Genetics BranchNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Jasmina Abdalla
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
| | - Tadafumi Yokoyama
- Section of Human Biochemical GeneticsMedical Genetics BranchNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
- Present address:
Department of PediatricsKanazawa UniversityKanazawaJapan
| | - Tony Jourdan
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
- Present address:
INSERM Lipids, Nutrition, Cancer UMR1231University of Burgundy and Franche‐ComtéDijonFrance
| | - Lindsey Jay
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
| | - Mei Xing G. Zuo
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
| | - Kevin J. O'Brien
- Section of Human Biochemical GeneticsMedical Genetics BranchNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Junfeng Huang
- Therapeutics Development BranchDivision of Preclinical InnovationNational Center for Advancing Translational SciencesNational Institutes of HealthRockvilleMarylandUSA
| | - Ken Mackie
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonIndianaUSA
| | - Asaf Alimardanov
- Therapeutics Development BranchDivision of Preclinical InnovationNational Center for Advancing Translational SciencesNational Institutes of HealthRockvilleMarylandUSA
| | - Malliga R. Iyer
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
| | - William A. Gahl
- Section of Human Biochemical GeneticsMedical Genetics BranchNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
- NIH Undiagnosed Diseases Program and Office of the Clinical DirectorNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - George Kunos
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
| | - Bernadette R. Gochuico
- Section of Human Biochemical GeneticsMedical Genetics BranchNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - May Christine V. Malicdan
- Section of Human Biochemical GeneticsMedical Genetics BranchNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
- NIH Undiagnosed Diseases Program and Office of the Clinical DirectorNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
13
|
Chen L, Zhou T, White T, O’Brien A, Chakraborty S, Liangpunsakul S, Yang Z, Kennedy L, Saxena R, Wu C, Meng F, Huang Q, Francis H, Alpini G, Glaser S. The Apelin-Apelin Receptor Axis Triggers Cholangiocyte Proliferation and Liver Fibrosis During Mouse Models of Cholestasis. Hepatology 2021; 73:2411-2428. [PMID: 32964473 PMCID: PMC9288669 DOI: 10.1002/hep.31545] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 07/28/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Apelin (APLN) is the endogenous ligand of its G protein-coupled receptor, apelin receptor (APJ). APLN serum levels are increased in human liver diseases. We evaluated whether the APLN-APJ axis regulates ductular reaction and liver fibrosis during cholestasis. APPROACH AND RESULTS We measured the expression of APLN and APJ and serum APLN levels in human primary sclerosing cholangitis (PSC) samples. Following bile duct ligation (BDL) or sham surgery, male wild-type (WT) mice were treated with ML221 (APJ antagonist) or saline for 1 week. WT and APLN-/- mice underwent BDL or sham surgery for 1 week. Multidrug resistance gene 2 knockout (Mdr2-/- ) mice were treated with ML221 for 1 week. APLN levels were measured in serum and cholangiocyte supernatants, and cholangiocyte proliferation/senescence and liver inflammation, fibrosis, and angiogenesis were measured in liver tissues. The regulatory mechanisms of APLN-APJ in (1) biliary damage and liver fibrosis were examined in human intrahepatic biliary epithelial cells (HIBEpiCs) treated with APLN and (2) hepatic stellate cell (HSC) activation in APLN-treated human HSC lines (HHSteCs). APLN serum levels and biliary expression of APLN and APJ increased in PSC samples. APLN levels were higher in serum and cholangiocyte supernatants from BDL and Mdr2-/- mice. ML221 treatment or APLN-/- reduced BDL-induced and Mdr2-/- -induced cholangiocyte proliferation/senescence, liver inflammation, fibrosis, and angiogenesis. In vitro, APLN induced HIBEpiC proliferation, increased nicotinamide adenine dinucleotide phosphate oxidase 4 (Nox4) expression, reactive oxygen species (ROS) generation, and extracellular signal-regulated kinase (ERK) phosphorylation. Pretreatment of HIBEpiCs with ML221, diphenyleneiodonium chloride (Nox4 inhibitor), N-acetyl-cysteine (NAC, ROS inhibitor), or PD98059 (ERK inhibitor) reduced APLN-induced cholangiocyte proliferation. Activation of HHSteCs was induced by APLN but reduced by NAC. CONCLUSIONS The APLN-APJ axis induces cholangiocyte proliferation through Nox4/ROS/ERK-dependent signaling and HSC activation through intracellular ROS. Modulation of the APLN-APJ axis may be important for managing cholangiopathies.
Collapse
Affiliation(s)
- Lixian Chen
- Department of Medical Physiology, Texas A&M University College of Medicine; Bryan, TX,Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Tianhao Zhou
- Department of Medical Physiology, Texas A&M University College of Medicine; Bryan, TX
| | - Tori White
- Department of Medical Physiology, Texas A&M University College of Medicine; Bryan, TX
| | - April O’Brien
- Department of Medical Physiology, Texas A&M University College of Medicine; Bryan, TX
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M University College of Medicine; Bryan, TX
| | - Suthat Liangpunsakul
- Research, Richard L. Roudebush VA Medical Center, Indiana University School of Medicine, Indianapolis, IN,Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Zhihong Yang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Romil Saxena
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Chaodong Wu
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX
| | - Fanyin Meng
- Research, Richard L. Roudebush VA Medical Center, Indiana University School of Medicine, Indianapolis, IN,Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Qiaobing Huang
- Department of Pathophysiology, Guangdong Provincial Key Lab of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Heather Francis
- Research, Richard L. Roudebush VA Medical Center, Indiana University School of Medicine, Indianapolis, IN,Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Gianfranco Alpini
- Research, Richard L. Roudebush VA Medical Center, Indiana University School of Medicine, Indianapolis, IN,Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University College of Medicine; Bryan, TX
| |
Collapse
|
14
|
Owen NE, Nyimanu D, Kuc RE, Upton PD, Morrell NW, Alexander GJ, Maguire JJ, Davenport AP. Plasma levels of apelin are reduced in patients with liver fibrosis and cirrhosis but are not correlated with circulating levels of bone morphogenetic protein 9 and 10. Peptides 2021; 136:170440. [PMID: 33171278 PMCID: PMC7883214 DOI: 10.1016/j.peptides.2020.170440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/06/2020] [Accepted: 11/01/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND The peptide apelin is expressed in human healthy livers and is implicated in the development of hepatic fibrosis and cirrhosis. Mutations in the bone morphogenetic protein receptor type II (BMPR-II) result in reduced plasma levels of apelin in patients with heritable pulmonary arterial hypertension. Ligands for BMPR-II include bone morphogenetic protein 9 (BMP9), highly expressed in liver, and BMP10, expressed in heart and to a lesser extent liver. However, it is not known whether reductions in BMP9 and/or BMP10, with associated reduction in BMPR-II signalling, correlate with altered levels of apelin in patients with liver fibrosis and cirrhosis. METHODS Plasma from patients with liver fibrosis (n = 14), cirrhosis (n = 56), and healthy controls (n = 25) was solid-phase extracted using a method optimised for recovery of apelin, which was measured by ELISA. RESULTS Plasma apelin was significantly reduced in liver fibrosis (8.3 ± 1.2 pg/ml) and cirrhosis (6.5 ± 0.6 pg/ml) patients compared with controls (15.4 ± 2.0 pg/ml). There was no obvious relationship between apelin and BMP 9 or BMP10 previously measured in these patients. Within the cirrhotic group, there was no significant correlation between apelin levels and disease severity scores, age, sex, or treatment with β-blockers. CONCLUSIONS Apelin was significantly reduced in plasma of patients with both early (fibrosis) and late-stage (cirrhosis) liver disease. Fibrosis is more easily reversible and may represent a potential target for new therapeutic interventions. However, it remains unclear whether apelin signalling is detrimental in liver disease or is beneficial and therefore, whether an apelin antagonist or agonist have clinical use.
Collapse
Affiliation(s)
- Nicola E Owen
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Level 6, Centre for Clinical Investigation, Box 110, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Duuamene Nyimanu
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Level 6, Centre for Clinical Investigation, Box 110, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Rhoda E Kuc
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Level 6, Centre for Clinical Investigation, Box 110, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Paul D Upton
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Nicholas W Morrell
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Graeme J Alexander
- Institute for Liver and Digestive Health, Upper 3rd Floor, Division of Medicine, University College London, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK
| | - Janet J Maguire
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Level 6, Centre for Clinical Investigation, Box 110, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Anthony P Davenport
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Level 6, Centre for Clinical Investigation, Box 110, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
15
|
Carloni S, Crinelli R, Palma L, Álvarez FJ, Piomelli D, Duranti A, Balduini W, Alonso-Alconada D. The Synthetic Cannabinoid URB447 Reduces Brain Injury and the Associated White Matter Demyelination after Hypoxia-Ischemia in Neonatal Rats. ACS Chem Neurosci 2020; 11:1291-1299. [PMID: 32271539 PMCID: PMC7997380 DOI: 10.1021/acschemneuro.0c00047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
![]()
The number of functions controlled
by the endocannabinoid system
in health and disease continues growing over the years. In the brain,
these include the modulation of harmful events such as glutamate excitotoxicity,
oxidative stress, and inflammation, mainly regulated by activation/blockade
of CB1/CB2 cannabinoid receptors. In the present
work, we evaluated the capacity of the CB1 antagonist/CB2 agonist synthetic cannabinoid URB447 on reducing neurodegeneration
after brain injury. By using a model of hypoxia-ischemia (HI) in neonatal
rats, we found that URB447 strongly reduced brain injury when administered
before HI. A comparable effect was observed with the CB1 antagonist SR141716A, whereas the CB1 agonist WIN-55,212-2
reduced the effect of URB447. When administered 3 h after HI, which
is considered a clinically feasible therapeutic window to treat perinatal
brain injury in humans, URB447 reduced neurodegeneration and white
matter damage. Markers of astrogliosis and microglial activation also
appeared reduced. These results confirm the important role played
by the endocannabinoid system in the neurodegenerative process and
strongly encourage further research into the mechanisms of URB447-induced
neuroprotection.
Collapse
Affiliation(s)
- Silvia Carloni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Rita Crinelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Linda Palma
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Francisco J. Álvarez
- Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Bizkaia, Spain
| | - Daniele Piomelli
- Departments of Anatomy and Neurobiology, Pharmaceutical Sciences, and Biological Chemistry, University of California, Irvine, Irvine, California, United States
| | - Andrea Duranti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Walter Balduini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Daniel Alonso-Alconada
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| |
Collapse
|
16
|
Masoumi J, Jafarzadeh A, Khorramdelazad H, Abbasloui M, Abdolalizadeh J, Jamali N. Role of Apelin/APJ axis in cancer development and progression. Adv Med Sci 2020; 65:202-213. [PMID: 32087570 DOI: 10.1016/j.advms.2020.02.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/26/2019] [Accepted: 02/11/2020] [Indexed: 02/07/2023]
Abstract
Apelin is an endogenous peptide, which is expressed in a vast board of organs such as the brain, placenta, heart, lungs, kidneys, pancreas, testis, prostate and adipose tissues. The apelin receptor, called angiotensin-like-receptor 1 (APJ), is also expressed in the brain, spleen, placenta, heart, liver, intestine, prostate, thymus, testis, ovary, lungs, kidneys, stomach, and adipose tissue. The apelin/APJ axis is involved in a number of physiological and pathological processes. The apelin expression is increased in various kinds of cancer and the apelin/APJ axis plays a key role in the development of tumors through enhancing angiogenesis, metastasis, cell proliferation and also through the development of cancer stem cells and drug resistance. The apelin also stops the apoptosis of cancer cells. The apelin/APJ axis was considered in this review as an attractive therapeutic target for cancer treatment.
Collapse
|
17
|
Méndez-Sánchez N, Valencia-Rodríguez A, Coronel-Castillo C, Vera-Barajas A, Contreras-Carmona J, Ponciano-Rodríguez G, Zamora-Valdés D. The cellular pathways of liver fibrosis in non-alcoholic steatohepatitis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:400. [PMID: 32355844 PMCID: PMC7186641 DOI: 10.21037/atm.2020.02.184] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) is considered the advanced stage of non-alcoholic fatty liver disease (NAFLD). It is characterized by liver steatosis, inflammation and different degrees of fibrosis. Although the exact mechanisms by which fatty liver progresses to NASH are still not well understood, innate and adaptive immune responses seem to be essential key regulators in the establishment, progression, and chronicity of these disease. Diet-induced lipid overload of parenchymal and non-parenchymal liver cells is considered the first step for the development of fatty liver with the consequent organelle dysfunction, cellular stress and liver injury. These will generate the production of pro-inflammatory cytokines, chemokines and damage-associated molecular patterns (DAMPs) that will upregulate the activation of Kupffer cells (KCs) and monocyte-derived macrophages (MMs) favoring the polarization of the tolerogenic environment of the liver to an immunogenic phenotype with the resulting transdifferentiation of hepatic stellate cells (HSCs) into myofibroblasts developing fibrosis. In the long run, dendritic cells (DCs) will activate CD4+ T cells polarizing into the pro-inflammatory lymphocytes Th1 and Th17 worsening the liver damage and inflammation. Therefore, the objective of this review is to discuss in a systematic way the mechanisms known so far of the immune and non-proper immune liver cells in the development and progression of NASH.
Collapse
Affiliation(s)
- Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico.,Faculty of Medicine. National Autonomous University of Mexico, Mexico City, Mexico
| | | | | | | | | | | | | |
Collapse
|
18
|
Carvajal S, Perramón M, Casals G, Oró D, Ribera J, Morales-Ruiz M, Casals E, Casado P, Melgar-Lesmes P, Fernández-Varo G, Cutillas P, Puntes V, Jiménez W. Cerium Oxide Nanoparticles Protect against Oxidant Injury and Interfere with Oxidative Mediated Kinase Signaling in Human-Derived Hepatocytes. Int J Mol Sci 2019; 20:ijms20235959. [PMID: 31783479 PMCID: PMC6928882 DOI: 10.3390/ijms20235959] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/15/2022] Open
Abstract
Cerium oxide nanoparticles (CeO2NPs) possess powerful antioxidant properties, thus emerging as a potential therapeutic tool in non-alcoholic fatty liver disease (NAFLD) progression, which is characterized by a high presence of reactive oxygen species (ROS). The aim of this study was to elucidate whether CeO2NPs can prevent or attenuate oxidant injury in the hepatic human cell line HepG2 and to investigate the mechanisms involved in this phenomenon. The effect of CeO2NPs on cell viability and ROS scavenging was determined, the differential expression of pro-inflammatory and oxidative stress-related genes was analyzed, and a proteomic analysis was performed to assess the impact of CeO2NPs on cell phosphorylation in human hepatic cells under oxidative stress conditions. CeO2NPs did not modify HepG2 cell viability in basal conditions but reduced H2O2- and lipopolysaccharide (LPS)-induced cell death and prevented H2O2-induced overexpression of MPO, PTGS1 and iNOS. Phosphoproteomic analysis showed that CeO2NPs reverted the H2O2-mediated increase in the phosphorylation of peptides related to cellular proliferation, stress response, and gene transcription regulation, and interfered with H2O2 effects on mTOR, MAPK/ERK, CK2A1 and PKACA signaling pathways. In conclusion, CeO2NPs protect HepG2 cells from cell-induced oxidative damage, reducing ROS generation and inflammatory gene expression as well as regulation of kinase-driven cell survival pathways.
Collapse
Affiliation(s)
- Silvia Carvajal
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, IDIBAPS, CIBERehd, 08036 Barcelona, Spain; (S.C.); (M.P.); (D.O.); (J.R.); (M.M.-R.); (P.M.-L.); (G.F.-V.); (W.J.)
| | - Meritxell Perramón
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, IDIBAPS, CIBERehd, 08036 Barcelona, Spain; (S.C.); (M.P.); (D.O.); (J.R.); (M.M.-R.); (P.M.-L.); (G.F.-V.); (W.J.)
| | - Gregori Casals
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, IDIBAPS, CIBERehd, 08036 Barcelona, Spain; (S.C.); (M.P.); (D.O.); (J.R.); (M.M.-R.); (P.M.-L.); (G.F.-V.); (W.J.)
- Correspondence: ; Tel.: +34-932275400-2667
| | - Denise Oró
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, IDIBAPS, CIBERehd, 08036 Barcelona, Spain; (S.C.); (M.P.); (D.O.); (J.R.); (M.M.-R.); (P.M.-L.); (G.F.-V.); (W.J.)
| | - Jordi Ribera
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, IDIBAPS, CIBERehd, 08036 Barcelona, Spain; (S.C.); (M.P.); (D.O.); (J.R.); (M.M.-R.); (P.M.-L.); (G.F.-V.); (W.J.)
| | - Manuel Morales-Ruiz
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, IDIBAPS, CIBERehd, 08036 Barcelona, Spain; (S.C.); (M.P.); (D.O.); (J.R.); (M.M.-R.); (P.M.-L.); (G.F.-V.); (W.J.)
- Department of Biomedicine, University of Barcelona, 08036 Barcelona, Spain
| | - Eudald Casals
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China;
| | - Pedro Casado
- Cell Signalling and Proteomics Group, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (P.C.); (P.C.)
| | - Pedro Melgar-Lesmes
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, IDIBAPS, CIBERehd, 08036 Barcelona, Spain; (S.C.); (M.P.); (D.O.); (J.R.); (M.M.-R.); (P.M.-L.); (G.F.-V.); (W.J.)
- Department of Biomedicine, University of Barcelona, 08036 Barcelona, Spain
| | - Guillermo Fernández-Varo
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, IDIBAPS, CIBERehd, 08036 Barcelona, Spain; (S.C.); (M.P.); (D.O.); (J.R.); (M.M.-R.); (P.M.-L.); (G.F.-V.); (W.J.)
- Department of Biomedicine, University of Barcelona, 08036 Barcelona, Spain
| | - Pedro Cutillas
- Cell Signalling and Proteomics Group, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (P.C.); (P.C.)
| | - Victor Puntes
- Institut Català de Recerca i Estudis Avançats, (ICREA), 08010 Barcelona, Spain;
- Vall d’Hebron Insitute of Research (VHIR), 08035 Barcelona, Spain
- Institut Català de Nanociència i Nanotecnologia (ICN2), 08193 Bellaterra, Spain
| | - Wladimiro Jiménez
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, IDIBAPS, CIBERehd, 08036 Barcelona, Spain; (S.C.); (M.P.); (D.O.); (J.R.); (M.M.-R.); (P.M.-L.); (G.F.-V.); (W.J.)
- Department of Biomedicine, University of Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
19
|
Roles of the Hepatic Endocannabinoid and Apelin Systems in the Pathogenesis of Liver Fibrosis. Cells 2019; 8:cells8111311. [PMID: 31653030 PMCID: PMC6912778 DOI: 10.3390/cells8111311] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/17/2019] [Accepted: 10/23/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatic fibrosis is the consequence of an unresolved wound healing process in response to chronic liver injury and involves multiple cell types and molecular mechanisms. The hepatic endocannabinoid and apelin systems are two signalling pathways with a substantial role in the liver fibrosis pathophysiology-both are upregulated in patients with advanced liver disease. Endogenous cannabinoids are lipid-signalling molecules derived from arachidonic acid involved in the pathogenesis of cardiovascular dysfunction, portal hypertension, liver fibrosis, and other processes associated with hepatic disease through their interactions with the CB1 and CB2 receptors. Apelin is a peptide that participates in cardiovascular and renal functions, inflammation, angiogenesis, and hepatic fibrosis through its interaction with the APJ receptor. The endocannabinoid and apelin systems are two of the multiple cell-signalling pathways involved in the transformation of quiescent hepatic stellate cells into myofibroblast like cells, the main matrix-producing cells in liver fibrosis. The mechanisms underlying the control of hepatic stellate cell activity are coincident despite the marked dissimilarities between the endocannabinoid and apelin signalling pathways. This review discusses the current understanding of the molecular and cellular mechanisms by which the hepatic endocannabinoid and apelin systems play a significant role in the pathophysiology of liver fibrosis.
Collapse
|
20
|
Read C, Nyimanu D, Williams TL, Huggins DJ, Sulentic P, Macrae RGC, Yang P, Glen RC, Maguire JJ, Davenport AP. International Union of Basic and Clinical Pharmacology. CVII. Structure and Pharmacology of the Apelin Receptor with a Recommendation that Elabela/Toddler Is a Second Endogenous Peptide Ligand. Pharmacol Rev 2019; 71:467-502. [PMID: 31492821 PMCID: PMC6731456 DOI: 10.1124/pr.119.017533] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The predicted protein encoded by the APJ gene discovered in 1993 was originally classified as a class A G protein-coupled orphan receptor but was subsequently paired with a novel peptide ligand, apelin-36 in 1998. Substantial research identified a family of shorter peptides activating the apelin receptor, including apelin-17, apelin-13, and [Pyr1]apelin-13, with the latter peptide predominating in human plasma and cardiovascular system. A range of pharmacological tools have been developed, including radiolabeled ligands, analogs with improved plasma stability, peptides, and small molecules including biased agonists and antagonists, leading to the recommendation that the APJ gene be renamed APLNR and encode the apelin receptor protein. Recently, a second endogenous ligand has been identified and called Elabela/Toddler, a 54-amino acid peptide originally identified in the genomes of fish and humans but misclassified as noncoding. This precursor is also able to be cleaved to shorter sequences (32, 21, and 11 amino acids), and all are able to activate the apelin receptor and are blocked by apelin receptor antagonists. This review summarizes the pharmacology of these ligands and the apelin receptor, highlights the emerging physiologic and pathophysiological roles in a number of diseases, and recommends that Elabela/Toddler is a second endogenous peptide ligand of the apelin receptor protein.
Collapse
Affiliation(s)
- Cai Read
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Duuamene Nyimanu
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Thomas L Williams
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - David J Huggins
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Petra Sulentic
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Robyn G C Macrae
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Peiran Yang
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Robert C Glen
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Janet J Maguire
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Anthony P Davenport
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| |
Collapse
|
21
|
Carvajal S, Perramón M, Oró D, Casals E, Fernández-Varo G, Casals G, Parra M, González de la Presa B, Ribera J, Pastor Ó, Morales-Ruíz M, Puntes V, Jiménez W. Cerium oxide nanoparticles display antilipogenic effect in rats with non-alcoholic fatty liver disease. Sci Rep 2019; 9:12848. [PMID: 31492960 PMCID: PMC6731222 DOI: 10.1038/s41598-019-49262-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease worldwide, ranging from steatosis to non-alcoholic steatohepatitis (NASH). Recently, cerium oxide nanoparticles (CeO2NPs) have emerged as a new antioxidant agent with hepatoprotective properties in experimental liver disease. The aim of the current investigation was to elucidate whether CeO2NPs display beneficial effects in an experimental model of NAFLD.Therefore, fifteen Wistar rats were subjected to a methionine and choline deficient diet (MCDD) for 6 weeks and intravenously treated with CeO2NP or vehicle during the weeks three and four of the diet. The effect of CeO2NPs on serum biochemistry, hepatic steatosis, inflammation, fatty acid content and expression of reactive oxygen species (ROS) and lipid metabolism related genes was assessed. MCDD fed rats showed increased inflammation, enhanced hepatic lipid accumulation of both saturated and unsaturated fatty acids (FAs) and overexpression of genes related to fatty liver and ROS metabolism. Treatment with CeO2NPs was able to reduce the size and content of hepatocyte lipid droplets, the hepatic concentration of triglyceride- and cholesterol ester-derived FAs and the expression of several genes involved in cytokine, adipokine and chemokine signaling pathways. These findings suggest that CeO2NPs could be of beneficial value in NAFLD.
Collapse
Affiliation(s)
- Silvia Carvajal
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, IDIBAPS, CIBERehd, Barcelona, Spain
| | - Meritxell Perramón
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, IDIBAPS, CIBERehd, Barcelona, Spain
| | - Denise Oró
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, IDIBAPS, CIBERehd, Barcelona, Spain
| | - Eudald Casals
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Guillermo Fernández-Varo
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, IDIBAPS, CIBERehd, Barcelona, Spain.,Department of Biomedicine, University of Barcelona, Barcelona, Spain
| | - Gregori Casals
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, IDIBAPS, CIBERehd, Barcelona, Spain.,Working group for the biochemical assessment of hepatic disease-SEQCML, Barcelona, Spain
| | - Marina Parra
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, IDIBAPS, CIBERehd, Barcelona, Spain
| | | | - Jordi Ribera
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, IDIBAPS, CIBERehd, Barcelona, Spain
| | - Óscar Pastor
- Clinical Biochemistry Service, Hospital Universitario Ramón y Cajal-IRYCIS, Madrid, Spain
| | - Manuel Morales-Ruíz
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, IDIBAPS, CIBERehd, Barcelona, Spain.,Working group for the biochemical assessment of hepatic disease-SEQCML, Barcelona, Spain
| | - Víctor Puntes
- Institut Català de Recerca i Estudis Avançats, (ICREA), Barcelona, Spain.,Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain.,Institut Català de Nanociència i Nanotecnologia (ICN2), Bellaterra, Spain
| | - Wladimiro Jiménez
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, IDIBAPS, CIBERehd, Barcelona, Spain. .,Department of Biomedicine, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
22
|
Endocannabinoid System in Hepatic Glucose Metabolism, Fatty Liver Disease, and Cirrhosis. Int J Mol Sci 2019; 20:ijms20102516. [PMID: 31121839 PMCID: PMC6566399 DOI: 10.3390/ijms20102516] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/18/2019] [Accepted: 05/19/2019] [Indexed: 12/18/2022] Open
Abstract
There is growing evidence that glucose metabolism in the liver is in part under the control of the endocannabinoid system (ECS) which is also supported by its presence in this organ. The ECS consists of its cannabinoid receptors (CBRs) and enzymes that are responsible for endocannabinoid production and metabolism. ECS is known to be differentially influenced by the hepatic glucose metabolism and insulin resistance, e.g., cannabinoid receptor type 1(CB1) antagonist can improve the glucose tolerance and insulin resistance. Interestingly, our own study shows that expression patterns of CBRs are influenced by the light/dark cycle, which is of significant physiological and clinical interest. The ECS system is highly upregulated during chronic liver disease and a growing number of studies suggest a mechanistic and therapeutic impact of ECS on the development of liver fibrosis, especially putting its receptors into focus. An opposing effect of the CBRs was exerted via the CB1 or CB2 receptor stimulation. An activation of CB1 promoted fibrogenesis, while CB2 activation improved antifibrogenic responses. However, underlying mechanisms are not yet clear. In the context of liver diseases, the ECS is considered as a possible mediator, which seems to be involved in the synthesis of fibrotic tissue, increase of intrahepatic vascular resistance and subsequently development of portal hypertension. Portal hypertension is the main event that leads to complications of the disease. The main complication is the development of variceal bleeding and ascites, which have prognostic relevance for the patients. The present review summarizes the current understanding and impact of the ECS on glucose metabolism in the liver, in association with the development of liver cirrhosis and hemodynamics in cirrhosis and its complication, to give perspectives for development of new therapeutic strategies.
Collapse
|
23
|
Malinowska B, Toczek M, Pędzińska‐Betiuk A, Schlicker E. Cannabinoids in arterial, pulmonary and portal hypertension - mechanisms of action and potential therapeutic significance. Br J Pharmacol 2019; 176:1395-1411. [PMID: 29455452 PMCID: PMC6487561 DOI: 10.1111/bph.14168] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/24/2018] [Accepted: 02/05/2018] [Indexed: 12/11/2022] Open
Abstract
The endocannabinoid system is overactivated in arterial, pulmonary and portal hypertension. In this paper, we present limited clinical data concerning the role of cannabinoids in human hypertension including polymorphism of endocannabinoid system components. We underline differences between the acute cannabinoid administration and their potential hypotensive effect after chronic application in experimental hypertension. We discuss pleiotropic effects of cannabinoids on the cardiovascular system mediated via numerous neuronal and non‐neuronal mechanisms both in normotension and in hypertension. The final results are dependent on the model of hypertension, age, sex, the cannabinoid ligands used or the action via endocannabinoid metabolites. More experimental and clinical studies are needed to clarify the role of endocannabinoids in hypertension, not only in the search for new therapeutic strategies but also in the context of cardiovascular effects of cannabinoids and the steadily increasing legalization of cannabis use for recreational and medical purposes.Linked ArticlesThis article is part of a themed section on 8th European Workshop on Cannabinoid Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.10/issuetoc
Collapse
Affiliation(s)
- Barbara Malinowska
- Department of Experimental Physiology and PathophysiologyMedical University of BiałystokBiałystokPoland
| | - Marek Toczek
- Department of Experimental Physiology and PathophysiologyMedical University of BiałystokBiałystokPoland
| | - Anna Pędzińska‐Betiuk
- Department of Experimental Physiology and PathophysiologyMedical University of BiałystokBiałystokPoland
| | | |
Collapse
|
24
|
Gracia-Sancho J, Marrone G, Fernández-Iglesias A. Hepatic microcirculation and mechanisms of portal hypertension. Nat Rev Gastroenterol Hepatol 2019; 16:221-234. [PMID: 30568278 DOI: 10.1038/s41575-018-0097-3] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The liver microcirculatory milieu, mainly composed of liver sinusoidal endothelial cells (LSECs), hepatic stellate cells (HSCs) and hepatic macrophages, has an essential role in liver homeostasis, including in preserving hepatocyte function, regulating the vascular tone and controlling inflammation. Liver microcirculatory dysfunction is one of the key mechanisms that promotes the progression of chronic liver disease (also termed cirrhosis) and the development of its major clinical complication, portal hypertension. In the present Review, we describe the current knowledge of liver microcirculatory dysfunction in cirrhotic portal hypertension and appraise the preclinical models used to study the liver circulation. We also provide a comprehensive summary of the promising therapeutic options to target the liver microvasculature in cirrhosis.
Collapse
Affiliation(s)
- Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute, CIBEREHD, Barcelona, Spain. .,Hepatology, Department of Biomedical Research, Inselspital, Bern University, Bern, Switzerland.
| | - Giusi Marrone
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute, CIBEREHD, Barcelona, Spain
| | - Anabel Fernández-Iglesias
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute, CIBEREHD, Barcelona, Spain
| |
Collapse
|
25
|
Huang Z, Luo X, Liu M, Chen L. Function and regulation of apelin/APJ system in digestive physiology and pathology. J Cell Physiol 2018; 234:7796-7810. [PMID: 30390294 DOI: 10.1002/jcp.27720] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/16/2018] [Indexed: 12/11/2022]
Abstract
Apelin is an endogenous ligand of seven-transmembrane G-protein-coupled receptor APJ. Apelin and APJ are distributed in various tissues, including the heart, lung, liver, kidney, and gastrointestinal tract and even in tumor tissues. Studies show that apelin messenger RNA is widely expressed in gastrointestinal (GI) tissues, including stomach and small intestine, which is closely correlated with GI function. Thus, the apelin/APJ system may exert a broad range of activities in the digestive system. In this paper, we review the role of the apelin/APJ system in the digestive system in physiological conditions, such as gastric acid secretion, control of appetite and food intake, cell proliferation, cholecystokinin secretion and histamine release, gut-brain axis, GI motility, and others. In pathological conditions, the apelin/APJ system plays an important role in the healing process of stress gastric injury, the clinical features and prognosis of patients with gastric cancers, the reduction of inflammatory response to enteritis and pancreatitis, the mediation of liver fibrogenesis, the promotion of liver damage, the inhibition of liver regeneration, the contribution of splanchnic neovascularization in portal hypertension, the treatment of colon cancer, and GI oxidative damage. Overall, the apelin/APJ system plays diversified functions and regulatory roles in digestive physiology and pathology. Further exploration of the relationship between the apelin/APJ system and the digestive system will help to find new and effective drugs for treating and alleviating the pain of digestive diseases.
Collapse
Affiliation(s)
- Zhen Huang
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, China.,Department of Pharmacy, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Xuling Luo
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, China
| | - Meiqing Liu
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, China
| |
Collapse
|
26
|
Melgar-Lesmes P, Luquero A, Parra-Robert M, Mora A, Ribera J, Edelman ER, Jiménez W. Graphene-Dendrimer Nanostars for Targeted Macrophage Overexpression of Metalloproteinase 9 and Hepatic Fibrosis Precision Therapy. NANO LETTERS 2018; 18:5839-5845. [PMID: 30096241 PMCID: PMC6377857 DOI: 10.1021/acs.nanolett.8b02498] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Fibrosis contributes to ∼45% of all deaths in industrialized nations, but no direct antifibrotic therapeutic interventions exist to date. Graphene-based nanomaterials exhibit excellent versatility in electronics, and emerging trends exploit their properties for biomedical applications, especially for drug and gene delivery. We designed constructs of graphene nanostars linked to PAMAM-G5 dendrimer for the selective targeting and delivery of a plasmid expressing the collagenase metalloproteinase 9 under the CD11b promoter into inflammatory macrophages in cirrhotic livers. Graphene nanostars preferentially accumulated in inflammatory macrophages M1 in less than 3 h in a manner unaffected by covalent linkage to dendrimers. Dendrimer-graphene nanostars efficiently delivered the plasmid encoding for metalloproteinase 9 into macrophages, allowing the synthesis and secretion of the metalloproteinase to digest adjacent collagen fibers. In turn, metalloproteinase 9 overexpression promoted the macrophage switch from inflammatory M1 to pro-regenerative M2 in 3 days. This targeted gene therapy reduced selectively and locally the presence of collagen fibers in fibrotic tracts where inflammatory macrophages accumulated in cirrhotic mice without affecting the activation state of hepatic stellate cells. Overall, this treatment significantly reduced hepatic injury and improved liver restoration in mice with liver cirrhosis treated for 10 days. Graphene-dendrimer nanostars targeted the macrophage overexpression of metalloproteinase 9, selectively reducing hepatic fibrosis, and might be a good treatment for diseases associated with fibrosis and inflammatory macrophage accumulation.
Collapse
Affiliation(s)
- Pedro Melgar-Lesmes
- Massachusetts Institute of Technology, Institute for Medical Engineering and Science, 77 Massachusetts Ave, Cambridge, MA 02139, USA
- Department of Biomedicine, School of Medicine, University of Barcelona, 143 Casanova, 08036 Barcelona, Spain
- Fundació Clínic per a la Recerca Biomèdica, Hospital Clínic Universitari, IDIBAPS, 149 Rosselló, 08036 Barcelona, Spain
| | - Aureli Luquero
- Department of Biomedicine, School of Medicine, University of Barcelona, 143 Casanova, 08036 Barcelona, Spain
| | - Marina Parra-Robert
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, IDIBAPS, CIBERehd, 170 Villarroel, 08036 Barcelona, Spain
| | - Adriana Mora
- Department of Biomedicine, School of Medicine, University of Barcelona, 143 Casanova, 08036 Barcelona, Spain
| | - Jordi Ribera
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, IDIBAPS, CIBERehd, 170 Villarroel, 08036 Barcelona, Spain
| | - Elazer R. Edelman
- Massachusetts Institute of Technology, Institute for Medical Engineering and Science, 77 Massachusetts Ave, Cambridge, MA 02139, USA
- Cardiovascular Division, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115, USA
| | - Wladimiro Jiménez
- Department of Biomedicine, School of Medicine, University of Barcelona, 143 Casanova, 08036 Barcelona, Spain
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, IDIBAPS, CIBERehd, 170 Villarroel, 08036 Barcelona, Spain
| |
Collapse
|
27
|
Sierra S, Luquin N, Navarro-Otano J. The endocannabinoid system in cardiovascular function: novel insights and clinical implications. Clin Auton Res 2017; 28:35-52. [PMID: 29222605 DOI: 10.1007/s10286-017-0488-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 11/28/2017] [Indexed: 12/18/2022]
Abstract
RATIONALE Cardiovascular disease is now recognized as the number one cause of death in the world, and the size of the population at risk continues to increase rapidly. The dysregulation of the endocannabinoid (eCB) system plays a central role in a wide variety of conditions including cardiovascular disorders. Cannabinoid receptors, their endogenous ligands, as well as enzymes conferring their synthesis and degradation, exhibit overlapping distributions in the cardiovascular system. Furthermore, the pharmacological manipulation of the eCB system has effects on blood pressure, cardiac contractility, and endothelial vasomotor control. Growing evidence from animal studies supports the significance of the eCB system in cardiovascular disorders. OBJECTIVE To summarize the literature surrounding the eCB system in cardiovascular function and disease and the new compounds that may potentially extend the range of available interventions. RESULTS Drugs targeting CB1R, CB2R, TRPV1 and PPARs are proven effective in animal models mimicking cardiovascular disorders such as hypertension, atherosclerosis and myocardial infarction. Despite the setback of two clinical trials that exhibited unexpected harmful side-effects, preclinical studies are accelerating the development of more selective drugs with promising results devoid of adverse effects. CONCLUSION Over the last years, increasing evidence from basic and clinical research supports the role of the eCB system in cardiovascular function. Whereas new discoveries are paving the way for the identification of novel drugs and therapeutic targets, the close cooperation of researchers, clinicians and pharmaceutical companies is needed to achieve successful outcomes.
Collapse
Affiliation(s)
- Salvador Sierra
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Physiology and Biophysics, Molecular Medicine Research Building, Virginia Commonwealth University, 1220 East Broad Street, Richmond, VA, 23298, USA.
| | - Natasha Luquin
- Department of Medical Genomics, Royal Prince Alfred Hospital, Sydney, Australia
| | - Judith Navarro-Otano
- Neurology Service, Electromyography, Motor Control and Neuropathic Pain Unit, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| |
Collapse
|
28
|
Lv SY, Cui B, Chen WD, Wang YD. Apelin/APJ system: A key therapeutic target for liver disease. Oncotarget 2017; 8:112145-112151. [PMID: 29340118 PMCID: PMC5762386 DOI: 10.18632/oncotarget.22841] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 11/11/2017] [Indexed: 12/12/2022] Open
Abstract
Apelin, a new bioactive peptide, was identified as an endogenous ligand for APJ (Angiotensin II receptor-like 1). Apelin and its receptor have an abundant distribution in central nervous system and peripheral tissues, including liver. Apelin/APJ has diverse physiological and pathological effects, including regulation of cardiovascular function, angiogenesis, fluid homeostasis and so on. Apelin/APJ system may act as a novel potential therapeutic target for liver disease. In this article, we review the role of apelin/APJ system in liver fibrosis, hepatitis, hepatic cirrhosis, liver injury and metabolic liver disease.
Collapse
Affiliation(s)
- Shuang-Yu Lv
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan University, Kaifeng, Henan, P. R. China
| | - Binbin Cui
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan University, Kaifeng, Henan, P. R. China
| | - Wei-Dong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan University, Kaifeng, Henan, P. R. China.,Key Laboratory of Molecular Pathology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, Inner Mongolia, P. R. China
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| |
Collapse
|
29
|
Apelin protects against liver X receptor-mediated steatosis through AMPK and PPARα in human and mouse hepatocytes. Cell Signal 2017; 39:84-94. [DOI: 10.1016/j.cellsig.2017.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/04/2017] [Accepted: 08/14/2017] [Indexed: 12/19/2022]
|
30
|
Schwabl P, Laleman W. Novel treatment options for portal hypertension. Gastroenterol Rep (Oxf) 2017; 5:90-103. [PMID: 28533907 PMCID: PMC5421460 DOI: 10.1093/gastro/gox011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 03/12/2017] [Indexed: 12/13/2022] Open
Abstract
Portal hypertension is most frequently associated with cirrhosis and is a major driver for associated complications, such as variceal bleeding, ascites or hepatic encephalopathy. As such, clinically significant portal hypertension forms the prelude to decompensation and impacts significantly on the prognosis of patients with liver cirrhosis. At present, non-selective β-blockers, vasopressin analogues and somatostatin analogues are the mainstay of treatment but these strategies are far from satisfactory and only target splanchnic hyperemia. In contrast, safe and reliable strategies to reduce the increased intrahepatic resistance in cirrhotic patients still represent a pending issue. In recent years, several preclinical and clinical trials have focused on this latter component and other therapeutic avenues. In this review, we highlight novel data in this context and address potentially interesting therapeutic options for the future.
Collapse
Affiliation(s)
- Philipp Schwabl
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Wim Laleman
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| |
Collapse
|
31
|
Lv X, Kong J, Chen WD, Wang YD. The Role of the Apelin/APJ System in the Regulation of Liver Disease. Front Pharmacol 2017; 8:221. [PMID: 28484393 PMCID: PMC5401884 DOI: 10.3389/fphar.2017.00221] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/10/2017] [Indexed: 12/29/2022] Open
Abstract
Apelin is an endogenous peptide that is a ligand for the APJ receptor (angiotensin II receptor like-1, AT-1). The apelin/APJ system is distributed in diverse periphery organ tissues. It has been shown that the apelin/APJ system plays various roles in physiology and pathophysiology of many organs. It regulates cardiovascular development or cardiac disease, glycometabolism and fat metabolism as well as metabolic disease. The apelin/APJ system participates in various cell activities such as proliferation, migration, apoptosis or inflammation. However, apelin/APJ function in the liver is still under investigation. In the liver, the apelin-APJ system could play an inhibitory role in liver regeneration and promote Fas-induced apoptosis. It may participate in the formation of hepatic fibrosis or cirrhosis, and even cancer. In this review, we summarize the role of the apelin/APJ system in liver disease.
Collapse
Affiliation(s)
- Xinrui Lv
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan UniversityKaifeng, China
| | - Jing Kong
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan UniversityKaifeng, China
| | - Wei-Dong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan UniversityKaifeng, China.,Key Laboratory of Molecular Pathology, School of Basic Medical Science, Inner Mongolia Medical UniversityHohhot, China
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical TechnologyBeijing, China
| |
Collapse
|
32
|
Cinar R, Gochuico BR, Iyer MR, Jourdan T, Yokoyama T, Park JK, Coffey NJ, Pri-Chen H, Szanda G, Liu Z, Mackie K, Gahl WA, Kunos G. Cannabinoid CB1 receptor overactivity contributes to the pathogenesis of idiopathic pulmonary fibrosis. JCI Insight 2017; 2:92281. [PMID: 28422760 DOI: 10.1172/jci.insight.92281] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/07/2017] [Indexed: 12/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a life-threatening disease without effective treatment, highlighting the need for identifying new targets and treatment modalities. The pathogenesis of IPF is complex, and engaging multiple targets simultaneously might improve therapeutic efficacy. To assess the role of the endocannabinoid/cannabinoid receptor 1 (endocannabinoid/CB1R) system in IPF and its interaction with inducible nitric oxide synthase (iNOS) as dual therapeutic targets, we analyzed lung fibrosis and the status of the endocannabinoid/CB1R system and iNOS in mice with bleomycin-induced pulmonary fibrosis (PF) and in lung tissue and bronchoalveolar lavage fluid (BALF) from patients with IPF, as well as controls. In addition, we investigated the antifibrotic efficacy in the mouse PF model of an orally bioavailable and peripherally restricted CB1R/iNOS hybrid inhibitor. We report that increased activity of the endocannabinoid/CB1R system parallels disease progression in the lungs of patients with idiopathic PF and in mice with bleomycin-induced PF and is associated with increased tissue levels of interferon regulatory factor-5. Furthermore, we demonstrate that simultaneous engagement of the secondary target iNOS by the hybrid CB1R/iNOS inhibitor has greater antifibrotic efficacy than inhibition of CB1R alone. This hybrid antagonist also arrests the progression of established fibrosis in mice, thus making it a viable candidate for future translational studies in IPF.
Collapse
Affiliation(s)
- Resat Cinar
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), and
| | - Bernadette R Gochuico
- Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Malliga R Iyer
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), and
| | - Tony Jourdan
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), and
| | - Tadafumi Yokoyama
- Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Joshua K Park
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), and
| | - Nathan J Coffey
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), and
| | - Hadass Pri-Chen
- Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Gergő Szanda
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), and
| | - Ziyi Liu
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), and
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA
| | - William A Gahl
- Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), and
| |
Collapse
|
33
|
Apelin/APJ system: A novel promising therapy target for pathological angiogenesis. Clin Chim Acta 2016; 466:78-84. [PMID: 28025030 DOI: 10.1016/j.cca.2016.12.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 12/19/2016] [Accepted: 12/22/2016] [Indexed: 12/21/2022]
Abstract
Apelin is the endogenous ligand of the G protein-coupled receptor APJ. Both Apelin and APJ receptor are widely distributed in various tissues such as heart, brain, limbs, retina and liver. Recent research indicates that the Apelin/APJ system plays an important role in pathological angiogenesis which is a progress of new blood branches developing from preexisting vessels via sprouting. In this paper, we review the important role of the Apelin/APJ system in pathological angiogenesis. The Apelin/APJ system promotes angiogenesis in myocardial infarction, ischemic stroke, critical limb ischemia, tumor, retinal angiogenesis diseases, cirrhosis, obesity, diabetes and other related diseases. Furthermore, we illustrate the detailed mechanism of pathological angiogenesis induced by the Apelin/APJ system. In conclusion, the Apelin/APJ system would be a promising therapeutic target for angiogenesis-related diseases.
Collapse
|
34
|
Vaia M, Petrosino S, De Filippis D, Negro L, Guarino A, Carnuccio R, Di Marzo V, Iuvone T. Palmitoylethanolamide reduces inflammation and itch in a mouse model of contact allergic dermatitis. Eur J Pharmacol 2016; 791:669-674. [PMID: 27720681 DOI: 10.1016/j.ejphar.2016.10.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 10/01/2016] [Accepted: 10/04/2016] [Indexed: 12/25/2022]
Abstract
In mice, 2,4-dinitrofluorobenzene (DNFB) induces contact allergic dermatitis (CAD), which, in a late phase, is characterized by mast cell (MC) infiltration and angiogenesis. Palmitoylethanolamide (PEA), an endogenous anti-inflammatory molecule, acts by down-modulating MCs following activation of the cannabinoid CB2 receptor and peroxisome proliferator-activated receptor-α (PPAR-α). We have previously reported the anti-inflammatory effect of PEA in the early stage of CAD. Here, we examined whether PEA reduces the features of the late stage of CAD including MC activation, angiogenesis and itching. After sensitization to DNFB, female C57BL/6J mice underwent to three DNFB challenges at days 5, 12 and 19 and treatments were given at each challenge and for two more days. CAD was expressed as Δ increase in ear thickness between challenged and un-challenged mice. PEA (5mg/kg/i.p.) reduced: i) the DNFB-induced Δ increase; ii) the number of MCs per tissue area; iii) the expression of VEGF and its receptor Flk-1. These effects were reversed by co-administration of AM630 (1mg/kg/i.p.), a CB2 antagonist, but not GW6471 (1mg/kg/i.p.), a PPAR-α antagonist. Finally, PEA reduced the number of ear scratchings 48h after DNFB challenge and this effect was reversed by both CB2 and PPAR-α antagonists, suggesting the involvement of both receptors. PEA, by reducing the features of late stage CAD in mice, may be beneficial in this pathological condition.
Collapse
Affiliation(s)
- Massimo Vaia
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Stefania Petrosino
- Istituto di Chimica Biomolecolare (ICB), Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy; Endocannabinoid Research Group, Italy; Epitech Group S.p.A., Via Luigi Einaudi 13, 35030 Saccolongo, PD, Italy
| | - Daniele De Filippis
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Luana Negro
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Andrea Guarino
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Rosa Carnuccio
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Vincenzo Di Marzo
- Istituto di Chimica Biomolecolare (ICB), Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy; Endocannabinoid Research Group, Italy.
| | - Teresa Iuvone
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy; Endocannabinoid Research Group, Italy
| |
Collapse
|
35
|
Narayanan S, Maitra R, Deschamps JR, Bortoff K, Thomas JB, Zhang Y, Warner K, Vasukuttan V, Decker A, Runyon SP. Discovery of a novel small molecule agonist scaffold for the APJ receptor. Bioorg Med Chem 2016; 24:3758-70. [PMID: 27369451 DOI: 10.1016/j.bmc.2016.06.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 11/30/2022]
Abstract
The apelinergic system includes a series of endogenous peptides apelin, ELABELA/TODDLER and their 7-transmembrane G-protein coupled apelin receptor (APJ, AGTRL-1, APLNR). The APJ receptor is an attractive therapeutic target because of its involvement in cardiovascular diseases and potentially other disorders including liver fibrosis, obesity, diabetes, and neuroprotection. To date, pharmacological characterization of the APJ receptor has been limited due to the lack of small molecule functional agonists or antagonists. Through focused screening we identified a drug-like small molecule agonist hit 1 with a functional EC50 value of 21.5±5μM and binding affinity (Ki) of 5.2±0.5μM. Initial structure-activity studies afforded compound 22 having a 27-fold enhancement in potency and the first sub-micromolar full agonist with an EC50 value of 800±0.1nM and Ki of 1.3±0.3μM. Preliminary SAR, synthetic methodology, and in vitro pharmacological characterization indicate this scaffold will serve as a favorable starting point for further refinement of APJ potency and selectivity.
Collapse
Affiliation(s)
- Sanju Narayanan
- Center for Drug Discovery, RTI International, Research Triangle Park, NC 27709, United States
| | - Rangan Maitra
- Center for Drug Discovery, RTI International, Research Triangle Park, NC 27709, United States
| | - Jeffery R Deschamps
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Code 6930, 4555 Overlook Avenue SW, Washington, DC 20375, United States
| | - Katherine Bortoff
- Center for Drug Discovery, RTI International, Research Triangle Park, NC 27709, United States
| | - James B Thomas
- Center for Drug Discovery, RTI International, Research Triangle Park, NC 27709, United States
| | - Yanyan Zhang
- Center for Drug Discovery, RTI International, Research Triangle Park, NC 27709, United States
| | - Keith Warner
- Center for Drug Discovery, RTI International, Research Triangle Park, NC 27709, United States
| | - Vineetha Vasukuttan
- Center for Drug Discovery, RTI International, Research Triangle Park, NC 27709, United States
| | - Ann Decker
- Center for Drug Discovery, RTI International, Research Triangle Park, NC 27709, United States
| | - Scott P Runyon
- Center for Drug Discovery, RTI International, Research Triangle Park, NC 27709, United States.
| |
Collapse
|
36
|
Huang S, Chen L, Lu L, Li L. The apelin-APJ axis: A novel potential therapeutic target for organ fibrosis. Clin Chim Acta 2016; 456:81-88. [PMID: 26944568 DOI: 10.1016/j.cca.2016.02.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 02/25/2016] [Accepted: 02/28/2016] [Indexed: 12/16/2022]
Abstract
Apelin, an endogenous ligand of the G-protein-coupled receptor APJ, is expressed in a diverse number of organs. The apelin-APJ axis helps to control the processes of pathological and physiological fibrosis, including renal fibrosis, cardiac fibrosis, liver fibrosis and pulmonary fibrosis. However, the role of apelin-APJ in organ fibrosis remains controversial due to conflicting study results. The apelin-APJ axis is a detrimental mechanism which promotes liver fibrosis mainly via up-regulation the expression of collagen-II and platelet-derived growth factor receptor β (PDGFRβ). On the contrary, the apelin-APJ axis is beneficial for renal fibrosis, cardiac fibrosis and pulmonary fibrosis. The apelin-APJ axis alleviates renal fibrosis by restraining the expression of transforming growth factor-β1 (TGF-β1). In addition, the apelin-APJ axis attenuates cardiac fibrosis through multiple pathways. Furthermore, the apelin-APJ axis has beneficial effects on experimental bronchopulmonary dysplasia (BPD) and acute respiratory distress syndrome (ARDS) which suggest the apelin-APJ axis potentially alleviates pulmonary fibrosis. In this article, we review the controversies associated with apelin-APJ in organ fibrosis and introduce the drugs that target apelin-APJ. We conclude that future studies should place more emphasis on the relationship among apelin isoforms, APJ receptor subtypes and organ fibrosis. The apelin-APJ axis will be a potential therapeutic target and those drugs targeted for apelin-APJ may constitute a novel therapeutic strategy for renal fibrosis, cardiac fibrosis, liver fibrosis and pulmonary fibrosis.
Collapse
Affiliation(s)
- Shifang Huang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang 421001, China
| | - Linxi Chen
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang 421001, China
| | - Liqun Lu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang 421001, China
| | - Lanfang Li
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang 421001, China.
| |
Collapse
|
37
|
Fernández-Varo G, Oró D, Cable EE, Reichenbach V, Carvajal S, de la Presa BG, Wiśniewski K, Ginés P, Harris G, Jiménez W. Vasopressin 1a receptor partial agonism increases sodium excretion and reduces portal hypertension and ascites in cirrhotic rats. Hepatology 2016; 63:207-16. [PMID: 26403564 DOI: 10.1002/hep.28250] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 09/20/2015] [Indexed: 12/30/2022]
Abstract
UNLABELLED Patients and rats with cirrhosis and ascites have portal hypertension and circulatory dysfunction. Synthetic arginine vasopressin (AVP) receptor agonists able to induce systemic and mesenteric vasoconstriction have shown their usefulness in reducing portal pressure (PP) in this condition. We assessed the potential therapeutic value of a new V1 a -AVP receptor partial agonist with a preferential splanchnic vasoconstrictor effect (FE 204038) in rats with cirrhosis and ascites. The hemodynamic effects of cumulative intravenous doses of FE 204038, terlipressin, or vehicle were investigated. Mean arterial pressure and PP were continuously recorded and cardiac output and systemic vascular resistance (SVR) assessed at 30-minute intervals for 90 minutes. Urine volume, urine osmolality, and urinary excretion of sodium and creatinine were measured in basal conditions and following twice-daily subcutaneous doses of FE 204038 or vehicle. PP, mean arterial pressure, cardiac output, SVR, and ascites volume were also measured after 6 days. The expression of an array of vasoactive genes was assessed in the thoracic aorta and the mesenteric circulation of control rats and rats with cirrhosis and ascites. FE 204038 dose-dependently decreased PP, did not modify mean arterial pressure, and increased SVR. The effect of the V1a -AVP receptor partial agonist on PP was associated with an improvement in urine volume and urinary excretion of sodium during the first day of treatment. SVR was higher and cardiac output and ascites volume were lower in rats with cirrhosis and ascites treated with FE 204038. V1a -AVP receptor expression in rats with cirrhosis and ascites was markedly enhanced in the mesenteric circulation compared to the thoracic aorta. CONCLUSION FE 204038 increases sodium excretion and reduces portal hypertension and ascites in experimental cirrhosis. V1a -AVP receptor partial agonism could be a useful pharmacological treatment in decompensated patients with cirrhosis.
Collapse
Affiliation(s)
- Guillermo Fernández-Varo
- Biochemistry and Molecular Genetics Service, Hospital Clínic i Provincial de Barcelona, IDIBAPS, CIBERehd, University of Barcelona, Barcelona, Spain.,Department Ciencies Fisiologiques I, University of Barcelona, Barcelona, Spain
| | - Denise Oró
- Biochemistry and Molecular Genetics Service, Hospital Clínic i Provincial de Barcelona, IDIBAPS, CIBERehd, University of Barcelona, Barcelona, Spain
| | | | - Vedrana Reichenbach
- Biochemistry and Molecular Genetics Service, Hospital Clínic i Provincial de Barcelona, IDIBAPS, CIBERehd, University of Barcelona, Barcelona, Spain
| | - Silvia Carvajal
- Biochemistry and Molecular Genetics Service, Hospital Clínic i Provincial de Barcelona, IDIBAPS, CIBERehd, University of Barcelona, Barcelona, Spain
| | - Bernardino González de la Presa
- Biochemistry and Molecular Genetics Service, Hospital Clínic i Provincial de Barcelona, IDIBAPS, CIBERehd, University of Barcelona, Barcelona, Spain
| | | | - Pere Ginés
- Liver Unit, Hospital Clínic i Provincial de Barcelona, IDIBAPS, CIBERehd, University of Barcelona, Barcelona, Spain
| | | | - Wladimiro Jiménez
- Biochemistry and Molecular Genetics Service, Hospital Clínic i Provincial de Barcelona, IDIBAPS, CIBERehd, University of Barcelona, Barcelona, Spain.,Department Ciencies Fisiologiques I, University of Barcelona, Barcelona, Spain
| |
Collapse
|
38
|
Bronova I, Smith B, Aydogan B, Weichselbaum RR, Vemuri K, Erdelyi K, Makriyannis A, Pacher P, Berdyshev EV. Protection from Radiation-Induced Pulmonary Fibrosis by Peripheral Targeting of Cannabinoid Receptor-1. Am J Respir Cell Mol Biol 2015; 53:555-62. [PMID: 26426981 DOI: 10.1165/rcmb.2014-0331oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Radiation-induced pulmonary fibrosis (RIF) is a severe complication of thoracic radiotherapy that limits its dose, intensity, and duration. The contribution of the endocannabinoid signaling system in pulmonary fibrogenesis is not known. Using a well-established mouse model of RIF, we assessed the involvement of cannabinoid receptor-1 (CB1) in the onset and progression of pulmonary fibrosis. Female C57BL/6 mice and CB1 knockout mice generated on C57BL/6 background received 20 Gy (2 Gy/min) single-dose thoracic irradiation that resulted in pulmonary fibrosis and animal death within 15 to 18 weeks. Some C57BL/6 animals received the CB1 peripherally restricted antagonist AM6545 at 1 mg/kg intraperitoneally three times per week. Animal survival and parameters of pulmonary inflammation and fibrosis were evaluated. Thoracic irradiation (20 Gy) was associated with marked pulmonary inflammation and fibrosis in mice and high mortality within 15 to 18 weeks after exposure. Genetic deletion or pharmacological inhibition of CB1 receptors with a peripheral CB1 antagonist AM6545 markedly attenuated or delayed the lung inflammation and fibrosis and increased animal survival. Our results show that CB1 signaling plays a key pathological role in the development of radiation-induced pulmonary inflammation and fibrosis, and peripherally restricted CB1 antagonists may represent a novel therapeutic approach against this devastating complication of radiotherapy/irradiation.
Collapse
Affiliation(s)
- Irina Bronova
- 1 Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, and
| | | | | | | | | | - Katalin Erdelyi
- 5 Laboratory of Physiological Studies, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland; and
| | - Alex Makriyannis
- 6 Center for Drug Discovery, Departments of Pharmaceutical Sciences and Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts
| | | | - Evgeny V Berdyshev
- 1 Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, and
| |
Collapse
|
39
|
Bocca C, Novo E, Miglietta A, Parola M. Angiogenesis and Fibrogenesis in Chronic Liver Diseases. Cell Mol Gastroenterol Hepatol 2015; 1:477-488. [PMID: 28210697 PMCID: PMC5301407 DOI: 10.1016/j.jcmgh.2015.06.011] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 06/02/2015] [Indexed: 12/12/2022]
Abstract
Pathologic angiogenesis appears to be intrinsically associated with the fibrogenic progression of chronic liver diseases, which eventually leads to the development of cirrhosis and related complications, including hepatocellular carcinoma. Several laboratories have suggested that this association is relevant for chronic liver disease progression, with angiogenesis proposed to sustain fibrogenesis. This minireview offers a synthesis of relevant findings and opinions that have emerged in the last few years relating liver angiogenesis to fibrogenesis. We discuss liver angiogenesis in normal and pathophysiologic conditions with a focus on the role of hypoxia and hypoxia-inducible factors and assess the evidence supporting a clear relationship between angiogenesis and fibrogenesis. A section is dedicated to the critical interactions between liver sinusoidal endothelial cells and either quiescent hepatic stellate cells or myofibroblast-like stellate cells. Finally, we introduce the unusual, dual (profibrogenic and proangiogenic) role of hepatic myofibroblasts and emerging evidence supporting a role for specific mediators like vasohibin and microparticles and microvesicles.
Collapse
Key Words
- ANGPTL3, angiopoietin-like-3 peptide
- Akt, protein kinase B
- Ang-1, angiopoietin-1
- CCL2, chemokine ligand 2
- CCR, chemokine receptor
- CLD, chronic liver disease
- ET-1, endothelin 1
- HCC, hepatocellular carcinoma
- HIF, hypoxia-inducible factor
- HSC, hepatic stellate cell
- HSC/MFs, myofibroblast-like cells from activated hepatic stellate cells
- Hh, Hedgehog
- Hypoxia
- LSEC, liver sinusoidal endothelial cell
- Liver Angiogenesis
- Liver Fibrogenesis
- MF, myofibroblast
- MP, microparticle
- Myofibroblasts
- NAFLD, nonalcoholic fatty liver disease
- NASH, nonalcoholic steatohepatitis
- NO, nitric oxide
- PDGF, platelet-derived growth factor
- ROS, reactive oxygen species
- VEGF, vascular endothelial growth factor
- VEGF-R2, vascular endothelial growth factor receptor type 2
- eNOS, endothelial nitric oxide synthase
- α-SMA, α-smooth muscle actin
Collapse
Affiliation(s)
| | | | | | - Maurizio Parola
- Unit of Experimental Medicine and Clinical Pathology, Department of Clinical and Biological Sciences, School of Medicine, University of Torino, Torino, Italy
| |
Collapse
|
40
|
Baron EP. Comprehensive Review of Medicinal Marijuana, Cannabinoids, and Therapeutic Implications in Medicine and Headache: What a Long Strange Trip It's Been …. Headache 2015; 55:885-916. [PMID: 26015168 DOI: 10.1111/head.12570] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND The use of cannabis, or marijuana, for medicinal purposes is deeply rooted though history, dating back to ancient times. It once held a prominent position in the history of medicine, recommended by many eminent physicians for numerous diseases, particularly headache and migraine. Through the decades, this plant has taken a fascinating journey from a legal and frequently prescribed status to illegal, driven by political and social factors rather than by science. However, with an abundance of growing support for its multitude of medicinal uses, the misguided stigma of cannabis is fading, and there has been a dramatic push for legalizing medicinal cannabis and research. Almost half of the United States has now legalized medicinal cannabis, several states have legalized recreational use, and others have legalized cannabidiol-only use, which is one of many therapeutic cannabinoids extracted from cannabis. Physicians need to be educated on the history, pharmacology, clinical indications, and proper clinical use of cannabis, as patients will inevitably inquire about it for many diseases, including chronic pain and headache disorders for which there is some intriguing supportive evidence. OBJECTIVE To review the history of medicinal cannabis use, discuss the pharmacology and physiology of the endocannabinoid system and cannabis-derived cannabinoids, perform a comprehensive literature review of the clinical uses of medicinal cannabis and cannabinoids with a focus on migraine and other headache disorders, and outline general clinical practice guidelines. CONCLUSION The literature suggests that the medicinal use of cannabis may have a therapeutic role for a multitude of diseases, particularly chronic pain disorders including headache. Supporting literature suggests a role for medicinal cannabis and cannabinoids in several types of headache disorders including migraine and cluster headache, although it is primarily limited to case based, anecdotal, or laboratory-based scientific research. Cannabis contains an extensive number of pharmacological and biochemical compounds, of which only a minority are understood, so many potential therapeutic uses likely remain undiscovered. Cannabinoids appear to modulate and interact at many pathways inherent to migraine, triptan mechanisms ofaction, and opiate pathways, suggesting potential synergistic or similar benefits. Modulation of the endocannabinoid system through agonism or antagonism of its receptors, targeting its metabolic pathways, or combining cannabinoids with other analgesics for synergistic effects, may provide the foundation for many new classes of medications. Despite the limited evidence and research suggesting a role for cannabis and cannabinoids in some headache disorders, randomized clinical trials are lacking and necessary for confirmation and further evaluation.
Collapse
Affiliation(s)
- Eric P Baron
- Department of Neurology, Headache Center, Cleveland Clinic Neurological Institute, Cleveland, OH, USA
| |
Collapse
|
41
|
Yoshiya S, Shirabe K, Imai D, Toshima T, Yamashita YI, Ikegami T, Okano S, Yoshizumi T, Kawanaka H, Maehara Y. Blockade of the apelin-APJ system promotes mouse liver regeneration by activating Kupffer cells after partial hepatectomy. J Gastroenterol 2015; 50:573-82. [PMID: 25148722 DOI: 10.1007/s00535-014-0992-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 08/04/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND Liver regeneration after massive hepatectomy or living donor liver transplantation is critical. The apelin-APJ system is involved in the regulation of cardiovascular function, inflammation, fluid homeostasis, the adipo-insular axis, and angiogenesis, but its function in liver regeneration remains unclear. METHODS We investigated the impact of pharmacologic blockade of the apelin-APJ system, using the specific APJ antagonist F13A on liver regeneration after hepatectomy in mice. RESULTS F13A-treated mice had significantly higher serum concentrations of tumor necrosis factor (TNF)-α and interleukin (IL)-6 than control mice, due to F13A-promoted activation of Kupffer cells. Compared with untreated mice, F13A enhanced the signal transducer and activator of transcription 3 and mitogen-activated protein kinase pathways, stimulated cell-cycle progression, and promoted hepatocyte proliferation and liver regeneration without inducing apoptosis or inflammation in regenerating livers. In vitro, Kupffer cells expressed APJ and were activated directly by F13A treatment, releasing TNF-α and IL-6. Moreover, F13A-treated mice had a higher survival rate than untreated mice in the extended hepatectomy model. CONCLUSIONS F13A treatment promotes early phase liver regeneration after hepatectomy by promoting the activation of Kupffer cells and increasing serum levels of TNF-α and IL-6. F13A treatment may become a therapeutic option to facilitate efficient liver regeneration after liver surgery.
Collapse
Affiliation(s)
- Shohei Yoshiya
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Sagor AT, Chowdhury MRH, Tabassum N, Hossain H, Rahman MM, Alam MA. Supplementation of fresh ucche (Momordica charantia L. var. muricata Willd) prevented oxidative stress, fibrosis and hepatic damage in CCl4 treated rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:115. [PMID: 25884170 PMCID: PMC4423480 DOI: 10.1186/s12906-015-0636-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/26/2015] [Indexed: 01/05/2023]
Abstract
Background Ucche (Momordica charantia L. var. muricata (Willd.) Chakravarty) has been reported to possess many benefits and medicinal properties. However, the protective effect of ucche against carbon tetrachloride (CCl4) induced hepatotoxicity have not been clarified fully yet. The aim of the present study was to investigate the effects of ucche on oxidative stress and inflammation in liver of CCl4 treated rats. Methods Female Long Evans rats were administered with CCl4 orally (1 ml/kg) twice a week for 2 weeks and were supplemented with freshly prepared crashed ucche (10% wt/wt of diet) with powdered chaw food. Both plasma and liver tissues were analyzed for AST, ALT and ALP activities. Oxidative stress parameters were measure by determining malondialdehyde (MDA), nitric oxide (NO), advanced protein oxidation product (APOP), and reduced glutathione (GSH) concentrations and catalase activities in plasma and liver tissues. Moreover, inflammation and tissue fibrosis were confirmed by histological staining of liver tissue sections. Results Our data suggest that ucche significantly prevented CCl4-induced hepatotoxicity, indicated by both diagnostic indicators of liver damage (serum transferases activities) and histopathological analysis. Moreover, CCl4 administration induced profound elevation of reactive oxygen species (ROS) production and oxidative stress, as evidenced by increasing lipid peroxidation level and depletion of antioxidant enzymes in liver. Fresh ucche supplementation prevented the oxidative stresses and improved antioxidant enzyme function. Furthermore, fresh ucche supplementation reduced hepatic inflammatory cell infiltration, iron deposition and fibrosis in liver of CCl4 treated rats. Conclusion In conclusion, these results suggested that the inhibition of CCl4-induced inflammation by ucche is due at least in part to its anti-oxidant activity and its ability to modulate the inflammation and fibrosis in liver.
Collapse
|
43
|
Pauta M, Ribera J, Melgar-Lesmes P, Casals G, Rodríguez-Vita J, Reichenbach V, Fernandez-Varo G, Morales-Romero B, Bataller R, Michelena J, Altamirano J, Jiménez W, Morales-Ruiz M. Overexpression of angiopoietin-2 in rats and patients with liver fibrosis. Therapeutic consequences of its inhibition. Liver Int 2015; 35:1383-92. [PMID: 24612347 DOI: 10.1111/liv.12505] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 02/12/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Studies in experimental models of cirrhosis showed that anti-angiogenic treatments may be effective for the treatment of liver fibrosis. In this context, angiopoietins are potential therapeutic targets as they are involved in the maintenance and stabilization of newly formed blood vessels. In addition, angiopoietin-2 is expressed in fibrotic livers and its inhibition in tumours results in vessel stability. Therefore, our study was aimed to assess the therapeutic utility of inhibiting angiopoietin-2. METHODS Circulating levels of angiopoietin-1 and angiopoietin-2 were quantified by ELISA in CCl4 -treated rats and in patients with cirrhosis. In vivo blockade of angiopoietin-2 in rats with liver fibrosis was performed with a chemically programmed antibody, CVX-060. RESULTS High levels of angiopoietin-2 were found in the systemic and suprahepatic circulation of cirrhotic patients and the ratio angiopoietin-1/angiopoietin-2 inversely correlated with prognostic models for alcoholic liver disease. Chronic treatment of CCl4 -treated rats with CVX-060 was associated with a significant decrease in inflammatory infiltrate, normalization of the hepatic microvasculature and reduction in VCAM-1 vascular expression. The anti-angiopoietin-2 treatment was also associated with less liver fibrosis and with lower levels of circulating transaminases. CVX-060 treatment was not associated with either vascular pruning in healthy tissue or compensatory overexpression of VEGF. CONCLUSIONS Inhibition of angiopoietin-2 is an effective and safe treatment for liver fibrosis in CCl4 -treated rats, acting mainly through the induction of vessel normalization and the attenuation of hepatic inflammatory infiltrate. Therefore, inhibition of angiopoietin-2 offers a therapeutic alternative for liver fibrosis.
Collapse
Affiliation(s)
- Montse Pauta
- Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS) and CIBERehd, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Pathophysiology of Portal Hypertension. PANVASCULAR MEDICINE 2015. [PMCID: PMC7153457 DOI: 10.1007/978-3-642-37078-6_144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The bases of our current knowledge on the physiology of the hepatic portal system are largely owed to the work of three pioneering vascular researchers from the sixteenth and the seventeenth centuries: A. Vesalius, W. Harvey, and F. Glisson. Vesalius is referred to as the founder of modern human anatomy, and in his influential book, De humani corporis fabrica libri septem, he elaborated the first anatomical atlas of the hepatic portal venous system (Vesalius 2013). Sir William Harvey laid the foundations of modern cardiovascular research with his Exercitatio Anatomica de Motu Cordis et Sanguinis in Animalibus (Harvey 1931) in which he established the nature of blood circulation. Finally, F. Glisson characterized the gastrointestinal-hepatic vascular system (Child 1955). These physiological descriptions were later complemented with clinical observations. In the eighteenth and nineteenth centuries, Morgagni, Puckelt, Cruveilhier, and Osler were the first to make the connection between common hepatic complications – ascites, splenomegaly, and gastrointestinal bleeding – and obstruction of the portal system (Sandblom 1993). These were the foundations that allowed Gilbert, Villaret, and Thompson to establish an early definition of portal hypertension at the beginning of the twentieth century. In this period, Thompson performed the first direct measurement of portal pressure by laparotomy in some patients (Gilbert and Villaret 1906; Thompson et al. 1937). Considering all these milestones, and paraphrasing Sir Isaac Newton, if hepatologists have seen further, it is by standing on the shoulders of giants. Nowadays, our understanding of the pathogenesis of portal hypertension has largely improved thanks to the progress in preclinical and clinical research. However, this field is ever-changing and hepatologists are continually identifying novel pathological mechanisms and developing new therapeutic strategies for this clinical condition. Hence, the aim of this chapter is to summarize the current knowledge about this clinical condition.
Collapse
|
45
|
New Insights into Antimetastatic and Antiangiogenic Effects of Cannabinoids. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 314:43-116. [DOI: 10.1016/bs.ircmb.2014.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
46
|
Role of cannabinoid receptors in hepatic fibrosis and apoptosis associated with bile duct ligation in rats. Eur J Pharmacol 2014; 742:118-24. [PMID: 25179573 DOI: 10.1016/j.ejphar.2014.08.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 01/06/2023]
Abstract
This study assessed the effect of stimulation of CB2 receptors or CB1 blockade on fibrosis and apoptosis in rats subjected to bile duct ligation (BDL). It was performed in sham and BDL rats for four weeks. Fibrosis-induced rats received a CB2 receptor agonist β-caryophyllene, CB1 receptor antagonist, hemopressin, combination of β-caryophyllene and CB2 antagonist, AM630 or vehicle daily during the last 2 weeks of the BDL ligation. Transaminases activity, bilirubin levels, hepatic collagen content, hydroxyproline level, Bcl2 positive hepatocytes, and mRNA expression of CB1, CB2 receptors and matrix metalloproteinase-1 (MMP-1) genes were measured in all animals. Bile duct ligated rats showed increased bilirubin levels, elevated transaminases activity, increased hepatic collagen content, and hydroxyproline level, reduced Bcl2 positive hepatocytes and increased expression of the assessed messengers in comparison with sham rats. However, fibrotic rats treated with either β-caryophyllene or hemopressin had reduced hepatic collagen content, improved transaminase activity and reduced bilirubin level, ameliorated CB1 gene expression, and increased MMP-1 gene expression compared with untreated fibrotic rats. These results were associated with attenuated apoptosis with only β-caryophyllene administration. CB2 receptor blockade by AM630 prevents the effects of β-caryophyllene on CB1 receptor and MMP-1 genes expression. This study points out that either stimulation of CB2 receptors or CB1 blockade can attenuate hepatic fibrosis in bile duct ligated rats. The mechanisms underlying these incidents may open new avenues for attenuating fibrosis and apoptosis of cholestasis- induced liver diseases.
Collapse
|
47
|
Marzoq AJ, Giese N, Hoheisel JD, Alhamdani MSS. Proteome variations in pancreatic stellate cells upon stimulation with proinflammatory factors. J Biol Chem 2013; 288:32517-32527. [PMID: 24089530 DOI: 10.1074/jbc.m113.488387] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Pancreatic stellate cells are key mediators in chronic pancreatitis and play a central role in the development of pancreatic fibrosis, stromal formation, and progression of pancreatic cancer. This study was aimed at investigating molecular changes at the level of the proteome that are associated with the activation of pancreatic stellate cells by proinflammatory factors, namely TNF-α, FGF2, IL6, and chemokine (C-C motif) ligand 4 (CCL4). They were added individually to cells growing in serum-free medium next to controls in medium supplemented with serum, thus containing a mixture of them all, or in serum-free medium alone. Variations were detected by means of a microarray of 810 antibodies targeting relevant proteins. All tested factors triggered increased proliferation and migration. Further analysis showed that TNF-α is the prime factor responsible for the activation of pancreatic stellate cells. CCL4 is associated with cellular neovascularization, whereas FGF2 and IL6 induction led to better cellular survival and decreased apoptotic activity of the stellate cells. The identified direct effects of individual cytokines on human pancreatic stellate cells provide new insights about their contribution to pancreatic cancer promotion.
Collapse
Affiliation(s)
- Aseel J Marzoq
- From the Division of Functional Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Nathalia Giese
- the Department of General, Visceral, and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Jörg D Hoheisel
- From the Division of Functional Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Mohamed Saiel Saeed Alhamdani
- From the Division of Functional Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany.
| |
Collapse
|
48
|
Marzoq AJ, Giese N, Hoheisel JD, Alhamdani MSS. Proteome variations in pancreatic stellate cells upon stimulation with proinflammatory factors. J Biol Chem 2013. [PMID: 24089530 DOI: 10.074/jbc.m] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pancreatic stellate cells are key mediators in chronic pancreatitis and play a central role in the development of pancreatic fibrosis, stromal formation, and progression of pancreatic cancer. This study was aimed at investigating molecular changes at the level of the proteome that are associated with the activation of pancreatic stellate cells by proinflammatory factors, namely TNF-α, FGF2, IL6, and chemokine (C-C motif) ligand 4 (CCL4). They were added individually to cells growing in serum-free medium next to controls in medium supplemented with serum, thus containing a mixture of them all, or in serum-free medium alone. Variations were detected by means of a microarray of 810 antibodies targeting relevant proteins. All tested factors triggered increased proliferation and migration. Further analysis showed that TNF-α is the prime factor responsible for the activation of pancreatic stellate cells. CCL4 is associated with cellular neovascularization, whereas FGF2 and IL6 induction led to better cellular survival and decreased apoptotic activity of the stellate cells. The identified direct effects of individual cytokines on human pancreatic stellate cells provide new insights about their contribution to pancreatic cancer promotion.
Collapse
Affiliation(s)
- Aseel J Marzoq
- From the Division of Functional Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Nathalia Giese
- the Department of General, Visceral, and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Jörg D Hoheisel
- From the Division of Functional Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Mohamed Saiel Saeed Alhamdani
- From the Division of Functional Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany.
| |
Collapse
|
49
|
Baldassarre M, Giannone FA, Napoli L, Tovoli A, Ricci CS, Tufoni M, Caraceni P. The endocannabinoid system in advanced liver cirrhosis: pathophysiological implication and future perspectives. Liver Int 2013; 33:1298-308. [PMID: 23890208 DOI: 10.1111/liv.12263] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/20/2013] [Indexed: 12/13/2022]
Abstract
Endogenous cannabinoids (EC) are ubiquitous lipid signalling molecules providing different central and peripheral effects that are mediated mostly by the specific receptors CB1 and CB2. The EC system is highly upregulated during chronic liver disease and consistent experimental and clinical findings indicate that it plays a role in the pathogenesis of liver fibrosis and fatty liver disease associated with obesity, alcohol abuse and hepatitis C. Furthermore, a considerable number of studies have shown that EC and their receptors contribute to the pathogenesis of the cardio-circulatory disturbances occurring in advanced cirrhosis, such as portal hypertension, hyperdynamic circulatory syndrome and cirrhotic cardiomyopathy. More recently, the EC system has been implicated in the development of ascites, hepatic encephalopathy and the inflammatory response related to bacterial infection. Rimonabant, a selective CB1 antagonist, was the first drug acting on the EC system approved for the treatment of obesity. Unfortunately, it has been withdrawn from the market because of its neuropsychiatric side effects. Compounds able to target selectively the peripheral CB1 receptors are under evaluation. In addition, molecules stimulating CB2 receptor or modulating the activity of enzymes implicated in EC metabolism are promising areas of pharmacological research. Liver cirrhosis and the related complications represent an important target for the clinical application of these compounds.
Collapse
Affiliation(s)
- Maurizio Baldassarre
- Department of Medical and Surgical Sciences, Center for Applied Biomedical Research (C.R.B.A.), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
50
|
Leeming DJ, Byrjalsen I, Jiménez W, Christiansen C, Karsdal MA. Protein fingerprinting of the extracellular matrix remodelling in a rat model of liver fibrosis--a serological evaluation. Liver Int 2013; 33:439-47. [PMID: 23279004 DOI: 10.1111/liv.12044] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 09/13/2012] [Accepted: 10/27/2012] [Indexed: 02/13/2023]
Abstract
BACKGROUND/AIM We investigated nine novel biomarkers of extracellular matrix (ECM) remodelling in a rat model of liver fibrosis. METHODS Liver fibrosis was induced in 52 male Wistar rats by inhalation of carbon tetrachloride and the level of hepatic fibrosis was assessed by Sirius red staining compared with controls. The novel serum biochemical markers assessed in the model were type I-(C1M), type III-(C3M), type IV-(C4M) and type VI-(C6M) collagen, citrullinated vimentin (VICM) and biglycan (BGM) all protein fragments generated by matrix metalloproteinases; and formation markers of type III-(P3NP), type VI (P4NP 7S) and type V (P5CP) collagen; hepatic mRNA type I collagen alpha-1 chain levels, serum potassium, sodium, osmolarity, alanine aminotransferase, lactate dehydrogenase, albumin and creatinine. RESULTS Stratification of the CCl(4) -treated rats according to total hepatic collagen showed that the degradation markers were significantly elevated in mild to severe fibrosis except for C6M which was also elevated in early fibrosis (P < 0.05). The highest Z-scores in early and moderate fibrosis were provided by P4NP 7S and alanine aminotransferase. All nine markers of ECM remodelling were highly related to the extent of liver fibrosis induced by CCl(4) . The novel collagen formation marker, P4NP 7S, was reliable for the detection of early fibrosis, while the combination of the two markers, C6M and P5CP provided the best correlation with hepatic fibrosis in all fibrosis levels. CONCLUSION As the markers can be used for translational science, these markers may provide valuable information for the evaluation of liver fibrosis in clinical settings.
Collapse
Affiliation(s)
- Diana J Leeming
- Nordic Bioscience, Fibrosis Biology and Biomarkers, Herlev, Denmark.
| | | | | | | | | |
Collapse
|