1
|
Foda BM, Baker AE, Joachimiak Ł, Mazur M, Neubig RR. Mechanistic insights into Rho/MRTF inhibition-induced apoptotic events and prevention of drug resistance in melanoma: implications for the involvement of pirin. Front Pharmacol 2025; 16:1505000. [PMID: 39917624 PMCID: PMC11799239 DOI: 10.3389/fphar.2025.1505000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/08/2025] [Indexed: 02/09/2025] Open
Abstract
Aim Overcoming therapy resistance is critical for effective melanoma control. Upregulation of Rho/MRTF signaling in human and mouse melanomas causes resistance to targeted therapies. Inhibition of this pathway by MRTFi, CCG-257081 resensitized resistant melanomas to BRAF and MEK inhibitors. It also prevented the development of resistance to vemurafenib (Vem). Here, we investigate the role of apoptosis and the protein pirin in CCG-257081-mediated suppression of drug resistance. Methods Using naïve and resistant mouse YUMMER melanoma cells, we studied the effect of the BRAF inhibitor Vem with or without CCG-257081 on real-time growth and apoptosis (activation of caspase, Propidium iodide (PI) staining, and PARP cleavage). The effects of CCG-257081 on proliferation (Ki67) and caspase-3 activation were assessed in resistant YUMMER_R tumors in vivo. Finally, two CCG-257081 enantiomers were tested for pirin binding, inhibition of the Rho/MRTF-mediated activation of ACTA2 gene expression in fibroblasts, and the prevention of Vem resistance development by YUMMER_P cells. Results Vem reduced growth of parental but not resistant cells, while CCG-257081 inhibited both. The combination was more effective than Vem alone. CCG-257081, but not Vem, induced activation of caspase-3 and -7 in resistant cells and increased PARP cleavage and PI staining. CCG-257081 reduced proliferation and activated caspase-3 in YUMMER_R melanoma tumors. Both CCG-257081 enantiomers robustly suppressed development of Vem-resistant colonies with the S isomer being more potent (1 μM IC50). Conclusion CCG-257081 appears to target pre-resistant cells and Vem-induced resistant cells through enhanced apoptosis. Inhibition of pirin or the Rho/MRTF pathway can be employed to prevent melanoma resistance.
Collapse
Affiliation(s)
- Bardees M. Foda
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
- Molecular Genetics and Enzymology Department, National Research Centre, Dokki, Egypt
| | - Annika E. Baker
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
- School of Health, Pre-Medicine, Calvin University, Grand Rapids, MI, United States
- School of Science Technology, Engineering, and Math, Biochemistry, Calvin University, Grand Rapids, MI, United States
| | | | | | - Richard R. Neubig
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
- Molecure SA, Warsaw, Poland
- Nicholas V. Perricone M.D. Division of Dermatology, Department of Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
2
|
Meschkewitz M, Lisabeth EM, Cab-Gomez AD, Leipprandt J, Neubig RR. Pirin does not bind to p65 or regulate NFκB-dependent gene expression but does modulate cellular quercetin levels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626411. [PMID: 39677728 PMCID: PMC11642861 DOI: 10.1101/2024.12.03.626411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Pirin is a non-heme iron binding protein with a variety of proposed functions including serving as a co-activator of p65 NFκB and quercetinase activity. We report here, failure to confirm pirin's primary proposed mechanism, binding of Fe(III)-pirin and p65. Analytical size exclusion chromatography (SEC) and fluorescence polarization (FP) studies did not detect an interaction. We also found no effects of pirin on TNFα-activated p65-regulated gene transcription using mouse embryonic fibroblasts (MEFs) from a pirin knockout mouse and a pirin knockdown NIH3T3 fibroblast cell line. TNFα - activated p65 response gene mRNA was neither increased nor decreased in cells with loss of pirin compared to wildtype cells. Furthermore, pirin immunofluorescence in NIH3T3 fibroblasts showed primarily a cytoplasmic localization, not nuclear as in most previous studies. This was confirmed by cell fractionation analysis. Pirin did show colocalization with the endoplasmic reticulum (ER) marker protein disulfide-isomerase (PDI) as well as cyotoplasmic labeling. We confirmed pirin's quercetinase activity in biochemical assays and demonstrated competitive inhibition by the pirin inhibitor CCG-257081. Cellular quercetin levels in cells exposed to quercetin in vitro were increased by knockdown of pirin or by treatment with pirin inhibitors. Since pirin is localized to ER and flavanols are protective of ER stress, we investigated whether pirin knockdown altered ER stress signaling but did not find any effect of pirin knockdown on ER stress response genes. Our results challenge the dominant model of pirin's function (NFκB regulation) but confirm its quercetinase activity with implications for the mechanisms of pirin binding small molecules.
Collapse
Affiliation(s)
- Melissa Meschkewitz
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Erika M Lisabeth
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - A. Denaly Cab-Gomez
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Jeffrey Leipprandt
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Richard R Neubig
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
- “Nicholas V. Perricone, M.D.”, Division of Dermatology, Department of Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
3
|
Bariani MV, Grimm SL, Coarfa C, Velez Edwards DR, Yang Q, Walker CL, Ali M, Al-Hendy A. Altered extracellular matrix-related pathways accelerate the transition from normal to prefibroid myometrium in Black women. Am J Obstet Gynecol 2024; 231:324.e1-324.e12. [PMID: 38825029 PMCID: PMC11344675 DOI: 10.1016/j.ajog.2024.05.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND Black women experience a disproportionate impact of uterine fibroids compared to White women, including earlier diagnosis, higher frequency, and more severe symptoms. The etiology underlying this racial disparity remains elusive. OBJECTIVE The aim of this study was to evaluate the molecular differences in normal myometrium (fibroid-free uteri) and at-risk myometrium (fibroid-containing uteri) tissues in Black and White women. STUDY DESIGN We conducted whole-genome RNA-seq on normal and at-risk myometrium tissues obtained from both self-identified Black and White women (not Hispanic or Latino) to determine global gene expression profiles and to conduct enriched pathway analyses (n=3 per group). We initially assessed the differences within the same type of tissue (normal or at-risk myometrium) between races. Subsequently, we analyzed the transcriptome of normal myometrium compared to at-risk myometrium in each race and determined the differences between them. We validated our findings through real-time PCR (sample size range=5-12), western blot (sample size range=5-6), and immunohistochemistry techniques (sample size range=9-16). RESULTS The transcriptomic analysis revealed distinct profiles between Black and White women in normal and at-risk myometrium tissues. Interestingly, genes and pathways related to extracellular matrix and mechanosensing were more enriched in normal myometrium from Black than White women. Transcription factor enrichment analysis detected greater activity of the serum response transcription factor positional motif in normal myometrium from Black compared to White women. Furthermore, we observed increased expression levels of myocardin-related transcription factor-serum response factor and the serum response factor in the same comparison. In addition, we noted increased expression of both mRNA and protein levels of vinculin, a target gene of the serum response factor, in normal myometrium tissues from Black women as compared to White women. Importantly, the transcriptomic profile of normal to at-risk myometrium conversion differs between Black and White women. Specifically, we observed that extracellular matrix-related pathways are involved in the transition from normal to at-risk myometrium and that these processes are exacerbated in Black women. We found increased levels of Tenascin C, type I collagen alpha 1 chain, fibronectin, and phospho-p38 MAPK (Thr180/Tyr182, active) protein levels in at-risk over normal myometrium tissues from Black women, whereas such differences were not observed in samples from White women. CONCLUSION These findings indicate that the racial disparities in uterine fibroids may be attributed to heightened production of extracellular matrix in the myometrium in Black women, even before the tumors appear. Future research is needed to understand early life determinants of the observed racial differences.
Collapse
Affiliation(s)
| | - Sandra L Grimm
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX; Center for Precision and Environmental Health, Baylor College of Medicine, Houston, TX
| | - Cristian Coarfa
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX; Center for Precision and Environmental Health, Baylor College of Medicine, Houston, TX
| | - Digna R Velez Edwards
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN; Division of Quantitative Sciences, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN; Institute for Medicine and Public Health, Vanderbilt University Medical Center, Nashville, TN
| | - Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL
| | - Cheryl L Walker
- Center for Precision and Environmental Health, Baylor College of Medicine, Houston, TX
| | - Mohamed Ali
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL.
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL.
| |
Collapse
|
4
|
Choi YJ, Kim WR, Kim DH, Kim JH, Yoo JH. Human umbilical cord/placenta mesenchymal stem cell conditioned medium attenuates intestinal fibrosis in vivo and in vitro. Stem Cell Res Ther 2024; 15:69. [PMID: 38454492 PMCID: PMC10921617 DOI: 10.1186/s13287-024-03678-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND A significant unmet need in inflammatory bowel disease is the lack of anti-fibrotic agents targeting intestinal fibrosis. This study aimed to investigate the anti-fibrogenic properties and mechanisms of the conditioned medium (CM) from human umbilical cord/placenta-derived mesenchymal stem cells (UC/PL-MSC-CM) in a murine intestinal fibrosis model and human primary intestinal myofibroblasts (HIMFs). METHODS UC/PL-MSC-CM was concentrated 15-fold using a 3 kDa cut-off filter. C57BL/6 mice aged 7 weeks old were randomly assigned to one of four groups: (1) control, (2) dextran sulfate sodium (DSS), (3) DSS + CM (late-phase treatment), and (4) DSS + CM (early-phase treatment). Chronic DSS colitis and intestinal fibrosis was induced by three cycles of DSS administration. One DSS cycle consisted of 7 days of oral DSS administration (1.75%, 2%, and 2.5% DSS), followed by 14 days of drinking water. UC/PL-MSC-CM was intraperitoneally administered in the late phase (from day 50, 10 times) or early phase (from day 29, 10 times) of DSS cycles. HIMFs were treated with TGF-β1 and co-treated with UC/PL-MSC-CM (10% of culture media) in the cellular model. RESULTS In the animal study, UC/PL-MSC-CM reduced submucosa/muscularis propria thickness and collagen deposition, which improved intestinal fibrosis in chronic DSS colitis. The UC/PL-MSC-CM significantly reduced the expressions of procollagen1A1 and α-smooth muscle actin, which DSS significantly elevated. The anti-fibrogenic effect was more apparent in the UC-MSC-CM or early-phase treatment model. The UC/PL-MSC-CM reduced procollagen1A1, fibronectin, and α-smooth muscle actin expression in HIMFs in the cellular model. The UC/PL-MSC-CM downregulated fibrogenesis by suppressing RhoA, MRTF-A, and SRF expression. CONCLUSIONS Human UC/PL-MSC-CM inhibits TGF-β1-induced fibrogenic activation in HIMFs by blocking the Rho/MRTF/SRF pathway and chronic DSS colitis-induced intestinal fibrosis. Thus, it may be regarded as a novel candidate for stem cell-based therapy of intestinal fibrosis.
Collapse
Affiliation(s)
- Yoon Jeong Choi
- Department of Gastroenterology, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam, 13496, South Korea
- Institute of Basic Medical Sciences, CHA University School of Medicine, Seongnam, 13496, South Korea
| | - Woo Ram Kim
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, South Korea
| | - Duk Hwan Kim
- Department of Gastroenterology, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam, 13496, South Korea
| | - Jee Hyun Kim
- Department of Gastroenterology, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam, 13496, South Korea.
| | - Jun Hwan Yoo
- Department of Gastroenterology, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam, 13496, South Korea.
- Institute of Basic Medical Sciences, CHA University School of Medicine, Seongnam, 13496, South Korea.
| |
Collapse
|
5
|
Patyal P, Zhang X, Verma A, Azhar G, Wei JY. Inhibitors of Rho/MRTF/SRF Transcription Pathway Regulate Mitochondrial Function. Cells 2024; 13:392. [PMID: 38474356 PMCID: PMC10931493 DOI: 10.3390/cells13050392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
RhoA-regulated gene transcription by serum response factor (SRF) and its transcriptional cofactor myocardin-related transcription factors (MRTFs) signaling pathway has emerged as a promising therapeutic target for pharmacological intervention in multiple diseases. Altered mitochondrial metabolism is one of the major hallmarks of cancer, therefore, this upregulation is a vulnerability that can be targeted with Rho/MRTF/SRF inhibitors. Recent advances identified a novel series of oxadiazole-thioether compounds that disrupt the SRF transcription, however, the direct molecular target of these compounds is unclear. Herein, we demonstrate the Rho/MRTF/SRF inhibition mechanism of CCG-203971 and CCG-232601 in normal cell lines of human lung fibroblasts and mouse myoblasts. Further studies investigated the role of these molecules in targeting mitochondrial function. We have shown that these molecules hyperacetylate histone H4K12 and H4K16 and regulate the genes involved in mitochondrial function and dynamics. These small molecule inhibitors regulate mitochondrial function as a compensatory mechanism by repressing oxidative phosphorylation and increasing glycolysis. Our data suggest that these CCG molecules are effective in inhibiting all the complexes of mitochondrial electron transport chains and further inducing oxidative stress. Therefore, our present findings highlight the therapeutic potential of CCG-203971 and CCG-232601, which may prove to be a promising approach to target aberrant bioenergetics.
Collapse
Affiliation(s)
| | | | | | | | - Jeanne Y. Wei
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (P.P.); (X.Z.); (A.V.); (G.A.)
| |
Collapse
|
6
|
Zhu L, Liu L, Wang A, Liu J, Huang X, Zan T. Positive feedback loops between fibroblasts and the mechanical environment contribute to dermal fibrosis. Matrix Biol 2023; 121:1-21. [PMID: 37164179 DOI: 10.1016/j.matbio.2023.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/06/2023] [Accepted: 05/07/2023] [Indexed: 05/12/2023]
Abstract
Dermal fibrosis is characterized by excessive deposition of extracellular matrix in the dermis and affects millions of people worldwide and causes limited movement, disfigurement and psychological distress in patients. Fibroblast dysfunction of plays a central role in the pathogenesis of dermal fibrosis and is controlled by distinct factors. Recent studies support the hypothesis that fibroblasts can drive matrix deposition and stiffening, which in turn can exacerbate the functional dysregulation of fibroblasts. Ultimately, through a positive feedback loop, uncontrolled pathological fibrosis develops. This review aims to summarize the phenomenon and mechanism of the positive feedback loop in dermal fibrosis, and discuss potential therapeutic targets to help further elucidate the pathogenesis of dermal fibrosis and develop therapeutic strategies. In this review, fibroblast-derived compositional and structural changes in the ECM that lead to altered mechanical properties are briefly discussed. We focus on the mechanisms by which mechanical cues participate in dermal fibrosis progression. The mechanosensors discussed in the review include integrins, DDRs, proteoglycans, and mechanosensitive ion channels. The FAK, ERK, Akt, and Rho pathways, as well as transcription factors, including MRTF and YAP/TAZ, are also discussed. In addition, we describe stiffness-induced biological changes in the ECM on fibroblasts that contribute to the formation of a positive feedback loop. Finally, we discuss therapeutic strategies to treat the vicious cycle and present important suggestions for researchers conducting in-depth research.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Lechen Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Aoli Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jinwen Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Li S, Liu J, Guo J, Xu Y, Zhou Z, Li Z, Cai H. Progranulin inhibits fibrosis by interacting with and up-regulating DNAJC3 during mouse skin wound healing. Cell Signal 2023:110770. [PMID: 37329998 DOI: 10.1016/j.cellsig.2023.110770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/23/2023] [Accepted: 06/11/2023] [Indexed: 06/19/2023]
Abstract
Scars place a heavy burden on both individuals and society. Our previous study found that reduction of progranulin (PGRN) promotes fibrogenesis in mouse skin wound healing. However, the underlying mechanisms have not been elucidated. Here, we report that PGRN overexpression decreases the expression of profibrotic genes alpha-smooth muscle actin (αSMA), serum response factor (SRF), and connective tissue growth factor (CTGF), thereby inhibiting skin fibrosis during wound repair. Bioinformatics analysis suggested that the heat shock protein (Hsp) 40 superfamily C3 (DNAJC3) is a potential downstream molecule of PGRN. Further experiments showed that PGRN interacts with and upregulates DNAJC3. Moreover, this antifibrotic effect was rescued by DNAJC3 knockdown. In summary, our study suggests that PGRN inhibits fibrosis by interacting with and upregulating DNAJC3 during wound healing in mouse skin. Our study provides a mechanistic explanation of the effect of PGRN on fibrogenesis in skin wound healing.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou, Jiangsu, China.
| | - Jialin Liu
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou, Jiangsu, China
| | - Jiamei Guo
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou, Jiangsu, China
| | - Yong Xu
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou, Jiangsu, China
| | - Zhong Zhou
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou, Jiangsu, China
| | - Zhouru Li
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou, Jiangsu, China
| | - Hongxing Cai
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou, Jiangsu, China.
| |
Collapse
|
8
|
Zhou S, Xie M, Su J, Cai B, Li J, Zhang K. New insights into balancing wound healing and scarless skin repair. J Tissue Eng 2023; 14:20417314231185848. [PMID: 37529248 PMCID: PMC10388637 DOI: 10.1177/20417314231185848] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/17/2023] [Indexed: 08/03/2023] Open
Abstract
Scars caused by skin injuries after burns, wounds, abrasions and operations have serious physical and psychological effects on patients. In recent years, the research of scar free wound repair has been greatly expanded. However, understanding the complex mechanisms of wound healing, in which various cells, cytokines and mechanical force interact, is critical to developing a treatment that can achieve scarless wound healing. Therefore, this paper reviews the types of wounds, the mechanism of scar formation in the healing process, and the current research progress on the dual consideration of wound healing and scar prevention, and some strategies for the treatment of scar free wound repair.
Collapse
Affiliation(s)
- Shengxi Zhou
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Mengbo Xie
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Jingjing Su
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Bingjie Cai
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Jingan Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, P. R. China
| |
Collapse
|
9
|
Pawelec KM, Varnum M, Harkema JR, Auerbach B, Larsen SD, Neubig RR. Prevention of bleomycin-induced lung fibrosis via inhibition of the MRTF/SRF transcription pathway. Pharmacol Res Perspect 2022; 10:e01028. [PMID: 36426895 PMCID: PMC9695093 DOI: 10.1002/prp2.1028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/21/2022] [Accepted: 10/11/2022] [Indexed: 11/26/2022] Open
Abstract
Bleomycin-induced lung fibrosis is a debilitating disease, linked to high morbidity and mortality in chemotherapy patients. The MRTF/SRF transcription pathway has been proposed as a potential therapeutic target, as it is critical for myofibroblast differentiation, a hallmark of fibrosis. In human lung fibroblasts, the MRTF/SRF pathway inhibitor, CCG-257081, effectively decreased mRNA levels of downstream genes: smooth muscle actin and connective tissue growth factor, with IC50 s of 4 and 15 μM, respectively. The ability of CCG-257081 to prevent inflammation and fibrosis, measured via pulmonary collagen content and histopathology, was tested in a murine model of bleomycin-induced lung fibrosis. Animals were given intraperitoneal bleomycin for 4 weeks and concurrently dosed with CCG-257081 (0, 10, 30, and 100 mg/kg PO), a clinical anti-fibrotic (nintedanib) or the clinical standard of care (prednisolone). Mice treated with 100 mg/kg CCG-257081 gained weight vs. vehicle-treated control mice, while those receiving nintedanib and prednisolone lost significant weight. Hydroxyproline content and histological findings in tissue of animals on 100 mg/kg CCG-257081 were not significantly different from naive tissue, indicating successful prevention. Measures of tissue fibrosis were comparable between CCG-257081 and nintedanib, but only the MRTF/SRF inhibitor decreased plasminogen activator inhibitor-1 (PAI-1), a marker linked to fibrosis, in bronchoalveolar lavage fluid. In contrast, prednisolone led to marked increases in lung fibrosis by all metrics. This study demonstrates the potential use of MRTF/SRF inhibitors to prevent bleomycin-induced lung fibrosis in a clinically relevant model of the disease.
Collapse
Affiliation(s)
| | - Megan Varnum
- FibrosIXEast LansingMichiganUSA
- BBC Entrepreneurial Training and ConsultingChelseaMichiganUSA
| | - Jack R. Harkema
- Department of Pathology and Diagnostic InvestigationMichigan State UniversityEast LansingMichiganUSA
- Department of Pharmacology & ToxicologyMichigan State UniversityEast LansingMichiganUSA
| | - Bruce Auerbach
- Office of Technology TransferUniversity of MichiganAnn ArborMichiganUSA
| | - Scott D. Larsen
- FibrosIXEast LansingMichiganUSA
- Department of Medicinal ChemistryUniversity of MichiganAnn ArborMichiganUSA
| | - Richard R. Neubig
- FibrosIXEast LansingMichiganUSA
- Department of Pharmacology & ToxicologyMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
10
|
Yin J, Zhang S, Yang C, Wang Y, Shi B, Zheng Q, Zeng N, Huang H. Mechanotransduction in skin wound healing and scar formation: Potential therapeutic targets for controlling hypertrophic scarring. Front Immunol 2022; 13:1028410. [PMID: 36325354 PMCID: PMC9618819 DOI: 10.3389/fimmu.2022.1028410] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Hypertrophic scarring (HTS) is a major source of morbidity after cutaneous injury. Recent studies indicate that mechanical force significantly impacts wound healing and skin regeneration which opens up a new direction to combat scarring. Hence, a thorough understanding of the underlying mechanisms is essential in the development of efficacious scar therapeutics. This review provides an overview of the current understanding of the mechanotransduction signaling pathways in scar formation and some strategies that offload mechanical forces in the wounded region for scar prevention and treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ni Zeng
- *Correspondence: Ni Zeng, ; Hanyao Huang,
| | | |
Collapse
|
11
|
Royzman D, Peckert-Maier K, Stich L, König C, Wild AB, Tauchi M, Ostalecki C, Kiesewetter F, Seyferth S, Lee G, Eming SA, Fuchs M, Kunz M, Stürmer EK, Peters EMJ, Berking C, Zinser E, Steinkasserer A. Soluble CD83 improves and accelerates wound healing by the induction of pro-resolving macrophages. Front Immunol 2022; 13:1012647. [PMID: 36248909 PMCID: PMC9564224 DOI: 10.3389/fimmu.2022.1012647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022] Open
Abstract
To facilitate the recovery process of chronic and hard-to-heal wounds novel pro-resolving treatment options are urgently needed. We investigated the pro-regenerative properties of soluble CD83 (sCD83) on cutaneous wound healing, where sCD83 accelerated wound healing not only after systemic but also after topical application, which is of high therapeutic interest. Cytokine profile analyses revealed an initial upregulation of inflammatory mediators such as TNFα and IL-1β, followed by a switch towards pro-resolving factors, including YM-1 and IL-10, both expressed by tissue repair macrophages. These cells are known to mediate resolution of inflammation and stimulate wound healing processes by secretion of growth factors such as epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF), which promote vascularization as well as fibroblast and keratinocyte differentiation. In conclusion, we have found strong wound healing capacities of sCD83 beyond the previously described role in transplantation and autoimmunity. This makes sCD83 a promising candidate for the treatment of chronic- and hard-to-heal wounds.
Collapse
Affiliation(s)
- Dmytro Royzman
- Department of Immune Modulation, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- *Correspondence: Dmytro Royzman, ; Alexander Steinkasserer,
| | - Katrin Peckert-Maier
- Department of Immune Modulation, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Lena Stich
- Department of Immune Modulation, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christina König
- Department of Immune Modulation, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andreas B. Wild
- Department of Immune Modulation, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Miyuki Tauchi
- Department of Internal Medicine 2, University Hospital Erlangen, FAU, Erlangen, Germany
| | - Christian Ostalecki
- Department of Dermatology, University Hospital Erlangen, FAU, Erlangen, Germany
| | | | - Stefan Seyferth
- Division of Pharmaceutics, Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Geoffrey Lee
- Division of Pharmaceutics, Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sabine A. Eming
- Department of Dermatology, University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster Cluster of Excellence for Aging Research (CECAD), University of Cologne, Cologne, Germany
| | - Maximilian Fuchs
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Meik Kunz
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
- Department of Medical Informatics, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Ewa K. Stürmer
- Department for Vascular Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eva M. J. Peters
- Psychoneuroimmunology Laboratory, Klinik für Psychosomatik und Psychotherapie, Justus-Liebig Universität Gießen, Gießen, Germany
| | - Carola Berking
- Department of Dermatology, University Hospital Erlangen, FAU, Erlangen, Germany
| | - Elisabeth Zinser
- Department of Immune Modulation, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Alexander Steinkasserer
- Department of Immune Modulation, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- *Correspondence: Dmytro Royzman, ; Alexander Steinkasserer,
| |
Collapse
|
12
|
Dupont S, Wickström SA. Mechanical regulation of chromatin and transcription. Nat Rev Genet 2022; 23:624-643. [DOI: 10.1038/s41576-022-00493-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2022] [Indexed: 01/14/2023]
|
13
|
Neubig RR. A Glowing Opportunity to Target YAP in Lung Fibrosis. Am J Respir Cell Mol Biol 2022; 67:1-2. [PMID: 35503038 PMCID: PMC9273223 DOI: 10.1165/rcmb.2022-0082ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Richard R Neubig
- Michigan State University, 3078, Pharmacology and Toxicology, East Lansing, Michigan, United States.,Michigan State University, 3078, Department of Medicine, Nicolas V. Perricone MD Division of Dermatology, East Lansing, Michigan, United States;
| |
Collapse
|
14
|
Wen D, Gao Y, Ho C, Yu L, Zhang Y, Lyu G, Hu D, Li Q, Zhang Y. Focusing on Mechanoregulation Axis in Fibrosis: Sensing, Transduction and Effecting. Front Mol Biosci 2022; 9:804680. [PMID: 35359592 PMCID: PMC8963247 DOI: 10.3389/fmolb.2022.804680] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/09/2022] [Indexed: 11/24/2022] Open
Abstract
Fibrosis, a pathologic process featured by the excessive deposition of connective tissue components, can affect virtually every organ and has no satisfactory therapy yet. Fibrotic diseases are often associated with organ dysfunction which leads to high morbidity and mortality. Biomechanical stmuli and the corresponding cellular response havebeen identified in fibrogenesis, as the fibrotic remodeling could be seen as the incapacity to reestablish mechanical homeostasis: along with extracellular matrix accumulating, the physical property became more “stiff” and could in turn induce fibrosis. In this review, we provide a comprehensive overview of mechanoregulation in fibrosis, from initialing cellular mechanosensing to intracellular mechanotransduction and processing, and ends up in mechanoeffecting. Our contents are not limited to the cellular mechanism, but further expand to the disorders involved and current clinical trials, providing an insight into the disease and hopefully inspiring new approaches for the treatment of tissue fibrosis.
Collapse
Affiliation(s)
- Dongsheng Wen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chiakang Ho
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Yu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuguang Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guozhong Lyu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Dahai Hu
- Burns Centre of PLA, Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Qingfeng Li, ; Yifan Zhang,
| | - Yifan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Qingfeng Li, ; Yifan Zhang,
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW The pathological remodeling of cardiac tissue after injury or disease leads to scar formation. Our knowledge of the role of nonmyocytes, especially fibroblasts, in cardiac injury and repair continues to increase with technological advances in both experimental and clinical studies. Here, we aim to elaborate on cardiac fibroblasts by describing their origins, dynamic cellular states after injury, and heterogeneity in order to understand their role in cardiac injury and repair. RECENT FINDINGS With the improvement in genetic lineage tracing technologies and the capability to profile gene expression at the single-cell level, we are beginning to learn that manipulating a specific population of fibroblasts could mitigate severe cardiac fibrosis and promote cardiac repair after injury. Cardiac fibroblasts play an indispensable role in tissue homeostasis and in repair after injury. Activated fibroblasts or myofibroblasts have time-dependent impacts on cardiac fibrosis. Multiple signaling pathways are involved in modulating fibroblast states, resulting in the alteration of fibrosis. Modulating a specific population of cardiac fibroblasts may provide new opportunities for identifying novel treatment options for cardiac fibrosis.
Collapse
Affiliation(s)
- Maoying Han
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.,School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China
| | - Bin Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China. .,School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China. .,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
16
|
Nucleocytoplasmic Shuttling of the Mechanosensitive Transcription Factors MRTF and YAP /TAZ. Methods Mol Biol 2021; 2299:197-216. [PMID: 34028745 DOI: 10.1007/978-1-0716-1382-5_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Myocardin-related transcription factor (MRTF) and the paralogous Hippo pathway effectors Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) are transcriptional co-activators that play pivotal roles in myofibroblast generation and activation, and thus the pathogenesis of organ fibrosis. They are regulated by a variety of chemical and mechanical fibrogenic stimuli, primarily at the level of their nucleocytoplasmic shuttling. In this chapter we describe the tools and protocols that allow for exact, quantitative, and automated determination and analysis of the nucleocytoplasmic distribution of endogenous or heterologously expressed MRTF and YAP/TAZ, measured in large cell populations. Dynamic monitoring of nucleocytoplasmic ratios of transcription factors is a novel and important approach, suitable to address both the structural requirements and the regulatory mechanisms underlying transcription factor traffic and the consequent reprogramming of gene expression during fibrogenesis.
Collapse
|
17
|
Myofibroblasts: Function, Formation, and Scope of Molecular Therapies for Skin Fibrosis. Biomolecules 2021; 11:biom11081095. [PMID: 34439762 PMCID: PMC8391320 DOI: 10.3390/biom11081095] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
Myofibroblasts are contractile, α-smooth muscle actin-positive cells with multiple roles in pathophysiological processes. Myofibroblasts mediate wound contractions, but their persistent presence in tissues is central to driving fibrosis, making them attractive cell targets for the development of therapeutic treatments. However, due to shared cellular markers with several other phenotypes, the specific targeting of myofibroblasts has long presented a scientific and clinical challenge. In recent years, myofibroblasts have drawn much attention among scientific research communities from multiple disciplines and specialisations. As further research uncovers the characterisations of myofibroblast formation, function, and regulation, the realisation of novel interventional routes for myofibroblasts within pathologies has emerged. The research community is approaching the means to finally target these cells, to prevent fibrosis, accelerate scarless wound healing, and attenuate associated disease-processes in clinical settings. This comprehensive review article describes the myofibroblast cell phenotype, their origins, and their diverse physiological and pathological functionality. Special attention has been given to mechanisms and molecular pathways governing myofibroblast differentiation, and updates in molecular interventions.
Collapse
|
18
|
Rozier P, Maumus M, Bony C, Maria ATJ, Sabatier F, Jorgensen C, Guilpain P, Noël D. Extracellular Vesicles Are More Potent Than Adipose Mesenchymal Stromal Cells to Exert an Anti-Fibrotic Effect in an In Vitro Model of Systemic Sclerosis. Int J Mol Sci 2021; 22:ijms22136837. [PMID: 34202139 PMCID: PMC8269376 DOI: 10.3390/ijms22136837] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/14/2022] Open
Abstract
Systemic sclerosis (SSc) is a complex disorder resulting from dysregulated interactions between the three main pathophysiological axes: fibrosis, immune dysfunction, and vasculopathy, with no specific treatment available to date. Adipose tissue-derived mesenchymal stromal cells (ASCs) and their extracellular vesicles (EVs) have proved efficacy in pre-clinical murine models of SSc. However, their precise action mechanism is still not fully understood. Because of the lack of availability of fibroblasts isolated from SSc patients (SSc-Fb), our aim was to determine whether a TGFβ1-induced model of human myofibroblasts (Tβ-Fb) could reproduce the characteristics of SSc-Fb and be used to evaluate the anti-fibrotic function of ASCs and their EVs. We found out that Tβ-Fb displayed the main morphological and molecular features of SSc-Fb, including the enlarged hypertrophic morphology and expression of several markers associated with the myofibroblastic phenotype. Using this model, we showed that ASCs were able to regulate the expression of most myofibroblastic markers on Tβ-Fb and SSc-Fb, but only when pre-stimulated with TGFβ1. Of interest, ASC-derived EVs were more effective than parental cells for improving the myofibroblastic phenotype. In conclusion, we provided evidence that Tβ-Fb are a relevant model to mimic the main characteristics of SSc fibroblasts and investigate the mechanism of action of ASCs. We further reported that ASC-EVs are more effective than parental cells suggesting that the TGFβ1-induced pro-fibrotic environment may alter the function of ASCs.
Collapse
Affiliation(s)
- Pauline Rozier
- INSERM U1183, Hôpital Saint-Eloi, IRMB, University of Montpellier, 80 Avenue Augustin Fliche, CEDEX 5, 34295 Montpellier, France; (P.R.); (M.M.); (C.B.); (C.J.); (P.G.)
| | - Marie Maumus
- INSERM U1183, Hôpital Saint-Eloi, IRMB, University of Montpellier, 80 Avenue Augustin Fliche, CEDEX 5, 34295 Montpellier, France; (P.R.); (M.M.); (C.B.); (C.J.); (P.G.)
| | - Claire Bony
- INSERM U1183, Hôpital Saint-Eloi, IRMB, University of Montpellier, 80 Avenue Augustin Fliche, CEDEX 5, 34295 Montpellier, France; (P.R.); (M.M.); (C.B.); (C.J.); (P.G.)
| | | | - Florence Sabatier
- INSERM, INRA, C2VN, Aix Marseille University, 13005 Marseille, France;
| | - Christian Jorgensen
- INSERM U1183, Hôpital Saint-Eloi, IRMB, University of Montpellier, 80 Avenue Augustin Fliche, CEDEX 5, 34295 Montpellier, France; (P.R.); (M.M.); (C.B.); (C.J.); (P.G.)
- Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU, 34295 Montpellier, France
| | - Philippe Guilpain
- INSERM U1183, Hôpital Saint-Eloi, IRMB, University of Montpellier, 80 Avenue Augustin Fliche, CEDEX 5, 34295 Montpellier, France; (P.R.); (M.M.); (C.B.); (C.J.); (P.G.)
- Department of Internal Medicine, Multi-Organic Diseases, CHU, 34295 Montpellier, France;
| | - Danièle Noël
- INSERM U1183, Hôpital Saint-Eloi, IRMB, University of Montpellier, 80 Avenue Augustin Fliche, CEDEX 5, 34295 Montpellier, France; (P.R.); (M.M.); (C.B.); (C.J.); (P.G.)
- Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU, 34295 Montpellier, France
- Correspondence: ; Tel.: +33-4-67-33-04-73; Fax: +33-4-67-33-01-13
| |
Collapse
|
19
|
Romano E, Rosa I, Fioretto BS, Matucci-Cerinic M, Manetti M. New Insights into Profibrotic Myofibroblast Formation in Systemic Sclerosis: When the Vascular Wall Becomes the Enemy. Life (Basel) 2021; 11:610. [PMID: 34202703 PMCID: PMC8307837 DOI: 10.3390/life11070610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022] Open
Abstract
In systemic sclerosis (SSc), abnormalities in microvessel morphology occur early and evolve into a distinctive vasculopathy that relentlessly advances in parallel with the development of tissue fibrosis orchestrated by myofibroblasts in nearly all affected organs. Our knowledge of the cellular and molecular mechanisms underlying such a unique relationship between SSc-related vasculopathy and fibrosis has profoundly changed over the last few years. Indeed, increasing evidence has suggested that endothelial-to-mesenchymal transition (EndoMT), a process in which profibrotic myofibroblasts originate from endothelial cells, may take center stage in SSc pathogenesis. While in arterioles and small arteries EndoMT may lead to the accumulation of myofibroblasts within the vessel wall and development of fibroproliferative vascular lesions, in capillary vessels it may instead result in vascular destruction and formation of myofibroblasts that migrate into the perivascular space with consequent tissue fibrosis and microvessel rarefaction, which are hallmarks of SSc. Besides endothelial cells, other vascular wall-resident cells, such as pericytes and vascular smooth muscle cells, may acquire a myofibroblast-like synthetic phenotype contributing to both SSc-related vascular dysfunction and fibrosis. A deeper understanding of the mechanisms underlying the differentiation of myofibroblasts inside the vessel wall provides the rationale for novel targeted therapeutic strategies for the treatment of SSc.
Collapse
Affiliation(s)
- Eloisa Romano
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, 50134 Florence, Italy; (E.R.); (B.S.F.); (M.M.-C.)
| | - Irene Rosa
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy;
| | - Bianca Saveria Fioretto
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, 50134 Florence, Italy; (E.R.); (B.S.F.); (M.M.-C.)
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, 50134 Florence, Italy; (E.R.); (B.S.F.); (M.M.-C.)
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy;
| |
Collapse
|
20
|
Miranda MZ, Lichner Z, Szászi K, Kapus A. MRTF: Basic Biology and Role in Kidney Disease. Int J Mol Sci 2021; 22:ijms22116040. [PMID: 34204945 PMCID: PMC8199744 DOI: 10.3390/ijms22116040] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/21/2021] [Accepted: 05/30/2021] [Indexed: 12/23/2022] Open
Abstract
A lesser known but crucially important downstream effect of Rho family GTPases is the regulation of gene expression. This major role is mediated via the cytoskeleton, the organization of which dictates the nucleocytoplasmic shuttling of a set of transcription factors. Central among these is myocardin-related transcription factor (MRTF), which upon actin polymerization translocates to the nucleus and binds to its cognate partner, serum response factor (SRF). The MRTF/SRF complex then drives a large cohort of genes involved in cytoskeleton remodeling, contractility, extracellular matrix organization and many other processes. Accordingly, MRTF, activated by a variety of mechanical and chemical stimuli, affects a plethora of functions with physiological and pathological relevance. These include cell motility, development, metabolism and thus metastasis formation, inflammatory responses and—predominantly-organ fibrosis. The aim of this review is twofold: to provide an up-to-date summary about the basic biology and regulation of this versatile transcriptional coactivator; and to highlight its principal involvement in the pathobiology of kidney disease. Acting through both direct transcriptional and epigenetic mechanisms, MRTF plays a key (yet not fully appreciated) role in the induction of a profibrotic epithelial phenotype (PEP) as well as in fibroblast-myofibroblast transition, prime pathomechanisms in chronic kidney disease and renal fibrosis.
Collapse
Affiliation(s)
- Maria Zena Miranda
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (M.Z.M.); (Z.L.); (K.S.)
| | - Zsuzsanna Lichner
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (M.Z.M.); (Z.L.); (K.S.)
| | - Katalin Szászi
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (M.Z.M.); (Z.L.); (K.S.)
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - András Kapus
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (M.Z.M.); (Z.L.); (K.S.)
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence:
| |
Collapse
|
21
|
Yang Q, Shi W. Rho/ROCK-MYOCD in regulating airway smooth muscle growth and remodeling. Am J Physiol Lung Cell Mol Physiol 2021; 321:L1-L5. [PMID: 33909498 DOI: 10.1152/ajplung.00034.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Abnormal airway remodeling is a common pathological change seen in chronic respiratory diseases. Altered proliferation and differentiation of airway smooth muscle cells (ASMCs) are the major components of airway remodeling, and the resultant structural abnormalities are difficult to restore. Understanding of airway smooth muscle regulation is urgently needed to identify potential intervention targets. MYOCD (or myocardin) and myocardin-related transcription factors (MRTFs) are key cotranscription factors in muscle growth, which have not been extensively investigated in airway smooth muscle cells. In addition, the RhoA/ROCK signaling pathway is known to play an important role in airway remodeling partly through regulating the proliferation and differentiation of ASMCs, which may be connected with MYOCD/MRTF cotranscription factors [Kumawat et al. (Am J Physiol Lung Cell Mol Physiol 311: L529-L537, 2016); Lagna et al. (J Biol Chem 282: 37244-37255, 2007)]. This review focuses on this newly recognized and potentially important RhoA/ROCK-MYOCD/MRTFs pathway in controlling airway smooth muscle growth and remodeling.
Collapse
Affiliation(s)
- Qin Yang
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Respiratory Medicine, Shenzhen Children's Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Wei Shi
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
22
|
Choudhary I, Hwang D, Chae J, Yoon W, Kang C, Kim E. Proteomic Changes during the Dermal Toxicity Induced by Nemopilema nomurai Jellyfish Venom in HaCaT Human Keratinocyte. Toxins (Basel) 2021; 13:toxins13050311. [PMID: 33925349 PMCID: PMC8146130 DOI: 10.3390/toxins13050311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 01/22/2023] Open
Abstract
Jellyfish venom is well known for its local skin toxicities and various lethal accidents. The main symptoms of local jellyfish envenomation include skin lesions, burning, prickling, stinging pain, red, brown, or purplish tracks on the skin, itching, and swelling, leading to dermonecrosis and scar formation. However, the molecular mechanism behind the action of jellyfish venom on human skin cells is rarely understood. In the present study, we have treated the human HaCaT keratinocyte with Nemopilema nomurai jellyfish venom (NnV) to study detailed mechanisms of actions behind the skin symptoms after jellyfish envenomation. Using two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF/MS), cellular changes at proteome level were examined. The treatment of NnV resulted in the decrease of HaCaT cell viability in a concentration-dependent manner. Using NnV (at IC50), the proteome level alterations were determined at 12 h and 24 h after the venom treatment. Briefly, 70 protein spots with significant quantitative changes were picked from the gels for MALDI-TOF/MS. In total, 44 differentially abundant proteins were successfully identified, among which 19 proteins were increased, whereas 25 proteins were decreased in the abundance levels comparing with their respective control spots. DAPs involved in cell survival and development (e.g., Plasminogen, Vinculin, EMILIN-1, Basonuclin2, Focal adhesion kinase 1, FAM83B, Peroxisome proliferator-activated receptor-gamma co-activator 1-alpha) decreased their expression, whereas stress or immune response-related proteins (e.g., Toll-like receptor 4, Aminopeptidase N, MKL/Myocardin-like protein 1, hypoxia up-regulated protein 1, Heat shock protein 105 kDa, Ephrin type-A receptor 1, with some protease (or peptidase) enzymes) were up-regulated. In conclusion, the present findings may exhibit some possible key players during skin damage and suggest therapeutic strategies for preventing jellyfish envenomation.
Collapse
Affiliation(s)
- Indu Choudhary
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (I.C.); (D.H.); (C.K.)
| | - Duhyeon Hwang
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (I.C.); (D.H.); (C.K.)
- Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Jinho Chae
- Marine Environmental Research and Information Laboratory, B1101, 17 Gosan-ro 148beon-gil, Gunpo-si 15850, Gyeonggi-do, Korea; (J.C.); (W.Y.)
| | - Wonduk Yoon
- Marine Environmental Research and Information Laboratory, B1101, 17 Gosan-ro 148beon-gil, Gunpo-si 15850, Gyeonggi-do, Korea; (J.C.); (W.Y.)
| | - Changkeun Kang
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (I.C.); (D.H.); (C.K.)
- Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Euikyung Kim
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (I.C.); (D.H.); (C.K.)
- Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Korea
- Correspondence: ; Tel.: +82-55-772-2355; Fax: +82-55-772-2349
| |
Collapse
|
23
|
Romano E, Rosa I, Fioretto BS, Cerinic MM, Manetti M. The Role of Pro-fibrotic Myofibroblasts in Systemic Sclerosis: from Origin to Therapeutic Targeting. Curr Mol Med 2021; 22:209-239. [PMID: 33823766 DOI: 10.2174/0929867328666210325102749] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 11/22/2022]
Abstract
Systemic sclerosis (SSc, scleroderma) is a complex connective tissue disorder characterized by multisystem clinical manifestations resulting from immune dysregulation/autoimmunity, vasculopathy and, most notably, progressive fibrosis of the skin and internal organs. In recent years, it has emerged that the main drivers of SSc-related tissue fibrosis are myofibroblasts, a type of mesenchymal cells with both the extracellular matrix-synthesizing features of fibroblasts and the cytoskeletal characteristics of contractile smooth muscle cells. The accumulation and persistent activation of pro-fibrotic myofibroblasts during SSc development and progression result into elevated mechanical stress and reduced matrix plasticity within the affected tissues and may be ascribed to a reduced susceptibility of these cells to pro-apoptotic stimuli, as well as their increased formation from tissue-resident fibroblasts or transition from different cell types. Given the crucial role of myofibroblasts in SSc pathogenesis, finding the way to inhibit myofibroblast differentiation and accumulation by targeting their formation, function and survival may represent an effective approach to hamper the fibrotic process or even halt or reverse established fibrosis. In this review, we discuss the role of myofibroblasts in SSc-related fibrosis, with a special focus on their cellular origin and the signaling pathways implicated in their formation and persistent activation. Furthermore, we provide an overview of potential therapeutic strategies targeting myofibroblasts that may be able to counteract fibrosis in this pathological condition.
Collapse
Affiliation(s)
- Eloisa Romano
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence. Italy
| | - Irene Rosa
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence. Italy
| | - Bianca Saveria Fioretto
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence. Italy
| | - Marco Matucci Cerinic
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence. Italy
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence. Italy
| |
Collapse
|
24
|
Chignon A, Rosa M, Boulanger MC, Argaud D, Devillers R, Bon-Baret V, Mkannez G, Li Z, Rufiange A, Gaudreault N, Gosselin D, Thériault S, Bossé Y, Mathieu P. Enhancer-associated aortic valve stenosis risk locus 1p21.2 alters NFATC2 binding site and promotes fibrogenesis. iScience 2021; 24:102241. [PMID: 33748722 PMCID: PMC7970363 DOI: 10.1016/j.isci.2021.102241] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/01/2021] [Accepted: 02/24/2021] [Indexed: 11/24/2022] Open
Abstract
Genome-wide association studies for calcific aortic valve stenosis (CAVS) previously reported strong signal for noncoding variants at 1p21.2. Previous study using Mendelian randomization suggested that the locus controls the expression of PALMD encoding Palmdelphin (PALMD). However, the molecular regulation at the locus and the impact of PALMD on the biology of the aortic valve is presently unknown. 3D genetic mapping and CRISPR activation identified rs6702619 as being located in a distant-acting enhancer, which controls the expression of PALMD. DNA-binding assay showed that the risk variant modified the DNA shape, which prevented the recruitment of NFATC2 and lowered the expression of PALMD. In co-expression network analysis, a module encompassing PALMD was enriched in actin-based process. Mass spectrometry and functional assessment showed that PALMD is a regulator of actin polymerization. In turn, lower level of PALMD promoted the activation of myocardin-related transcription factor and fibrosis, a key pathobiological process underpinning CAVS.
Collapse
Affiliation(s)
- Arnaud Chignon
- Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, 2725 Chemin Ste-Foy, G1V-4G5, Québec City, QC, Canada
| | - Mickael Rosa
- Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, 2725 Chemin Ste-Foy, G1V-4G5, Québec City, QC, Canada
| | - Marie-Chloé Boulanger
- Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, 2725 Chemin Ste-Foy, G1V-4G5, Québec City, QC, Canada
| | - Déborah Argaud
- Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, 2725 Chemin Ste-Foy, G1V-4G5, Québec City, QC, Canada
| | - Romain Devillers
- Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, 2725 Chemin Ste-Foy, G1V-4G5, Québec City, QC, Canada
| | - Valentin Bon-Baret
- Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, 2725 Chemin Ste-Foy, G1V-4G5, Québec City, QC, Canada
| | - Ghada Mkannez
- Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, 2725 Chemin Ste-Foy, G1V-4G5, Québec City, QC, Canada
| | - Zhonglin Li
- Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, 2725 Chemin Ste-Foy, G1V-4G5, Québec City, QC, Canada
| | - Anne Rufiange
- Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, 2725 Chemin Ste-Foy, G1V-4G5, Québec City, QC, Canada
| | - Nathalie Gaudreault
- Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, 2725 Chemin Ste-Foy, G1V-4G5, Québec City, QC, Canada
| | - David Gosselin
- Department of Molecular Medicine, Laval University, Québec City, QC, Canada
| | - Sébastien Thériault
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Québec City, QC, Canada
| | - Yohan Bossé
- Department of Molecular Medicine, Laval University, Québec City, QC, Canada
| | - Patrick Mathieu
- Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, 2725 Chemin Ste-Foy, G1V-4G5, Québec City, QC, Canada
| |
Collapse
|
25
|
Sanghani A, Kafetzis KN, Sato Y, Elboraie S, Fajardo-Sanchez J, Harashima H, Tagalakis AD, Yu-Wai-Man C. Novel PEGylated Lipid Nanoparticles Have a High Encapsulation Efficiency and Effectively Deliver MRTF-B siRNA in Conjunctival Fibroblasts. Pharmaceutics 2021; 13:382. [PMID: 33805660 PMCID: PMC7998417 DOI: 10.3390/pharmaceutics13030382] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 01/07/2023] Open
Abstract
The master regulator of the fibrosis cascade is the myocardin-related transcription factor/serum response factor (MRTF/SRF) pathway, making it a key target for anti-fibrotic therapeutics. In the past, inhibitors and small interfering RNAs (siRNAs) targeting the MRTF-B gene have been deployed to counter fibrosis in the eye, with the latter showing promising results. However, the biggest challenge in implementing siRNA therapeutics is the method of delivery. In this study, we utilised the novel, pH-sensitive, cationic lipid CL4H6, which has previously demonstrated potent targeting of hepatocytes and endosomal escape, to safely and efficiently deliver an MRTF-B siRNA into human conjunctival fibroblasts. We prepared two lipid nanoparticle (LNP) formulations, incorporating targeting cleavable peptide cY in one of them, and measured their physicochemical properties and silencing effect in human conjunctival fibroblasts. Both proved to be non-cytotoxic at a concentration of 50 nM and effectively silenced the MRTF-B gene in vitro, with the targeting cleavable peptide not affecting the silencing efficiency [LNP with cY: 62.1% and 81.5% versus LNP without cY: 77.7% and 80.2%, at siRNA concentrations of 50 nM (p = 0.06) and 100 nM (p = 0.09), respectively]. On the other hand, the addition of the targeting cleavable peptide significantly increased the encapsulation efficiency of the LNPs from 92.5% to 99.3% (p = 0.0005). In a 3D fibroblast-populated collagen matrix model, both LNP formulations significantly decreased fibroblast contraction after a single transfection. We conclude that the novel PEGylated CL4H6-MRTF-B siRNA-loaded LNPs represent a promising therapeutic approach to prevent conjunctival fibrosis after glaucoma filtration surgery.
Collapse
Affiliation(s)
- Amisha Sanghani
- Faculty of Life Sciences & Medicine, King’s College London, London SE1 7EH, UK; (A.S.); (J.F.-S.)
- Department of Ophthalmology, St Thomas’ Hospital, London SE1 7EH, UK
| | | | - Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; (Y.S.); (H.H.)
| | - Salsabil Elboraie
- Department of Biology, Edge Hill University, Ormskirk L39 4QP, UK; (K.N.K.); (S.E.)
| | - Julia Fajardo-Sanchez
- Faculty of Life Sciences & Medicine, King’s College London, London SE1 7EH, UK; (A.S.); (J.F.-S.)
- Department of Ophthalmology, St Thomas’ Hospital, London SE1 7EH, UK
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; (Y.S.); (H.H.)
| | | | - Cynthia Yu-Wai-Man
- Faculty of Life Sciences & Medicine, King’s College London, London SE1 7EH, UK; (A.S.); (J.F.-S.)
- Department of Ophthalmology, St Thomas’ Hospital, London SE1 7EH, UK
| |
Collapse
|
26
|
Sprenkeler EGG, Guenther C, Faisal I, Kuijpers TW, Fagerholm SC. Molecular Mechanisms of Leukocyte Migration and Its Potential Targeting-Lessons Learned From MKL1/SRF-Related Primary Immunodeficiency Diseases. Front Immunol 2021; 12:615477. [PMID: 33692789 PMCID: PMC7938309 DOI: 10.3389/fimmu.2021.615477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/04/2021] [Indexed: 01/22/2023] Open
Abstract
Megakaryoblastic leukemia 1 (MKL1) deficiency is one of the most recently discovered primary immunodeficiencies (PIDs) caused by cytoskeletal abnormalities. These immunological “actinopathies” primarily affect hematopoietic cells, resulting in defects in both the innate immune system (phagocyte defects) and adaptive immune system (T-cell and B-cell defects). MKL1 is a transcriptional coactivator that operates together with serum response factor (SRF) to regulate gene transcription. The MKL/SRF pathway has been originally described to have important functions in actin regulation in cells. Recent results indicate that MKL1 also has very important roles in immune cells, and that MKL1 deficiency results in an immunodeficiency affecting the migration and function of primarily myeloid cells such as neutrophils. Interestingly, several actinopathies are caused by mutations in genes which are recognized MKL(1/2)-dependent SRF-target genes, namely ACTB, WIPF1, WDR1, and MSN. Here we summarize these and related (ARPC1B) actinopathies and their effects on immune cell function, especially focusing on their effects on leukocyte adhesion and migration. Furthermore, we summarize recent therapeutic efforts targeting the MKL/SRF pathway in disease.
Collapse
Affiliation(s)
- Evelien G G Sprenkeler
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, Netherlands
| | - Carla Guenther
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Imrul Faisal
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Taco W Kuijpers
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, Netherlands
| | - Susanna C Fagerholm
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
27
|
Molecular Mechanisms to Target Cellular Senescence in Hepatocellular Carcinoma. Cells 2020; 9:cells9122540. [PMID: 33255630 PMCID: PMC7761055 DOI: 10.3390/cells9122540] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has emerged as a major cause of cancer-related death and is the most common type of liver cancer. Due to the current paucity of drugs for HCC therapy there is a pressing need to develop new therapeutic concepts. In recent years, the role of Serum Response Factor (SRF) and its coactivators, Myocardin-Related Transcription Factors A and B (MRTF-A and -B), in HCC formation and progression has received considerable attention. Targeting MRTFs results in HCC growth arrest provoked by oncogene-induced senescence. The induction of senescence acts as a tumor-suppressive mechanism and therefore gains consideration for pharmacological interventions in cancer therapy. In this article, we describe the key features and the functional role of senescence in light of the development of novel drug targets for HCC therapy with a focus on MRTFs.
Collapse
|
28
|
Freeberg MAT, Perelas A, Rebman JK, Phipps RP, Thatcher TH, Sime PJ. Mechanical Feed-Forward Loops Contribute to Idiopathic Pulmonary Fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 191:18-25. [PMID: 33031756 PMCID: PMC7768346 DOI: 10.1016/j.ajpath.2020.09.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/25/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022]
Abstract
Idiopathic pulmonary fibrosis is a progressive scarring disease characterized by extracellular matrix accumulation and altered mechanical properties of lung tissue. Recent studies support the hypothesis that these compositional and mechanical changes create a progressive feed-forward loop in which enhanced matrix deposition and tissue stiffening contribute to fibroblast and myofibroblast differentiation and activation, which further perpetuates matrix production and stiffening. The biomechanical properties of tissues are sensed and responded to by mechanotransduction pathways that facilitate sensing of changes in mechanical cues by tissue resident cells and convert the mechanical signals into downstream biochemical signals. Although our understanding of mechanotransduction pathways associated with pulmonary fibrosis remains incomplete, recent progress has allowed us to begin to elucidate the specific mechanisms supporting fibrotic feed-forward loops. The mechanosensors discussed here include integrins, Piezo channels, transient receptor potential channels, and nonselective ion channels. Also discussed are downstream transcription factors, including myocardin-related transcription factor and Yes-associated protein/transcriptional coactivator with PDZ-binding motif. This review describes mechanosensors and mechanotransduction pathways associated with fibrosis progression and highlights promising therapeutic insights.
Collapse
Affiliation(s)
- Margaret A T Freeberg
- Division of Pulmonary Disease and Critical Care Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Apostolos Perelas
- Division of Pulmonary Disease and Critical Care Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Jane K Rebman
- Division of Pulmonary Disease and Critical Care Medicine, Virginia Commonwealth University, Richmond, Virginia
| | | | - Thomas H Thatcher
- Division of Pulmonary Disease and Critical Care Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Patricia J Sime
- Division of Pulmonary Disease and Critical Care Medicine, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
29
|
Francisco J, Zhang Y, Jeong JI, Mizushima W, Ikeda S, Ivessa A, Oka S, Zhai P, Tallquist MD, Del Re DP. Blockade of Fibroblast YAP Attenuates Cardiac Fibrosis and Dysfunction Through MRTF-A Inhibition. JACC Basic Transl Sci 2020; 5:931-945. [PMID: 33015415 PMCID: PMC7524792 DOI: 10.1016/j.jacbts.2020.07.009] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 10/29/2022]
Abstract
Fibrotic remodeling of the heart in response to injury contributes to heart failure, yet therapies to treat fibrosis remain elusive. Yes-associated protein (YAP) is activated in cardiac fibroblasts by myocardial infarction, and genetic inhibition of fibroblast YAP attenuates myocardial infarction-induced cardiac dysfunction and fibrosis. YAP promotes myofibroblast differentiation and associated extracellular matrix gene expression through engagement of TEA domain transcription factor 1 and subsequent de novo expression of myocardin-related transcription factor A. Thus, fibroblast YAP is a promising therapeutic target to prevent fibrotic remodeling and heart failure.
Collapse
Key Words
- AngII, angiotensin II
- Hippo signaling
- MCM, Mer-Cre-Mer
- MI, myocardial infarction
- MRTF-A, myocardin-related transcription factor A
- Mkl1, megakaryoblastic leukemia 1
- NRCF, neonatal rat cardiac fibroblast
- PDGFR, platelet-derived growth factor receptor
- PE, phenylephrine
- SMA, smooth muscle actin
- TEAD, TEA domain transcription factor
- TGF, transforming growth factor
- YAP
- YAP, yes-associated protein
- cardiac fibrosis
- heart failure
- mRNA, messenger ribonucleic acid
- myocardial infarction
Collapse
Affiliation(s)
- Jamie Francisco
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Yu Zhang
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Jae Im Jeong
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Wataru Mizushima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Shohei Ikeda
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Andreas Ivessa
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Shinichi Oka
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Peiyong Zhai
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Michelle D Tallquist
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Dominic P Del Re
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey
| |
Collapse
|
30
|
Ichikawa K, Tanaka SI, Miyajima M, Okada Y, Saika S. Inhibition of Rho kinase suppresses capsular contraction following lens injury in mice. Taiwan J Ophthalmol 2020; 10:100-105. [PMID: 32874837 PMCID: PMC7442104 DOI: 10.4103/tjo.tjo_80_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/20/2019] [Indexed: 11/10/2022] Open
Abstract
PURPOSE: We investigated the effect of systemic fasudil hydrochloride and an inhibitor of nuclear translocation of myocardin-related transcription factor-A (MRTF-A) on capsular contraction in a puncture-injured lens in mice. MATERIALS AND METHODS: Lens injury of an anterior capsular break was achieved in male adult C57Bl/6 mice under general and topical anesthesia at 1 h after systemic fasudil hydrochloride (intraperitoneal, 10 mg/kg body weight) or vehicle administration. The mice were allowed to heal after instillation of ofloxacin ointment, for 5 and 10 days with daily administration of fasudil hydrochloride or vehicle. In another series of experiment, we examined the effect of systemic administration of an MRTF-A inhibitor (CCG-203971, 100 mg/kg twice a day) on fibrogenic reaction and tissue contraction in an injured lens on day 5 or 10. The eye was processed for histology and immunohistochemistry for SM22, proliferating cell nuclear antigen (PCNA), or MRTF-A. In hematoxylin and eosin - stained samples, the distance between each edge of the break of the anterior capsule was measured and statistically analyzed. RESULTS: A cluster of lens cell accumulation was formed adjacent to the edge of the capsular break on day 5. It contained cells labeled for SM22 and PCNA. The size of the cell cluster was larger in fasudil group of mice than in control mice on day 5. Systemic fasudil or CCG-203971 suppressed an excess contraction of the capsular break at certain time points. CONCLUSION: Systemic administration of fasudil hydrochloride could be a treatment strategy of postoperative capsular contraction following cataract-intraocular lens surgery.
Collapse
Affiliation(s)
- Kana Ichikawa
- Department of Ophthalmology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama, 641-0012, Japan
| | - Sai-Ichi Tanaka
- Department of Ophthalmology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama, 641-0012, Japan
| | - Masayasu Miyajima
- Department of Ophthalmology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama, 641-0012, Japan
| | - Yuka Okada
- Department of Ophthalmology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama, 641-0012, Japan
| | - Shizuya Saika
- Department of Ophthalmology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama, 641-0012, Japan
| |
Collapse
|
31
|
Fedintsev A, Moskalev A. Stochastic non-enzymatic modification of long-lived macromolecules - A missing hallmark of aging. Ageing Res Rev 2020; 62:101097. [PMID: 32540391 DOI: 10.1016/j.arr.2020.101097] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/05/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022]
Abstract
Damage accumulation in long-living macromolecules (especially extracellular matrix (ECM) proteins, nuclear pore complex (NPC) proteins, and histones) is a missing hallmark of aging. Stochastic non-enzymatic modifications of ECM trigger cellular senescence as well as many other hallmarks of aging affect organ barriers integrity and drive tissue fibrosis. The importance of it for aging makes it a key target for interventions. The most promising of them can be AGE inhibitors (chelators, O-acetyl group or transglycating activity compounds, amadorins and amadoriases), glucosepane breakers, stimulators of elastogenesis, and RAGE antagonists.
Collapse
Affiliation(s)
- Alexander Fedintsev
- Institute of Biology of FRC of Komi Scientific Center, Ural Branch of Russian Academy of Sciences, Syktyvkar, Russia
| | - Alexey Moskalev
- Institute of Biology of FRC of Komi Scientific Center, Ural Branch of Russian Academy of Sciences, Syktyvkar, Russia.
| |
Collapse
|
32
|
Tschumperlin DJ, Lagares D. Mechano-therapeutics: Targeting Mechanical Signaling in Fibrosis and Tumor Stroma. Pharmacol Ther 2020; 212:107575. [PMID: 32437826 DOI: 10.1016/j.pharmthera.2020.107575] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/30/2020] [Indexed: 12/12/2022]
Abstract
Pathological remodeling of the extracellular matrix (ECM) by activated myofibroblasts is a hallmark of fibrotic diseases and desmoplastic tumors. Activation of myofibroblasts occurs in response to fibrogenic tissue injury as well as in tumor-associated fibrotic reactions. The molecular determinants of myofibroblast activation in fibrosis and tumor stroma have traditionally been viewed to include biochemical agents, such as dysregulated growth factor and cytokine signaling, which profoundly alter the biology of fibroblasts, ultimately leading to overexuberant matrix deposition and fibrosis. More recently, compelling evidence has shown that altered mechanical properties of the ECM such as matrix stiffness are major drivers of tissue fibrogenesis by promoting mechano-activation of fibroblasts. In this Review, we discuss new insights into the role of the biophysical microenvironment in the amplified activation of fibrogenic myofibroblasts during the development and progression of fibrotic diseases and desmoplastic tumors. We also summarize novel therapeutic targets for anti-fibrotic therapy based on the mechanobiology of tissue fibrosis and tumor stroma, a class of drugs known as "mechano-therapeutics".
Collapse
Affiliation(s)
- Daniel J Tschumperlin
- Tissue Repair and Mechanobiology Laboratory, Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 1(st) St SW, Rochester, MN 55905, USA.
| | - David Lagares
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Fibrosis Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
33
|
Ito S, Hashimoto Y, Majima R, Nakao E, Aoki H, Nishihara M, Ohno-Urabe S, Furusho A, Hirakata S, Nishida N, Hayashi M, Kuwahara K, Fukumoto Y. MRTF-A promotes angiotensin II-induced inflammatory response and aortic dissection in mice. PLoS One 2020; 15:e0229888. [PMID: 32208430 PMCID: PMC7092993 DOI: 10.1371/journal.pone.0229888] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/18/2020] [Indexed: 12/20/2022] Open
Abstract
Aortic dissection (AD) is a major cause of acute aortic syndrome with high mortality due to the destruction of aortic walls. Although recent studies indicate the critical role of inflammation in the disease mechanism of AD, it is unclear how inflammatory response is initiated. Here, we demonstrate that myocardin-related transcription factor A (MRTF-A), a signal transducer of humoral and mechanical stress, plays an important role in pathogenesis of AD in a mouse model. A mouse model of AD was created by continuous infusion of angiotensin II (AngII) that induced MRTF-A expression and caused AD in 4 days. Systemic deletion of Mrtfa gene resulted in a marked suppression of AD development. Transcriptome and gene annotation enrichment analyses revealed that AngII infusion for 1 day caused pro-inflammatory and pro-apoptotic responses before AD development, which were suppressed by Mrtfa deletion. AngII infusion for 1 day induced pro-inflammatory response, as demonstrated by expressions of Il6, Tnf, and Ccl2, and apoptosis of aortic wall cells, as detected by TUNEL staining, in an MRTF-A-dependent manner. Pharmacological inhibition of MRTF-A by CCG-203971 during AngII infusion partially suppressed AD phenotype, indicating that acute suppression of MRTF-A is effective in preventing the aortic wall destruction. These results indicate that MRTF-A transduces the stress of AngII challenge to the pro-inflammatory and pro-apoptotic responses, ultimately leading to AD development. Intervening this pathway may represent a potential therapeutic strategy.
Collapse
Affiliation(s)
- Sohei Ito
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Yohei Hashimoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Ryohei Majima
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Eichi Nakao
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Hiroki Aoki
- Cardiovascular Research Institute, Kurume University, Kurume, Japan
| | - Michihide Nishihara
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Satoko Ohno-Urabe
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Aya Furusho
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Saki Hirakata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Norifumi Nishida
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Makiko Hayashi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Koichiro Kuwahara
- Department of Cardiovascular Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yoshihiro Fukumoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
34
|
Shi Z, Ren M, Rockey DC. Myocardin and myocardin-related transcription factor-A synergistically mediate actin cytoskeletal-dependent inhibition of liver fibrogenesis. Am J Physiol Gastrointest Liver Physiol 2020; 318:G504-G517. [PMID: 31928221 PMCID: PMC7099496 DOI: 10.1152/ajpgi.00302.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Activation of hepatic stellate cells (HSCs), characterized by development of a robust actin cytoskeleton and expression of abundant extracellular matrix (ECM) proteins, such as type 1 collagen (COL.1), is a central cellular and molecular event in liver fibrosis. It has been demonstrated that HSCs express both myocardin and myocardin-related transcription factor-A (MRTF-A). However, the biological effects of myocardin and MRTF-A on HSC activation and liver fibrosis, as well as the molecular mechanism under the process, remain unclear. Here, we report that myocardin and MRTF-A's expression and nuclear accumulation are prominently increased during the HSC activation process, accompanied by robust activation of actin cytoskeleton dynamics. Targeting myocardin and MRTF-A binding and function with a novel small molecule, CCG-203971, led to dose-dependent inhibition of HSC actin cytoskeleton dynamics and abrogated multiple functional features of HSC activation (i.e., HSC contraction, migration and proliferation) and decreased COL.1 expression in vitro and liver fibrosis in vivo. Mechanistically, blocking the myocardin and MRTF-A nuclear translocation pathway with CCG-203971 directly inhibited myocardin/MRTF-A-mediated serum response factor (SRF), and Smad2/3 activation in the COL.1α2 promoter and indirectly abrogated actin cytoskeleton-dependent regulation of Smad2/3 and Erk1/2 phosphorylation and their nuclear accumulation. Finally, there was no effect of CCG-203971 on markers of inflammation, suggesting a direct effect of the compound on HSCs and liver fibrosis. These data reveal that myocardin and MRTF-A are two important cotranscriptional factors in HSCs and represent entirely novel therapeutic pathways that might be targeted to treat liver fibrosis.NEW & NOTEWORTHY Myocardin and myocardin-related transcription factor-A (MRTF-A) are upregulated in activated hepatic stellate cells (HSCs) in vitro and in vivo, closely associated with robustly increased actin cytoskeleton remodeling. Targeting myocardin and MRTF-A by CCG-203971 leads to actin cytoskeleton-dependent inhibition of HSC activation, reduced cell contractility, impeded cell migration and proliferation, and decreased COL.1 expression in vitro and in vivo. Dual expression of myocardin and MRTF-A in HSCs may represent novel therapeutic targets in liver fibrosis.
Collapse
Affiliation(s)
- Zengdun Shi
- Department of Internal Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Mudan Ren
- Department of Internal Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Don C. Rockey
- Department of Internal Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
35
|
Haak AJ, Ducharme MT, Diaz Espinosa AM, Tschumperlin DJ. Targeting GPCR Signaling for Idiopathic Pulmonary Fibrosis Therapies. Trends Pharmacol Sci 2020; 41:172-182. [PMID: 32008852 DOI: 10.1016/j.tips.2019.12.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/10/2019] [Accepted: 12/30/2019] [Indexed: 12/11/2022]
Abstract
A variety of G protein-coupled receptors (GPCRs) have been implicated in the pathogenesis of pulmonary fibrosis, largely through their promotion of profibrotic fibroblast activation. By contrast, recent work has highlighted the beneficial effects of Gαs-coupled GPCRs on reducing fibroblast activation and fibrosis. This review highlights how fibrosis-promoting and -inhibiting GPCR signaling converges on downstream signaling and transcriptional effectors, and how the diversity and dynamics of GPCR expression challenge efforts to identify effective therapies for idiopathic pulmonary fibrosis (IPF). Next-generation strategies to overcome these challenges, focusing on target selection, polypharmacology, and personalized medicine approaches, are discussed as a path towards more effective GPCR-targeted therapies for pulmonary fibrosis.
Collapse
Affiliation(s)
- Andrew J Haak
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| | - Merrick T Ducharme
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Ana M Diaz Espinosa
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
36
|
Hinz B, Lagares D. Evasion of apoptosis by myofibroblasts: a hallmark of fibrotic diseases. Nat Rev Rheumatol 2020; 16:11-31. [PMID: 31792399 PMCID: PMC7913072 DOI: 10.1038/s41584-019-0324-5] [Citation(s) in RCA: 346] [Impact Index Per Article: 69.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2019] [Indexed: 12/15/2022]
Abstract
Organ fibrosis is a lethal outcome of autoimmune rheumatic diseases such as systemic sclerosis. Myofibroblasts are scar-forming cells that are ultimately responsible for the excessive synthesis, deposition and remodelling of extracellular matrix proteins in fibrosis. Advances have been made in our understanding of the mechanisms that keep myofibroblasts in an activated state and control myofibroblast functions. However, the mechanisms that help myofibroblasts to persist in fibrotic tissues remain poorly understood. Myofibroblasts evade apoptosis by activating molecular mechanisms in response to pro-survival biomechanical and growth factor signals from the fibrotic microenvironment, which can ultimately lead to the acquisition of a senescent phenotype. Growing evidence suggests that myofibroblasts and senescent myofibroblasts, rather than being resistant to apoptosis, are actually primed for apoptosis owing to concomitant activation of cell death signalling pathways; these cells are poised to apoptose when survival pathways are inhibited. This knowledge of apoptotic priming has paved the way for new therapies that trigger apoptosis in myofibroblasts by blocking pro-survival mechanisms, target senescent myofibroblast for apoptosis or promote the reprogramming of myofibroblasts into scar-resolving cells. These novel strategies are not only poised to prevent progressive tissue scarring, but also have the potential to reverse established fibrosis and to regenerate chronically injured tissues.
Collapse
Affiliation(s)
- Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - David Lagares
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Fibrosis Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
37
|
Choi YJ, Koo JB, Kim HY, Seo JW, Lee EJ, Kim WR, Cho JY, Hahm KB, Hong SP, Kim DH, Yoo JH. Umbilical cord/placenta-derived mesenchymal stem cells inhibit fibrogenic activation in human intestinal myofibroblasts via inhibition of myocardin-related transcription factor A. Stem Cell Res Ther 2019; 10:291. [PMID: 31547873 PMCID: PMC6757442 DOI: 10.1186/s13287-019-1385-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/22/2022] Open
Abstract
Background The lack of anti-fibrotic agents targeting intestinal fibrosis is a large unmet need in inflammatory bowel diseases, including Crohn’s disease and ulcerative colitis. Previous studies have found that perinatal tissue (umbilical cord, UC; placenta, PL)-derived mesenchymal stem cells (MSCs) reduce fibrosis in several organs. However, their effects on human intestinal fibrosis are poorly understood. This study investigated the anti-fibrogenic properties and mechanisms of MSCs derived from UC and PL (UC/PL-MSCs) on human primary intestinal myofibroblasts (HIMFs). Methods The HIMFs were treated with TGF-β1 and co-cultured with UC/PL-MSCs. We used a small molecular inhibitor CCG-100602 to examine whether serum response factor (SRF) and its transcriptional cofactor myocardin-related transcription factor A (MRTF-A) are involved in TGF-β1-induced fibrogenic activation in HIMFs. The anti-fibrogenic mechanism of UC/PL-MSCs on HIMFs was analyzed by detecting the expression of RhoA, MRTF-A, and SRF in HIMFs. Results UC/PL-MSCs reduced TGF-β1-induced procollagen1A1, fibronectin, and α-smooth muscle actin expression in HIMFs. This anti-fibrogenic effect was more apparent in the UC-MSCs. TGF-β1 stimulation increased the expressions of RhoA, MRTF-A, and SRF in the HIMFs. TGF-β1 induced the synthesis of procollagen1A1, fibronectin, and α-smooth muscle actin through a MRTF-A/SRF-dependent mechanism. Co-culture with the UC/PL-MSCs downregulated fibrogenesis by inhibition of RhoA, MRTF-A, and SRF expression. Conclusions UC/PL-MSCs suppress TGF-β1-induced fibrogenic activation in HIMFs by blocking the Rho/MRTF/SRF pathway and could be considered as a novel candidate for stem cell-based therapy of intestinal fibrosis. Electronic supplementary material The online version of this article (10.1186/s13287-019-1385-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yoon Jeong Choi
- Digestive Disease Center, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam, 463-712, South Korea.,Institute of Basic Medical Sciences, School of Medicine, CHA University, Seongnam, South Korea
| | - Jun Bon Koo
- Clinical Research Center, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| | | | - Jin Won Seo
- CHA Biotech, Co. Ltd., Seongnam, South Korea
| | | | - Woo Ram Kim
- Department of Surgery, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| | - Joo Young Cho
- Digestive Disease Center, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam, 463-712, South Korea
| | - Ki Baik Hahm
- Digestive Disease Center, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam, 463-712, South Korea
| | - Sung Pyo Hong
- Digestive Disease Center, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam, 463-712, South Korea
| | - Duk Hwan Kim
- Digestive Disease Center, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam, 463-712, South Korea.
| | - Jun-Hwan Yoo
- Digestive Disease Center, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam, 463-712, South Korea. .,Institute of Basic Medical Sciences, School of Medicine, CHA University, Seongnam, South Korea.
| |
Collapse
|
38
|
Dan Q, Shi Y, Rabani R, Venugopal S, Xiao J, Anwer S, Ding M, Speight P, Pan W, Alexander RT, Kapus A, Szászi K. Claudin-2 suppresses GEF-H1, RHOA, and MRTF, thereby impacting proliferation and profibrotic phenotype of tubular cells. J Biol Chem 2019; 294:15446-15465. [PMID: 31481470 DOI: 10.1074/jbc.ra118.006484] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 08/21/2019] [Indexed: 12/19/2022] Open
Abstract
The tight junctional pore-forming protein claudin-2 (CLDN-2) mediates paracellular Na+ and water transport in leaky epithelia and alters cancer cell proliferation. Previously, we reported that tumor necrosis factor-α time-dependently alters CLDN-2 expression in tubular epithelial cells. Here, we found a similar expression pattern in a mouse kidney injury model (unilateral ureteral obstruction), consisting of an initial increase followed by a drop in CLDN-2 protein expression. CLDN-2 silencing in LLC-PK1 tubular cells induced activation and phosphorylation of guanine nucleotide exchange factor H1 (GEF-H1), leading to Ras homolog family member A (RHOA) activation. Silencing of other claudins had no such effects, and re-expression of an siRNA-resistant CLDN-2 prevented RHOA activation, indicating specific effects of CLDN-2 on RHOA. Moreover, kidneys from CLDN-2 knockout mice had elevated levels of active RHOA. Of note, CLDN-2 silencing reduced LLC-PK1 cell proliferation and elevated expression of cyclin-dependent kinase inhibitor P27 (P27KIP1) in a GEF-H1/RHOA-dependent manner. P27KIP1 silencing abrogated the effects of CLDN-2 depletion on proliferation. CLDN-2 loss also activated myocardin-related transcription factor (MRTF), a fibrogenic RHOA effector, and elevated expression of connective tissue growth factor and smooth muscle actin. Finally, CLDN-2 down-regulation contributed to RHOA activation and smooth muscle actin expression induced by prolonged tumor necrosis factor-α treatment, because they were mitigated by re-expression of CLDN-2. Our results indicate that CLDN-2 suppresses GEF-H1/RHOA. CLDN-2 down-regulation, for example, by inflammation, can reduce proliferation and promote MRTF activation through RHOA. These findings suggest that the initial CLDN-2 elevation might aid epithelial regeneration, and CLDN-2 loss could contribute to fibrotic reprogramming.
Collapse
Affiliation(s)
- Qinghong Dan
- Keenan Research Centre for Biomedical Science at St. Michael's Hospital, University of Toronto, Ontario M5B 1T8, Canada
| | - Yixuan Shi
- Keenan Research Centre for Biomedical Science at St. Michael's Hospital, University of Toronto, Ontario M5B 1T8, Canada
| | - Razieh Rabani
- Keenan Research Centre for Biomedical Science at St. Michael's Hospital, University of Toronto, Ontario M5B 1T8, Canada
| | - Shruthi Venugopal
- Keenan Research Centre for Biomedical Science at St. Michael's Hospital, University of Toronto, Ontario M5B 1T8, Canada
| | - Jenny Xiao
- Keenan Research Centre for Biomedical Science at St. Michael's Hospital, University of Toronto, Ontario M5B 1T8, Canada
| | - Shaista Anwer
- Keenan Research Centre for Biomedical Science at St. Michael's Hospital, University of Toronto, Ontario M5B 1T8, Canada
| | - Mei Ding
- Keenan Research Centre for Biomedical Science at St. Michael's Hospital, University of Toronto, Ontario M5B 1T8, Canada
| | - Pam Speight
- Keenan Research Centre for Biomedical Science at St. Michael's Hospital, University of Toronto, Ontario M5B 1T8, Canada
| | - Wanling Pan
- Departments of Pediatrics and Physiology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - R Todd Alexander
- Departments of Pediatrics and Physiology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - András Kapus
- Keenan Research Centre for Biomedical Science at St. Michael's Hospital, University of Toronto, Ontario M5B 1T8, Canada.,Department of Surgery, University of Toronto, Ontario M5B 1T8, Canada
| | - Katalin Szászi
- Keenan Research Centre for Biomedical Science at St. Michael's Hospital, University of Toronto, Ontario M5B 1T8, Canada .,Department of Surgery, University of Toronto, Ontario M5B 1T8, Canada
| |
Collapse
|
39
|
Kahl DJ, Hutchings KM, Lisabeth EM, Haak AJ, Leipprandt JR, Dexheimer T, Khanna D, Tsou PS, Campbell PL, Fox DA, Wen B, Sun D, Bailie M, Neubig RR, Larsen SD. 5-Aryl-1,3,4-oxadiazol-2-ylthioalkanoic Acids: A Highly Potent New Class of Inhibitors of Rho/Myocardin-Related Transcription Factor (MRTF)/Serum Response Factor (SRF)-Mediated Gene Transcription as Potential Antifibrotic Agents for Scleroderma. J Med Chem 2019; 62:4350-4369. [PMID: 30951312 PMCID: PMC6590913 DOI: 10.1021/acs.jmedchem.8b01772] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Through a phenotypic high-throughput screen using a serum response element luciferase promoter, we identified a novel 5-aryl-1,3,4-oxadiazol-2-ylthiopropionic acid lead inhibitor of Rho/myocardin-related transcription factor (MRTF)/serum response factor (SRF)-mediated gene transcription with good potency (IC50 = 180 nM). We were able to rapidly improve the cellular potency by 5 orders of magnitude guided by sharply defined and synergistic SAR. The remarkable potency and depth of the SAR, as well as the relatively low molecular weight of the series, suggests, but does not prove, that binding to the unknown molecular target may be occurring through a covalent mechanism. The series nevertheless has no observable cytotoxicity up to 100 μM. Ensuing pharmacokinetic optimization resulted in the development of two potent and orally bioavailable anti-fibrotic agents that were capable of dose-dependently reducing connective tissue growth factor gene expression in vitro as well as significantly reducing the development of bleomycin-induced dermal fibrosis in mice in vivo.
Collapse
Affiliation(s)
| | | | - Erika Mathes Lisabeth
- Department of Pharmacology and Toxicology , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Andrew J Haak
- Department of Pharmacology and Toxicology , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Jeffrey R Leipprandt
- Department of Pharmacology and Toxicology , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Thomas Dexheimer
- Department of Pharmacology and Toxicology , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Dinesh Khanna
- Department of Internal Medicine, Division of Rheumatology and Clinical Autoimmunity Center of Excellence , University of Michigan Medical Center , Ann Arbor , Michigan 48109 , United States
| | - Pei-Suen Tsou
- Department of Internal Medicine, Division of Rheumatology and Clinical Autoimmunity Center of Excellence , University of Michigan Medical Center , Ann Arbor , Michigan 48109 , United States
| | - Phillip L Campbell
- Department of Internal Medicine, Division of Rheumatology and Clinical Autoimmunity Center of Excellence , University of Michigan Medical Center , Ann Arbor , Michigan 48109 , United States
| | - David A Fox
- Department of Internal Medicine, Division of Rheumatology and Clinical Autoimmunity Center of Excellence , University of Michigan Medical Center , Ann Arbor , Michigan 48109 , United States
| | | | | | - Marc Bailie
- Michigan State University in Vivo Facility , East Lansing , Michigan 48824 , United States
| | - Richard R Neubig
- Department of Pharmacology and Toxicology , Michigan State University , East Lansing , Michigan 48824 , United States
| | | |
Collapse
|
40
|
Brand CS, Lighthouse JK, Trembley MA. Protective transcriptional mechanisms in cardiomyocytes and cardiac fibroblasts. J Mol Cell Cardiol 2019; 132:1-12. [PMID: 31042488 DOI: 10.1016/j.yjmcc.2019.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/13/2022]
Abstract
Heart failure is the leading cause of morbidity and mortality worldwide. Several lines of evidence suggest that physical activity and exercise can pre-condition the heart to improve the response to acute cardiac injury such as myocardial infarction or ischemia/reperfusion injury, preventing the progression to heart failure. It is becoming more apparent that cardioprotection is a concerted effort between multiple cell types and converging signaling pathways. However, the molecular mechanisms of cardioprotection are not completely understood. What is clear is that the mechanisms underlying this protection involve acute activation of transcriptional activators and their corresponding gene expression programs. Here, we review the known stress-dependent transcriptional programs that are activated in cardiomyocytes and cardiac fibroblasts to preserve function in the adult heart after injury. Focus is given to prominent transcriptional pathways such as mechanical stress or reactive oxygen species (ROS)-dependent activation of myocardin-related transcription factors (MRTFs) and transforming growth factor beta (TGFβ), and gene expression that positively regulates protective PI3K/Akt signaling. Together, these pathways modulate both beneficial and pathological responses to cardiac injury in a cell-specific manner.
Collapse
Affiliation(s)
- Cameron S Brand
- Department of Pharmacology, School of Medicine, University of California - San Diego, 9500 Gilman Drive, Biomedical Sciences Building, La Jolla, CA 92093, USA.
| | - Janet K Lighthouse
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box CVRI, Rochester, NY 14624, USA.
| | - Michael A Trembley
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
41
|
Abstract
Fibrosis is a dynamic process with the potential for reversibility and restoration of near-normal tissue architecture and organ function. Herein, we review mechanisms for resolution of organ fibrosis, in particular that involving the lung, with an emphasis on the critical roles of myofibroblast apoptosis and clearance of deposited matrix.
Collapse
Affiliation(s)
- Jeffrey C Horowitz
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School , Ann Arbor, Michigan
| | - Victor J Thannickal
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
42
|
Xiong Y, Bedi K, Berritt S, Attipoe BK, Brooks TG, Wang K, Margulies KB, Field J. Targeting MRTF/SRF in CAP2-dependent dilated cardiomyopathy delays disease onset. JCI Insight 2019; 4:124629. [PMID: 30762586 DOI: 10.1172/jci.insight.124629] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 02/12/2019] [Indexed: 12/12/2022] Open
Abstract
About one-third of dilated cardiomyopathy (DCM) cases are caused by mutations in sarcomere or cytoskeletal proteins. However, treating the cytoskeleton directly is not possible because drugs that bind to actin are not well tolerated. Mutations in the actin binding protein CAP2 can cause DCM and KO mice, either whole body (CAP2-KO) or cardiomyocyte-specific KOs (CAP2-CKO) develop DCM with cardiac conduction disease. RNA sequencing analysis of CAP2-KO hearts and isolated cardiomyocytes revealed overactivation of fetal genes, including serum response factor-regulated (SRF-regulated) genes such as Myl9 and Acta2 prior to the emergence of cardiac disease. To test if we could treat CAP2-KO mice, we synthesized and tested the SRF inhibitor CCG-1423-8u. CCG-1423-8u reduced expression of the SRF targets Myl9 and Acta2, as well as the biomarker of heart failure, Nppa. The median survival of CAP2-CKO mice was 98 days, while CCG-1423-8u-treated CKO mice survived for 116 days and also maintained normal cardiac function longer. These results suggest that some forms of sudden cardiac death and cardiac conduction disease are under cytoskeletal stress and that inhibiting signaling through SRF may benefit DCM by reducing cytoskeletal stress.
Collapse
Affiliation(s)
- Yao Xiong
- Department of Systems Pharmacology and Translational Therapeutics
| | - Kenneth Bedi
- Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Simon Berritt
- Department of Chemistry, Merck High throughput Experimentation Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Thomas G Brooks
- Institute of Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kevin Wang
- Department of Systems Pharmacology and Translational Therapeutics
| | - Kenneth B Margulies
- Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jeffrey Field
- Department of Systems Pharmacology and Translational Therapeutics
| |
Collapse
|
43
|
Lisabeth EM, Kahl D, Gopallawa I, Haynes SE, Misek SA, Campbell PL, Dexheimer TS, Khanna D, Fox DA, Jin X, Martin BR, Larsen SD, Neubig RR. Identification of Pirin as a Molecular Target of the CCG-1423/CCG-203971 Series of Antifibrotic and Antimetastatic Compounds. ACS Pharmacol Transl Sci 2019; 2:92-100. [PMID: 32039344 DOI: 10.1021/acsptsci.8b00048] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A series of compounds (including CCG-1423 and CCG-203971) discovered through an MRTF/SRF-dependent luciferase screen has shown remarkable efficacy in a variety of in vitro and in vivo models, including significant reduction of melanoma metastasis and bleomycin- induced fibrosis. Although these compounds are efficacious in these disease models, the molecular target is unknown. Here, we describe affinity isolation-based target identification efforts which yielded pirin, an iron-dependent cotranscription factor, as a target of this series of compounds. Using biophysical techniques including isothermal titration calorimetry and X-ray crystallography, we verify that pirin binds these compounds in vitro. We also show with genetic approaches that pirin modulates MRTF- dependent luciferase reporter activity. Finally, using both siRNA and a previously validated pirin inhibitor, we show a role for pirin in TGF-β- induced gene expression in primary dermal fibroblasts. A recently developed analog, CCG-257081, which co crystallizes with pirin, is also effective in the prevention of bleomycin-induced dermal fibrosis.
Collapse
Affiliation(s)
- Erika M Lisabeth
- Department of Pharmacology & Toxicology and Michigan State University, East Lansing, Michigan, 48824, United States
| | - Dylan Kahl
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Indiwari Gopallawa
- Department of Pharmacology & Toxicology and Michigan State University, East Lansing, Michigan, 48824, United States
| | - Sarah E Haynes
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Sean A Misek
- Department of Pharmacology & Toxicology and Michigan State University, East Lansing, Michigan, 48824, United States
| | - Phillip L Campbell
- Department of Internal Medicine, Division of Rheumatology, and University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Thomas S Dexheimer
- Department of Pharmacology & Toxicology and Michigan State University, East Lansing, Michigan, 48824, United States
| | - Dinesh Khanna
- Department of Internal Medicine, Division of Rheumatology, and University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - David A Fox
- Department of Internal Medicine, Division of Rheumatology, and University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Xiangshu Jin
- Department of Biochemistry, Michigan State University, East Lansing, Michigan, 48824, United States
| | - Brent R Martin
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Scott D Larsen
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, United States.,Vahlteich Medicinal Chemistry Core, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Richard R Neubig
- Department of Pharmacology & Toxicology and Michigan State University, East Lansing, Michigan, 48824, United States
| |
Collapse
|
44
|
Identification of regulators of the myofibroblast phenotype of primary dermal fibroblasts from early diffuse systemic sclerosis patients. Sci Rep 2019; 9:4521. [PMID: 30872777 PMCID: PMC6418101 DOI: 10.1038/s41598-019-41153-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 02/18/2019] [Indexed: 12/28/2022] Open
Abstract
Systemic sclerosis (SSc or scleroderma) is an auto-immune disease characterized by skin fibrosis. While primary cells from patients are considered as a unique resource to better understand human disease biology, the effect of in vitro culture on these cells and their evaluation as a platform to identify disease regulators remain poorly characterized. The goal of our studies was to provide insights into the utility of SSc dermal fibroblast primary cells for therapeutic target discovery. The disease phenotypes of freshly isolated and in vitro cultured SSc dermal fibroblasts were characterized using whole transcriptome profiling, alpha smooth muscle actin (ASMA) expression and cell impedance. SSc dermal fibroblasts retained most of the molecular disease phenotype upon in vitro culture for at least four cell culture passages (approximatively 10 cell doublings). We validated an RNA interference high throughput assay that successfully identified genes affecting the myofibroblast phenotype of SSc skin fibroblasts. These genes included MKL1, RHOA and LOXL2 that were previously proposed as therapeutic anti-fibrotic target, and ITGA5, that has been less studied in fibrosis biology and may be a novel potential modifier of SSc fibroblast biology. Together our results demonstrated the value of carefully-phenotyped SSc dermal fibroblasts as a platform for SSc target and drug discovery.
Collapse
|
45
|
Profibrotic epithelial phenotype: a central role for MRTF and TAZ. Sci Rep 2019; 9:4323. [PMID: 30867502 PMCID: PMC6416270 DOI: 10.1038/s41598-019-40764-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/19/2019] [Indexed: 01/05/2023] Open
Abstract
Epithelial injury is a key initiator of fibrosis but - in contrast to the previous paradigm - the epithelium in situ does not undergo wide-spread epithelial-mesenchymal/myofibroblast transition (EMT/EMyT). Instead, it assumes a Profibrotic Epithelial Phenotype (PEP) characterized by fibrogenic cytokine production. The transcriptional mechanisms underlying PEP are undefined. As we have shown that two RhoA/cytoskeleton-regulated transcriptional coactivators, Myocardin-related transcription factor (MRTF) and TAZ, are indispensable for EMyT, we asked if they might mediate PEP as well. Here we show that mechanical stress (cyclic stretch) increased the expression of transforming growth factor-β1 (TGFβ1), connective tissue growth factor (CTGF), platelet-derived growth factor and Indian Hedgehog mRNA in LLC-PK1 tubular cells. These responses were mitigated by siRNA-mediated silencing or pharmacological inhibition of MRTF (CCG-1423) or TAZ (verteporfin). RhoA inhibition exerted similar effects. Unilateral ureteral obstruction, a murine model of mechanically-triggered kidney fibrosis, induced tubular RhoA activation along with overexpression/nuclear accumulation of MRTF and TAZ, and increased transcription of the above-mentioned cytokines. Laser capture microdissection revealed TAZ, TGFβ1 and CTGF induction specifically in the tubular epithelium. CCG-1423 suppressed total renal and tubular expression of these proteins. Thus, MRTF regulates epithelial TAZ expression, and both MRTF and TAZ are critical mediators of PEP-related epithelial cytokine production.
Collapse
|
46
|
Abstract
Scleroderma (SSc) is a complex disease that involves activation of the immune system, vascular complications, and tissue fibrosis. The histone methyltransferase enhancer of zeste homolog 2 (EZH2) mediates trimethylation of lysine 27 of histone 3 (H3K27me3), which acts as a repressive epigenetic mark. Both EZH2 and H3K27me3 were elevated in SSc dermal fibroblasts and endothelial cells compared with healthy controls. EZH2 inhibitor DZNep halted fibrosis both in vitro and in vivo. In SSc fibroblasts, DZNep dose-dependently reduced the expression of profibrotic genes and inhibited migratory activity of SSc fibroblasts. We show that epigenetic dysregulation and overexpression of LRRC16A explains EZH2-mediated fibroblast migration in SSc. In endothelial cells, inhibition of EZH2 restored normal angiogenesis in SSc via activating the Notch pathway, specifically by up-regulating the Notch ligand DLL4. Our results demonstrate that overexpression of EZH2 in SSc fibroblasts and endothelial cells is profibrotic and antiangiogenic. Targeting EZH2 or EZH2-regulated genes might be of therapeutic potential in SSc.
Collapse
|
47
|
Lighthouse JK, Burke RM, Velasquez LS, Dirkx RA, Aiezza A, Moravec CS, Alexis JD, Rosenberg A, Small EM. Exercise promotes a cardioprotective gene program in resident cardiac fibroblasts. JCI Insight 2019; 4:92098. [PMID: 30626739 DOI: 10.1172/jci.insight.92098] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 11/20/2018] [Indexed: 02/06/2023] Open
Abstract
Exercise and heart disease both induce cardiac remodeling, but only disease causes fibrosis and compromises heart function. The cardioprotective benefits of exercise have been attributed to changes in cardiomyocyte physiology, but the impact of exercise on cardiac fibroblasts (CFs) is unknown. Here, RNA-sequencing reveals rapid divergence of CF transcriptional programs during exercise and disease. Among the differentially expressed programs, NRF2-dependent antioxidant genes - including metallothioneins (Mt1 and Mt2) - are induced in CFs during exercise and suppressed by TGF-β/p38 signaling in disease. In vivo, mice lacking Mt1/2 exhibit signs of cardiac dysfunction in exercise, including cardiac fibrosis, vascular rarefaction, and functional decline. Mechanistically, exogenous MTs derived from fibroblasts are taken up by cultured cardiomyocytes, reducing oxidative damage-dependent cell death. Importantly, suppression of MT expression is conserved in human heart failure. Taken together, this study defines the acute transcriptional response of CFs to exercise and disease and reveals a cardioprotective mechanism that is lost in disease.
Collapse
Affiliation(s)
- Janet K Lighthouse
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Ryan M Burke
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Lissette S Velasquez
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Ronald A Dirkx
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Alessandro Aiezza
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | | | | | - Alex Rosenberg
- Department of Allergy, Immunology, and Rheumatology Research, and
| | - Eric M Small
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.,Department of Medicine.,Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
48
|
Ó hAinmhire E, Wu H, Muto Y, Donnelly EL, Machado FG, Fan LX, Chang-Panesso M, Humphreys BD. A conditionally immortalized Gli1-positive kidney mesenchymal cell line models myofibroblast transition. Am J Physiol Renal Physiol 2019; 316:F63-F75. [PMID: 30303712 PMCID: PMC6383201 DOI: 10.1152/ajprenal.00460.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Glioma-associated oncogene homolog-1 (Gli1)-positive resident mesenchymal stem cell-like cells are the predominant source of kidney myofibroblasts in fibrosis, but investigating Gli1-positive myofibroblast progenitor activation is hampered by the difficulty of isolating and propagating primary cultures of these cells. Using a genetic strategy with positive and negative selection, we isolated Kidney-Gli1 (KGli1) cells that maintain expression of appropriate mesenchymal stem cell-like cell markers, respond to hedgehog pathway activation, and display robust myofibroblast differentiation upon treatment with transforming growth factor-β (TGF-β). Coculture of KGli1 cells with endothelium stabilizes capillary formation. Single-cell RNA sequencing (scRNA-seq) analysis during differentiation identified autocrine ligand-receptor pair upregulation and a strong focal adhesion pathway signal. This led us to test the serum response factor inhibitor CCG-203971 that potently inhibited TGF-β-induced pericyte-to-myofibroblast transition. scRNA-seq also identified the unexpected upregulation of nerve growth factor (NGF), which we confirmed in two mouse kidney fibrosis models. The Ngf receptor Ntrk1 is expressed in tubular epithelium in vivo, suggesting a novel interstitial-to-tubule paracrine signaling axis. Thus, KGli1 cells accurately model myofibroblast activation in vitro, and the development of this cell line provides a new tool to study resident mesenchymal stem cell-like progenitors in health and disease.
Collapse
Affiliation(s)
- Eoghainín Ó hAinmhire
- Division of Nephrology, Department of Medicine, Washington University in Saint Louis School of Medicine , St. Louis, Missouri
| | - Haojia Wu
- Division of Nephrology, Department of Medicine, Washington University in Saint Louis School of Medicine , St. Louis, Missouri
| | - Yoshiharu Muto
- Division of Nephrology, Department of Medicine, Washington University in Saint Louis School of Medicine , St. Louis, Missouri
| | - Erinn L Donnelly
- Division of Nephrology, Department of Medicine, Washington University in Saint Louis School of Medicine , St. Louis, Missouri
| | - Flavia G Machado
- Division of Nephrology, Department of Medicine, Washington University in Saint Louis School of Medicine , St. Louis, Missouri
| | - Lucy X Fan
- Division of Nephrology, Department of Medicine, Washington University in Saint Louis School of Medicine , St. Louis, Missouri
| | - Monica Chang-Panesso
- Division of Nephrology, Department of Medicine, Washington University in Saint Louis School of Medicine , St. Louis, Missouri
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University in Saint Louis School of Medicine , St. Louis, Missouri
- Department of Developmental Biology, Washington University in Saint Louis School of Medicine , St. Louis, Missouri
| |
Collapse
|
49
|
Lei L, Su J, Chen J, Chen W, Chen X, Peng C. The role of lysophosphatidic acid in the physiology and pathology of the skin. Life Sci 2018; 220:194-200. [PMID: 30584899 DOI: 10.1016/j.lfs.2018.12.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/25/2018] [Accepted: 12/21/2018] [Indexed: 12/13/2022]
Abstract
Lysophosphatidic acid (LPA) is the simplest phospholipid found in nature. LPA is mainly biosynthesized in tissues and cells by autotoxin and PA-PLA1α/PA-PLA1β and is degraded by lipid phosphate phosphatases (LPPs). It is an important component of biofilm, an extracellular signal transmitter and intracellular second messenger. After targeting to endothelial differentiation gene (Edg) family LPA receptors (LPA1, LPA2, LPA3) and non-Edg family LPA receptors (LPA4, LPA5, LPA6), LPA mediates physiological and pathological processes such as embryonic development, angiogenesis, tumor progression, fibrogenesis, wound healing, ischemia/reperfusion injury, and inflammatory reactions. These processes are induced through signaling pathways including mitogen-activated protein kinase (MAPK), phosphatidylinositol-3-kinase (PI3K)/Akt, protein kinase C (PKC)-GSK3β-β-catenin, Rho, Stat, and hypoxia-inducible factor 1-alpha (HIF-1α). LPA is involved in multiple physiological and pathological processes in the skin. It not only regulates skin function but also plays an important role in hair follicle development, skin wound healing, pruritus, skin tumors, and scleroderma. Pharmacological inhibition of LPA synthesis or antagonization of LPA receptors is a new strategy for the treatment of various skin disorders. This review focuses on the current understanding of the pathophysiologic role of LPA in the skin.
Collapse
Affiliation(s)
- Li Lei
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Juan Su
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Junchen Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wangqing Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
50
|
In vitro and in vivo delivery of a sustained release nanocarrier-based formulation of an MRTF/SRF inhibitor in conjunctival fibrosis. J Nanobiotechnology 2018; 16:97. [PMID: 30482196 PMCID: PMC6258153 DOI: 10.1186/s12951-018-0425-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 11/21/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Sustained drug delivery is a large unmet clinical need in glaucoma. Here, we incorporated a Myocardin-Related Transcription Factor/Serum Response Factor inhibitor, CCG-222740, into slow release large unilamellar vesicles derived from the liposomes DOTMA (1,2-di-O-octadecenyl-3-trimethylammonium propane) and DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine), and tested their effects in vitro and in vivo. RESULTS The vesicles were spherical particles of around 130 nm and were strongly cationic. A large amount of inhibitor could be incorporated into the vesicles. We showed that the nanocarrier CCG-222740 formulation gradually released the inhibitor over 14 days using high performance liquid chromatography. Nanocarrier CCG-222740 significantly decreased ACTA2 gene expression and was not cytotoxic in human conjunctival fibroblasts. In vivo, nanocarrier CCG-222740 doubled the bleb survival from 11.0 ± 0.6 days to 22.0 ± 1.3 days (p = 0.001), decreased conjunctival scarring and did not have any local or systemic adverse effects in a rabbit model of glaucoma filtration surgery. CONCLUSIONS Our study demonstrates proof-of-concept that a nanocarrier-based formulation efficiently achieves a sustained release of a Myocardin-Related Transcription Factor/Serum Response Factor inhibitor and prevents conjunctival fibrosis in an established rabbit model of glaucoma filtration surgery.
Collapse
|