1
|
Li CM, Sun T, Yang MJ, Yang Z, Li Q, Shi JL, Zhang C, Jin JF. Complement activation targeted inhibitor C2-FH ameliorates acetaminophen-induced liver injury in mice. World J Hepatol 2024; 16:1188-1198. [DOI: 10.4254/wjh.v16.i10.1188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Complement activation is recognized as an important factor in the progression of liver damage caused by acetaminophen (APAP). However, the role of the complement inhibitor C2-FH in APAP-induced liver injury remains unclear.
AIM To explore C2-FH in protecting against APAP-induced liver injury by inhibiting complement activation.
METHODS A model of APAP-induced liver injury was used to study the protective effect of C2-FH on liver injury. C2-FH was administered through intraperitoneal injection 30 minutes after APAP treatment. We detected the effects of C2-FH on liver function, inflammatory response and complement activation. Additionally, RNA-sequencing (RNA-Seq) analysis was conducted to understand the mechanism through which C2-FH provides protection against APAP-induced liver injury.
RESULTS C2-FH inhibited the increase in serum alanine aminotransferase activity, aspartate aminotransferase activity and lactate dehydrogenase, and reduced liver tissue necrosis caused by APAP. Moreover, it attenuated the inflammatory response and inhibited complement activation in APAP-induced liver injury. RNA-Seq analysis provided additional explanations for the protective role of C2-FH against APAP-induced liver injury.
CONCLUSION C2-FH attenuates APAP-induced liver injury by inhibiting complement activation.
Collapse
Affiliation(s)
- Chun-Mei Li
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- China-United States Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Tian Sun
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- China-United States Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Mou-Jie Yang
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Zhi Yang
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- China-United States Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Qing Li
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- China-United States Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Jia-Lin Shi
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Chong Zhang
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- China-United States Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Jun-Fei Jin
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- China-United States Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
2
|
Jaeschke H, Ramachandran A. Acetaminophen Hepatotoxicity: Paradigm for Understanding Mechanisms of Drug-Induced Liver Injury. ANNUAL REVIEW OF PATHOLOGY 2024; 19:453-478. [PMID: 38265880 PMCID: PMC11131139 DOI: 10.1146/annurev-pathmechdis-051122-094016] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Acetaminophen (APAP) overdose is the clinically most relevant drug hepatotoxicity in western countries, and, because of translational relevance of animal models, APAP is mechanistically the most studied drug. This review covers intracellular signaling events starting with drug metabolism and the central role of mitochondrial dysfunction involving oxidant stress and peroxynitrite. Mitochondria-derived endonucleases trigger nuclear DNA fragmentation, the point of no return for cell death. In addition, adaptive mechanisms that limit cell death are discussed including autophagy, mitochondrial morphology changes, and biogenesis. Extensive evidence supports oncotic necrosis as the mode of cell death; however, a partial overlap with signaling events of apoptosis, ferroptosis, and pyroptosis is the basis for controversial discussions. Furthermore, an update on sterile inflammation in injury and repair with activation of Kupffer cells, monocyte-derived macrophages, and neutrophils is provided. Understanding these mechanisms of cell death led to discovery of N-acetylcysteine and recently fomepizole as effective antidotes against APAP toxicity.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA; ,
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA; ,
| |
Collapse
|
3
|
Macit M, Duman G, Cumbul A, Sumer E, Macit C. Formulation development of Silybum marianum seed extracts and silymarin nanoparticles, and evaluation of hepatoprotective effect. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
4
|
Li L, Chen S, Xu SY, Li DW, Li HY, Yang WD. Toxicity and underlying mechanism of the toxic dinoflagellate Gambierdiscus caribaeus to the fish Oryzias melastigma. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114223. [PMID: 36306624 DOI: 10.1016/j.ecoenv.2022.114223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Gambierdiscus spp. is mainly responsible for the ciguatera fish poisoning (CFP) around the world. The gambiertoxin produced by Gambierdiscus can be passed through the food chain to form ciguatoxins (CTXs) that cause ciguatoxins poisoning. However, the toxic effects of Gambierdiscus on fish through the food chain and related mechanism remains unclear. In this study, the toxicity of Gambierdiscus caribaeus on the marine medaka (Oryzias melastigma) was investigated, where the simulated food chain toxic algae-food organism-fish (G. caribaeus-Artemia metanauplii-O. melastigma) was set. The results showed that direct or indirect exposure through the food chain of G. caribaeus could affect the swimming behaviour of O. melastigma, manifested as decreased swimming performance and spontaneous abnormal swimming behaviours. Histological observation showed that direct or indirect exposure of G. caribaeus caused different degrees of pathological damage to the gills, intestine and liver tissues of O. melastigma. Transcriptome sequencing and RT-qPCR demonstrated that G. caribaeus exposure could trigger a series of physiological and biochemical responses, mainly reflected in energy metabolism, reproductive system, neural activity, immune stress and drug metabolism in marine medaka. Our finding may provide novel insight into the toxicity of Gambierdiscus on fish.
Collapse
Affiliation(s)
- Li Li
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Shuang Chen
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Si-Yuan Xu
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Da-Wei Li
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China.
| | - Hong-Ye Li
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Wei-Dong Yang
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
5
|
Woolbright BL, Nguyen NT, McGill MR, Sharpe MR, Curry SC, Jaeschke H. Generation of pro-and anti-inflammatory mediators after acetaminophen overdose in surviving and non-surviving patients. Toxicol Lett 2022; 367:59-66. [PMID: 35905941 PMCID: PMC9849076 DOI: 10.1016/j.toxlet.2022.07.813] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/17/2022] [Accepted: 07/25/2022] [Indexed: 01/21/2023]
Abstract
Acetaminophen (APAP) overdose causes liver injury in animals and humans. Although well-studied in animals, limited longitudinal data exist on cytokine release after APAP overdose in patients. The purpose of this study was to quantify concentrations of cytokines in APAP overdose patients to determine if early cytokine or complement measurements can distinguish between surviving and non-surviving patients. Plasma was obtained from healthy controls, APAP overdose patients with no increase in liver transaminases, and surviving and non-surviving APAP overdose patients with severe liver injury. Interleukin-10 (IL-10), and CC chemokine ligand-2 (CCL2, MCP-1) were substantially elevated in surviving and non-surviving patients, whereas IL-6 and CXC chemokine ligand-8 (CXCL8, IL-8) had early elevations in a subset of patients only with liver injury. Day 1 IL-10 and IL-6 levels, and Day 2 CCL2, levels correlated positively with survival. There was no significant increase in IL-1α, IL-1β or TNF-α in any patient during the first week after APAP. Monitoring cytokines such as CCL2 may be a good indicator of patient prognosis; furthermore, these data indicate the inflammatory response after APAP overdose in patients is not mediated by a second phase of inflammation driven by the inflammasome.
Collapse
Affiliation(s)
| | - Nga T Nguyen
- Department of Pharmacology, Toxicology & Therapeutics, USA
| | | | - Matthew R Sharpe
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Steven C Curry
- Department of Medical Toxicology, Banner Good Samaritan Medical Center, Phoenix, AZ, USA; Department of Medicine, and Center for Toxicology and Pharmacology Education and Research, University of Arizona College of Medicine, Phoenix, AZ, USA
| | | |
Collapse
|
6
|
Wang J, Zhang L, Shi Q, Yang B, He Q, Wang J, Weng Q. Targeting innate immune responses to attenuate acetaminophen-induced hepatotoxicity. Biochem Pharmacol 2022; 202:115142. [PMID: 35700755 DOI: 10.1016/j.bcp.2022.115142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/02/2022]
Abstract
Acetaminophen (APAP) hepatotoxicity is an important cause of acute liver failure, resulting in massive deaths in many developed countries. Currently, the metabolic process of APAP in the body has been well studied. However, the underlying mechanism of APAP-induced liver injury remains elusive. Increasing clinical and experimental evidences indicate that the innate immune responses are involved in the pathogenesis of APAP-induced acute liver injury (AILI), in which immune cells have dual roles of inducing inflammation to exacerbate hepatotoxicity and removing dead cells and debris to help liver regeneration. In this review, we summarize the latest findings of innate immune cells involved in AILI, particularly emphasizing the activation of innate immune cells and their different roles during the injury and repair phases. Moreover, current available treatments are discussed according to the different roles of innate immune cells in the development of AILI. This review aims to update the knowledge about innate immune responses in the pathogenesis of AILI, and provide potential therapeutic interventions for AILI.
Collapse
Affiliation(s)
- Jincheng Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lulu Zhang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qi Shi
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jiajia Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
7
|
3'mRNA sequencing reveals pro-regenerative properties of c5ar1 during resolution of murine acetaminophen-induced liver injury. NPJ Regen Med 2022; 7:10. [PMID: 35087052 PMCID: PMC8795215 DOI: 10.1038/s41536-022-00206-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 12/20/2021] [Indexed: 12/16/2022] Open
Abstract
Murine acetaminophen-induced acute liver injury (ALI) serves as paradigmatic model for drug-induced hepatic injury and regeneration. As major cause of ALI, acetaminophen overdosing is a persistent therapeutic challenge with N-acetylcysteine clinically used to ameliorate parenchymal necrosis. To identify further treatment strategies that serve patients with poor N-acetylcysteine responses, hepatic 3′mRNA sequencing was performed in the initial resolution phase at 24 h/48 h after sublethal overdosing. This approach disclosed 45 genes upregulated (≥5-fold) within this time frame. Focusing on C5aR1, we observed in C5aR1-deficient mice disease aggravation during resolution of intoxication as evidenced by increased liver necrosis and serum alanine aminotransferase. Moreover, decreased hepatocyte compensatory proliferation and increased caspase-3 activation at the surroundings of necrotic cores were detectable in C5aR1-deficient mice. Using a non-hypothesis-driven approach, herein pro-regenerative/-resolving effects of C5aR1 were identified during late acetaminophen-induced ALI. Data concur with protection by the C5a/C5aR1-axis during hepatectomy and emphasize the complex role of inflammation during hepatic regeneration and repair.
Collapse
|
8
|
Garcia-Ruiz C, Fernandez-Checa JC. C-Reactive Protein, a Promising Approach for Acetaminophen Hepatotoxicity. Cell Mol Gastroenterol Hepatol 2021; 13:341-342. [PMID: 34732318 PMCID: PMC8703118 DOI: 10.1016/j.jcmgh.2021.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 12/10/2022]
Affiliation(s)
- Carmen Garcia-Ruiz
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona, CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer, Barcelona, Spain; Center for the Study of Liver and Gastrointestinal Diseases, Carlos III National Institute of Health, Madrid, Spain; Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, California
| | - Jose C Fernandez-Checa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona, CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer, Barcelona, Spain; Center for the Study of Liver and Gastrointestinal Diseases, Carlos III National Institute of Health, Madrid, Spain; Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, California.
| |
Collapse
|
9
|
Li HY, Tang ZM, Wang Z, Lv JM, Liu XL, Liang YL, Cheng B, Gao N, Ji SR, Wu Y. C-Reactive Protein Protects Against Acetaminophen-Induced Liver Injury by Preventing Complement Overactivation. Cell Mol Gastroenterol Hepatol 2021; 13:289-307. [PMID: 34536564 PMCID: PMC8599171 DOI: 10.1016/j.jcmgh.2021.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/10/2022]
Abstract
BACKGROUND AND AIMS C-reactive protein (CRP) is a hepatocyte-produced marker of inflammation yet with undefined function in liver injury. We aimed to examine the role of CRP in acetaminophen-induced liver injury (AILI). METHODS The effects of CRP in AILI were investigated using CRP knockout mice and rats combined with human CRP rescue. The mechanisms of CRP action were investigated in vitro and in mice with Fcγ receptor 2B knockout, C3 knockout, or hepatic expression of CRP mutants defective in complement interaction. The therapeutic potential of CRP was investigated by intraperitoneal administration at 2 or 6 hours post-AILI induction in wild-type mice. RESULTS CRP knockout exacerbated AILI in mice and rats, which could be rescued by genetic knock-in, adeno-associated virus-mediated hepatic expression or direct administration of human CRP. Mechanistically, CRP does not act via its cellular receptor Fcγ receptor 2B to inhibit the early phase injury to hepatocytes induced by acetaminophen; instead, CRP acts via factor H to inhibit complement overactivation on already injured hepatocytes, thereby suppressing the late phase amplification of inflammation likely mediated by C3a-dependent actions of neutrophils. Importantly, CRP treatment effectively alleviated AILI with a significantly extended therapeutic time window than that of N-acetyl cysteine. CONCLUSION Our results thus identify CRP as a crucial checkpoint that limits destructive activation of complement in acute liver injury, and we argue that long-term suppression of CRP expression or function might increase the susceptibility to AILI.
Collapse
Affiliation(s)
- Hai-Yun Li
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Zhao-Ming Tang
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Zhe Wang
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Jian-Min Lv
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Xiao-Ling Liu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, P.R. China
| | - Yu-Lin Liang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, P.R. China
| | - Bin Cheng
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, P.R. China
| | - Ning Gao
- Department of Infectious Disease, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Shang-Rong Ji
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, P.R. China,Shang-Rong Ji, PhD, MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, P.R. China. fax: 86-931-8914102.
| | - Yi Wu
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, P.R. China,Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi’an Children’s Hospital, Xi'an Jiaotong University, Xi'an, P.R. China,Correspondence Address correspondence to: Yi Wu, PhD, MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, P.R. China. fax: 86-029-82657013.
| |
Collapse
|
10
|
A/J mice are more susceptible than C57BL/6 to acetaminophen-induced hepatotoxicity. J Pharmacol Toxicol Methods 2021; 108:106960. [PMID: 33766729 DOI: 10.1016/j.vascn.2021.106960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/02/2021] [Accepted: 02/28/2021] [Indexed: 11/20/2022]
Abstract
Acetaminophen (APAP) is commonly used to treat fever and pain. However, when in overdose is the predominant cause of hepatotoxicity. Despite advances in understanding the mechanisms of APAP-induced hepatotoxicity, the management of acute liver failure remains a challenge. Thus, more relevant experimental models are crucial to provide a better understanding of this condition. The aim of this study is to evaluate the effect of APAP-induced hepatotoxicity on A/J mice using C57BL/6 as reference experimental model. Eight- to ten-week-old male A/J and C57BL/6 mice were treated with APAP (300 or 500 mg/kg) by intraperitoneal injection. After 24 h total blood leukocyte counting, plasma levels of alanine amino transferase (ALT) and aspartate amino transferase (AST), histopathological analysis of liver, lung and kidney were evaluated. A/J mice presented reduction in circulating leukocytes concomitant with the increase in plasma levels of ALT and AST, and liver necrosis when treated with 300 and 500 mg/kg of APAP. C57BL/6 mice presented similar results only with 500 mg/kg of APAP. Our results show that A/J mice have a marked susceptibility to the effects of APAP and could be considered as an experimental model to study APAP-induced toxicity.
Collapse
|
11
|
Das M, Basu S, Banerjee B, Jana K, Sen A, Datta G. Renoprotective effect of Capsicum annum against ethanol-induced oxidative stress and renal apoptosis. J Food Biochem 2020; 45:e13325. [PMID: 32573796 DOI: 10.1111/jfbc.13325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/01/2022]
Abstract
The present study explored the ameliorative potency of aqueous extract of Capsicum annum (AqCA), against oxidative imbalance and renal toxicity induced by ethanol. Randomly grouped male Wistar rats (n = 6), were marked as ethanol-treated (2 g/kg bw, i.p.), CA125 (125 mg/kg bw, i.p.), CA250 (250 mg/kg bw, i.p.), ethanol pre-treated with CA (similar doses), and control (0.5 ml normal saline, i.p.), and treated for 30 consecutive days. Biochemical analysis of tissue and serum parameters was performed, along with histopathological and histochemical studies. Also, we performed TUNEL assay and western blotting for our experimental groups. Statistical analysis revealed significant (p ≤ .001) alteration in the levels of antioxidant enzymes, serum urea, creatinine, pro-inflammatory cytokines, and cleaved caspases, along with histopathological alterations in the ethanol-treated group. Prior treatment with AqCA prevented ethanol-induced alterations in tissue and serum parameters. These findings indicate that the extract of CA can protect renal cells from ethanol-induced damage by inhibiting oxidative stress, inflammatory response, and apoptosis. PRACTICAL APPLICATIONS: Chronic alcohol consumption is a major public health concern that leads to various diseases and social problems as well. It affects both the affluent and non-affluent society equally. Alcohol (ethanol) is a renowned hepato-toxicant and a well-documented risk factor for oxidative stress, with less known effect on the kidney. Thus, it is essential to investigate the effect of alcohol metabolism on the kidney to find a remedy to prevent it. The present investigation depicts the anti-oxidative and anti-inflammatory role of Capsicum annum against ethanol-induced renal damage. The outcome of this study can be utilized in the future for phytotherapeutic herbal drug formulation. Besides, the bioactive components identified in the study can be further explored by researchers or pharmaceutical corporates for potential therapeutic purpose against renal impairment.
Collapse
Affiliation(s)
- Moumita Das
- Department of Physiology, Rammohan College, Kolkata, India
| | - Subhashree Basu
- Department of Physiology, Tamralipta Mahavidyalaya, Tamluk, India
| | | | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Anurupa Sen
- Department of Physiology, City College, Kolkata, India
| | | |
Collapse
|
12
|
Scialis RJ, Ghanem CI, Manautou JE. The modulation of transcriptional expression and inhibition of multidrug resistance associated protein 4 (MRP4) by analgesics and their primary metabolites. Curr Res Toxicol 2020; 1:34-41. [PMID: 34345835 PMCID: PMC8320619 DOI: 10.1016/j.crtox.2020.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/02/2020] [Accepted: 04/24/2020] [Indexed: 11/17/2022] Open
Abstract
During the course of a toxic challenge, changes in gene expression can manifest such as induction of metabolizing enzymes as a compensatory detoxification response. We currently report that a single 400 mg/kg acetaminophen (APAP) dose to C57BL/6J mice led to an increase in multidrug resistance-associated (Mrp) 4 (Abcc4) mRNA 12 h after administration. Alanine aminotransferase, as a marker of liver injury, was also elevated indicating hepatotoxicity had occurred. Therefore, induction of Mrp4 mRNA was likely attributable to APAP-induced liver injury. Mrp4 has been shown to be upregulated during oxidative stress, and it is well-established that APAP overdose causes oxidative stress due to depletion of glutathione. Given the importance of Mrp4 upregulation as an adaptive response during cholestatic and oxidative liver injury, we next investigated the extent by which human MRP4 can be inhibited by the analgesics, APAP, diclofenac (DCF), and their metabolites. Using an in vitro assay with inside out human MRP4 vesicles, we determined that APAP-cysteine inhibited MRP4-mediated transport of leukotriene C4 with an apparent IC50 of 125 μM. APAP-glutathione also attenuated MRP4 activity though it achieved only 28% inhibition at 300 μM. Diclofenac acyl glucuronide (DCF-AG) inhibited MRP4 transport by 34% at 300 μM. The MRP4 in vitro inhibition occurs at APAP-cysteine and DCF-AG concentrations seen in vivo after toxic doses of APAP or DCF in mice, hence the findings are important given the role that Mrp4 serves as a compensatory response during oxidative stress following toxic challenge. Following 400 mg/kg APAP in mice, mean ALT 12 hours post-dose was 1,140 U/L A statistically significant increase in Mrp4 mRNA was observed 12 hours post-dose APAP-CYS inhibited human MRP4 transport of LTC4 with an IC50 = 125 μM (Ki = 122 μM) APAP-GSH decreased MRP4 transport by 29% inhibition at 300 μM APAP, APAP-GLU, APAP-NAC, and APAP-SUL did not exhibit significant MRP4 inhibition
Collapse
Key Words
- ALT, alanine aminotransferase
- AMP, adenosine monophosphate
- APAP, acetaminophen
- APAP-CYS, acetaminophen cysteine
- APAP-GLU, acetaminophen glucuronide
- APAP-NAC, acetaminophen N-acetylcysteine
- APAP-SUL, acetaminophen sulfate
- ATP, adenosine triphosphate
- Acetaminophen
- DCF, diclofenac
- DCF-AG, diclofenac acyl glucuronide
- Diclofenac
- Fmo, flavin containing monooxygenase
- IS, internal standard
- Inhibition
- LTC4, leukotriene C4
- MRP, multidrug resistance-associated protein
- MRP4
- Metabolite
- OH-DCF, 4′-hydroxy diclofenac
- PGE2, prostaglandin E2
Collapse
Affiliation(s)
| | | | - José E. Manautou
- Corresponding author at: University of Connecticut, Dept. of Pharmaceutical Sciences, 69 North Eagleville Road, Storrs, CT 06269-3092, USA.
| |
Collapse
|
13
|
Li Q, Lu Q, Zhu MQ, Huang C, Yu KK, Huang YX, Zhao X, Luo XG, Zheng JM. Lower level of complement component C3 and C3a in the plasma means poor outcome in the patients with hepatitis B virus related acute-on-chronic liver failure. BMC Gastroenterol 2020; 20:106. [PMID: 32293297 PMCID: PMC7158068 DOI: 10.1186/s12876-020-01258-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/31/2020] [Indexed: 12/17/2022] Open
Abstract
Background The purpose of this study is to investigate whether or not the complement system is systemically activated and to specify the clinical and prognostic implications of its components during hepatitis B virus related acute-on-chronic liver failure (HBV-ACLF). Methods Blood samples were taken from twenty-seven patients diagnosed with HBV-ACLF, twenty-five patients diagnosed with chronic hepatitis B but without liver failure (CHB), and nine healthy volunteers (the control group). Plasma complement components were measured with Enzyme-linked immunosorbent assay. Correlative analysis were assessed between the levels of complement components and the liver failure related index. Results The concentrations of C3 was 6568 μg/ml in the HBV-ACLF group, 8916 μg/ml in the CHB group and 15,653 μg/ml in the control group, respectively (P < 0.05). The concentrations of C3a was 852 ng/ml in the HBV-ACLF group, 1008 ng/ml in the CHB group and 1755 ng/ml in the control group, respectively (P < 0.05). The concentrations of C1q was 50,509 ng/ml in the HBV-ACLF group, 114,640 ng/ml in the CHB group and 177,001 ng/ml in the control group, respectively (P < 0.05). The concentrations of C1q, C3, C3a, C4, C4a and sC5b-9 were significantly higher in the control group than those in the HBV-ACLF group (3.5, 2.4, 2.1, 1.4, 1.3 and 6.0 fold, respectively). However, there was no statistical significance of the differences in the plasma concentrations of mannose binding lectin and factor B between the HBV-ACLF group and control group. The levels of C3 and C3a were inversely correlated with MELDs or CLIF-C OFs (P < 0.05). Conclusions Our analysis demonstrated that the activation of the classical pathway mediated by C1q may play an important role in the pathogenesis of HBV-ACLF. Furthermore, the plasma levels of C3 and C3a may be potential novel biomarkers in predicting the outcome of HBV-ACLF.
Collapse
Affiliation(s)
- Qian Li
- Department of Infectious Diseases, Huashan Hospital, Fudan University, No.12 Wurumqi Middle Road, Jing'an district, Room 508, Shanghai, 200040, People's Republic of China
| | - Qing Lu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, No.12 Wurumqi Middle Road, Jing'an district, Room 508, Shanghai, 200040, People's Republic of China
| | - Meng-Qi Zhu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, No.12 Wurumqi Middle Road, Jing'an district, Room 508, Shanghai, 200040, People's Republic of China
| | - Chong Huang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, No.12 Wurumqi Middle Road, Jing'an district, Room 508, Shanghai, 200040, People's Republic of China
| | - Kang-Kang Yu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, No.12 Wurumqi Middle Road, Jing'an district, Room 508, Shanghai, 200040, People's Republic of China
| | - Yu-Xian Huang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, No.12 Wurumqi Middle Road, Jing'an district, Room 508, Shanghai, 200040, People's Republic of China
| | - Xu Zhao
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, 200040, China.,Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Xing-Guang Luo
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Jian-Ming Zheng
- Department of Infectious Diseases, Huashan Hospital, Fudan University, No.12 Wurumqi Middle Road, Jing'an district, Room 508, Shanghai, 200040, People's Republic of China.
| |
Collapse
|
14
|
Ayobahan SU, Eilebrecht S, Baumann L, Teigeler M, Hollert H, Kalkhof S, Eilebrecht E, Schäfers C. Detection of biomarkers to differentiate endocrine disruption from hepatotoxicity in zebrafish (Danio rerio) using proteomics. CHEMOSPHERE 2020; 240:124970. [PMID: 31726584 DOI: 10.1016/j.chemosphere.2019.124970] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Measurement of specific biomarkers identified by proteomics provides a potential alternative method for risk assessment, which is required to discriminate between hepatotoxicity and endocrine disruption. In this study, adult zebrafish (Danio rerio) were exposed to the hepatotoxic substance acetaminophen (APAP) for 21 days, in a fish short-term reproduction assay (FSTRA). The molecular changes induced by APAP exposure were studied in liver and gonads by applying a previously developed combined FSTRA and proteomics approach. We observed a significant decrease in egg numbers, an increase in plasma hyaluronic acid, and the presence of single cell necrosis in liver tissue. Furthermore, nine common biomarkers (atp5f1b, etfa, uqcrc2a, cahz, c3a.1, rab11ba, mettl7a, khdrbs1a and si:dkey-108k21.24) for assessing hepatotoxicity were detected in both male and female liver, indicating hepatic damage. In comparison with exposure to fadrozole, an endocrine disrupting chemical (EDC), three potential biomarkers for liver injury, i.e. cahz, c3a.1 and atp5f1b, were differentially expressed. The zebrafish proteome response to fadrozole exposure indicated a significant regulation in estrogen synthesis and perturbed binding of sperm to zona pellucida in the ovary. This study demonstrates that biomarkers identified and quantified by proteomics can serve as additional weight-of-evidence for the discrimination of hepatotoxicity and endocrine disruption, which is necessary for hazard identification in EU legislation and to decide upon the option for risk assessment.
Collapse
Affiliation(s)
- Steve U Ayobahan
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany; Institute of Environmental Research (Biology V), RWTH Aachen, Aachen, Germany.
| | - Sebastian Eilebrecht
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Lisa Baumann
- Aquatic Ecology & Toxicology, University of Heidelberg, Heidelberg, Germany
| | - Matthias Teigeler
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Henner Hollert
- Institute of Environmental Research (Biology V), RWTH Aachen, Aachen, Germany
| | - Stefan Kalkhof
- Institute for Bioanalysis, University of Applied Sciences Coburg, Coburg, Germany
| | - Elke Eilebrecht
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany.
| | - Christoph Schäfers
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| |
Collapse
|
15
|
Westman J, Grinstein S, Marques PE. Phagocytosis of Necrotic Debris at Sites of Injury and Inflammation. Front Immunol 2020; 10:3030. [PMID: 31998312 PMCID: PMC6962235 DOI: 10.3389/fimmu.2019.03030] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022] Open
Abstract
Clearance of cellular debris is required to maintain the homeostasis of multicellular organisms. It is intrinsic to processes such as tissue growth and remodeling, regeneration and resolution of injury and inflammation. Most of the removal of effete and damaged cells is performed by macrophages and neutrophils through phagocytosis, a complex phenomenon involving ingestion and degradation of the disposable particles. The study of the clearance of cellular debris has been strongly biased toward the removal of apoptotic bodies; as a result, the mechanisms underlying the removal of necrotic cells have remained relatively unexplored. Here, we will review the incipient but growing knowledge of the phagocytosis of necrotic debris, from their recognition and engagement to their internalization and disposal. Critical insights into these events were gained recently through the development of new in vitro and in vivo models, along with advances in live-cell and intravital microscopy. This review addresses the classes of "find-me" and "eat-me" signals presented by necrotic cells and their cognate receptors in phagocytes, which in most cases differ from the extensively characterized counterparts in apoptotic cell engulfment. The roles of damage-associated molecular patterns, chemokines, lipid mediators, and complement components in recruiting and activating phagocytes are reviewed. Lastly, the physiological importance of necrotic cell removal is emphasized, highlighting the key role of impaired debris clearance in autoimmunity.
Collapse
Affiliation(s)
- Johannes Westman
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Pedro Elias Marques
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Pan C, Zhang YS, Han JY, Li CY, Yi Y, Zhao Y, Wang LM, Tian JZ, Liu SY, Li GQ, Li XL, Xian Z, Liang AH. The Involvement of the RhoA/ROCK Signaling Pathway in Hypersensitivity Reactions Induced by Paclitaxel Injection. Int J Mol Sci 2019; 20:ijms20204988. [PMID: 31600977 PMCID: PMC6834182 DOI: 10.3390/ijms20204988] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 09/29/2019] [Accepted: 09/30/2019] [Indexed: 02/07/2023] Open
Abstract
A high incidence of hypersensitivity reactions (HSRs) largely limits the use of paclitaxel injection. Currently, these reactions are considered to be mediated by histamine release and complement activation. However, the evidence is insufficient and the molecular mechanism involved in paclitaxel injection-induced HSRs is still incompletely understood. In this study, a mice model mimicking vascular hyperpermeability was applied. The vascular leakage induced merely by excipients (polyoxyl 35 castor oil) was equivalent to the reactions evoked by paclitaxel injection under the same conditions. Treatment with paclitaxel injection could cause rapid histamine release. The vascular exudation was dramatically inhibited by pretreatment with a histamine antagonist. No significant change in paclitaxel injection-induced HSRs was observed in complement-deficient and complement-depleted mice. The RhoA/ROCK signaling pathway was activated by paclitaxel injection. Moreover, the ROCK inhibitor showed a protective effect on vascular leakage in the ears and on inflammation in the lungs. In conclusion, this study provided a suitable mice model for investigating the HSRs characterized by vascular hyperpermeability and confirmed the main sensitization of excipients in paclitaxel injection. Histamine release and RhoA/ROCK pathway activation, rather than complement activation, played an important role in paclitaxel injection-induced HSRs. Furthermore, the ROCK inhibitor may provide a potential preventive approach for paclitaxel injection side effects.
Collapse
Affiliation(s)
- Chen Pan
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Yu-Shi Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Jia-Yin Han
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Chun-Ying Li
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Yan Yi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Yong Zhao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Lian-Mei Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Jing-Zhuo Tian
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Su-Yan Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Gui-Qin Li
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Xiao-Long Li
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Zhong Xian
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Ai-Hua Liang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
17
|
Das M, Basu S, Banerjee B, Sen A, Jana K, Datta G. Hepatoprotective effects of green Capsicum annum against ethanol induced oxidative stress, inflammation and apoptosis in rats. JOURNAL OF ETHNOPHARMACOLOGY 2018; 227:69-81. [PMID: 30118838 DOI: 10.1016/j.jep.2018.08.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 07/19/2018] [Accepted: 08/13/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Capsicum annum L. (CA) is used extensively as a spice and is a rich source of antioxidant vitamins. It has long been used in Indian, Native American, and Chinese traditional medicine as a carminative and an appetizer that normalizes liver function. However, its hepato-protective activity has so far not been studied. AIM OF THE STUDY The present study was undertaken to evaluate the efficacy of aqueous extract of CA at two different doses (125 mg/kg body weight and 250 mg/kg body weight), against ethanol induced oxidative stress and apoptosis in liver tissue. MATERIALS AND METHODS Adult male Wistar rats, weighing 150-200 g, were randomly grouped (n = 6) and treated with ethanol (2 g/kg bw, i.p.), CA125 (125 mg/kg bw, i.p.), CA250 (250 mg/kg bw, i.p.), ethanol with CA (similar doses), and control (0.5 ml normal saline, i.p.) for 30 days. Lipid peroxidation (LPO) and reduced glutathione content (GSH) in tissue homogenate, along with catalase (CAT), superoxide dismutase (Cu-Zn-SOD & Mn-SOD), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-s-transferase (GST) and glucose-6-phosphate dehydrogenase (G-6-P-D) activity were evaluated. Serum levels of alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphate (ALP), triglyceride (TG), total cholesterol (CHLS), high density lipoprotein (HDL), low density lipoprotein (LDL) very low density lipoprotein (VLDL), tumour necrotic factor alpha (TNF-α) and interleukin 6 (IL-6) were also measured using ELISA kits. Histopathological evaluation of the hepatic tissue was performed by hematoxylin and eosin (H&E) and periodic acid-schiff (PAS) staining. TUNEL assay was performed for apoptosis detection. RESULTS Ethanol significantly (p < 0.001) increased ALT, AST, ALP, TNF-α, IL-6, LPO, Cu-Zn-SOD, GST, GPx, TG, CHLS, LDL, VLDL levels, along with significant (p < 0.001) decrease in HDL, Mn-SOD, CAT, GSH, GR and G6PD activity. Co-administration of CA along with ethanol alleviated changes in the above parameters (p < 0.001) in a dose-dependent manner and also reduced the number of apoptotic death cells. Histo-pathological and histo-chemical studies of liver sections also ascertained the outcomes of this study. CONCLUSION Thus, it can be concluded that the aqueous extract of green CA can exert a protective effect against ethanol induced hepato-toxicity. The possible mechanism may be by acting as an antioxidant; preventing ethanol induced apoptosis and reducing pro-inflammatory cytokine levels.
Collapse
Affiliation(s)
- Moumita Das
- Department of Physiology, Rammohan College, 85A, Raja Rammohan Sarani, Kolkata 700009, West Bengal, India
| | - Subhashree Basu
- Department of Physiology, Tamralipta Mahavidyalaya, Tamluk, Poorba Medinipur, India
| | - Bhaswati Banerjee
- Department of Molecular Medicine, Bose Institute, P-1/12 C.I.T. Scheme VIIM, Kolkata 700054, West Bengal, India
| | - Anurupa Sen
- Department of Physiology, City College, Kolkata, India
| | - Kuladip Jana
- Department of Molecular Medicine, Bose Institute, P-1/12 C.I.T. Scheme VIIM, Kolkata 700054, West Bengal, India
| | - Gouriprosad Datta
- Department of Physiology, Rammohan College, 85A, Raja Rammohan Sarani, Kolkata 700009, West Bengal, India.
| |
Collapse
|
18
|
Kim SY, Son M, Lee SE, Park IH, Kwak MS, Han M, Lee HS, Kim ES, Kim JY, Lee JE, Choi JE, Diamond B, Shin JS. High-Mobility Group Box 1-Induced Complement Activation Causes Sterile Inflammation. Front Immunol 2018; 9:705. [PMID: 29696019 PMCID: PMC5904255 DOI: 10.3389/fimmu.2018.00705] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 03/22/2018] [Indexed: 12/24/2022] Open
Abstract
High-mobility group box 1 (HMGB1), a well-known danger-associated molecular pattern molecule, acts as a pro-inflammatory molecule when secreted by activated immune cells or released after necrotic cell damage. HMGB1 binds to immunogenic bacterial components and augments septic inflammation. In this study, we show how HMGB1 mediates complement activation, promoting sterile inflammation. We show that HMGB1 activates the classical pathway of complement system in an antibody-independent manner after binding to C1q. The C3a complement activation product in human plasma and C5b-9 membrane attack complexes on cell membrane surface are detected after the addition of HMGB1. In an acetaminophen (APAP)-induced hepatotoxicity model, APAP injection reduced HMGB1 levels and elevated C3 levels in C1q-deficient mouse serum samples, compared to that in wild-type (WT) mice. APAP-induced C3 consumption was inhibited by sRAGE treatment in WT mice. Moreover, in a mouse model of brain ischemia–reperfusion injury based on middle cerebral arterial occlusion, C5b-9 complexes were deposited on vessels where HMGB1 was accumulated, an effect that was suppressed upon HMGB1 neutralization. We propose that the HMGB1 released after cell necrosis and in ischemic condition can trigger the classical pathway of complement activation to exacerbate sterile inflammation.
Collapse
Affiliation(s)
- Sook Young Kim
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Myoungsun Son
- The Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Sang Eun Lee
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea
| | - In Ho Park
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea.,Severance Biomedical Science Institute and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Man Sup Kwak
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Myeonggil Han
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyun Sook Lee
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Eun Sook Kim
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae-Young Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
| | - Ji Eun Choi
- Department of Pediatrics, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Betty Diamond
- The Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Jeon-Soo Shin
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea.,Severance Biomedical Science Institute and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea.,Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, South Korea
| |
Collapse
|
19
|
Ware BR, McVay M, Sunada WY, Khetani SR. Exploring Chronic Drug Effects on Microengineered Human Liver Cultures Using Global Gene Expression Profiling. Toxicol Sci 2018; 157:387-398. [PMID: 28369597 DOI: 10.1093/toxsci/kfx059] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Global gene expression profiling is useful for elucidating a drug's mechanism of action on the liver; however, such profiling in rats is not very sensitive for predicting human drug-induced liver injury, while dedifferentiated monolayers of primary human hepatocytes (PHHs) do not permit chronic drug treatment. In contrast, micropatterned cocultures (MPCCs) containing PHH colonies and 3T3-J2 fibroblasts maintain a stable liver phenotype for 4-6 weeks. Here, we used MPCCs to test the hypothesis that global gene expression patterns in stable PHHs can be used to distinguish clinical hepatotoxic drugs from their non-liver-toxic analogs and understand the mechanism of action prior to the onset of overt hepatotoxicity. We found that MPCCs treated with the clinical hepatotoxic/non-liver-toxic pair, troglitazone/rosiglitazone, at each drug's reported and non-toxic Cmax (maximum concentration in human plasma) for 1, 7, and 14 days displayed a total of 12, 269, and 628 differentially expressed genes, respectively, relative to the vehicle-treated control. Troglitazone modulated >75% of transcripts across pathways such as fatty acid and drug metabolism, oxidative stress, inflammatory response, and complement/coagulation cascades. Escalating rosiglitazone's dose to that of troglitazone's Cmax increased modulated transcripts relative to the lower dose; however, over half the identified transcripts were still exclusively modulated by troglitazone. Last, other hepatotoxins (nefazodone, ibufenac, and tolcapone) also induced a greater number of differentially expressed genes in MPCCs than their non-liver-toxic analogs (buspirone, ibuprofen, and entacapone) following 7 days of treatment. In conclusion, MPCCs allow evaluation of time- and dose-dependent gene expression patterns in PHHs treated chronically with analog drugs.
Collapse
Affiliation(s)
- Brenton R Ware
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | - Wendy Y Sunada
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, USA.,Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado, USA
| | - Salman R Khetani
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
20
|
Willebrords J, Maes M, Pereira IVA, da Silva TC, Govoni VM, Lopes VV, Crespo Yanguas S, Shestopalov VI, Nogueira MS, de Castro IA, Farhood A, Mannaerts I, van Grunsven L, Akakpo J, Lebofsky M, Jaeschke H, Cogliati B, Vinken M. Protective effect of genetic deletion of pannexin1 in experimental mouse models of acute and chronic liver disease. Biochim Biophys Acta Mol Basis Dis 2017; 1864:819-830. [PMID: 29246445 DOI: 10.1016/j.bbadis.2017.12.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/27/2017] [Accepted: 12/11/2017] [Indexed: 12/14/2022]
Abstract
Pannexins are transmembrane proteins that form communication channels connecting the cytosol of an individual cell with its extracellular environment. A number of studies have documented the presence of pannexin1 in liver as well as its involvement in inflammatory responses. In this study, it was investigated whether pannexin1 plays a role in acute liver failure and non-alcoholic steatohepatitis, being prototypical acute and chronic liver pathologies, respectively, both featured by liver damage, oxidative stress and inflammation. To this end, wild-type and pannexin1-/- mice were overdosed with acetaminophen for 1, 6, 24 or 48h or were fed a choline-deficient high-fat diet for 8weeks. Evaluation of the effects of genetic pannexin1 deletion was based on a number of clinically relevant read-outs, including markers of liver damage, histopathological analysis, lipid accumulation, protein adduct formation, oxidative stress and inflammation. In parallel, in order to elucidate molecular pathways affected by pannexin1 deletion as well as to mechanistically anchor the clinical observations, whole transcriptome analysis of liver tissue was performed. The results of this study show that pannexin1-/- diseased mice present less liver damage and oxidative stress, while inflammation was only decreased in pannexin1-/- mice in which non-alcoholic steatohepatitis was induced. A multitude of genes related to inflammation, oxidative stress and xenobiotic metabolism were differentially modulated in both liver disease models in wild-type and in pannexin1-/- mice. Overall, the results of this study suggest that pannexin1 may play a role in the pathogenesis of liver disease.
Collapse
Affiliation(s)
- Joost Willebrords
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Michaël Maes
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Isabel Veloso Alves Pereira
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, 05508-270 São Paulo, Brazil.
| | - Tereza Cristina da Silva
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, 05508-270 São Paulo, Brazil.
| | - Veronica Mollica Govoni
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, 05508-270 São Paulo, Brazil.
| | - Valéria Veras Lopes
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, 05508-270 São Paulo, Brazil.
| | - Sara Crespo Yanguas
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Valery I Shestopalov
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, 33136 Miami, FL, United States.
| | - Marina Sayuri Nogueira
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, 05508-270 São Paulo, Brazil.
| | - Inar Alves de Castro
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, 05508-270 São Paulo, Brazil.
| | - Anwar Farhood
- Department of Pathology, St. David's North Austin Medical Center, 601E 15th Street, 78701 Austin, United States.
| | - Inge Mannaerts
- Department of Liver Cell Biology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Leo van Grunsven
- Department of Liver Cell Biology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Jephte Akakpo
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, 66160 Kansas City, United States.
| | - Margitta Lebofsky
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, 66160 Kansas City, United States.
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, 66160 Kansas City, United States.
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, 05508-270 São Paulo, Brazil.
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
21
|
Biochemical targets of drugs mitigating oxidative stress via redox-independent mechanisms. Biochem Soc Trans 2017; 45:1225-1252. [PMID: 29101309 DOI: 10.1042/bst20160473] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/24/2017] [Accepted: 09/26/2017] [Indexed: 12/13/2022]
Abstract
Acute or chronic oxidative stress plays an important role in many pathologies. Two opposite approaches are typically used to prevent the damage induced by reactive oxygen and nitrogen species (RONS), namely treatment either with antioxidants or with weak oxidants that up-regulate endogenous antioxidant mechanisms. This review discusses options for the third pharmacological approach, namely amelioration of oxidative stress by 'redox-inert' compounds, which do not inactivate RONS but either inhibit the basic mechanisms leading to their formation (i.e. inflammation) or help cells to cope with their toxic action. The present study describes biochemical targets of many drugs mitigating acute oxidative stress in animal models of ischemia-reperfusion injury or N-acetyl-p-aminophenol overdose. In addition to the pro-inflammatory molecules, the targets of mitigating drugs include protein kinases and transcription factors involved in regulation of energy metabolism and cell life/death balance, proteins regulating mitochondrial permeability transition, proteins involved in the endoplasmic reticulum stress and unfolded protein response, nuclear receptors such as peroxisome proliferator-activated receptors, and isoprenoid synthesis. The data may help in identification of oxidative stress mitigators that will be effective in human disease on top of the current standard of care.
Collapse
|
22
|
Shirmohammadi M, Salamat N, Ronagh MT, Movahedinia A, Hamidian G. Assessment of immune status of yellowfin seabream (Acanthopagrus latus) during short term exposure to phenanthrene. Comp Biochem Physiol C Toxicol Pharmacol 2017; 195:78-90. [PMID: 28257924 DOI: 10.1016/j.cbpc.2017.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 02/23/2017] [Accepted: 02/23/2017] [Indexed: 10/20/2022]
Abstract
The aim of the present investigation was to assess the immune status in yellowfin seabream (Acanthopagrus latus) exposed to different concentrations of phenanthrene (Phe) for 14days. In addition, the Phe accumulation in the fish muscle was measured during the experiment. Fish were injected with different concentrations (0, 2, 20 and 40mg/kg) of Phe and samples were taken from tissue and blood of fish 1, 4, 7 and 14days after injection. Exposure of fish to Phe caused a significant decrease in white blood cells, C3 and C4 levels, lysosomal membrane stability, lysozyme activity after 4days and antibacterial activity after 7days of the experiment. In contrast, cortisol level significantly increased after 4days. The concentration of Phe in fish muscle increased rapidly after 4days. The main tissue changes observed in the head kidney including increase in melanomacrophage centers (MMCs), empty spaces between cells and hemorrhage. The degree of tissue changes ranged from normal to moderate in Phe-treated fish. The size and number of MMCs in treated fish were significantly higher than control. In conclusion, Phe toxicity in yellowfin seabream can induce increased cortisol level, tissue changes and immune suppression.
Collapse
Affiliation(s)
- Mehrnaz Shirmohammadi
- Department of Marine Biology, Faculty of Marine Science, Khorramshahr University of Marine Science and Technology, Khorramshahr City, Khuzestan Province, Iran.
| | - Negin Salamat
- Department of Marine Biology, Faculty of Marine Science, Khorramshahr University of Marine Science and Technology, Khorramshahr City, Khuzestan Province, Iran.
| | - Mohammad Taghi Ronagh
- Department of Marine Biology, Faculty of Marine Science, Khorramshahr University of Marine Science and Technology, Khorramshahr City, Khuzestan Province, Iran.
| | - Abdolali Movahedinia
- Department of Marine Biology, Faculty of Marine Science, Khorramshahr University of Marine Science and Technology, Khorramshahr City, Khuzestan Province, Iran.
| | - Gholamreza Hamidian
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
23
|
Miyashima Y, Honma Y, Miyagawa K, Oe S, Senju M, Shibata M, Hiura M, Abe S, Harada M. Daclatasvir and Asunaprevir Combination Therapy-induced Hepatitis and Cholecystitis with Coagulation Disorder due to Hypersensitivity Reactions. Intern Med 2016; 55:3595-3601. [PMID: 27980259 PMCID: PMC5283959 DOI: 10.2169/internalmedicine.55.7347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A 70-year-old woman with chronic hepatitis C was admitted to our hospital due to liver injury, cholecystitis, and disseminated intravascular coagulation with a fever and skin rash. She had been on a combination regimen of daclatasvir and asunaprevir for 2 weeks of a 24-week regimen. Because of the symptoms, laboratory findings, results of a drug-induced lymphocyte stimulation test, and pathological findings of liver biopsy, we diagnosed her with drug-induced liver injury. Although daclatasvir and asunaprevir combination therapy is generally well-tolerated, some serious adverse effects have been reported. Our findings indicate that immunoallergic mechanisms were associated with daclatasvir and asunaprevir-induced liver injury.
Collapse
Affiliation(s)
- Yuichi Miyashima
- Third Department of Internal Medicine, University of Occupational and Environmental Health, School of Medicine, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Du K, McGill MR, Xie Y, Jaeschke H. Benzyl alcohol protects against acetaminophen hepatotoxicity by inhibiting cytochrome P450 enzymes but causes mitochondrial dysfunction and cell death at higher doses. Food Chem Toxicol 2015; 86:253-61. [PMID: 26522885 DOI: 10.1016/j.fct.2015.10.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/20/2015] [Accepted: 10/26/2015] [Indexed: 12/13/2022]
Abstract
Acetaminophen (APAP) hepatotoxicity is a serious public health problem in western countries. Current treatment options for APAP poisoning are limited and novel therapeutic intervention strategies are needed. A recent publication suggested that benzyl alcohol (BA) protects against APAP hepatotoxicity and could serve as a promising antidote for APAP poisoning. To assess the protective mechanisms of BA, C56Bl/6J mice were treated with 400 mg/kg APAP and/or 270 mg/kg BA. APAP alone caused extensive liver injury at 6 h and 24 h post-APAP. This injury was attenuated by BA co-treatment. Assessment of protein adduct formation demonstrated that BA inhibits APAP metabolic activation. In support of this, in vitro experiments also showed that BA dose-dependently inhibits cytochrome P450 activities. Correlating with the hepatoprotection of BA, APAP-induced oxidant stress and mitochondrial dysfunction were reduced. Similar results were obtained in primary mouse hepatocytes. Interestingly, BA alone caused mitochondrial membrane potential loss and cell toxicity at high doses, and its protective effect could not be reproduced in primary human hepatocytes (PHH). We conclude that BA protects against APAP hepatotoxicity mainly by inhibiting cytochrome P450 enzymes in mice. Considering its toxic effect and the loss of protection in PHH, BA is not a clinically useful treatment option for APAP overdose patient.
Collapse
Affiliation(s)
- Kuo Du
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Mitchell R McGill
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Yuchao Xie
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
25
|
Kim H, Kim JH, Kim SY, Jo D, Park HJ, Kim J, Jung S, Kim HS, Lee K. Meta-Analysis of Large-Scale Toxicogenomic Data Finds Neuronal Regeneration Related Protein and Cathepsin D to Be Novel Biomarkers of Drug-Induced Toxicity. PLoS One 2015; 10:e0136698. [PMID: 26335687 PMCID: PMC4559398 DOI: 10.1371/journal.pone.0136698] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/05/2015] [Indexed: 11/19/2022] Open
Abstract
Undesirable toxicity is one of the main reasons for withdrawing drugs from the market or eliminating them as candidates in clinical trials. Although numerous studies have attempted to identify biomarkers capable of predicting pharmacotoxicity, few have attempted to discover robust biomarkers that are coherent across various species and experimental settings. To identify such biomarkers, we conducted meta-analyses of massive gene expression profiles for 6,567 in vivo rat samples and 453 compounds. After applying rigorous feature reduction procedures, our analyses identified 18 genes to be related with toxicity upon comparisons of untreated versus treated and innocuous versus toxic specimens of kidney, liver and heart tissue. We then independently validated these genes in human cell lines. In doing so, we found several of these genes to be coherently regulated in both in vivo rat specimens and in human cell lines. Specifically, mRNA expression of neuronal regeneration-related protein was robustly down-regulated in both liver and kidney cells, while mRNA expression of cathepsin D was commonly up-regulated in liver cells after exposure to toxic concentrations of chemical compounds. Use of these novel toxicity biomarkers may enhance the efficiency of screening for safe lead compounds in early-phase drug development prior to animal testing.
Collapse
Affiliation(s)
- Hyosil Kim
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Ju-Hwa Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - So Youn Kim
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Korea
| | - Deokyeon Jo
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Korea
| | - Ho Jun Park
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Korea
| | - Jihyun Kim
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Korea
| | - Sungwon Jung
- Department of Genome Medicine and Science, School of Medicine, Gachon University, Incheon, Korea
- * E-mail: (HSK); (SJ)
| | - Hyun Seok Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
- * E-mail: (HSK); (SJ)
| | - KiYoung Lee
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
26
|
Lei YC, Li W, Luo P. Liuweiwuling tablets attenuate acetaminophen-induced acute liver injury and promote liver regeneration in mice. World J Gastroenterol 2015; 21:8089-8095. [PMID: 26185380 PMCID: PMC4499351 DOI: 10.3748/wjg.v21.i26.8089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 02/04/2015] [Accepted: 03/31/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the mechanism of protection against acetaminophen-induced acute liver injury by Liuweiwuling tablets.
METHODS: Intraperitoneal injections of acetaminophen (250 mg/kg) were used to induce acute liver injury in male C57BL/6 mice. A total of 24 healthy mice were randomly assigned to two groups: an acute liver injury group (control group) and a Liuweiwuling tablet group. Mice were given Liuweiwuling tablets or a vehicle (PBS) orally prior to the administration of acetaminophen. Serum alanine aminotransferase (ALT) and aspartate aminotransaminase (AST) levels were measured at different time points within one week, and pathological examinations of liver tissues were performed 36 h after induction of acute liver injury. Serum inflammatory cytokines, such as high mobility group box protein B1 (HMGB1), tumor necrosis factor (TNF)-α and interleukin IL-1β, were detected using an ELISA method according to the manufacturer’s instructions. Hepatic morphological changes at 36 h were assessed by hematoxylin and eosin staining. Expression of proliferating cell nuclear antigen (PCNA) in liver tissue was determined by Western blot analysis. The mRNA levels of hepatocyte proliferation markers (PCNA, CyclinD1 and p21) were detected by real-time quantitative reverse transcription-polymerase chain reaction.
RESULTS: The levels of ALT/AST in the Liuweiwuling tablet group were decreased significantly at 6, 12 and 24 h compared to that of the control group (654.38 ± 120.87 vs 1566.17 ± 421.64, 1154.18 ± 477.72 vs 4654.84 ± 913.71 and 935.13 ± 252.34 vs 4553.75 ± 727.37, P < 0.01). Serum HMGB1 levels at 6 and 12 h for the Liuweiwuling tablet group were significantly lower than those of the control group (23.49 ± 3.89 vs 58.6 ± 3.65, 61.62 ± 13.07 vs 27.32 ± 5.97, P < 0.01). Furthermore, serum TNF-α and IL-1β levels at 12 h in the Liuweiwuling tablet group were also significantly lower than those of the control group (299.35 ± 50.61 vs 439.03 ± 63.59, 57.42 ± 12.98 vs 160.07 ± 49.87, P < 0.01). Centrilobular necrosis was evident in liver tissue of mice with acetaminophen-induced acute liver injury, but was almost abolished in the Liuweiwuling tablet group. The expression levels of PCNA and CyclinD1 were up-regulated in liver tissue in the Liuweiwuling tablet group (321.08 ± 32.87 vs 157.91 ± 21.52, 196.37 ± 25.39 vs 68.72 ± 11.27, P < 0.01); however, expression of p21 in liver tissue was down-regulated compared to that of the control group (40.26 ± 9.97 vs 138.24 ± 13.66, P < 0.01).
CONCLUSION: Liuweiwuling tablets can attenuate acute liver injury by decreasing inflammatory cytokine (HMGB1, TNF-α and IL-1β) levels and promoting liver regeneration.
Collapse
|
27
|
Botelho SC, Saghafian M, Pavlova S, Hassan M, DePierre JW, Abedi-Valugerdi M. Complement activation is involved in the hepatic injury caused by high-dose exposure of mice to perfluorooctanoic acid. CHEMOSPHERE 2015; 129:225-31. [PMID: 25108893 DOI: 10.1016/j.chemosphere.2014.06.093] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/17/2014] [Accepted: 06/19/2014] [Indexed: 05/28/2023]
Abstract
High-dose exposure of mice to perfluorooctanoate (PFOA) induces both hepatotoxicity and immunotoxicity. Here, we characterized the effects of 10-day dietary treatment with PFOA (0.002-0.02%, w/w) on the liver and complement system of male C57BL/6 mice. At all four doses, this compound caused hepatomegaly and reduced the serum level of triglycerides (an indicator for activation of the peroxisome proliferator-activated receptor-alpha (PPARα)). At the highest dose (0.02%, w/w), this hepatomegaly was associated with the hepatic injury, as reflected in increased activity of alanine aminotranferase (ALAT) in the serum, severe hepatocyte hypertrophy and hepatocellular necrosis. PFOA-induced hepatic injury was associated with in vivo activation of the complement system as indicated by (i) significant attenuation of the serum activities of both the classical and alternative pathways; (ii) a marked reduction in the serum level of the complement factor C3; and (iii) deposition of the complement factor C3 fragment (C3a) in the hepatic parenchyma. PFOA did not activate the alternative pathway of complement in vitro. At doses lower than 0.02%, PFOA induced hepatocyte hypertrophy without causing liver injury or activating complement. These results reveal substantial involvement of activation of complement in the pathogenesis of PFOA-induced hepatotoxicity.
Collapse
Affiliation(s)
- Salomé Calado Botelho
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for the Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
| | - Maryam Saghafian
- Experimental Cancer Medicine, Clinical Research Center, Novum, Karolinska University Hospital, Huddinge, 141 86 Stockholm, Sweden.
| | - Svetlana Pavlova
- Experimental Cancer Medicine, Clinical Research Center, Novum, Karolinska University Hospital, Huddinge, 141 86 Stockholm, Sweden.
| | - Moustapha Hassan
- Experimental Cancer Medicine, Clinical Research Center, Novum, Karolinska University Hospital, Huddinge, 141 86 Stockholm, Sweden.
| | - Joseph W DePierre
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for the Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
| | - Manuchehr Abedi-Valugerdi
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for the Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden; Experimental Cancer Medicine, Clinical Research Center, Novum, Karolinska University Hospital, Huddinge, 141 86 Stockholm, Sweden; ImmunoBioTox (IBT) AB, 16954 Solna, Sweden.
| |
Collapse
|
28
|
Hepatoprotective Effect of Silymarin (Silybum marianum) on Hepatotoxicity Induced by Acetaminophen in Spontaneously Hypertensive Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:538317. [PMID: 25821491 PMCID: PMC4363982 DOI: 10.1155/2015/538317] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 01/19/2023]
Abstract
This study was aimed to investigate the effect of Silymarin (SLM) on the hypertension state and the liver function changes induced by acetaminophen (APAP) in spontaneously hypertensive rat (SHR). Animals normotensive (N) or hypertensive (SHR) were treated or not with APAP (3 g/kg, oral) or previously treated with SLM. Twelve hours after APAP administration, plasmatic levels of liver function markers: alanine aminotransferase (ALT), aspartate aminotransferase (AST), glucose (GLU), gamma glutamyl transferase (γ-GT), and alkaline phosphatase (ALP) of all groups, were determined. Liver injury was assessed using histological studies. Samples of their livers were then used to determine the myeloperoxidase (MPO) activity and nitric oxide (NO) production and were also sectioned for histological analysis. No differences were observed for ALT, γ-GT, and GLU levels between SHR and normotensive rats groups. However, AST and ALP levels were increased in hypertensive animals. APAP treatment promoted an increase in ALT and AST in both SHR and N. However, only for SHR, γ-GT levels were increased. The inflammatory response evaluated by MPO activity and NO production showed that SHR was more susceptible to APAP effect, by increasing leucocyte infiltration. Silymarin treatment (Legalon) restored the hepatocyte functional and histopathological alterations induced by APAP in normotensive and hypertensive animals.
Collapse
|
29
|
Laursen TL, Sandahl TD, Støy S, Schiødt FV, Lee WM, Vilstrup H, Thiel S, Grønbæk H. Circulating mannan-binding lectin, M-, L-, H-ficolin and collectin-liver-1 levels in patients with acute liver failure. Liver Int 2015; 35:756-63. [PMID: 25203057 PMCID: PMC4329085 DOI: 10.1111/liv.12682] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 08/26/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS The complement system is activated in liver diseases including acute liver failure (ALF); however, the role of the lectin pathway of complement has scarcely been investigated in ALF. The pathway is initiated by soluble pattern recognition molecules: mannan-binding lectin (MBL), M-, L-, and H-ficolin and collectin-liver-1 (CL-L1), which are predominantly synthesized in the liver. We aimed to study lectin levels in ALF patients and associations with clinical outcome. METHODS Serum samples from 75 patients enrolled by the US ALF Study Group were collected on days 1 and 3. We included 75 healthy blood donors and 20 cirrhosis patients as controls. Analyses were performed using sandwich-type immunoassays (ELISA, TRIFMA). RESULTS At day 1, the MBL level in ALF patients was 40% lower compared with healthy controls {[median (interquartile range) 0.72 μg/ml(0.91) vs. 1.15 (1.92)(P = 0.02]}, and increased significantly by day 3 [0.83 μg/ml(0.94)(P = 0.01)]. The M-ficolin level was 60% lower [0.54 μg/ml(0.50) vs. 1.48(1.01)(P < 0.0001)]. The CL-L1 level at day 1 was slightly higher compared with healthy controls [3.20 μg/ml(2.37) vs. 2.64(0.72)(P = 0.11)]; this was significant at day 3 [3.35(1.84)(P = 0.006)]. H- and L-ficolin levels were similar to healthy controls. Spontaneous ALF survivors had higher levels of MBL at day 1 [0.96 μg/ml(1.15) vs. 0.60(0.60)(P = 0.02)] and lower levels of L-ficolin by day 3 compared with patients who died or were transplanted [1.61 μg/ml(1.19) vs. 2.17(2.19)(P = 0.02)]. CONCLUSION We observed significant dynamics in lectin levels in ALF patients, which may suggest they play a role in ALF pathogenesis. High MBL and low L-ficolin levels are associated with survival.
Collapse
Affiliation(s)
- Tea Lund Laursen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Denmark
| | | | - Sidsel Støy
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Denmark
| | - Frank Vinholt Schiødt
- Department of Gastroenterology and Hepatology, Bispebjerg Hospital, 2400 Copenhagen NV, Denmark
| | - William M. Lee
- Division of Digestive and Liver Diseases, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Denmark
| | - Steffen Thiel
- Department of Biomedicine - Medical Microbiology and Immunology, Aarhus University, Denmark
| | - Henning Grønbæk
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Denmark
| | | |
Collapse
|
30
|
Marshall KM, He S, Zhong Z, Atkinson C, Tomlinson S. Dissecting the complement pathway in hepatic injury and regeneration with a novel protective strategy. ACTA ACUST UNITED AC 2014; 211:1793-805. [PMID: 25113972 PMCID: PMC4144741 DOI: 10.1084/jem.20131902] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A novel site-targeted murine complement inhibitor, CR2-CD59, specifically inhibits the terminal membrane attack complex. This inhibitor dissects the complement pathway to protect against liver injury while promoting regeneration in mouse models of liver resection and acute liver failure. Liver resection is commonly performed under ischemic conditions, resulting in two types of insult to the remnant liver: ischemia reperfusion injury (IRI) and loss of liver mass. Complement inhibition is recognized as a potential therapeutic modality for IRI, but early complement activation products are also essential for liver regeneration. We describe a novel site-targeted murine complement inhibitor, CR2-CD59, which specifically inhibits the terminal membrane attack complex (MAC), and we use this protein to investigate the complement-dependent balance between liver injury and regeneration in a clinical setting of pharmacological inhibition. CR2-CD59 did not impact in vivo generation of C3 and C5 activation products but was as effective as the C3 activation inhibitor CR2-Crry at ameliorating hepatic IRI, indicating that the MAC is the principle mediator of hepatic IRI. Furthermore, unlike C3 or C5 inhibition, CR2-CD59 was not only protective but significantly enhanced hepatocyte proliferation after partial hepatectomy, including when combined with ischemia and reperfusion. Remarkably, CR2-CD59 also enhanced regeneration after 90% hepatectomy and improved long-term survival from 0 to 70%. CR2-CD59 functioned by increasing hepatic TNF and IL-6 levels with associated STAT3 and Akt activation, and by preventing mitochondrial depolarization and allowing recovery of ATP stores.
Collapse
Affiliation(s)
- Keely M Marshall
- Department of Microbiology and Immunology, Darby Children's Research Institute, and Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425
| | - Songqing He
- Department of Microbiology and Immunology, Darby Children's Research Institute, and Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425 Department of Hepatobiliary Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| | - Zhi Zhong
- Department of Microbiology and Immunology, Darby Children's Research Institute, and Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425
| | - Carl Atkinson
- Department of Microbiology and Immunology, Darby Children's Research Institute, and Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Darby Children's Research Institute, and Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425 Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401
| |
Collapse
|
31
|
Ju C, Roth RA. PKCs: pernicious kinase culprits in acetaminophen pathogenesis. Hepatology 2014; 59:1229-31. [PMID: 24677191 DOI: 10.1002/hep.26923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 09/06/2013] [Accepted: 10/31/2013] [Indexed: 12/07/2022]
Affiliation(s)
- Cynthia Ju
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO
| | | |
Collapse
|
32
|
Zhang J, Zha W, Wang F, Jiang T, Xu S, Yu J, Zhou C, Shen T, Wu C, Zhu Q. Complement Activation and Liver Impairment in Trichloroethylene-Sensitized BALB/c Mice. Int J Toxicol 2013; 32:431-41. [DOI: 10.1177/1091581813511337] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Our recent studies have shown that trichloroethylene (TCE) was able to induce multisystem injuries in the form of occupational medicamentosa-like dermatitis, including skin, kidney, and liver damages. However, the role of complement activation in the immune-mediated liver injury is not known. This study examined the role of complement activation in the liver injury in a mouse model of TCE-induced sensitization. Treatment of female BALB/c mice with TCE under specific dosing protocols resulted in skin inflammation and sensitization. Skin edema and erythema occurred in TCE-sensitized groups. Trichloroethylene sensitization produced liver histopathological lesions, increased serum alanine aminotransferase, aspartate transaminase activities, and the relative liver weight. The concentrations of serum complement components C3a-desArg, C5a-desArg, and C5b-9 were significantly increased in 24-hour, 48-hour, and 72-hour sensitization-positive groups treated with TCE and peaked in the 72-hour sensitization-positive group. Depositions of C3a, C5a, and C5b-9 into the liver tissue were also revealed by immunohistochemistry. Immunofluorescence further verified high C5b-9 expression in 24-hour, 48-hour, and 72-hour sensitization-positive groups in response to TCE treatment. Reverse transcription–polymerase chain reaction detected C3 messenger RNA expression in the liver, and this was significantly increased in 24-hour and 48-hour sensitization-positive groups with a transient reduction at 72 hours. These results provide the first experimental evidence that complement activation may play a key role in the generation and progression of immune-mediated hepatic injury by exposure to TCE.
Collapse
Affiliation(s)
- Jiaxiang Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Wansheng Zha
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Feng Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Tao Jiang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Shuhai Xu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Junfeng Yu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Chengfan Zhou
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Tong Shen
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Changhao Wu
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Qixing Zhu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, People’s Republic of China
| |
Collapse
|
33
|
Ferah I, Halici Z, Bayir Y, Demirci E, Unal B, Cadirci E. The role of infliximab on paracetamol-induced hepatotoxicity in rats. Immunopharmacol Immunotoxicol 2013; 35:373-81. [PMID: 23496246 DOI: 10.3109/08923973.2013.775589] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Paracetamol has a reasonable safety profile when consumed in therapeutic doses. However, it could induce hepatotoxicity and even acute liver failure when taken at an overdose. Infliximab is tumor necrosis factor alpha (TNF-α) inhibitor agent, which has been developed as a therapeutic agent for TNF-α-mediated disease. It acts by binding and neutralizing TNF. The aim of our study was to evaluate the hepatoprotective activity of infliximab on paracetamol-induced hepatotoxicity and to understand the relationship between the TNF-α and paracetamol-induced liver injury. Fifty-six rats were divided into eight groups as each composed of seven rats: (1) intact, (2) 7 mg/kg infliximab, (3) 140 mg/kg NAC, (4) 2 g/kg paracetamol, (5) 2 g/kg paracetamol + 140 mg/kg NAC, (6) 2 g/kg paracetamol + 3 mg/kg infliximab, (7) 2 g/kg paracetamol + 5 mg/kg infliximab and (8) 2 g/kg paracetamol + 7 mg/kg infliximab groups. Liver function tests including lipid peroxidation levels were analyzed and histopathological changes of liver were also observed. There were statistically significant increases in the activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), levels of TNF-α and malondialdehyde (MDA) and decreases in the activity of superoxide dismutase (SOD) and level of glutathione (GSH) in the group treated with paracetamol. Infliximab administration dramatically reduced serum ALT, AST and TNF-α level. Also, it restored GSH, SOD and decreased MDA levels in liver. Liver histopathological examination showed that infliximab administration antagonized paracetamol-induced liver pathological damage. The results of present study suggest that infliximab has significant hepatoprotective activity on paracetamol-induced hepatotoxicity.
Collapse
Affiliation(s)
- Irmak Ferah
- Department of Pharmacology, Ataturk University Faculty of Medicine, Erzurum, Turkey
| | | | | | | | | | | |
Collapse
|
34
|
Hugenholtz GCG, Meijers JCM, Adelmeijer J, Porte RJ, Lisman T. TAFI deficiency promotes liver damage in murine models of liver failure through defective down-regulation of hepatic inflammation. Thromb Haemost 2013; 109:948-55. [PMID: 23467679 DOI: 10.1160/th12-12-0930] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 02/04/2013] [Indexed: 12/16/2022]
Abstract
Emerging evidence indicates that various haemostatic components can regulate the progression of liver disease. Thrombin-activatable fibrinolysis inhibitor (TAFI) possesses anti-inflammatory properties besides its anti-fibrinolytic function. Here, we investigated the contribution of TAFI to the progression of disease in murine models of chronic and acute liver failure. Chronic carbon tetrachloride (CCL4) administration induced liver damage and fibrosis both in TAFI knockout (TAFI-/-) mice and wild-type controls. Smooth muscle actin-α (α-SMA) content of liver tissue was significantly increased after 1 and 3 weeks, and pro-collagen α1 expression was significantly increased after 3 and 6 weeks in TAFI-/- mice. TAFI-/- mice showed significantly elevated levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) after 3 weeks of CCL4. Neutrophil influx was significantly increased in TAFI-/- mice after 6 weeks of CCL4. No difference in hepatic fibrin deposition between TAFI-/- and wild-types was observed. After acetaminophen intoxication, necrosis was significantly increased in TAFI-/- mice at 24 hours (h) after injection. AST and ALT levels were decreased at 2 and 6 h after acetaminophen injection in TAFI-/- mice, but were significantly higher in the TAFI-/- mice at 24 h. Similarly, hepatic fibrin deposition was decreased at 6 h in TAFI-/- mice, but was comparable to wild-types at 24 h after injection. In conclusion, TAFI deficiency results in accelerated fibrogenesis and increased liver damage in murine models of chronic and acute liver disease, which may be related to increased inflammation.
Collapse
Affiliation(s)
- G C G Hugenholtz
- Department of Surgery, BA44, University Medical Center Groningen, Groningen, the Netherlands.
| | | | | | | | | |
Collapse
|
35
|
Identification and quantification of drug-albumin adducts in serum samples from a drug exposure study in mice. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 917-918:53-61. [PMID: 23353939 DOI: 10.1016/j.jchromb.2012.12.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 12/07/2012] [Accepted: 12/10/2012] [Indexed: 01/11/2023]
Abstract
The formation of drug-protein adducts following the bioactivation of drugs to reactive metabolites has been linked to adverse drug reactions (ADRs) and is a major complication in drug discovery and development. Identification and quantification of drug-protein adducts in vivo may lead to a better understanding of drug toxicity, but is challenging due to their low abundance in the complex biological samples. Human serum albumin (HSA) is a well-known target of reactive drug metabolites due to the free cysteine on position 34 and is often the first target to be investigated in covalent drug binding studies. Presented here is an optimized strategy for targeted analysis of low-level drug-albumin adducts in serum. This strategy is based on selective extraction of albumin from serum through affinity chromatography, efficient sample treatment and clean-up using gel filtration chromatography followed by tryptic digestion and LC-MS analysis. Quantification of the level of albumin modification was performed through a comparison of non-modified and drug-modified protein based on the relative peak area of the tryptic peptide containing the free cysteine residue. The analysis strategy was applied to serum samples resulting from a drug exposure experiment in mice, which was designed to study the effects of different acetaminophen (APAP) treatments on drug toxicity. APAP is bioactivated to N-acetyl-p-benzoquinoneimine (NAPQI) in both humans and mice and is known to bind to cysteine 34 (cys34) of HSA. Analysis of the mouse serum samples revealed the presence of extremely low-level NAPQI-albumin adducts of approximately 0.2% of the total mouse serum albumin (MSA), regardless of the length of drug exposure. Due to the targeted nature of the strategy, the NAPQI-adduct formation on cys34 could be confirmed while adducts to the second free cysteine on position 579 of MSA were not detected.
Collapse
|