1
|
Zhang J, Jiang P, Wang S, Li M, Hao Z, Guan W, Pan J, Wu J, Zhang Y, Li H, Chen L, Yang B, Liu Y. Recent advances in the natural product analogues for the treatment of neurodegenerative diseases. Bioorg Chem 2024; 153:107819. [PMID: 39276492 DOI: 10.1016/j.bioorg.2024.107819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/30/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
Neurodegenerative diseases (NDs) represent a hallmark of numerous incapacitating and untreatable conditions, the incidence of which is escalating swiftly, exemplified by Alzheimer's disease and Parkinson's disease. There is an urgent necessity to create pharmaceuticals that exhibit high efficacy and minimal toxicity in order to address these debilitating diseases. The structural complexity and diversity of natural products confer upon them a broad spectrum of biological activities, thereby significantly contributing to the history of drug discovery. Nevertheless, natural products present challenges in drug discovery, including time-consuming separation processes, low content, low bioavailability, and other related issues. To address these challenges, numerous analogs of natural products have been synthesized. This methodology enables the rapid synthesis of analogs of natural products with the potential to serve as lead compounds for drug development, thereby paving the way for the discovery of novel pharmaceuticals. This paper provides a summary of 127 synthetic analogues featuring various natural product structures, including flavonoids, alkaloids, coumarins, phenylpropanoids, terpenoids, polyphenols, and amides. The compounds are categorized based on their efficacy in treating various diseases. Furthermore, this article delves into the structure-activity relationship (SAR) of certain analogues, offering a thorough point of reference for the systematic development of pharmaceuticals aimed at addressing neurodegenerative conditions.
Collapse
Affiliation(s)
- Jinling Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China; Research Institute of Medicine & Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Peng Jiang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Shuping Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Mengmeng Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Zhichao Hao
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Wei Guan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Juan Pan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Jiatong Wu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Yiqiang Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Hua Li
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| |
Collapse
|
2
|
Ma R, Chen L, Hu N, Caplan S, Hu G. Cilia and Extracellular Vesicles in Brain Development and Disease. Biol Psychiatry 2024; 95:1020-1029. [PMID: 37956781 PMCID: PMC11087377 DOI: 10.1016/j.biopsych.2023.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/21/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023]
Abstract
Primary and motile cilia are thin, hair-like cellular projections from the cell surface involved in movement, sensing, and communication between cells. Extracellular vesicles (EVs) are small membrane-bound vesicles secreted by cells and contain various proteins, lipids, and nucleic acids that are delivered to and influence the behavior of other cells. Both cilia and EVs are essential for the normal functioning of brain cells, and their malfunction can lead to several neurological diseases. Cilia and EVs can interact with each other in several ways, and this interplay plays a crucial role in facilitating various biological processes, including cell-to-cell communication, tissue homeostasis, and pathogen defense. Cilia and EV crosstalk in the brain is an emerging area of research. Herein, we summarize the detailed molecular mechanisms of cilia and EV interplay and address the ciliary molecules that are involved in signaling and cellular dysfunction in brain development and diseases. Finally, we discuss the potential clinical use of cilia and EVs in brain diseases.
Collapse
Affiliation(s)
- Rong Ma
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska; Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liang Chen
- Department of Computer Science, College of Engineering, Shantou University, Shantou, Guangdong, China
| | - Ningyun Hu
- Millard West High School, Omaha, Nebraska
| | - Steve Caplan
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska.
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska.
| |
Collapse
|
3
|
Liu S, Zhang L, Li S. Advances in nutritional supplementation for sarcopenia management. Front Nutr 2023; 10:1189522. [PMID: 37492597 PMCID: PMC10365293 DOI: 10.3389/fnut.2023.1189522] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 06/20/2023] [Indexed: 07/27/2023] Open
Abstract
Sarcopenia is a syndrome characterized by a decline in muscular mass, strength, and function with advancing age. The risk of falls, fragility, hospitalization, and death is considerably increased in the senior population due to sarcopenia. Although there is no conclusive evidence for drug treatment, resistance training has been unanimously recognized as a first-line treatment for managing sarcopenia, and numerous studies have also pointed to the combination of nutritional supplementation and resistance training as a more effective intervention to improve quality of life for people with sarcopenia. People with both malnutrition and sarcopenia have a higher mortality rate, so identifying people at risk of malnutrition and intervening early is extremely important to avoid sarcopenia and its associated problems. This article provides important information for dietary interventions in sarcopenia by summarizing the discoveries and developments of nutritional supplements such as protein, leucine, β-hydroxy-β-methylbutyric acid, vitamin D, vitamin C, vitamin E, omega-3 fatty acids, creatine, inorganic nitrate, probiotics, minerals, collagen peptides, and polyphenols in the management of sarcopenia.
Collapse
Affiliation(s)
- Simin Liu
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lin Zhang
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuangqing Li
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Clinical Research Center for Geriatrics, Multimorbidity Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Sarcopenia remaining after intensive nutritional feeding support could be a criterion for the selection of patients for surgery for oesogastric junction adenocarcinoma. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2023; 49:384-391. [PMID: 36372618 DOI: 10.1016/j.ejso.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/19/2022] [Accepted: 11/04/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Sarcopenia is recognized as a negative prognostic factor in several cancers. The aim of this study was to investigate the impact of nutritional support with feeding jejunostomy (FJ) on the occurrence of sarcopenia and how it may affect postoperative short-term outcomes and long-term survival outcomes in patients undergoing esophagectomy for oesogastric junction adenocarcinoma (OJA). METHODS Patients with OJA were included. The presence of sarcopenia was determined using cutoff values of the total cross-sectional muscle tissue measured on CT scan. We analyzed risk factors for sarcopenia occurrence and the impact of preoperative sarcopenia on postoperative results, overall survival and disease-free survival. RESULTS A total of 124 patients were eligible for analysis. Ninety-one patients underwent surgery after chemotherapy, and 72 of them received preoperative FJ. Among the 91 patients, 21 patients (23.0%) were sarcopenic after preoperative chemotherapy. Multivariate analysis showed that FJ is a protective factor against sarcopenia occurrence. Overall survival was significantly different between sarcopenic and nonsarcopenic patients (median survival = 33.7 vs. 58.6 months, respectively, p = 0.04), and sarcopenia occurrence was an independent risk factor for overall survival in patients who underwent surgery (HR = 3.02; CI 95% 1.55-5.9; p < 0.005). Subgroup analyses showed no differences in overall survival between patients who presented sarcopenia despite nutritional prehabilitation with a FJ and patients excluded from surgery in palliative situations (median survival = 21.9 vs. 17.2 months, respectively, p = 0.46). CONCLUSION The persistence of sarcopenia after preoperative chemotherapy despite renutrition with FJ could be a selection factor to propose curative surgery for OJA.
Collapse
|
5
|
Venkatasamy A, Guerin E, Reichardt W, Devignot V, Chenard MP, Miguet L, Romain B, Jung AC, Gross I, Gaiddon C, Mellitzer G. Morpho-functional analysis of patient-derived xenografts reveals differential impact of gastric cancer and chemotherapy on the tumor ecosystem, affecting immune check point, metabolism, and sarcopenia. Gastric Cancer 2023; 26:220-233. [PMID: 36536236 PMCID: PMC9950243 DOI: 10.1007/s10120-022-01359-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Gastric cancer (GC) is an aggressive disease due to late diagnosis resulting from the lack of easy diagnostic tools, resistances toward immunotherapy (due to low PD-L1 expression), or chemotherapies (due to p53 mutations), and comorbidity factors, notably muscle atrophy. To improve our understanding of this complex pathology, we established patient-derived xenograft (PDX) models and characterized the tumor ecosystem using a morpho-functional approach combining high-resolution imaging with molecular analyses, regarding the expression of relevant therapeutic biomarkers and the presence of muscle atrophy. MATERIALS AND METHODS GC tissues samples were implanted in nude mice. Established PDX, treated with cisplatin or not, were imaged by magnetic resonance imaging (MRI) and analyzed for the expression of relevant biomarkers (p53, PD-L1, PD-1, HER-2, CDX2, CAIX, CD31, a-SAM) and by transcriptomics. RESULTS Three well-differentiated, one moderately and one poorly differentiated adenocarcinomas were established. All retained the architectural and histological features of their primary tumors. MRI allowed in-real-time evaluation of differences between PDX, in terms of substructure, post-therapeutic changes, and muscle atrophy. Immunohistochemistry showed differential expression of p53, HER-2, CDX2, a-SAM, PD-L1, PD-1, CAIX, and CD31 between models and upon cisplatin treatment. Transcriptomics revealed treatment-induced hypoxia and metabolic reprograming in the tumor microenvironment. CONCLUSION Our PDX models are representative for the heterogeneity and complexity of human tumors, with differences in structure, histology, muscle atrophy, and the different biomarkers making them valuable for the analyses of the impact of platinum drugs or new therapies on the tumor and its microenvironment.
Collapse
Affiliation(s)
- A Venkatasamy
- Streinth Lab (Stress Response and Innovative Therapies), Inserm UMR_S 1113 IRFAC, Interface Recherche Fondamental et Appliquée à la Cancérologie, 3 Avenue Molière, 67200, Strasbourg, France
- IHU-Strasbourg, Institute of Image-Guided Surgery, 67200, Strasbourg, France
- Medizin Physik, Universitätsklinikum Freiburg, Kilianstr. 5a, 70106, Freiburg, Germany
| | - E Guerin
- Streinth Lab (Stress Response and Innovative Therapies), Inserm UMR_S 1113 IRFAC, Interface Recherche Fondamental et Appliquée à la Cancérologie, 3 Avenue Molière, 67200, Strasbourg, France
| | - W Reichardt
- Medizin Physik, Universitätsklinikum Freiburg, Kilianstr. 5a, 70106, Freiburg, Germany
| | - V Devignot
- Streinth Lab (Stress Response and Innovative Therapies), Inserm UMR_S 1113 IRFAC, Interface Recherche Fondamental et Appliquée à la Cancérologie, 3 Avenue Molière, 67200, Strasbourg, France
| | - M P Chenard
- Pathology Department, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, 1 Avenue Molière, 67098, Strasbourg Cedex, France
| | - L Miguet
- Streinth Lab (Stress Response and Innovative Therapies), Inserm UMR_S 1113 IRFAC, Interface Recherche Fondamental et Appliquée à la Cancérologie, 3 Avenue Molière, 67200, Strasbourg, France
| | - B Romain
- Streinth Lab (Stress Response and Innovative Therapies), Inserm UMR_S 1113 IRFAC, Interface Recherche Fondamental et Appliquée à la Cancérologie, 3 Avenue Molière, 67200, Strasbourg, France
- Digestive Surgery Department, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, 1 Avenue Molière, 67098, Strasbourg Cedex, France
| | - A C Jung
- Streinth Lab (Stress Response and Innovative Therapies), Inserm UMR_S 1113 IRFAC, Interface Recherche Fondamental et Appliquée à la Cancérologie, 3 Avenue Molière, 67200, Strasbourg, France
- Laboratoire de Biologie Tumorale, Institut de Cancérologie Strasbourg Europe, 67200, Strasbourg, France
| | - I Gross
- Streinth Lab (Stress Response and Innovative Therapies), Inserm UMR_S 1113 IRFAC, Interface Recherche Fondamental et Appliquée à la Cancérologie, 3 Avenue Molière, 67200, Strasbourg, France
| | - C Gaiddon
- Streinth Lab (Stress Response and Innovative Therapies), Inserm UMR_S 1113 IRFAC, Interface Recherche Fondamental et Appliquée à la Cancérologie, 3 Avenue Molière, 67200, Strasbourg, France
| | - G Mellitzer
- Streinth Lab (Stress Response and Innovative Therapies), Inserm UMR_S 1113 IRFAC, Interface Recherche Fondamental et Appliquée à la Cancérologie, 3 Avenue Molière, 67200, Strasbourg, France.
| |
Collapse
|
6
|
Limbad C, Doi R, McGirr J, Ciotlos S, Perez K, Clayton ZS, Daya R, Seals DR, Campisi J, Melov S. Senolysis induced by 25-hydroxycholesterol targets CRYAB in multiple cell types. iScience 2022; 25:103848. [PMID: 35198901 PMCID: PMC8851282 DOI: 10.1016/j.isci.2022.103848] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/24/2021] [Accepted: 01/25/2022] [Indexed: 01/18/2023] Open
Abstract
Cellular senescence is a driver of many age-related pathologies. There is an active search for pharmaceuticals termed senolytics that can mitigate or remove senescent cells in vivo by targeting genes that promote the survival of senescent cells. We utilized single-cell RNA sequencing to identify CRYAB as a robust senescence-induced gene and potential target for senolysis. Using chemical inhibitor screening for CRYAB disruption, we identified 25-hydroxycholesterol (25HC), an endogenous metabolite of cholesterol biosynthesis, as a potent senolytic. We then validated 25HC as a senolytic in mouse and human cells in culture and in vivo in mouse skeletal muscle. Thus, 25HC represents a potential class of senolytics, which may be useful in combating diseases or physiologies in which cellular senescence is a key driver.
Collapse
Affiliation(s)
| | - Ryosuke Doi
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Julia McGirr
- Buck Institute for Research on Aging, Novato, CA, USA
| | | | - Kevin Perez
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Zachary S. Clayton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Radha Daya
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Douglas R. Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Simon Melov
- Buck Institute for Research on Aging, Novato, CA, USA
| |
Collapse
|
7
|
Ma R, Kutchy NA, Chen L, Meigs DD, Hu G. Primary cilia and ciliary signaling pathways in aging and age-related brain disorders. Neurobiol Dis 2022; 163:105607. [PMID: 34979259 PMCID: PMC9280856 DOI: 10.1016/j.nbd.2021.105607] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 12/08/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
Brain disorders are characterized by the progressive loss of structure and function of the brain as a consequence of progressive degeneration and/or death of nerve cells. Aging is a major risk factor for brain disorders such as Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and stroke. Various cellular and molecular events have been shown to play a role in the progress of neurodegenerative diseases. Emerging studies suggest that primary cilia could be a key regulator in brain diseases. The primary cilium is a singular cellular organelle expressed on the surface of many cell types, such as astrocytes and neurons in the mature brain. Primary cilia detect extracellular cues, such as Sonic Hedgehog (SHH) protein, and transduce these signals into cells to regulate various signaling pathways. Abnormalities in ciliary length and frequency (ratio of ciliated cells) have been implicated in various human diseases, including brain disorders. This review summarizes current findings and thoughts on the role of primary cilia and ciliary signaling pathways in aging and age-related brain disorders.
Collapse
Affiliation(s)
- Rong Ma
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Naseer A Kutchy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Department of Anatomy, Physiology and Pharmacology, School of Veterinary Medicine, St. George's University, Grenada
| | - Liang Chen
- Department of Computer Science, College of Engineering, Shantou University, Shantou, Guangdong 515063, China; Key Laboratory of Intelligent Manufacturing Technology, Ministry of Education, Shantou University, Shantou, Guangdong 515063, China
| | - Douglas D Meigs
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| |
Collapse
|
8
|
Gaiddon C, Gross I, Meng X, Sidhoum M, Mellitzer G, Romain B, Delhorme JB, Venkatasamy A, Jung AC, Pfeffer M. Bypassing the Resistance Mechanisms of the Tumor Ecosystem by Targeting the Endoplasmic Reticulum Stress Pathway Using Ruthenium- and Osmium-Based Organometallic Compounds: An Exciting Long-Term Collaboration with Dr. Michel Pfeffer. Molecules 2021; 26:molecules26175386. [PMID: 34500819 PMCID: PMC8434532 DOI: 10.3390/molecules26175386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/27/2022] Open
Abstract
Metal complexes have been used to treat cancer since the discovery of cisplatin and its interaction with DNA in the 1960’s. Facing the resistance mechanisms against platinum salts and their side effects, safer therapeutic approaches have been sought through other metals, including ruthenium. In the early 2000s, Michel Pfeffer and his collaborators started to investigate the biological activity of organo-ruthenium/osmium complexes, demonstrating their ability to interfere with the activity of purified redox enzymes. Then, they discovered that these organo-ruthenium/osmium complexes could act independently of DNA damage and bypass the requirement for the tumor suppressor gene TP53 to induce the endoplasmic reticulum (ER) stress pathway, which is an original cell death pathway. They showed that other types of ruthenium complexes—as well complexes with other metals (osmium, iron, platinum)—can induce this pathway as well. They also demonstrated that ruthenium complexes accumulate in the ER after entering the cell using passive and active mechanisms. These particular physico-chemical properties of the organometallic complexes designed by Dr. Pfeffer contribute to their ability to reduce tumor growth and angiogenesis. Taken together, the pioneering work of Dr. Michel Pfeffer over his career provides us with a legacy that we have yet to fully embrace.
Collapse
Affiliation(s)
- Christian Gaiddon
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, 67200 Strasbourg, France; (I.G.); (G.M.); (B.R.); (J.-B.D.); (A.V.); (J.A.C.)
- Correspondence: ; Tel.: +33-6-8352-5356
| | - Isabelle Gross
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, 67200 Strasbourg, France; (I.G.); (G.M.); (B.R.); (J.-B.D.); (A.V.); (J.A.C.)
| | - Xiangjun Meng
- Department of Gastro-Oncology, 7th Hospital, Shanghai 200137, China;
| | | | - Georg Mellitzer
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, 67200 Strasbourg, France; (I.G.); (G.M.); (B.R.); (J.-B.D.); (A.V.); (J.A.C.)
| | - Benoit Romain
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, 67200 Strasbourg, France; (I.G.); (G.M.); (B.R.); (J.-B.D.); (A.V.); (J.A.C.)
| | - Jean-Batiste Delhorme
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, 67200 Strasbourg, France; (I.G.); (G.M.); (B.R.); (J.-B.D.); (A.V.); (J.A.C.)
| | - Aïna Venkatasamy
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, 67200 Strasbourg, France; (I.G.); (G.M.); (B.R.); (J.-B.D.); (A.V.); (J.A.C.)
| | - Alain C. Jung
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, 67200 Strasbourg, France; (I.G.); (G.M.); (B.R.); (J.-B.D.); (A.V.); (J.A.C.)
| | - Michel Pfeffer
- CNRS UMR 7177, Institute of Chemistry, 67000 Strasbourg, France;
| |
Collapse
|
9
|
Peris-Moreno D, Cussonneau L, Combaret L, Polge C, Taillandier D. Ubiquitin Ligases at the Heart of Skeletal Muscle Atrophy Control. Molecules 2021; 26:molecules26020407. [PMID: 33466753 PMCID: PMC7829870 DOI: 10.3390/molecules26020407] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle loss is a detrimental side-effect of numerous chronic diseases that dramatically increases mortality and morbidity. The alteration of protein homeostasis is generally due to increased protein breakdown while, protein synthesis may also be down-regulated. The ubiquitin proteasome system (UPS) is a master regulator of skeletal muscle that impacts muscle contractile properties and metabolism through multiple levers like signaling pathways, contractile apparatus degradation, etc. Among the different actors of the UPS, the E3 ubiquitin ligases specifically target key proteins for either degradation or activity modulation, thus controlling both pro-anabolic or pro-catabolic factors. The atrogenes MuRF1/TRIM63 and MAFbx/Atrogin-1 encode for key E3 ligases that target contractile proteins and key actors of protein synthesis respectively. However, several other E3 ligases are involved upstream in the atrophy program, from signal transduction control to modulation of energy balance. Controlling E3 ligases activity is thus a tempting approach for preserving muscle mass. While indirect modulation of E3 ligases may prove beneficial in some situations of muscle atrophy, some drugs directly inhibiting their activity have started to appear. This review summarizes the main signaling pathways involved in muscle atrophy and the E3 ligases implicated, but also the molecules potentially usable for future therapies.
Collapse
|
10
|
Hiensch AE, Bolam KA, Mijwel S, Jeneson JAL, Huitema ADR, Kranenburg O, Wall E, Rundqvist H, Wengstrom Y, May AM. Doxorubicin-induced skeletal muscle atrophy: Elucidating the underlying molecular pathways. Acta Physiol (Oxf) 2020; 229:e13400. [PMID: 31600860 PMCID: PMC7317437 DOI: 10.1111/apha.13400] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 10/02/2019] [Accepted: 10/05/2019] [Indexed: 12/13/2022]
Abstract
Aim Loss of skeletal muscle mass is a common clinical finding in cancer patients. The purpose of this meta‐analysis and systematic review was to quantify the effect of doxorubicin on skeletal muscle and report on the proposed molecular pathways possibly leading to doxorubicin‐induced muscle atrophy in both human and animal models. Methods A systematic search of the literature was conducted in PubMed, EMBASE, Web of Science and CENTRAL databases. The internal validity of included studies was assessed using SYRCLE’s risk of bias tool. Results Twenty eligible articles were identified. No human studies were identified as being eligible for inclusion. Doxorubicin significantly reduced skeletal muscle weight (ie EDL, TA, gastrocnemius and soleus) by 14% (95% CI: 9.9; 19.3) and muscle fibre cross‐sectional area by 17% (95% CI: 9.0; 26.0) when compared to vehicle controls. Parallel to negative changes in muscle mass, muscle strength was even more decreased in response to doxorubicin administration. This review suggests that mitochondrial dysfunction plays a central role in doxorubicin‐induced skeletal muscle atrophy. The increased production of ROS plays a key role within this process. Furthermore, doxorubicin activated all major proteolytic systems (ie calpains, the ubiquitin‐proteasome pathway and autophagy) in the skeletal muscle. Although each of these proteolytic pathways contributes to doxorubicin‐induced muscle atrophy, the activation of the ubiquitin‐proteasome pathway is hypothesized to play a key role. Finally, a limited number of studies found that doxorubicin decreases protein synthesis by a disruption in the insulin signalling pathway. Conclusion The results of the meta‐analysis show that doxorubicin induces skeletal muscle atrophy in preclinical models. This effect may be explained by various interacting molecular pathways. Results from preclinical studies provide a robust setting to investigate a possible dose‐response, separate the effects of doxorubicin from tumour‐induced atrophy and to examine underlying molecular pathways. More research is needed to confirm the proposed signalling pathways in humans, paving the way for potential therapeutic approaches.
Collapse
Affiliation(s)
- Anouk E. Hiensch
- Julius Center for Health Sciences and Primary Care University Medical Center UtrechtUtrecht University Utrecht The Netherlands
| | - Kate A. Bolam
- Department of Neurobiology, Care Sciences and Society Karolinska Institutet Stockholm Sweden
| | - Sara Mijwel
- Department of Neurobiology, Care Sciences and Society Karolinska Institutet Stockholm Sweden
| | - Jeroen A. L. Jeneson
- Neuroimaging Centre Division of Neuroscience University Medical Center Groningen Groningen The Netherlands
- Department of Radiology Academic Medical Center Amsterdam University of Amsterdam Amsterdam The Netherlands
| | - Alwin D. R. Huitema
- Department of Pharmacy & Pharmacology The Netherlands Cancer Institute‐Antoni van Leeuwenhoek and MC Slotervaart Amsterdam The Netherlands
- Department of Clinical Pharmacy University Medical Center Utrecht University Utrecht The Netherlands
| | - Onno Kranenburg
- UMC Utrecht Cancer Center University Medical Center Utrecht Utrecht The Netherlands
| | - Elsken Wall
- Department of Medical Oncology University Medical Center Utrecht Utrecht University Utrecht The Netherlands
| | - Helene Rundqvist
- Department of Cell and Molecular Biology Karolinska Institutet Stockholm Sweden
| | - Yvönne Wengstrom
- Department of Neurobiology, Care Sciences and Society Karolinska Institutet Stockholm Sweden
- Theme Cancer Karolinska University Hospital Stockholm Sweden
| | - Anne M. May
- Julius Center for Health Sciences and Primary Care University Medical Center UtrechtUtrecht University Utrecht The Netherlands
| |
Collapse
|
11
|
Voisinet M, Venkatasamy A, Alratrout H, Delhorme JB, Brigand C, Rohr S, Gaiddon C, Romain B. How to Prevent Sarcopenia Occurrence during Neoadjuvant Chemotherapy for Oesogastric Adenocarcinoma? Nutr Cancer 2020; 73:802-808. [PMID: 32449415 DOI: 10.1080/01635581.2020.1770813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The aim of this study was to evaluate the impact of a preoperative feeding jejunostomy (FJ) on the occurrence of sarcopenia before and after preoperative chemotherapy for patients with an oesogastric adenocarcinoma (OGA). Forty-six patients with potentially resectable OGA were enrolled in a perioperative chemotherapy protocol. Sarcopenia was evaluated by measuring muscle surfaces (psoas, paraspinal and abdominal wall muscles) on abdominal CT images at the level of the 3rd lumbar vertebra. A FJ was placed in 31 patients (67.4%) before the neoadjuvant treatment (FJ group), while 15 patients (32.6%) started neoadjuvant treatments without FJ (control group). After preoperative chemotherapy, there were significantly more sarcopenic patients in the control group, compared to the FJ group. In the FJ group, 13% of the patients (n = 4) were sarcopenic before treatment and 22.6% of them (n = 7) became sarcopenic after preoperative chemotherapy (p = 0.3). In the control group, if initially only 6.7% (n = 1) of patients were sarcopenic, the majority of the patients (60%, n = 9) became sarcopenic after chemotherapy (p = 0.012). The FJ was an independent risk factor of sarcopenia after neoadjuvant chemotherapy. FJ with enteral nutritional support during the preoperative management of OGA seemed to efficiently counteract sarcopenia occurrence during preoperative chemotherapy.
Collapse
Affiliation(s)
- Marlène Voisinet
- Department of Digestive Surgery, Strasbourg University Hospital, Strasbourg, France
| | - Aïna Venkatasamy
- Department of Radiology, Strasbourg University Hospital, Strasbourg, France.,Inserm IRFAC UMR_S1113, Laboratory STREINTH, Université de Strasbourg, Strasbourg, France
| | - Hefzi Alratrout
- Department of Digestive Surgery, Strasbourg University Hospital, Strasbourg, France
| | - Jean-Baptiste Delhorme
- Department of Digestive Surgery, Strasbourg University Hospital, Strasbourg, France.,Inserm IRFAC UMR_S1113, Laboratory STREINTH, Université de Strasbourg, Strasbourg, France
| | - Cécile Brigand
- Department of Digestive Surgery, Strasbourg University Hospital, Strasbourg, France.,Inserm IRFAC UMR_S1113, Laboratory STREINTH, Université de Strasbourg, Strasbourg, France
| | - Serge Rohr
- Department of Digestive Surgery, Strasbourg University Hospital, Strasbourg, France.,Inserm IRFAC UMR_S1113, Laboratory STREINTH, Université de Strasbourg, Strasbourg, France
| | - Christian Gaiddon
- Inserm IRFAC UMR_S1113, Laboratory STREINTH, Université de Strasbourg, Strasbourg, France
| | - Benoît Romain
- Department of Digestive Surgery, Strasbourg University Hospital, Strasbourg, France.,Inserm IRFAC UMR_S1113, Laboratory STREINTH, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
12
|
Nonneman A, Criem N, Lewandowski SA, Nuyts R, Thal DR, Pfrieger FW, Ravits J, Van Damme P, Zwijsen A, Van Den Bosch L, Robberecht W. Astrocyte-derived Jagged-1 mitigates deleterious Notch signaling in amyotrophic lateral sclerosis. Neurobiol Dis 2018; 119:26-40. [PMID: 30010003 DOI: 10.1016/j.nbd.2018.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 06/21/2018] [Accepted: 07/11/2018] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a late-onset devastating degenerative disease mainly affecting motor neurons. Motor neuron degeneration is accompanied and aggravated by oligodendroglial pathology and the presence of reactive astrocytes and microglia. We studied the role of the Notch signaling pathway in ALS, as it is implicated in several processes that may contribute to this disease, including axonal retraction, microgliosis, astrocytosis, oligodendrocyte precursor cell proliferation and differentiation, and cell death. We observed abnormal activation of the Notch signaling pathway in the spinal cord of SOD1G93A mice, a well-established model for ALS, as well as in the spinal cord of patients with sporadic ALS (sALS). This increased activation was particularly evident in reactive GFAP-positive astrocytes. In addition, one of the main Notch ligands, Jagged-1, was ectopically expressed in reactive astrocytes in spinal cord from ALS mice and patients, but absent in resting astrocytes. Astrocyte-specific inactivation of Jagged-1 in presymptomatic SOD1G93A mice further exacerbated the activation of the Notch signaling pathway and aggravated the course of the disease in these animals without affecting disease onset. These data suggest that aberrant Notch signaling activation contributes to the pathogenesis of ALS, both in sALS patients and SOD1G93A mice, and that it is mitigated in part by the upregulation of astrocytic Jagged-1.
Collapse
Affiliation(s)
- Annelies Nonneman
- KU Leuven - University of Leuven, Department of Neurosciences, Laboratory of Neurobiology and Experimental Neurology, and Leuven Brain Institute (LBI), Herestraat 49, B-3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Herestraat 49, B-3000 Leuven, Belgium
| | - Nathan Criem
- VIB, Center for Brain & Disease Research, Herestraat 49, B-3000 Leuven, Belgium; KU Leuven - University of Leuven, Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, Herestraat 49, B-3000 Leuven, Belgium; KU Leuven - University of Leuven, Department of Human Genetics, Herestraat 49, B-3000 Leuven, Belgium
| | - Sebastian A Lewandowski
- KTH-Royal Institute of Technology, Affinity Proteomics, SciLifeLab, 171 77 Stockholm, Sweden; Karolinska Institute, Department of Clinical Neuroscience, 171 77 Stockholm, Sweden
| | - Rik Nuyts
- KU Leuven - University of Leuven, Department of Neurosciences, Laboratory of Neurobiology and Experimental Neurology, and Leuven Brain Institute (LBI), Herestraat 49, B-3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Herestraat 49, B-3000 Leuven, Belgium
| | - Dietmar R Thal
- KU Leuven - University of Leuven, Department of Neurosciences, Laboratory for Neuropathology, Herestraat 49, B-3000 Leuven, Belgium; University Hospitals Leuven, Department of Neurology, Herestraat 49, B-3000 Leuven, Belgium
| | - Frank W Pfrieger
- Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, University of Strasbourg, 67084 Strasbourg, France
| | - John Ravits
- University of California, Department of Neurosciences, 9500 Gilman Drive, La Jolla, San Diego, CA 92093-0624, USA
| | - Philip Van Damme
- KU Leuven - University of Leuven, Department of Neurosciences, Laboratory of Neurobiology and Experimental Neurology, and Leuven Brain Institute (LBI), Herestraat 49, B-3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Herestraat 49, B-3000 Leuven, Belgium; University Hospitals Leuven, Department of Neurology, Herestraat 49, B-3000 Leuven, Belgium
| | - An Zwijsen
- VIB, Center for Brain & Disease Research, Herestraat 49, B-3000 Leuven, Belgium; KU Leuven - University of Leuven, Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, Herestraat 49, B-3000 Leuven, Belgium; KU Leuven - University of Leuven, Department of Human Genetics, Herestraat 49, B-3000 Leuven, Belgium
| | - Ludo Van Den Bosch
- KU Leuven - University of Leuven, Department of Neurosciences, Laboratory of Neurobiology and Experimental Neurology, and Leuven Brain Institute (LBI), Herestraat 49, B-3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Herestraat 49, B-3000 Leuven, Belgium
| | - Wim Robberecht
- KU Leuven - University of Leuven, Department of Neurosciences, Laboratory of Neurobiology and Experimental Neurology, and Leuven Brain Institute (LBI), Herestraat 49, B-3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Herestraat 49, B-3000 Leuven, Belgium; University Hospitals Leuven, Department of Neurology, Herestraat 49, B-3000 Leuven, Belgium.
| |
Collapse
|
13
|
Gad AM. Study on the influence of caffeic acid against sodium valproate-induced nephrotoxicity in rats. J Biochem Mol Toxicol 2018; 32:e22175. [PMID: 29968957 DOI: 10.1002/jbt.22175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/22/2018] [Accepted: 06/15/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Amany M. Gad
- Department of Pharmacology, National Organization for Drug Control and Research; Cairo, Egypt
| |
Collapse
|
14
|
Chung E, Mo H, Wang S, Zu Y, Elfakhani M, Rios SR, Chyu MC, Yang RS, Shen CL. Potential roles of vitamin E in age-related changes in skeletal muscle health. Nutr Res 2018; 49:23-36. [DOI: 10.1016/j.nutres.2017.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 08/29/2017] [Accepted: 09/17/2017] [Indexed: 12/21/2022]
|
15
|
Watanabe K, Nakayama K, Ohta S, Tago K, Boonvisut S, Millings EJ, Fischer SG, LeDuc CA, Leibel RL, Iwamoto S. ZNF70, a novel ILDR2-interacting protein, contributes to the regulation of HES1 gene expression. Biochem Biophys Res Commun 2016; 477:712-716. [DOI: 10.1016/j.bbrc.2016.06.124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 06/24/2016] [Indexed: 01/20/2023]
|
16
|
The Janus-Faced Role of Antioxidants in Cancer Cachexia: New Insights on the Established Concepts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9579868. [PMID: 27642498 PMCID: PMC5013212 DOI: 10.1155/2016/9579868] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/28/2016] [Accepted: 07/17/2016] [Indexed: 12/14/2022]
Abstract
Chronic inflammation and excessive loss of skeletal muscle usually occur during cancer cachexia, leading to functional impairment and delaying the cure of cancer. The release of cytokines by tumor promotes the formation of reactive oxygen species (ROS), which in turn regulate catabolic pathways involved in muscle atrophy. ROS also exert a dual role within tumor itself, as they can either promote proliferation and vascularization or induce senescence and apoptosis. Accordingly, previous studies that used antioxidants to modulate these ROS-dependent mechanisms, in cancer and cancer cachexia, have obtained contradictory results, hence the need to gather the main findings of these studies and draw global conclusions in order to stimulate more oriented research in this field. Based on the literature reviewed in this paper, it appears that antioxidant supplementation is (1) beneficial in cancer cachectic patients with antioxidant deficiencies, (2) most likely harmful in cancer patients with adequate antioxidant status (i.e., lung, gastrointestinal, head and neck, and esophageal), and (3) not recommended when undergoing radiotherapy. At the moment, measuring the blood levels of antioxidants may help to identify patients with systemic deficiencies. This approach is simple to realize but could not be a gold standard method for cachexia, as it does not necessarily reflect the redox state in other organs, like muscle.
Collapse
|
17
|
von Grabowiecki Y, Abreu P, Blanchard O, Palamiuc L, Benosman S, Mériaux S, Devignot V, Gross I, Mellitzer G, Gonzalez de Aguilar JL, Gaiddon C. Transcriptional activator TAp63 is upregulated in muscular atrophy during ALS and induces the pro-atrophic ubiquitin ligase Trim63. eLife 2016; 5. [PMID: 26919175 PMCID: PMC4786414 DOI: 10.7554/elife.10528] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/08/2016] [Indexed: 12/14/2022] Open
Abstract
Mechanisms of muscle atrophy are complex and their understanding might help finding therapeutic solutions for pathologies such as amyotrophic lateral sclerosis (ALS). We meta-analyzed transcriptomic experiments of muscles of ALS patients and mouse models, uncovering a p53 deregulation as common denominator. We then characterized the induction of several p53 family members (p53, p63, p73) and a correlation between the levels of p53 family target genes and the severity of muscle atrophy in ALS patients and mice. In particular, we observed increased p63 protein levels in the fibers of atrophic muscles via denervation-dependent and -independent mechanisms. At a functional level, we demonstrated that TAp63 and p53 transactivate the promoter and increased the expression of Trim63 (MuRF1), an effector of muscle atrophy. Altogether, these results suggest a novel function for p63 as a contributor to muscular atrophic processes via the regulation of multiple genes, including the muscle atrophy gene Trim63.
Collapse
Affiliation(s)
- Yannick von Grabowiecki
- UMR_S 1113, Molecular mechanisms of stress response and pathologies, Institut national de la santé et de la recherche médicale, Strasbourg, France.,Fédération de Recherche Translationnelle, Strasbourg University, Strasbourg, France
| | - Paula Abreu
- UMR_S 1113, Molecular mechanisms of stress response and pathologies, Institut national de la santé et de la recherche médicale, Strasbourg, France.,Fédération de Recherche Translationnelle, Strasbourg University, Strasbourg, France
| | - Orphee Blanchard
- UMR_S 1113, Molecular mechanisms of stress response and pathologies, Institut national de la santé et de la recherche médicale, Strasbourg, France.,Fédération de Recherche Translationnelle, Strasbourg University, Strasbourg, France
| | - Lavinia Palamiuc
- Fédération de Recherche Translationnelle, Strasbourg University, Strasbourg, France.,Sanford Burnham Medical Research Institute, San Diego, United States
| | - Samir Benosman
- Sanford Burnham Medical Research Institute, San Diego, United States
| | - Sophie Mériaux
- Fédération de Recherche Translationnelle, Strasbourg University, Strasbourg, France.,Sanford Burnham Medical Research Institute, San Diego, United States
| | - Véronique Devignot
- UMR_S 1113, Molecular mechanisms of stress response and pathologies, Institut national de la santé et de la recherche médicale, Strasbourg, France.,Fédération de Recherche Translationnelle, Strasbourg University, Strasbourg, France
| | - Isabelle Gross
- UMR_S 1113, Molecular mechanisms of stress response and pathologies, Institut national de la santé et de la recherche médicale, Strasbourg, France.,Fédération de Recherche Translationnelle, Strasbourg University, Strasbourg, France
| | - Georg Mellitzer
- UMR_S 1113, Molecular mechanisms of stress response and pathologies, Institut national de la santé et de la recherche médicale, Strasbourg, France.,Fédération de Recherche Translationnelle, Strasbourg University, Strasbourg, France
| | - José L Gonzalez de Aguilar
- Fédération de Recherche Translationnelle, Strasbourg University, Strasbourg, France.,Institut national de la santé et de la recherche médicale, Laboratoire SMN, Strasbourg, France
| | - Christian Gaiddon
- UMR_S 1113, Molecular mechanisms of stress response and pathologies, Institut national de la santé et de la recherche médicale, Strasbourg, France.,Fédération de Recherche Translationnelle, Strasbourg University, Strasbourg, France
| |
Collapse
|
18
|
von Haehling S, Springer J. Treatment of Muscle Wasting: An Overview of Promising Treatment Targets. J Am Med Dir Assoc 2015; 16:1014-9. [DOI: 10.1016/j.jamda.2015.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 10/02/2015] [Indexed: 12/27/2022]
|
19
|
Ran QS, Yu YH, Fu XH, Wen YC. Activation of the Notch signaling pathway promotes neurovascular repair after traumatic brain injury. Neural Regen Res 2015; 10:1258-64. [PMID: 26487853 PMCID: PMC4590238 DOI: 10.4103/1673-5374.162758] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Notch signaling pathway plays a key role in angiogenesis and endothelial cell formation, but it remains unclear whether it is involved in vascular repair by endothelial progenitor cells after traumatic brain injury. Therefore, in the present study, we controlled the Notch signaling pathway using overexpression and knockdown constructs. Activation of the Notch signaling pathway by Notch1 or Jagged1 overexpression enhanced the migration, invasiveness and angiogenic ability of endothelial progenitor cells. Suppression of the Notch signaling pathway with Notch1 or Jagged1 siRNAs reduced the migratory capacity, invasiveness and angiogenic ability of endothelial progenitor cells. Activation of the Notch signaling pathway in vivo in a rat model of mild traumatic brain injury promoted neurovascular repair. These findings suggest that the activation of the Notch signaling pathway promotes blood vessel formation and tissue repair after brain trauma.
Collapse
Affiliation(s)
- Qi-Shan Ran
- Department of Neurosurgery, the First People's Hospital of ZunYi/the Third Affiliated Hospital of ZunYi Medical College, Zunyi, Guizhou Province, China
| | - Yun-Hu Yu
- Department of Neurosurgery, the First People's Hospital of ZunYi/the Third Affiliated Hospital of ZunYi Medical College, Zunyi, Guizhou Province, China
| | - Xiao-Hong Fu
- Department of Neurosurgery, the First People's Hospital of ZunYi/the Third Affiliated Hospital of ZunYi Medical College, Zunyi, Guizhou Province, China
| | - Yuan-Chao Wen
- Department of Neurosurgery, the First People's Hospital of ZunYi/the Third Affiliated Hospital of ZunYi Medical College, Zunyi, Guizhou Province, China
| |
Collapse
|