1
|
Takayama Y, Tominaga M. Interaction between TRP channels and anoctamins. Cell Calcium 2024; 121:102912. [PMID: 38823351 DOI: 10.1016/j.ceca.2024.102912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Anoctamin 1 (ANO1) binds to transient receptor potential (TRP) channels (protein-protein interaction) and then is activated by TRP channels (functional interaction). TRP channels are non-selective cation channels that are expressed throughout the body and play roles in multiple physiological functions. Studies on TRP channels increased after the identification of TRP vanilloid 1 (TRPV1) in 1997. Calcium-activated chloride channel anoctamin 1 (ANO1, also called TMEM16A and DOG1) was identified in 2008. ANO1 plays a major role in TRP channel-mediated functions, as first shown in 2014 with the demonstration of a protein-protein interaction between TRPV4 and ANO1. In cells that co-express TRP channels and ANO1, calcium entering cells through activated TRP channels causes ANO1 activation. Therefore, in many tissues, the physiological functions related to TRP channels are modulated through chloride flux associated with ANO1 activation. In this review, we summarize the latest understanding of TRP-ANO1 interactions, particularly interaction of ANO1 with TRPV4, TRP canonical 6 (TRPC6), TRPV3, TRPV1, and TRPC2 in the salivary glands, blood vessels, skin keratinocytes, primary sensory neurons, and vomeronasal organs, respectively.
Collapse
Affiliation(s)
- Yasunori Takayama
- Department of Physiology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, Japan.
| | - Makoto Tominaga
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 5-1 Aza-Higashiyama, Myodaiji, Okazaki, Aichi, Japan; Thermal Biology Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 5-1 Aza-Higashiyama, Myodaiji, Okazaki, Aichi, Japan; Thermal Biology Research Group, Nagoya Advanced Research and Development Center, Nagoya City University, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, Japan.
| |
Collapse
|
2
|
Mažerik J, Gondáš E, Smieško L, Fraňová S, Šutovská M. Effects of TRPV4 channel blocker on airway inflammation and airway defense reflexes in experimentally induced model of allergic asthma. Respir Physiol Neurobiol 2023; 316:104123. [PMID: 37495166 DOI: 10.1016/j.resp.2023.104123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
The transient receptor potential (TRP) channels regulate physiological and pathological processes. Changes in their activity and sensitivity may be involved in the pathophysiology of asthma. The present study investigates the effect of an inhaled TRPV4 channel blocker HC-067047 in an experimental guinea pig model of ovalbumin-induced allergic asthma. We monitored the effect of 50 nM, 100 nM, and 150 nM HC-067047 concentrations on airway defense reflexes in vivo and tracheal smooth muscle contractility in vitro. The anti-inflammatory action of HC-067047 was investigated by analysis of chronic inflammation markers from lung homogenates. The results suggest that HC-067047 can suppress airway defense reflexes in vivo and acetylcholine-induced contractility in vitro. Immunological analysis revealed that TRPV4 channel blockade leads to a decrease in the levels of inflammatory cytokines. An effect on airway defence reflexes and airway inflammation was observed using tested concentrations (50 mM, 100 mM, 150 mM) of HC-067047. The effects of HC-067047 on both airway defense reflexes and inflammation underline the role of TRPV4 channels in asthma and uncover therapeutic targets for developing innovative drugs in asthma therapy.
Collapse
Affiliation(s)
- Jozef Mažerik
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.
| | - Eduard Gondáš
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Lukáš Smieško
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Soňa Fraňová
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Martina Šutovská
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
3
|
Zhang M, Ma Y, Ye X, Zhang N, Pan L, Wang B. TRP (transient receptor potential) ion channel family: structures, biological functions and therapeutic interventions for diseases. Signal Transduct Target Ther 2023; 8:261. [PMID: 37402746 DOI: 10.1038/s41392-023-01464-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/26/2023] [Accepted: 04/25/2023] [Indexed: 07/06/2023] Open
Abstract
Transient receptor potential (TRP) channels are sensors for a variety of cellular and environmental signals. Mammals express a total of 28 different TRP channel proteins, which can be divided into seven subfamilies based on amino acid sequence homology: TRPA (Ankyrin), TRPC (Canonical), TRPM (Melastatin), TRPML (Mucolipin), TRPN (NO-mechano-potential, NOMP), TRPP (Polycystin), TRPV (Vanilloid). They are a class of ion channels found in numerous tissues and cell types and are permeable to a wide range of cations such as Ca2+, Mg2+, Na+, K+, and others. TRP channels are responsible for various sensory responses including heat, cold, pain, stress, vision and taste and can be activated by a number of stimuli. Their predominantly location on the cell surface, their interaction with numerous physiological signaling pathways, and the unique crystal structure of TRP channels make TRPs attractive drug targets and implicate them in the treatment of a wide range of diseases. Here, we review the history of TRP channel discovery, summarize the structures and functions of the TRP ion channel family, and highlight the current understanding of the role of TRP channels in the pathogenesis of human disease. Most importantly, we describe TRP channel-related drug discovery, therapeutic interventions for diseases and the limitations of targeting TRP channels in potential clinical applications.
Collapse
Affiliation(s)
- Miao Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- The Center for Microbes, Development and Health; Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yueming Ma
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xianglu Ye
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ning Zhang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Lei Pan
- The Center for Microbes, Development and Health; Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
4
|
Rapeaux A, Constandinou TG. HFAC Dose Repetition and Accumulation Leads to Progressively Longer Block Carryover Effect in Rat Sciatic Nerve. Front Neurosci 2022; 16:852166. [PMID: 35712453 PMCID: PMC9197154 DOI: 10.3389/fnins.2022.852166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
This paper describes high-frequency nerve block experiments carried out on rat sciatic nerves to measure the speed of recovery of A fibres from block carryover. Block carryover is the process by which nerve excitability remains suppressed temporarily after High Frequency Alternative (HFAC) block is turned off following its application. In this series of experiments 5 rat sciatic nerves were extracted and prepared for ex-vivo stimulation and recording in a specially designed perfusion chamber. For each nerve repeated HFAC block and concurrent stimulation trials were carried out to observe block carryover after signal shutoff. The nerve was allowed to recover fully between each trial. Time to recovery from block was measured by monitoring for when relative nerve activity returned to within 90% of baseline levels measured at the start of each trial. HFAC block carryover duration was found to be dependent on accumulated dose by statistical test for two different HFAC durations. The carryover property of HFAC block on A fibres could enable selective stimulation of autonomic nerve fibres such as C fibres for the duration of carryover. Block carryover is particularly relevant to potential chronic clinical applications of block as it reduces power requirements for stimulation to provide the blocking effect. This work characterizes this process toward the creation of a model describing its behavior.
Collapse
Affiliation(s)
- Adrien Rapeaux
- Next Generation Neural Interfaces Lab, Centre for Bioinspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London, United Kingdom.,Care Research and Technology Centre, UK Dementia Research Institute, London, United Kingdom
| | - Timothy G Constandinou
- Next Generation Neural Interfaces Lab, Centre for Bioinspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London, United Kingdom.,Care Research and Technology Centre, UK Dementia Research Institute, London, United Kingdom
| |
Collapse
|
5
|
Toumpanakis D, Chatzianastasiou A, Vassilakopoulou V, Mizi E, Dettoraki M, Perlikos F, Giatra G, Mikos N, Theocharis S, Vassilakopoulos T. TRPV4 Inhibition Exerts Protective Effects Against Resistive Breathing Induced Lung Injury. Int J Chron Obstruct Pulmon Dis 2022; 17:343-353. [PMID: 35210764 PMCID: PMC8857953 DOI: 10.2147/copd.s336108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/03/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction TRPV4 channels are calcium channels, activated by mechanical stress, that have been implicated in the pathogenesis of pulmonary inflammation. During resistive breathing (RB), increased mechanical stress is imposed on the lung, inducing lung injury. The role of TRPV4 channels in RB-induced lung injury is unknown. Materials and Methods Spontaneously breathing adult male C57BL/6 mice were subjected to RB by tracheal banding. Following anaesthesia, mice were placed under a surgical microscope, the surface area of the trachea was measured and a nylon band was sutured around the trachea to reduce area to half. The specific TRPV4 inhibitor, HC-067047 (10 mg/kg ip), was administered either prior to RB and at 12 hrs following initiation of RB (preventive) or only at 12 hrs after the initiation of RB (therapeutic protocol). Lung injury was assessed at 24 hrs of RB, by measuring lung mechanics, total protein, BAL total and differential cell count, KC and IL-6 levels in BAL fluid, surfactant Protein (Sp)D in plasma and a lung injury score by histology. Results RB decreased static compliance (Cst), increased total protein in BAL (p < 0.001), total cell count due to increased number of both macrophages and neutrophils, increased KC and IL-6 in BAL (p < 0.001 and p = 0.01, respectively) and plasma SpD (p < 0.0001). Increased lung injury score was detected. Both preventive and therapeutic HC-067047 administration restored Cst and inhibited the increase in total protein, KC and IL-6 levels in BAL fluid, compared to RB. Preventive TRPV4 inhibition ameliorated the increase in BAL cellularity, while therapeutic TRPV4 inhibition exerted a partial effect. TRPV4 inhibition blunted the increase in plasma SpD (p < 0.001) after RB and the increase in lung injury score was also inhibited. Conclusion TRPV4 inhibition exerts protective effects against RB-induced lung injury.
Collapse
Affiliation(s)
- Dimitrios Toumpanakis
- “Marianthi Simou” Applied Biomedical Research and Training Center, Evangelismos Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Correspondence: Dimitrios Toumpanakis, Email
| | - Athanasia Chatzianastasiou
- “Marianthi Simou” Applied Biomedical Research and Training Center, Evangelismos Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Vyronia Vassilakopoulou
- “Marianthi Simou” Applied Biomedical Research and Training Center, Evangelismos Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleftheria Mizi
- “Marianthi Simou” Applied Biomedical Research and Training Center, Evangelismos Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Dettoraki
- “Marianthi Simou” Applied Biomedical Research and Training Center, Evangelismos Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Fotis Perlikos
- “Marianthi Simou” Applied Biomedical Research and Training Center, Evangelismos Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgia Giatra
- “Marianthi Simou” Applied Biomedical Research and Training Center, Evangelismos Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- 3 Department of Critical Care Medicine, Evgenideio Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Mikos
- Allergology Department, Laiko General Hospital, Athens, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodoros Vassilakopoulos
- “Marianthi Simou” Applied Biomedical Research and Training Center, Evangelismos Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- 3 Department of Critical Care Medicine, Evgenideio Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
6
|
Reyes-García J, Carbajal-García A, Montaño LM. Transient receptor potential cation channel subfamily V (TRPV) and its importance in asthma. Eur J Pharmacol 2022; 915:174692. [PMID: 34890545 DOI: 10.1016/j.ejphar.2021.174692] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022]
Abstract
Transient receptor potential (TRP) ion channels play critical roles in physiological and pathological conditions. Increasing evidence has unveiled the contribution of TRP vanilloid (TRPV) family in the development of asthma. The TRPV family is a group (TRPV1-TRPV6) of polymodal channels capable of sensing thermal, acidic, mechanical stress, and osmotic stimuli. TRPVs can be activated by endogenous ligands including, arachidonic acid derivatives or endocannabinoids. While TRPV1-TRPV4 are non-selective cation channels showing a predominance for Ca2+ over Na + influx, TRPV5 and TRPV6 are only Ca2+ permeable selective channels. Asthma is a chronic inflammatory bronchopulmonary disorder involving airway hyperresponsiveness (AHR) and airway remodeling. Patients suffering from allergic asthma display an inflammatory pattern driven by cytokines produced in type-2 helper T cells (Th2) and type 2 innate lymphoid cells (ILC2s). Ion channels are essential regulators in airway smooth muscle (ASM) and immune cells physiology. In this review, we summarize the contribution of TRPV1, TRPV2, and TRPV4 to the pathogenesis of asthma. TRPV1 is associated with hypersensitivity to environmental pollutants and chronic cough, inflammation, AHR, and remodeling. TRPV2 is increased in peripheral lymphocytes of asthmatic patients. TRPV4 contributes to ASM cells proliferation, and its blockade leads to a reduced eosinophilia, neutrophilia, as well as an abolished AHR. In conclusion, TRPV2 may represent a novel biomarker for asthma in children; meanwhile, TRPV1 and TRPV4 seem to be essential contributors to the development and exacerbations of asthma. Moreover, these channels may serve as novel therapeutic targets for this ailment.
Collapse
Affiliation(s)
- Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, México.
| | - Abril Carbajal-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, México.
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, México.
| |
Collapse
|
7
|
Advances in TRP channel drug discovery: from target validation to clinical studies. Nat Rev Drug Discov 2021; 21:41-59. [PMID: 34526696 PMCID: PMC8442523 DOI: 10.1038/s41573-021-00268-4] [Citation(s) in RCA: 257] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2021] [Indexed: 12/20/2022]
Abstract
Transient receptor potential (TRP) channels are multifunctional signalling molecules with many roles in sensory perception and cellular physiology. Therefore, it is not surprising that TRP channels have been implicated in numerous diseases, including hereditary disorders caused by defects in genes encoding TRP channels (TRP channelopathies). Most TRP channels are located at the cell surface, which makes them generally accessible drug targets. Early drug discovery efforts to target TRP channels focused on pain, but as our knowledge of TRP channels and their role in health and disease has grown, these efforts have expanded into new clinical indications, ranging from respiratory disorders through neurological and psychiatric diseases to diabetes and cancer. In this Review, we discuss recent findings in TRP channel structural biology that can affect both drug development and clinical indications. We also discuss the clinical promise of novel TRP channel modulators, aimed at both established and emerging targets. Last, we address the challenges that these compounds may face in clinical practice, including the need for carefully targeted approaches to minimize potential side-effects due to the multifunctional roles of TRP channels.
Collapse
|
8
|
Stretch-activated calcium mobilization in airway smooth muscle and pathophysiology of asthma. CURRENT OPINION IN PHYSIOLOGY 2021. [DOI: 10.1016/j.cophys.2021.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Elrashidy RA, Hasan RA. Modulation of autophagy and transient receptor potential vanilloid 4 channels by montelukast in a rat model of hemorrhagic cystitis. Life Sci 2021; 278:119507. [PMID: 33864816 DOI: 10.1016/j.lfs.2021.119507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/26/2021] [Accepted: 04/01/2021] [Indexed: 12/30/2022]
Abstract
AIMS Hemorrhagic cystitis (HC) is a major urotoxic complication of cyclophosphamide (CPA) therapy. This study investigated the uroprotective effect of montelukast on CPA-induced HC, compared to the efficacy of 2-mercaptoethane sulfonate sodium (MESNA). MAIN METHODS Male albino rats were pretreated with MESNA (40 mg/kg/day, IP) or montelukast (10 mg/kg/day, orally) for three days then received a single dose of CPA (200 mg/kg, IP), 1 h after the last dose, and compared to CPA-treated rats receiving drug vehicle. Age-matched rats were used as controls. Bladders of rats were assessed biochemically, macroscopically and microscopically by light and electron microscope 24 h later. KEY FINDINGS CPA injection contributed to increased bladder weight, urothelial ulceration, vascular congestion, hemorrhage, increased collagen deposition and mast cell infiltration, compared to control rats. Montelukast preconditioning suppressed mast cell infiltration and inflammatory mediators to greater extent than MESNA. Also, montelukast enhanced autophagosomes formation in detrusor myocytes and up-regulated the autophagy-related proteins (beclin-1 & LC3-II), likely through inhibition of phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway. Montelukast preconditioning offset the up-regulation of transient receptor potential vanilloid 4 (TRPV4) in urothelial tissue of CPA-treated rats, to greater extent than MESNA. SIGNIFICANCE These results demonstrate the uroprotective effect of montelukast on CPA-induced HC, which appears to be more superior to MESNA. These findings suggest that montelukast can emerge as a novel strategy to protect against CPA-induced urotoxicity.
Collapse
Affiliation(s)
- Rania A Elrashidy
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| | - Rehab A Hasan
- Histology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
10
|
Gu Q, Lee LY. TRP channels in airway sensory nerves. Neurosci Lett 2021; 748:135719. [PMID: 33587987 PMCID: PMC7988689 DOI: 10.1016/j.neulet.2021.135719] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022]
Abstract
Transient Receptor Potential (TRP) channels expressed in specific subsets of airway sensory nerves function as transducers and integrators of a diverse range of sensory inputs including chemical, mechanical and thermal signals. These TRP sensors can detect inhaled irritants as well as endogenously released chemical substances. They play an important role in generating the afferent activity carried by these sensory nerves and regulating the centrally mediated pulmonary defense reflexes. Increasing evidence reported in recent investigations has revealed important involvements of several TRP channels (TRPA1, TRPV1, TRPV4 and TRPM8) in the manifestation of various symptoms and pathogenesis of certain acute and chronic airway diseases. This mini-review focuses primarily on these recent findings of the responses of these TRP sensors to the biological stresses emerging under the pathophysiological conditions of the lung and airways.
Collapse
Affiliation(s)
- Qihai Gu
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA.
| | - Lu-Yuan Lee
- Department of Physiology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY, 40536-0298, USA.
| |
Collapse
|
11
|
Jentsch Matias de Oliveira JR, Amorim MA, André E. The role of TRPA1 and TRPV4 channels in bronchoconstriction and plasma extravasation in airways of rats treated with captopril. Pulm Pharmacol Ther 2021; 65:102004. [PMID: 33610768 DOI: 10.1016/j.pupt.2021.102004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 02/05/2021] [Accepted: 02/13/2021] [Indexed: 12/16/2022]
Abstract
Angiotensin-converting enzyme inhibitors (ACEis) may cause adverse airway events, such as cough and angioedema, due to a reduction in bradykinin breakdown and consequent activation of bradykinin type 2 receptor (B2 receptor). Recent studies have shown that bradykinin can also sensitize pro-inflammatory receptors such as the transient receptor potential ankyrin 1 (TRPA1) and vanilloid 4 (TRPV4), which are implicated in several inflammatory airway diseases. Based on these considerations, the aim of this study was to understand the role of TRPA1 and TRPV4 channels in the bronchoconstrictive response and plasma extravasation in the trachea of rats pretreated with captopril. Using methods to detect alterations in airway resistance and plasma extravasation, we found that intravenous (i.v.) administration of bradykinin (0.03-0.3 μmol/kg, B2 receptor agonist), allyl isothiocyanate (100-1000 μmol/kg, TRPA1 agonist) or GSK1016790A (0.01-0.1 μmol/kg, TRPV4 agonist), but not des-arg9-bradykinin (DABK; 100-300 μmol/kg, B1 receptor agonist), induced bronchoconstriction in anaesthetized rats. In doses that did not cause significant bronchoconstriction, bradykinin (0.03 μmol/kg) or allyl isothiocyanate (100 μmol/kg), but not GSK1016790A (0.01 μmol/kg) or DABK (300 μmol/kg) induced an increased bronchoconstrictive response in rats pretreated with captopril (2.5 mg/kg, i.v.). On the other hand, in rats pretreated with captopril (5 mg/kg, i.v.), an increased bronchoconstrictive response to GSK1016790A (0.01 μmol/kg) was observed. The bronchoconstrictive response induced by bradykinin in captopril-pretreated rats was inhibited by intratracheal treatment (i.t.) with HC030031 (300 μg/50 μl; 36 ± 9%) or HC067047 (300 μg/50 μl; 35.1 ± 16%), for TRPA1 and TRPV4 antagonists, respectively. However, the co-administration of both antagonists did not increase this inhibition. The bronchoconstriction induced by allyl isothiocyanate in captopril-pretreated rats (2.5 mg/kg) was inhibited (58.3 ± 8%) by the B2 receptor antagonist HOE140 (10 nmol/50 μl, i.t.). Similarly, the bronchoconstriction induced by GSK1016790A in captopril-pretreated rats (5 mg/kg) was also inhibited (84.2 ± 4%) by HOE140 (10 nmol/50 μl, i.t.). Furthermore, the plasma extravasation induced by captopril on the trachea of rats was inhibited by pretreatment with HC030031 (47.2 ± 8%) or HC067047 (38.9 ± 8%). Collectively, these findings support the hypothesis that TRPA1 and TRPV4, via a B2 receptor activation-dependent pathway, are involved in the plasma extravasation and bronchoconstriction induced by captopril, making them possible pharmacological targets to prevent or remediate ACEi-induced adverse respiratory reactions.
Collapse
Affiliation(s)
| | | | - Eunice André
- Department of Pharmacology, Federal University of Paraná, Curitiba, Brazil.
| |
Collapse
|
12
|
Du X, Zhi J, Yang D, Wang Q, Luo X, Deng X. Research progress in the mechanism of calcium ion on contraction and relaxation of airway smooth muscle cells. J Recept Signal Transduct Res 2020; 41:117-122. [PMID: 32808844 DOI: 10.1080/10799893.2020.1806315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
lntracellular calcium ion is the key secondary messenger system of the cellular processes in airway smooth muscle cells(ASMc). The treatment and regulation of Ca2+ in airway smooth muscle (ASM) is, in part, to associated with many airway diseases such as asthma, COPD and pulmonary fibrosis. The mechanism of contraction and relaxation of ASM is a concerned aspect in airway diseases. This review emphasizes established and recent discoveries whice show the research progress of Ca2+ on cell contraction and relaxation in ASM in recent years, to provide theoretical support and new targets for clinical prevention and treatment of perioperative bronchospasm and variousrespiratory related diseases.
Collapse
Affiliation(s)
- Xiyu Du
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Juan Zhi
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dong Yang
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qianyu Wang
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiang Luo
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoming Deng
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
13
|
Rapeaux A, Constandinou TG. An HFAC block-capable and module-extendable 4-channel stimulator for acute neurophysiology. J Neural Eng 2020; 17:046013. [PMID: 32428874 DOI: 10.1088/1741-2552/ab947a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE This paper describes the design, testing and use of a novel multichannel block-capable stimulator for acute neurophysiology experiments to study highly selective neural interfacing techniques. This paper demonstrates the stimulator's ability to excite and inhibit nerve activity in the rat sciatic nerve model concurrently using monophasic and biphasic nerve stimulation as well as high-frequency alternating current (HFAC). APPROACH The proposed stimulator uses a Howland Current Pump circuit as the main analogue stimulator element. 4 current output channels with a common return path were implemented on printed circuit board using Commercial Off-The-Shelf components. Programmable operation is carried out by an ARM Cortex-M4 Microcontroller on the Freescale freedom development platform (K64F). MAIN RESULTS This stimulator design achieves ± 10 mA of output current with ± 15 V of compliance and less than 6 µA of resolution using a quad-channel 12-bit external DAC, for four independently driven channels. This allows the stimulator to carry out both excitatory and inhibitory (HFAC block) stimulation. DC Output impedance is above 1 M Ω. Overall cost for materials i.e. PCB boards and electronic components is less than USD 450 or GBP 350 and device size is approximately 9 cm × 6 cm × 5 cm. SIGNIFICANCE Experimental neurophysiology often requires significant investment in bulky equipment for specific stimulation requirements, especially when using HFAC block. Different stimulators have limited means of communicating with each other, making protocols more complicated. This device provides an effective solution for multi-channel stimulation and block of nerves, enabling studies on selective neural interfacing in acute scenarios with an affordable, portable and space-saving design for the laboratory. The stimulator can be further upgraded with additional modules to extend functionality while maintaining straightforward programming and integration of functions with one controller. Additionally, all source files including all code and PCB design files are freely available to the community to use and further develop.
Collapse
Affiliation(s)
- Adrien Rapeaux
- Centre for Bio-Inspired Technology, Imperial College London , London, SW7 2AZ, United Kingdom. Department of Electrical and Electronic Engineering, Imperial College London, London, SW7 2BT, United Kingdom. Care Research & Technology Centre, UK Dementia Research Institute at Imperial College London, London, United Kingdom. Author to whom any correspondence should be addressed
| | | |
Collapse
|
14
|
Bonvini SJ, Birrell MA, Dubuis E, Adcock JJ, Wortley MA, Flajolet P, Bradding P, Belvisi MG. Novel airway smooth muscle-mast cell interactions and a role for the TRPV4-ATP axis in non-atopic asthma. Eur Respir J 2020; 56:13993003.01458-2019. [PMID: 32299856 PMCID: PMC7330131 DOI: 10.1183/13993003.01458-2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 02/27/2020] [Indexed: 01/28/2023]
Abstract
Mast cell–airway smooth muscle (ASM) interactions play a major role in the immunoglobulin (Ig)E- dependent bronchoconstriction seen in asthma but less is known about IgE-independent mechanisms of mast cell activation. Transient receptor potential cation channel, subfamily V, member 4 (TRPV4) activation causes contraction of human ASM via the release of cysteinyl leukotrienes (cysLTs) but the mechanism is unknown. The objective of the present study was to investigate a role for IgE-independent, mast cell–ASM interaction in TRPV4-induced bronchospasm. A technique not previously applied to respiratory research now uncovers important IgE-independent mechanisms involved in human mast cell–airway smooth muscle interactions that may be responsible for the bronchospasm associated with non-atopic asthmahttp://bit.ly/2U1n5nT
Collapse
Affiliation(s)
- Sara J Bonvini
- Respiratory Pharmacology Group, Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK.,Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,Contributed equally
| | - Mark A Birrell
- Respiratory Pharmacology Group, Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK.,Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,Contributed equally
| | - Eric Dubuis
- Respiratory Pharmacology Group, Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - John J Adcock
- Respiratory Pharmacology Group, Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK.,Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Michael A Wortley
- Respiratory Pharmacology Group, Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - Pauline Flajolet
- Respiratory Pharmacology Group, Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - Peter Bradding
- Dept of Infection, Immunity and Inflammation, University of Leicester University, Institute for Lung Health, Glenfield Hospital, Leicester, UK
| | - Maria G Belvisi
- Respiratory Pharmacology Group, Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK .,Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
15
|
Penn RB. Mast cells in asthma: Here I am, stuck in the middle with you. Eur Respir J 2020; 56:2001337. [PMID: 32616549 PMCID: PMC7643049 DOI: 10.1183/13993003.01337-2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/07/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Raymond B Penn
- Dept of Medicine, Division of Pulmonary and Critical Care Medicine, Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
16
|
Rosenbaum T, Benítez-Angeles M, Sánchez-Hernández R, Morales-Lázaro SL, Hiriart M, Morales-Buenrostro LE, Torres-Quiroz F. TRPV4: A Physio and Pathophysiologically Significant Ion Channel. Int J Mol Sci 2020; 21:ijms21113837. [PMID: 32481620 PMCID: PMC7312103 DOI: 10.3390/ijms21113837] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/23/2020] [Accepted: 05/24/2020] [Indexed: 02/07/2023] Open
Abstract
Transient Receptor Potential (TRP) channels are a family of ion channels whose members are distributed among all kinds of animals, from invertebrates to vertebrates. The importance of these molecules is exemplified by the variety of physiological roles they play. Perhaps, the most extensively studied member of this family is the TRPV1 ion channel; nonetheless, the activity of TRPV4 has been associated to several physio and pathophysiological processes, and its dysfunction can lead to severe consequences. Several lines of evidence derived from animal models and even clinical trials in humans highlight TRPV4 as a therapeutic target and as a protein that will receive even more attention in the near future, as will be reviewed here.
Collapse
Affiliation(s)
- Tamara Rosenbaum
- Departamento de Neurociencia Cognitiva, División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (M.B.-A.); (R.S.-H.); (S.L.M.-L.); (M.H.)
- Correspondence: ; Tel.: +52-555-622-56-24; Fax: +52-555-622-56-07
| | - Miguel Benítez-Angeles
- Departamento de Neurociencia Cognitiva, División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (M.B.-A.); (R.S.-H.); (S.L.M.-L.); (M.H.)
| | - Raúl Sánchez-Hernández
- Departamento de Neurociencia Cognitiva, División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (M.B.-A.); (R.S.-H.); (S.L.M.-L.); (M.H.)
| | - Sara Luz Morales-Lázaro
- Departamento de Neurociencia Cognitiva, División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (M.B.-A.); (R.S.-H.); (S.L.M.-L.); (M.H.)
| | - Marcia Hiriart
- Departamento de Neurociencia Cognitiva, División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (M.B.-A.); (R.S.-H.); (S.L.M.-L.); (M.H.)
| | - Luis Eduardo Morales-Buenrostro
- Departamento de Nefrología y Metabolismo Mineral, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico;
| | - Francisco Torres-Quiroz
- Departamento de Bioquímica y Biología Estructural, División Investigación Básica, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| |
Collapse
|
17
|
Zhang M, Wang S, Yu L, Xu X, Qiu Z. The role of ATP in cough hypersensitivity syndrome: new targets for treatment. J Thorac Dis 2020; 12:2781-2790. [PMID: 32642186 PMCID: PMC7330343 DOI: 10.21037/jtd-20-cough-001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Clinically, chronic cough can be effectively controlled in most patients by etiological treatment; however, there remain a small number of patients whose cough has unidentifiable etiology or where treatment efficacy is poor following etiology identification, whose condition is described as unexplained chronic cough or refractory chronic cough. Patients with refractory chronic or unexplained chronic cough commonly have increased cough reflex sensitivity, which has been described as cough hypersensitivity syndrome. The adenosine triphosphate (ATP)-gated P2X3 receptor may be a key link in the activation of sensory neurons that regulate cough reflexes and has recently draw attention as a potential target for the treatment of refractory chronic cough, with a number of clinical studies validating the therapeutic effects of P2X3 receptor antagonists in patients with this condition. As the energy source for various cells in vivo, ATP localizes within cells under normal physiological conditions, and has physiological functions, including in metabolism; however, under some pathological circumstances, ATP can act as a neuromodulator and is released into the extracellular space in large quantities as a signal transduction molecule. In addition, ATP is involved in regulation of airway inflammation and the cough reflex. Here, we review the generation, release, and regulation of ATP during airway inflammation and its role in the etiology of cough hypersensitivity syndrome, including the potential underlying mechanism.
Collapse
Affiliation(s)
- Mengru Zhang
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Shengyuan Wang
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Li Yu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Xianghuai Xu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Zhongmin Qiu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| |
Collapse
|
18
|
Yao L, Chen S, Tang H, Huang P, Wei S, Liang Z, Chen X, Yang H, Tao A, Chen R, Zhang Q. Transient Receptor Potential Ion Channels Mediate Adherens Junctions Dysfunction in a Toluene Diisocyanate-Induced Murine Asthma Model. Toxicol Sci 2020; 168:160-170. [PMID: 30517707 DOI: 10.1093/toxsci/kfy285] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Disruption of epithelial cell-cell junctions is essential for the initiation and perpetuation of airway inflammation in asthma. We've previously reported compromised epithelial barrier integrity in a toluene diisocyanate (TDI)-induced occupational asthma model. This study is aimed to explore the role of transient receptor potential vanilloid 4 (TRPV4) and transient receptor potential ankyrin 1 (TRPA1) in the dysfunction of adherens junctions in TDI-induced asthma. Mice were sensitized and challenged with TDI for a chemical-induced asthma model. Selective blockers of TRPV4 glycogen synthase kinase (GSK)2193874, 5 and 10 mg/kg) and TRPA1 (HC030031, 10 and 20 mg/kg) were intraperitoneally given to the mice. Immunohistochemistry revealed different expression pattern of TRPV4 and TRPA1 in lung. TDI exposure increased TRPV4 expression in the airway, which can be suppressed by GSK2193874, while treatment with neither TDI alone nor TDI together with HC030031 led to changes of TRPA1 expression in the lung. Blocking either TRPV4 or TRPA1 blunted TDI-induced airway hyperreactivity, airway neutrophilia and eosinophilia, as well as Th2 responses in a dose-dependent manner. At the same time, membrane levels of E-cadherin and β-catenin were significantly decreased after TDI inhalation, which were inhibited by GSK2193874 or HC030031. Moreover, GSK2193874 and HC030031 also suppressed serine phosphorylation of glycogen synthase kinase 3β, tyrosine phosphorylation of β-catenin, as well as activation and nuclear transport of β-catenin in mice sensitized and challenged with TDI. Our study suggested that both TRPV4 and TRPA1 contribute critically to E-cadherin and β-catenin dysfunction in TDI-induced asthma, proposing novel therapeutic targets for asthma.
Collapse
Affiliation(s)
- Lihong Yao
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University
| | - Shuyu Chen
- Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510180, China
| | - Haixiong Tang
- Department of Respiratory Medicine, Minzu Hospital of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning 530001, China
| | - Peikai Huang
- State Key Laboratory of Respiratory Diseases, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510180, China
| | - Shushan Wei
- State Key Laboratory of Respiratory Diseases, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510180, China
| | - Zhenyu Liang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University
| | - Xin Chen
- Department of Respiratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Hongyu Yang
- Division of Respirology, Department of Medicine, McMaster University, Firestone Institute for Respiratory Health (FIRH), The Research Institution of St. Joe's Hamilton (RISH), St. Joseph's Healthcare, Hamilton, ON L8N 4A6, Canada
| | - Ailin Tao
- Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510180, China
| | - Rongchang Chen
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University
| | - Qingling Zhang
- State Key Laboratory of Respiratory Diseases, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510180, China
| |
Collapse
|
19
|
Zhang J, Wei Y, Bai S, Ding S, Gao H, Yin S, Chen S, Lu J, Wang H, Shen Y, Shen B, Du J. TRPV4 Complexes With the Na +/Ca 2+ Exchanger and IP 3 Receptor 1 to Regulate Local Intracellular Calcium and Tracheal Tension in Mice. Front Physiol 2019; 10:1471. [PMID: 31866874 PMCID: PMC6910018 DOI: 10.3389/fphys.2019.01471] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/14/2019] [Indexed: 01/30/2023] Open
Abstract
Intracellular Ca2+ is critical for regulating airway smooth muscle (ASM) tension. A rapid rise in the intracellular Ca2+ concentration ([Ca2+]i) of ASM cells is crucial for modulating the intensity and length of the ASM contraction. Because this rapid increase in [Ca2+]i largely depends on the balance between Ca2+ released from intracellular Ca2+ stores and extracellular Ca2+ entry, exploring the mechanisms mediating Ca2+ transport is critical for understanding ASM contractility and the pathogenesis of bronchial contraction disorders. Transient receptor potential vanilloid 4 (TRPV4) is a highly Ca2+-permeable non-selective cation channel that mediates Ca2+ influx to increase [Ca2+]i, which then directly or indirectly regulates the contraction and relaxation of ASM. The [Ca2+]i returns to basal levels through several uptake and extrusion pumps, such as the sarco(endo)plasmic reticulum Ca2+ ATPase and inositol 1,4,5-trisphosphate receptors (IP3Rs), the plasmalemmal Ca2+ ATPase, and the plasma membrane Na+/Ca2+ exchanger (NCX). Thus, to further understand ASM tension regulation in normal and diseased tissue, the present study examined whether an interaction exists among TRPV4, IP3Rs, and NCX. The TRPV4-specific and potent agonist GSK1016790A increased [Ca2+]i in mouse ASM cells, an effect that was completely blocked by the TRPV4-specific antagonist HC067047. However, GSK1016790A induced relaxation in mouse tracheal rings precontracted with carbachol in vitro. To determine the mechanism underlying this TRPV4-induced relaxation of ASM, we blocked specific downstream molecules. We found that the GSK1016790A-induced relaxation was abolished by the NCX inhibitors KB-R7943 and LiCl but not by specific inhibitors of the Ca2+-activated large-, intermediate-, or small-conductance K+ channels (BKCa, IK, and SK3, respectively). The results of co-immunoprecipitation (co-IP) assays showed an interaction of TRPV4 and IP3R1 with NCXs. Taken together, these findings support a physical and functional interaction of TRPV4 and IP3R1 with NCXs as a novel TRPV4-mediated Ca2+ signaling mechanism and suggest a potential target for regulation of ASM tension and treatment of respiratory diseases, especially tracheal spasm.
Collapse
Affiliation(s)
- Jie Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Yuan Wei
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Suwen Bai
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Shenggang Ding
- Department of Paediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Huiwen Gao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Sheng Yin
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Department of Neurosurgery, Anhui Provincial Hospital, Anhui Medical University, Hefei, China
| | - Shuo Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jinsen Lu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Haoran Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yonggang Shen
- Nursing Faculty, Anhui Health College, Chizhou, China
| | - Bing Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Juan Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
20
|
Li J, Wen AM, Potla R, Benshirim E, Seebarran A, Benz MA, Henry OYF, Matthews BD, Prantil-Baun R, Gilpin SE, Levy O, Ingber DE. AAV-mediated gene therapy targeting TRPV4 mechanotransduction for inhibition of pulmonary vascular leakage. APL Bioeng 2019; 3:046103. [PMID: 31803860 PMCID: PMC6887658 DOI: 10.1063/1.5122967] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022] Open
Abstract
Enhanced vascular permeability in the lungs can lead to pulmonary edema, impaired gas exchange, and ultimately respiratory failure. While oxygen delivery, mechanical ventilation, and pressure-reducing medications help alleviate these symptoms, they do not treat the underlying disease. Mechanical activation of transient receptor potential vanilloid 4 (TRPV4) ion channels contributes to the development of pulmonary vascular disease, and overexpression of the high homology (HH) domain of the TRPV4-associated transmembrane protein CD98 has been shown to inhibit this pathway. Here, we describe the development of an adeno-associated virus (AAV) vector encoding the CD98 HH domain in which the AAV serotypes and promoters have been optimized for efficient and specific delivery to pulmonary cells. AAV-mediated gene delivery of the CD98 HH domain inhibited TRPV4 mechanotransduction in a specific manner and protected against pulmonary vascular leakage in a human lung Alveolus-on-a-Chip model. As AAV has been used clinically to deliver other gene therapies, these data raise the possibility of using this type of targeted approach to develop mechanotherapeutics that target the TRPV4 pathway for treatment of pulmonary edema in the future.
Collapse
Affiliation(s)
- Juan Li
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
| | - Amy M Wen
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
| | | | | | | | - Maximilian A Benz
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
| | - Olivier Y F Henry
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
| | | | - Rachelle Prantil-Baun
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
| | - Sarah E Gilpin
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
| | - Oren Levy
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
21
|
Grebert C, Becq F, Vandebrouck C. Focus on TRP channels in cystic fibrosis. Cell Calcium 2019; 81:29-37. [DOI: 10.1016/j.ceca.2019.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 12/12/2022]
|
22
|
Xia Y, Xia L, Lou L, Jin R, Shen H, Li W. Transient Receptor Potential Channels and Chronic Airway Inflammatory Diseases: A Comprehensive Review. Lung 2018; 196:505-516. [PMID: 30094794 DOI: 10.1007/s00408-018-0145-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/04/2018] [Indexed: 12/22/2022]
Abstract
Chronic airway inflammatory diseases remain a major problem worldwide, such that there is a need for additional therapeutic targets and novel drugs. Transient receptor potential (TRP) channels are a group of non-selective cation channels expressed throughout the body that are regulated by various stimuli. TRP channels have been identified in numerous cell types in the respiratory tract, including sensory neurons, airway epithelial cells, airway smooth muscle cells, and fibroblasts. Different types of TRP channels induce cough in sensory neurons via the vagus nerve. Permeability and cytokine production are also regulated by TRP channels in airway epithelial cells, and these channels also contribute to the modulation of bronchoconstriction. TRP channels may cooperate with other TRP channels, or act in concert with calcium-dependent potassium channels and calcium-activated chloride channel. Hence, TRP channels could be the potential therapeutic targets for chronic airway inflammatory diseases. In this review, we aim to discuss the expression profiles and physiological functions of TRP channels in the airway, and the roles they play in chronic airway inflammatory diseases.
Collapse
Affiliation(s)
- Yang Xia
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
| | - Lexin Xia
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Lingyun Lou
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Rui Jin
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Huahao Shen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Wen Li
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
23
|
Naik JS, Walker BR. Endothelial-dependent dilation following chronic hypoxia involves TRPV4-mediated activation of endothelial BK channels. Pflugers Arch 2018; 470:633-648. [PMID: 29380056 PMCID: PMC5854740 DOI: 10.1007/s00424-018-2112-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/05/2018] [Accepted: 01/16/2018] [Indexed: 12/23/2022]
Abstract
Following chronic hypoxia (CH), the systemic vasculature exhibits blunted vasoconstriction due to endothelial-dependent hyperpolarization (EDH). Previous data demonstrate that subsequent to CH, EDH-mediated vasodilation switches from a reliance on SKca and IKca channels to activation of the endothelial BKca channels (eBK). The mechanism by which endothelial cell stimulation activates eBK channels following CH is not known. We hypothesized that following CH, EDH-dependent vasodilation involves a TRPV4-dependent activation of eBK channels. ACh induced concentration-dependent dilation in pressurized gracilis arteries from both normoxic and CH rats. Inhibition of TRPV4 (RN-1734) attenuated the ACh response in arteries from CH rats but had no effect in normoxic animals. In the presence of L-NNA and indomethacin, TRPV4 blockade attenuated ACh-induced vasodilation in arteries from CH rats. ACh elicited endothelial TRPV4-mediated Ca2+ events in arteries from both groups. GSK1016790A (GSK101, TRPV4 agonist) elicited vasodilation in arteries from normoxic and CH rats. In arteries from normoxic animals, TRAM-34/apamin abolished the dilation to TRPV4 activation, whereas luminal iberiotoxin had no effect. In CH rats, only administration of all three Kca channel inhibitors abolished the dilation to TRPV4 activation. Using Duolink®, we observed co-localization between Cav-1, TRPV4, and BK channels in gracilis arteries and in RAECs. Disruption of endothelial caveolae with methyl-β-cyclodextrin significantly decreased ACh-induced vasodilation in arteries from both groups. In gracilis arteries, endothelial membrane cholesterol was significantly decreased following 48 h of CH. In conclusion, CH results in a functional coupling between muscarinic receptors, TRPV4 and Kca channels in gracilis arteries.
Collapse
Affiliation(s)
- Jay S Naik
- Department of Cell Biology and Physiology, University of New Mexico, MSC08 4750, Albuquerque, NM, 87131, USA.
| | - Benjimen R Walker
- Department of Cell Biology and Physiology, University of New Mexico, MSC08 4750, Albuquerque, NM, 87131, USA
| |
Collapse
|
24
|
Hamacher J, Hadizamani Y, Borgmann M, Mohaupt M, Männel DN, Moehrlen U, Lucas R, Stammberger U. Cytokine-Ion Channel Interactions in Pulmonary Inflammation. Front Immunol 2018; 8:1644. [PMID: 29354115 PMCID: PMC5758508 DOI: 10.3389/fimmu.2017.01644] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/10/2017] [Indexed: 12/12/2022] Open
Abstract
The lungs conceptually represent a sponge that is interposed in series in the bodies’ systemic circulation to take up oxygen and eliminate carbon dioxide. As such, it matches the huge surface areas of the alveolar epithelium to the pulmonary blood capillaries. The lung’s constant exposure to the exterior necessitates a competent immune system, as evidenced by the association of clinical immunodeficiencies with pulmonary infections. From the in utero to the postnatal and adult situation, there is an inherent vital need to manage alveolar fluid reabsorption, be it postnatally, or in case of hydrostatic or permeability edema. Whereas a wealth of literature exists on the physiological basis of fluid and solute reabsorption by ion channels and water pores, only sparse knowledge is available so far on pathological situations, such as in microbial infection, acute lung injury or acute respiratory distress syndrome, and in the pulmonary reimplantation response in transplanted lungs. The aim of this review is to discuss alveolar liquid clearance in a selection of lung injury models, thereby especially focusing on cytokines and mediators that modulate ion channels. Inflammation is characterized by complex and probably time-dependent co-signaling, interactions between the involved cell types, as well as by cell demise and barrier dysfunction, which may not uniquely determine a clinical picture. This review, therefore, aims to give integrative thoughts and wants to foster the unraveling of unmet needs in future research.
Collapse
Affiliation(s)
- Jürg Hamacher
- Internal Medicine and Pneumology, Lindenhofspital, Bern, Switzerland.,Internal Medicine V - Pneumology, Allergology, Respiratory and Environmental Medicine, Faculty of Medicine, Saarland University, Saarbrücken, Germany.,Lungen- und Atmungsstiftung Bern, Bern, Switzerland
| | - Yalda Hadizamani
- Internal Medicine and Pneumology, Lindenhofspital, Bern, Switzerland.,Lungen- und Atmungsstiftung Bern, Bern, Switzerland
| | - Michèle Borgmann
- Internal Medicine and Pneumology, Lindenhofspital, Bern, Switzerland.,Lungen- und Atmungsstiftung Bern, Bern, Switzerland
| | - Markus Mohaupt
- Internal Medicine, Sonnenhofspital Bern, Bern, Switzerland
| | | | - Ueli Moehrlen
- Paediatric Visceral Surgery, Universitäts-Kinderspital Zürich, Zürich, Switzerland
| | - Rudolf Lucas
- Department of Pharmacology and Toxicology, Vascular Biology Center, Medical College of Georgia, Augusta, GA, United States
| | - Uz Stammberger
- Lungen- und Atmungsstiftung Bern, Bern, Switzerland.,Novartis Institutes for Biomedical Research, Translational Clinical Oncology, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
25
|
Abstract
The transient receptor potential vanilloid 4 (TRPV4) is a highly Ca2+-permeable non-selective cation channel in TRPV family. Accumulating evidence hints that TRPV4 play a significant role in a wide diversity of pathologic changes. Fibrosis is a kind of chronic disease which was characterized by the formation of excessive accumulation of extracellular matrix (ECM) components in tissues and organs. In recent years, a growing body of studies showed that TRPV4 acted as a crucial regulator in the progression of fibrosis including myocardial fibrosis, cystic fibrosis, pulmonary fibrosis, hepatic fibrosis and pancreatic fibrosis, suggesting TRPV4 may be a potential therapeutic vehicle in fibrotic diseases. However, the mechanisms by which TRPV4 regulates fibrosis are still undefined. In this review, firstly, we intend to sum up the collective knowledge of TRPV4. Then we provided the latent mechanism between TRPV4 and fibrosis. We also elaborated the distinct signaling pathways focus on TRPV4 with fibrosis. Finally, we discussed its potential as a novel therapeutic target for fibrosis.
Collapse
|
26
|
Abstract
Chronic obstructive pulmonary disease (COPD) and asthma are both common respiratory diseases that are associated with airflow reduction/obstruction and pulmonary inflammation. Whilst drug therapies offer adequate symptom control for many mild to moderate asthmatic patients, severe asthmatics and COPD patients symptoms are often not controlled, and in these cases, irreversible structural damage occurs with disease progression over time. Transient receptor potential (TRP) channels, in particular TRPV1, TRPA1, TRPV4 and TRPM8, have been implicated with roles in the regulation of inflammation and autonomic nervous control of the lungs. Evidence suggests that inflammation elevates levels of activators and sensitisers of TRP channels and additionally that TRP channel expression may be increased, resulting in excessive channel activation. The enhanced activity of these channels is thought to then play a key role in the propagation and maintenance of the inflammatory disease state and neuronal symptoms such as bronchoconstriction and cough. For TRPM8 the evidence is less clear, but as with TRPV1, TRPA1 and TRPV4, antagonists are being developed by multiple companies for indications including asthma and COPD, which will help in elucidating their role in respiratory disease.
Collapse
|
27
|
Belvisi MG, Birrell MA. The emerging role of transient receptor potential channels in chronic lung disease. Eur Respir J 2017; 50:50/2/1601357. [PMID: 28775042 DOI: 10.1183/13993003.01357-2016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 04/14/2017] [Indexed: 12/12/2022]
Abstract
Chronic lung diseases such as asthma, chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis are a major and increasing global health burden with a high unmet need. Drug discovery efforts in this area have been largely disappointing and so new therapeutic targets are needed. Transient receptor potential ion channels are emerging as possible therapeutic targets, given their widespread expression in the lung, their role in the modulation of inflammatory and structural changes and in the production of respiratory symptoms, such as bronchospasm and cough, seen in chronic lung disease.
Collapse
Affiliation(s)
- Maria G Belvisi
- Respiratory Pharmacology Group, Airway Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| | - Mark A Birrell
- Respiratory Pharmacology Group, Airway Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
28
|
Scheraga RG, Southern BD, Grove LM, Olman MA. The Role of Transient Receptor Potential Vanilloid 4 in Pulmonary Inflammatory Diseases. Front Immunol 2017; 8:503. [PMID: 28523001 PMCID: PMC5415870 DOI: 10.3389/fimmu.2017.00503] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/12/2017] [Indexed: 01/01/2023] Open
Abstract
Ion channels/pumps are essential regulators of organ homeostasis and disease. In the present review, we discuss the role of the mechanosensitive cation channel, transient receptor potential vanilloid 4 (TRPV4), in cytokine secretion and pulmonary inflammatory diseases such as asthma, cystic fibrosis (CF), and acute lung injury/acute respiratory distress syndrome (ARDS). TRPV4 has been shown to play a role in lung diseases associated with lung parenchymal stretch or stiffness. TRPV4 indirectly mediates hypotonicity-induced smooth muscle contraction and airway remodeling in asthma. Further, the literature suggests that in CF TRPV4 may improve ciliary beat frequency enhancing mucociliary clearance, while at the same time increasing pro-inflammatory cytokine secretion/lung tissue injury. Currently it is understood that the role of TRPV4 in immune cell function and associated lung tissue injury/ARDS may depend on the injury stimulus. Uncovering the downstream mechanisms of TRPV4 action in pulmonary inflammatory diseases is likely important to understanding disease pathogenesis and may lead to novel therapeutics.
Collapse
Affiliation(s)
- Rachel G Scheraga
- Cleveland Clinic, Department of Pathobiology, Lerner Research Institute, Cleveland, OH, USA
| | - Brian D Southern
- Cleveland Clinic, Department of Pathobiology, Lerner Research Institute, Cleveland, OH, USA
| | - Lisa M Grove
- Cleveland Clinic, Department of Pathobiology, Lerner Research Institute, Cleveland, OH, USA
| | - Mitchell A Olman
- Cleveland Clinic, Department of Pathobiology, Lerner Research Institute, Cleveland, OH, USA
| |
Collapse
|
29
|
White JPM, Cibelli M, Urban L, Nilius B, McGeown JG, Nagy I. TRPV4: Molecular Conductor of a Diverse Orchestra. Physiol Rev 2017; 96:911-73. [PMID: 27252279 DOI: 10.1152/physrev.00016.2015] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transient receptor potential vanilloid type 4 (TRPV4) is a calcium-permeable nonselective cation channel, originally described in 2000 by research teams led by Schultz (Nat Cell Biol 2: 695-702, 2000) and Liedtke (Cell 103: 525-535, 2000). TRPV4 is now recognized as being a polymodal ionotropic receptor that is activated by a disparate array of stimuli, ranging from hypotonicity to heat and acidic pH. Importantly, this ion channel is constitutively expressed and capable of spontaneous activity in the absence of agonist stimulation, which suggests that it serves important physiological functions, as does its widespread dissemination throughout the body and its capacity to interact with other proteins. Not surprisingly, therefore, it has emerged more recently that TRPV4 fulfills a great number of important physiological roles and that various disease states are attributable to the absence, or abnormal functioning, of this ion channel. Here, we review the known characteristics of this ion channel's structure, localization and function, including its activators, and examine its functional importance in health and disease.
Collapse
Affiliation(s)
- John P M White
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Mario Cibelli
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Laszlo Urban
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Bernd Nilius
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - J Graham McGeown
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Istvan Nagy
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
30
|
Grace MS, Bonvini SJ, Belvisi MG, McIntyre P. Modulation of the TRPV4 ion channel as a therapeutic target for disease. Pharmacol Ther 2017; 177:9-22. [PMID: 28202366 DOI: 10.1016/j.pharmthera.2017.02.019] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Transient Receptor Potential Vanilloid 4 (TRPV4) is a broadly expressed, polymodally gated ion channel that plays an important role in many physiological and pathophysiological processes. TRPV4 knockout mice and several synthetic pharmacological compounds that selectively target TRPV4 are now available, which has allowed detailed investigation in to the therapeutic potential of this ion channel. Results from animal studies suggest that TRPV4 antagonism has therapeutic potential in oedema, pain, gastrointestinal disorders, and lung diseases such as cough, bronchoconstriction, pulmonary hypertension, and acute lung injury. A lack of observed side-effects in vivo has prompted a first-in-human trial for a TRPV4 antagonist in healthy participants and stable heart failure patients. If successful, this would open up an exciting new area of research for a multitude of TRPV4-related pathologies. This review will discuss the known roles of TRPV4 in disease, and highlight the possible implications of targeting this important cation channel for therapy.
Collapse
Affiliation(s)
- Megan S Grace
- Baker Heart and Diabetes Institute, Melbourne, Australia; School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Australia; Department of Physiology, School of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia.
| | - Sara J Bonvini
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Maria G Belvisi
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Peter McIntyre
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Australia
| |
Collapse
|
31
|
Buday T, Kovacikova L, Ruzinak R, Plevkova J. TRPV4 antagonist GSK2193874 does not modulate cough response to osmotic stimuli. Respir Physiol Neurobiol 2017; 236:1-4. [DOI: 10.1016/j.resp.2016.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/19/2016] [Accepted: 10/27/2016] [Indexed: 01/13/2023]
|
32
|
Prakash YS. Emerging concepts in smooth muscle contributions to airway structure and function: implications for health and disease. Am J Physiol Lung Cell Mol Physiol 2016; 311:L1113-L1140. [PMID: 27742732 DOI: 10.1152/ajplung.00370.2016] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/06/2016] [Indexed: 12/15/2022] Open
Abstract
Airway structure and function are key aspects of normal lung development, growth, and aging, as well as of lung responses to the environment and the pathophysiology of important diseases such as asthma, chronic obstructive pulmonary disease, and fibrosis. In this regard, the contributions of airway smooth muscle (ASM) are both functional, in the context of airway contractility and relaxation, as well as synthetic, involving production and modulation of extracellular components, modulation of the local immune environment, cellular contribution to airway structure, and, finally, interactions with other airway cell types such as epithelium, fibroblasts, and nerves. These ASM contributions are now found to be critical in airway hyperresponsiveness and remodeling that occur in lung diseases. This review emphasizes established and recent discoveries that underline the central role of ASM and sets the stage for future research toward understanding how ASM plays a central role by being both upstream and downstream in the many interactive processes that determine airway structure and function in health and disease.
Collapse
Affiliation(s)
- Y S Prakash
- Departments of Anesthesiology, and Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
33
|
Naumov DE, Kolosov VP, Perelman JM, Prikhodko AG. Influence of TRPV4 gene polymorphisms on the development of osmotic airway hyperresponsiveness in patients with bronchial asthma. DOKL BIOCHEM BIOPHYS 2016; 469:260-3. [PMID: 27599507 DOI: 10.1134/s1607672916040074] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Indexed: 11/23/2022]
Abstract
The effect of single nucleotide polymorphisms (SNP) of TRPV4 gene on the development of airway hyperresponsiveness (39.7% of cases) in response to the decrease in osmolarity under inspiration of distilled water aerosol was studies in 189 patients with uncontrolled bronchial asthma. rs6606743 SNP was found to significantly contribute to the development of osmotic airway hyperresponsiveness. Analysis of the dominant genetic model revealed substantial prevalence of AG + GG genotype frequency in the group of patients with asthma with osmotic hyperresponsiveness in comparison with the patients who had negative response to bronchoprovocation. In addition, carriers of GG or AG genotypes had significantly more profound decrease of lung function parameters in relation to A homozygous patients.
Collapse
Affiliation(s)
- D E Naumov
- Far Eastern Research Center of Physiology and Pathology of Respiration, ul. Kalinina 22, Blagoveshchensk, 675000, Russia.
| | - V P Kolosov
- Far Eastern Research Center of Physiology and Pathology of Respiration, ul. Kalinina 22, Blagoveshchensk, 675000, Russia
| | - J M Perelman
- Far Eastern Research Center of Physiology and Pathology of Respiration, ul. Kalinina 22, Blagoveshchensk, 675000, Russia
| | - A G Prikhodko
- Far Eastern Research Center of Physiology and Pathology of Respiration, ul. Kalinina 22, Blagoveshchensk, 675000, Russia
| |
Collapse
|
34
|
Darby WG, Grace MS, Baratchi S, McIntyre P. Modulation of TRPV4 by diverse mechanisms. Int J Biochem Cell Biol 2016; 78:217-228. [PMID: 27425399 DOI: 10.1016/j.biocel.2016.07.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/11/2016] [Accepted: 07/13/2016] [Indexed: 01/25/2023]
Abstract
Transient receptor potential ion channels (TRP) are a superfamily of non-selective ion channels which are opened in response to a diverse range of stimuli. The TRP vanilloid 4 (TRPV4) ion channel is opened in response to heat, mechanical stimuli, hypo-osmolarity and arachidonic acid metabolites. However, recently TRPV4 has been identified as an ion channel that is modulated by, and opened by intracellular signalling cascades from other receptors and signalling pathways. Although TRPV4 knockout mice show relatively mild phenotypes, some mutations in TRPV4 cause severe developmental abnormalities, such as the skeletal dyplasia and arthropathy. Regulated TRPV4 function is also essential for healthy cardiovascular system function as a potent agonist compromises endothelial cell function, leading to vascular collapse. A better understanding of the signalling mechanisms that modulate TRPV4 function is necessary to understand its physiological roles. Post translational modification of TRPV4 by kinases and other signalling molecules can modulate TRPV4 opening in response to stimuli such as mechanical and hyposmolarity and there is an emerging area of research implicating TRPV4 as a transducer of these signals as opposed to a direct sensor of the stimuli. Due to its wide expression profile, TRPV4 is implicated in multiple pathophysiological states. TRPV4 contributes to the sensation of pain due to hypo-osmotic stimuli and inflammatory mechanical hyperalsgesia, where TRPV4 sensitizaton by intracellular signalling leads to pain behaviors in mice. In the vasculature, TRPV4 is a regulator of vessel tone and is implicated in hypertension and diabetes due to endothelial dysfunction. TRPV4 is a key regulator of epithelial and endothelial barrier function and signalling to and opening of TRPV4 can disrupt these critical protective barriers. In respiratory function, TRPV4 is involved in cystic fibrosis, cilary beat frequency, bronchoconstriction, chronic obstructive pulmonary disease, pulmonary hypertension, acute lung injury, acute respiratory distress syndrome and cough.In this review we highlight how modulation of TRPV4 opening is a vital signalling component in a range of tissues and why understanding of TRPV4 regulation in the body may lead to novel therapeutic approaches to treating a range of disease states.
Collapse
Affiliation(s)
- W G Darby
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - M S Grace
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia; Baker IDI, Melbourne, Australia
| | - S Baratchi
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - P McIntyre
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia.
| |
Collapse
|
35
|
De Logu F, Patacchini R, Fontana G, Geppetti P. TRP functions in the broncho-pulmonary system. Semin Immunopathol 2016; 38:321-9. [PMID: 27083925 DOI: 10.1007/s00281-016-0557-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 02/09/2016] [Indexed: 12/23/2022]
Abstract
The current understanding of the role of transient receptor potential (TRP) channels in the airways and lung was initially based on the localization of a series of such channels in a subset of sensory nerve fibers of the respiratory tract. Soon after, TRP channel expression and function have been identified in respiratory nonneuronal cells. In these two locations, TRPs regulate physiological processes aimed at integrating different stimuli to maintain homeostasis and to react to harmful agents and tissue injury by building up inflammatory responses and repair processes. There is no doubt that TRPs localized in the sensory network contribute to airway neurogenic inflammation, and emerging evidence underlines the role of nonneuronal TRPs in orchestrating inflammation and repair in the respiratory tract. However, recent basic and clinical studies have offered clues regarding the contribution of neuronal and nonneuronal TRPs in the mechanism of asthma, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, cough, and other respiratory diseases.
Collapse
Affiliation(s)
- Francesco De Logu
- Clinical Pharmacology Unit, Department of Health Sciences, University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
| | - Riccardo Patacchini
- Clinical Pharmacology Unit, Department of Health Sciences, University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
- Chiesi Farmaceutici S.p.A, Parma, Italy
| | - Giovanni Fontana
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Pierangelo Geppetti
- Clinical Pharmacology Unit, Department of Health Sciences, University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy.
| |
Collapse
|
36
|
Abstract
Chronic obstructive pulmonary disease (COPD) is associated with numerous comorbidities, among which osteoporosis is of high significance. Low bone mass and the occurrence of fragility fractures is a common finding in patients with COPD. Typical risk factors related directly or indirectly to these skeletal complications include systemic inflammation, tobacco smoking, vitamin D deficiency, and treatment with oral or inhaled corticosteroids. In particular, treatment with glucocorticoids appears to be a strong contributor to bone changes in COPD, but does not fully account for all skeletal complications. Additional to the effects of COPD on bone mass, there is evidence for COPD-related changes in bone microstructure and material properties. This review summarizes the clinical outcomes of low bone mass and increased fracture risk, and reports on recent observations in bone tissue and material in COPD patients.
Collapse
Affiliation(s)
- Barbara M Misof
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria.
| | - Carolina A Moreira
- Endocrine Division (SEMPR), Department of Internal Medicine, Clinical Hospital of the Federal University of Parana, Curitiba, PR, Brazil
- Laboratory P.R.O-Bone Histomorphometry Division, Fundação Pro-Renal, Curitiba, PR, Brazil
| | - Klaus Klaushofer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Paul Roschger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| |
Collapse
|
37
|
Gu QD, Moss CR, Kettelhut KL, Gilbert CA, Hu H. Activation of TRPV4 Regulates Respiration through Indirect Activation of Bronchopulmonary Sensory Neurons. Front Physiol 2016; 7:65. [PMID: 26973533 PMCID: PMC4770051 DOI: 10.3389/fphys.2016.00065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 02/12/2016] [Indexed: 01/01/2023] Open
Abstract
Transient receptor potential vanilloid receptor 4 (TRPV4) is a calcium-permeable non-selective cation channel implicated in numerous physiological and pathological functions. This study aimed to investigate the effect of TRPV4 activation on respiration and to explore the potential involvement of bronchopulmonary sensory neurons. Potent TRPV4 agonist GSK1016790A was injected into right atrium in anesthetized spontaneously breathing rats and the changes in breathing were measured. Patch-clamp recording was performed to investigate the effect of GSK1016790A or another TRPV4 activator 4α-PDD on cultured rat vagal bronchopulmonary sensory neurons. Immunohistochemistry was carried out to determine the TRPV4-expressing cells in lung slices obtained from TRPV4-EGFP mice. Our results showed, that right-atrial injection of GSK1016790A evoked a slow-developing, long-lasting rapid shallow breathing in anesthetized rats. Activation of TRPV4 also significantly potentiated capsaicin-evoked chemoreflex responses. The alteration in ventilation induced by GSK1016790A was abolished by cutting or perineural capsaicin treatment of both vagi, indicating the involvement of bronchopulmonary afferent neurons. The stimulating and sensitizing effects of GSK1016790A were abolished by a selective TRPV4 antagonist GSK2193874 and also by inhibiting cyclooxygenase with indomethacin. Surprising, GSK1016790A or 4α-PDD did not activate isolated bronchopulmonary sensory neurons, nor did they modulate capsaicin-induced inward currents in these neurons. Furthermore, TRPV4 expression was found in alveolar macrophages, alveolar epithelial, and vascular endothelial cells. Collectively, our results suggest that GSK1016790A regulates the respiration through an indirect activation of bronchopulmonary sensory neurons, likely via its stimulation of other TRPV4-expressing cells in the lungs and airways.
Collapse
Affiliation(s)
- Qihai David Gu
- Division of Basic Medical Sciences, Mercer University School of Medicine Macon, GA, USA
| | - Charles R Moss
- Division of Basic Medical Sciences, Mercer University School of Medicine Macon, GA, USA
| | - Kristen L Kettelhut
- Division of Basic Medical Sciences, Mercer University School of Medicine Macon, GA, USA
| | - Carolyn A Gilbert
- Division of Basic Medical Sciences, Mercer University School of Medicine Macon, GA, USA
| | - Hongzhen Hu
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine in St. Louis St. Louis, MO, USA
| |
Collapse
|
38
|
Bonvini SJ, Birrell MA, Grace MS, Maher SA, Adcock JJ, Wortley MA, Dubuis E, Ching YM, Ford AP, Shala F, Miralpeix M, Tarrason G, Smith JA, Belvisi MG. Transient receptor potential cation channel, subfamily V, member 4 and airway sensory afferent activation: Role of adenosine triphosphate. J Allergy Clin Immunol 2016; 138:249-261.e12. [PMID: 26792207 PMCID: PMC4929136 DOI: 10.1016/j.jaci.2015.10.044] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 10/19/2015] [Accepted: 10/28/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Sensory nerves innervating the airways play an important role in regulating various cardiopulmonary functions, maintaining homeostasis under healthy conditions and contributing to pathophysiology in disease states. Hypo-osmotic solutions elicit sensory reflexes, including cough, and are a potent stimulus for airway narrowing in asthmatic patients, but the mechanisms involved are not known. Transient receptor potential cation channel, subfamily V, member 4 (TRPV4) is widely expressed in the respiratory tract, but its role as a peripheral nociceptor has not been explored. OBJECTIVE We hypothesized that TRPV4 is expressed on airway afferents and is a key osmosensor initiating reflex events in the lung. METHODS We used guinea pig primary cells, tissue bioassay, in vivo electrophysiology, and a guinea pig conscious cough model to investigate a role for TRPV4 in mediating sensory nerve activation in vagal afferents and the possible downstream signaling mechanisms. Human vagus nerve was used to confirm key observations in animal tissues. RESULTS Here we show TRPV4-induced activation of guinea pig airway-specific primary nodose ganglion cells. TRPV4 ligands and hypo-osmotic solutions caused depolarization of murine, guinea pig, and human vagus and firing of Aδ-fibers (not C-fibers), which was inhibited by TRPV4 and P2X3 receptor antagonists. Both antagonists blocked TRPV4-induced cough. CONCLUSION This study identifies the TRPV4-ATP-P2X3 interaction as a key osmosensing pathway involved in airway sensory nerve reflexes. The absence of TRPV4-ATP-mediated effects on C-fibers indicates a distinct neurobiology for this ion channel and implicates TRPV4 as a novel therapeutic target for neuronal hyperresponsiveness in the airways and symptoms, such as cough.
Collapse
Affiliation(s)
- Sara J Bonvini
- Respiratory Pharmacology Group, Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Mark A Birrell
- Respiratory Pharmacology Group, Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Megan S Grace
- School of Medical Sciences and Health Innovations Research Institute, RMIT University, Bundoora, Australia
| | - Sarah A Maher
- Respiratory Pharmacology Group, Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - John J Adcock
- Respiratory Pharmacology Group, Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Michael A Wortley
- Respiratory Pharmacology Group, Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Eric Dubuis
- Respiratory Pharmacology Group, Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Yee-Man Ching
- Airway Disease Infection Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | | | - Fisnik Shala
- Respiratory Pharmacology Group, Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Montserrat Miralpeix
- Respiratory Therapeutic Area-Discovery, R&D Centre, Almirall S.A., Barcelona, Spain
| | - Gema Tarrason
- Respiratory Therapeutic Area-Discovery, R&D Centre, Almirall S.A., Barcelona, Spain
| | - Jaclyn A Smith
- Respiratory and Allergy Centre, University of Manchester, University Hospital of South Manchester, Manchester, United Kingdom
| | - Maria G Belvisi
- Respiratory Pharmacology Group, Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom.
| |
Collapse
|
39
|
Ho WSV, Zheng X, Zhang DX. Role of endothelial TRPV4 channels in vascular actions of the endocannabinoid, 2-arachidonoylglycerol. Br J Pharmacol 2015; 172:5251-64. [PMID: 26294342 DOI: 10.1111/bph.13312] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 07/30/2015] [Accepted: 08/16/2015] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Metabolites of the endocannabinoid, 2-arachidonoylglycerol (2-AG) have been postulated to act as endogenous activators of TRPV4, a Ca(2+) -permeable cation channel that plays a critical role in endothelium-dependent relaxation. However, it is unclear if TRPV4 contributes to the vascular actions of 2-AG. EXPERIMENTAL APPROACH Isometric tension recording of rat small mesenteric arteries and aortae were used to assess the effect of 2-AG and the synthetic TRPV4 activator, GSK1016790A (GSK) on vascular reactivity. Changes in intracellular Ca(2+) concentration and single-channel currents were measured in TRPV4-expressing human coronary endothelial cells. KEY RESULTS In mesenteric arteries, endothelium-dependent relaxation to both 2-AG and GSK was attenuated by structurally distinct TRPV4 antagonists, HC067047, RN1734 and ruthenium red. The responses were inhibited by KCa inhibitors (apamin + charybdotoxin) and a gap junction inhibitor (18α-glycyrrhetinic acid). In contrast to GSK, 2-AG elicited considerable relaxation independently of the endothelium or TRPV4. Inhibition of 2-AG metabolism via monoacylglycerol lipase and COX (by MAFP and indomethacin) caused potentiation, while cytochrome P450 and lipoxygenase inhibitors had no effect on 2-AG relaxation. In coronary endothelial cells, 2-AG (with and without MAFP) induced HC067047-sensitive increases in intracellular Ca(2+) concentration. 2-AG also increased TRPV4 channel opening in inside-out patches. However, in aortae, GSK induced a relaxation sensitive to HC067047 and ruthenium red, whereas 2-AG induced contractions. CONCLUSIONS AND IMPLICATIONS These data suggest that 2-AG can directly activate endothelial TRPV4, which partly contributes to the relaxant response to 2-AG. However, the functional role of TRPV4 is highly dependent on the vascular region.
Collapse
Affiliation(s)
- W S V Ho
- Vascular Biology Research Centre, Institute of Cardiovascular and Cell Sciences, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - X Zheng
- Department of Medicine, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - D X Zhang
- Department of Medicine, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
40
|
TRPV4 activation triggers the release of melatonin from human non-pigmented ciliary epithelial cells. Exp Eye Res 2015; 136:34-7. [DOI: 10.1016/j.exer.2015.04.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/10/2015] [Accepted: 04/27/2015] [Indexed: 11/20/2022]
|
41
|
Bonvini SJ, Birrell MA, Smith JA, Belvisi MG. Targeting TRP channels for chronic cough: from bench to bedside. Naunyn Schmiedebergs Arch Pharmacol 2015; 388:401-20. [PMID: 25572384 DOI: 10.1007/s00210-014-1082-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/16/2014] [Indexed: 12/24/2022]
Abstract
Cough is currently the most common reason for patients to visit a primary care physician in the UK, yet it remains an unmet medical need. Current therapies have limited efficacy or have potentially dangerous side effects. Under normal circumstances, cough is a protective reflex to clear the lungs of harmful particles; however, in disease, cough can become excessive, dramatically impacting patients' lives. In many cases, this condition is linked to inflammatory diseases such as asthma and chronic obstructive pulmonary disease (COPD), but can also be refractory to treatment and idiopathic in nature. Therefore, there is an urgent need to develop therapies, and targeting the sensory afferent arm of the reflex which initiates the cough reflex may uncover novel therapeutic targets. The cough reflex is initiated following activation of ion channels present on vagal sensory afferents. These ion channels include the transient receptor potential (TRP) family of cation-selective ion channels which act as cellular sensors and respond to changes in the external environment. Many direct activators of TRP channels, including arachidonic acid derivatives, a lowered airway pH, changes in temperature, and altered airway osmolarity are present in the diseased airway where responses to challenge agents which activate airway sensory nerve activity are known to be enhanced. Furthermore, the expression of some TRP channels is increased in airway disease. Together, this makes them promising targets for the treatment of chronic cough. This review will cover the current understanding of the role of the TRP family of ion channels in the activation of airway sensory nerves and cough, focusing on four members, transient receptor potential vanilloid (TRPV) 1, transient receptor potential ankyrin (TRPA) 1, TRPV4, and transient receptor potential melastatin (TRPM) 8 as these represent the channels where most information has been gathered with relevance to the airways. We will describe recent data and highlight the possible therapeutic utility of specific TRP channel antagonists as antitussives in the clinic.
Collapse
Affiliation(s)
- Sara J Bonvini
- Respiratory Pharmacology Group, Airway Disease Section, National Heart & Lung Institute, Imperial College, Exhibition Road, London, SW7 2AZ, UK
| | | | | | | |
Collapse
|
42
|
Goldenberg NM, Ravindran K, Kuebler WM. TRPV4: physiological role and therapeutic potential in respiratory diseases. Naunyn Schmiedebergs Arch Pharmacol 2014; 388:421-36. [PMID: 25342095 DOI: 10.1007/s00210-014-1058-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/10/2014] [Indexed: 01/11/2023]
Abstract
Members of the family of transient receptor potential (TRP) channels have been implicated in the pathophysiology of a host of lung diseases. The role of these multimodal cation channels in lung homeostasis is thought to stem from their ability to respond to changes in mechanical stimuli (i.e., shear and stretch), as well as to various protein and lipid mediators. The vanilloid subfamily member, TRPV4, which is highly expressed in the majority of lung cell types, is well positioned for critical involvement in several pulmonary conditions, including edema formation, control of pulmonary vascular tone, and the lung response to local or systemic inflammatory insults. In recent years, several pharmacological inhibitors of TRPV4 have been developed, and the current generation of compounds possess high affinity and specificity for TRPV4. As such, we have now entered a time where the therapeutic potential of TRPV4 inhibitors can be systematically examined in a variety of lung diseases. Due to this fact, this review seeks to describe the current state of the art with respect to the role of TRPV4 in pulmonary homeostasis and disease, and to highlight the current and future roles of TRPV4 inhibitors in disease treatment. We will first focus on genera aspects of TRPV4 structure and function, and then will discuss known roles for TRPV4 in pulmonary diseases, including pulmonary edema formation, pulmonary hypertension, and acute lung injury. Finally, both promising aspects and potential pitfalls of the clinical use of TRPV4 inhibitors will be examined.
Collapse
Affiliation(s)
- Neil M Goldenberg
- Department of Anesthesia, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
43
|
Morty RE, Kuebler WM. TRPV4: an exciting new target to promote alveolocapillary barrier function. Am J Physiol Lung Cell Mol Physiol 2014; 307:L817-21. [PMID: 25281637 DOI: 10.1152/ajplung.00254.2014] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Transient receptor potential (TRP) channels are emerging as important players and drug targets in respiratory disease. Amongst the vanilloid-type TRP channels (which includes the six members of the TRPV family), target diseases include cough, asthma, cancer, and more recently, pulmonary edema associated with acute respiratory distress syndrome. Here, we critically evaluate a recent report that addresses TRPV4 as a candidate target for the management of acute lung injury that develops as a consequence of aspiration of gastric contents, or acute chlorine gas exposure. By use of two new TRPV4 inhibitors (GSK2220691 or GSK2337429A) and a trpv4(-/-) mouse strain, TRPV4 was implicated as a key mediator of pulmonary inflammation after direct chemical insult. Additionally, applied therapeutically, TRPV4 inhibitors exhibited vasculoprotective effects after chlorine gas exposure, inhibiting vascular leakage, and improving blood oxygenation. These observations underscore TRPV4 channels as candidate therapeutic targets in the management of lung injury, with the added need to balance these against the potential drawbacks of TRPV4 inhibition, such as the danger of limiting the immune response in settings of pathogen-provoked injury.
Collapse
Affiliation(s)
- Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany;
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité Universitätsmedizin Berlin, Germany; Departments of Surgery and Physiology, University of Toronto, Toronto, Ontario, Canada; and The Keenan Research Center for Biomedical Science of St. Michael's, Toronto, Ontario, Canada
| |
Collapse
|