1
|
Wells RG, Azzam AF, Hiller AL, Sardinia MF. Effects of an Angiotensin IV Analog on 3-Nitropropionic Acid-Induced Huntington's Disease-Like Symptoms in Rats. J Huntingtons Dis 2024; 13:55-66. [PMID: 38489193 DOI: 10.3233/jhd-231507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Background Huntington's disease (HD) is a neurodegenerative disorder characterized by motor, cognitive, and psychiatric dysfunction caused by a mutant huntingtin protein. Compromised metabolic activity resulting from systemic administration of the mitochondrial toxin, 3-nitropropionic acid (3-NP), is known to mimic the pathology of HD and induce HD-like symptoms in rats. N-hexanoic-Tyr-Ile-(6)-amino hexanoic amide (PNB-0408), also known as Dihexa, has been shown to have neuroprotective and procognitive properties in animal models of Alzheimer's and Parkinson's diseases. Given the mechanism of action and success in other neurodegenerative diseases, we felt it an appropriate compound to investigate further for HD. Objective The present study was designed to test if PNB-0408, an angiotensin IV analog, could attenuate 3-NP-induced HD-like symptoms in rats and serve as a potential therapeutic agent. Methods Forty male Wistar rats were randomized into three groups consisting of a "vehicle" group, a "3-NP" group, and a "3-NP + PNB-0408" group. PNB-0408 was administered along with chronic exposure to 3-NP. Animal body weight, motor function, and cognitive abilities were measured for five weeks, before euthanasia and histopathological analysis. Results Exposure to 3-NP decreased the amount of weight rats gained, impaired spatial learning and memory consolidation, and led to marked motor dysfunction. From our observations and analysis, PNB-0408 did not protect rats from the deficits induced by 3-NP neurotoxicity. Conclusions Our findings suggest that PNB-0408 may not be an efficacious treatment strategy for preventing 3-NP-induced HD-like symptoms in a preclinical model. These data highlight the need for further research of this compound in alternate models and/or alternative approaches to managing this disorder.
Collapse
Affiliation(s)
- Russell G Wells
- Department of Biology, Whitworth University, Spokane, WA, USA
- School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Azzam F Azzam
- Department of Biology, Whitworth University, Spokane, WA, USA
- School of Medicine, University of Washington, Seattle, WA, USA
| | - Amie L Hiller
- School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | | |
Collapse
|
2
|
Villapol S, Janatpour ZC, Affram KO, Symes AJ. The Renin Angiotensin System as a Therapeutic Target in Traumatic Brain Injury. Neurotherapeutics 2023; 20:1565-1591. [PMID: 37759139 PMCID: PMC10684482 DOI: 10.1007/s13311-023-01435-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Traumatic brain injury (TBI) is a major public health problem, with limited pharmacological options available beyond symptomatic relief. The renin angiotensin system (RAS) is primarily known as a systemic endocrine regulatory system, with major roles controlling blood pressure and fluid homeostasis. Drugs that target the RAS are used to treat hypertension, heart failure and kidney disorders. They have now been used chronically by millions of people and have a favorable safety profile. In addition to the systemic RAS, it is now appreciated that many different organ systems, including the brain, have their own local RAS. The major ligand of the classic RAS, Angiotensin II (Ang II) acts predominantly through the Ang II Type 1 receptor (AT1R), leading to vasoconstriction, inflammation, and heightened oxidative stress. These processes can exacerbate brain injuries. Ang II receptor blockers (ARBs) are AT1R antagonists. They have been shown in several preclinical studies to enhance recovery from TBI in rodents through improvements in molecular, cellular and behavioral correlates of injury. ARBs are now under consideration for clinical trials in TBI. Several different RAS peptides that signal through receptors distinct from the AT1R, are also potential therapeutic targets for TBI. The counter regulatory RAS pathway has actions that oppose those stimulated by AT1R signaling. This alternative pathway has many beneficial effects on cells in the central nervous system, bringing about vasodilation, and having anti-inflammatory and anti-oxidative stress actions. Stimulation of this pathway also has potential therapeutic value for the treatment of TBI. This comprehensive review will provide an overview of the various components of the RAS, with a focus on their direct relevance to TBI pathology. It will explore different therapeutic agents that modulate this system and assess their potential efficacy in treating TBI patients.
Collapse
Affiliation(s)
- Sonia Villapol
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA
| | - Zachary C Janatpour
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Kwame O Affram
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Aviva J Symes
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| |
Collapse
|
3
|
Atkinson E, Dickman R. Growth factors and their peptide mimetics for treatment of traumatic brain injury. Bioorg Med Chem 2023; 90:117368. [PMID: 37331175 DOI: 10.1016/j.bmc.2023.117368] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/16/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023]
Abstract
Traumatic brain injury (TBI) is a leading cause of disability in adults, caused by a physical insult damaging the brain. Growth factor-based therapies have the potential to reduce the effects of secondary injury and improve outcomes by providing neuroprotection against glutamate excitotoxicity, oxidative damage, hypoxia, and ischemia, as well as promoting neurite outgrowth and the formation of new blood vessels. Despite promising evidence in preclinical studies, few neurotrophic factors have been tested in clinical trials for TBI. Translation to the clinic is not trivial and is limited by the short in vivo half-life of the protein, the inability to cross the blood-brain barrier and human delivery systems. Synthetic peptide mimetics have the potential to be used in place of recombinant growth factors, activating the same downstream signalling pathways, with a decrease in size and more favourable pharmacokinetic properties. In this review, we will discuss growth factors with the potential to modulate damage caused by secondary injury mechanisms following a traumatic brain injury that have been trialled in other indications including spinal cord injury, stroke and neurodegenerative diseases. Peptide mimetics of nerve growth factor (NGF), hepatocyte growth factor (HGF), glial cell line-derived growth factor (GDNF), brain-derived neurotrophic factor (BDNF), platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) will be highlighted, most of which have not yet been tested in preclinical or clinical models of TBI.
Collapse
Affiliation(s)
- Emily Atkinson
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; UCL Centre for Nerve Engineering, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - Rachael Dickman
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
4
|
Uribe PM, Hudson AM, Lockard G, Jiang M, Harding J, Steyger PS, Coffin AB. Hepatocyte growth factor mimetic confers protection from aminoglycoside-induced hair cell death in vitro. Hear Res 2023; 434:108786. [PMID: 37192594 DOI: 10.1016/j.heares.2023.108786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 04/18/2023] [Accepted: 05/05/2023] [Indexed: 05/18/2023]
Abstract
Loss of sensory hair cells from exposure to certain licit drugs, such as aminoglycoside antibiotics, can result in permanent hearing damage. Exogenous application of the neurotrophic molecule hepatocyte growth factor (HGF) promotes neuronal cell survival in a variety of contexts, including protecting hair cells from aminoglycoside ototoxicity. HGF itself is not an ideal therapeutic due to a short half-life and limited blood-brain barrier permeability. MM-201 is a chemically stable, blood-brain barrier permeable, synthetic HGF mimetic that serves as a functional ligand to activate the HGF receptor and its downstream signaling cascade. We previously demonstrated that MM-201 robustly protects zebrafish lateral line hair cells from aminoglycoside ototoxicity. Here, we examined the ability of MM-201 to protect mammalian sensory hair cells from aminoglycoside damage to further evaluate MM-201's clinical potential. We found that MM-201 exhibited dose-dependent protection from neomycin and gentamicin ototoxicity in mature mouse utricular explants. MM-201's protection was reduced following inhibition of mTOR, a downstream target of HGF receptor activation, implicating the activation of endogenous intracellular substrates by MM-201 as critical for the observed protection. We then asked if MM-201 altered the bactericidal properties of aminoglycosides. Using either plate or liquid growth assays we found that MM-201 did not alter the bactericidal efficacy of aminoglycoside antibiotics at therapeutically relevant concentrations. We therefore assessed the protective capacity of MM-201 in an in vivo mouse model of kanamycin ototoxicity. In contrast to our in vitro data, MM-201 did not attenuate kanamycin ototoxicity in vivo. Further, we found that MM-201 was ototoxic to mice across the dose range tested here. These data suggest species- and tissue-specific differences in otoprotective capacity. Next generation HGF mimetics are in clinical trials for neurodegenerative diseases and show excellent safety profiles, but neither preclinical studies nor clinical trials have examined hearing loss as a potential consequence of pharmaceutical HGF activation. Further research is needed to determine the consequences of systemic MM-201 application on the auditory system.
Collapse
Affiliation(s)
- Phillip M Uribe
- Department of Integrative Physiology and Neuroscience, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686 USA
| | - Alexandria M Hudson
- Department of Integrative Physiology and Neuroscience, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686 USA
| | - Gavin Lockard
- Department of Integrative Physiology and Neuroscience, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686 USA
| | - Meiyan Jiang
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Joseph Harding
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164 USA
| | - Peter S Steyger
- Translational Hearing Center, Creighton University, Omaha, NE, 68178, USA
| | - Allison B Coffin
- Department of Integrative Physiology and Neuroscience, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686 USA.
| |
Collapse
|
5
|
C-Met Receptors Deficiency Was Involved in Absence Seizures Development in WAG/Rij Rats. ARCHIVES OF NEUROSCIENCE 2023. [DOI: 10.5812/ans-132959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background: A variety of receptors may be involved in the pathogenesis of absence seizures. The c-Met receptors have a critical role in modulating the GABAergic interneurons and creating a balance between excitatory and inhibitory neurotransmission, sensorimotor gating, and normal synaptic plasticity. Objectives: This study aimed to assess the changes of the c-Met receptor during the appearance of absence attacks in the experimental model of absence epilepsy. Methods: A total of 48 animals were divided into four groups of two- and six-month-old WAG/Rij and Wistar rats. Epileptic WAG/Rij rats showing SWP in electrocorticogram (ECoG) were included in the epileptic group. The two-month-old WAG/Rij rats as well as two- and six-month-old Wistar rats not exhibiting SWP in ECoG were selected as the non-epileptic. Gene (RT-PCR) and protein expression (western blotting) of c-Met receptors as well as c-Met protein distribution (immunohistochemistry) in the somatosensory cortex and hippocampus were assessed during seizure development of the absence attacks. Results: According to the study findings, a lower c-Met gene and protein expression, as well as a lower protein distribution, were observed in the hippocampus (P < 0.001, P < 0.05, and P < 0.001, respectively) and cortex (P < 0.01, P < 0.001 and P < 0.001, respectively) of the two-month-old WAG/Rij rats compared to the same-age Wistar rats. Moreover, the data revealed a reduction of hippocampal and cortical c-Met protein expression (P < 0.001, for both) in six-month-old WAG/Rij rats compared to two-month-old ones. Six-month-old WAG/Rij rats had a lower cortical c-Met gene (P < 0.05) and protein expression (P < 0.001) as well as lower hippocampal and cortical protein distribution (P < 0.05 and P < 0.001) than the same-age Wistar rats. Conclusions: In sum, the c-Met receptor was found to play a significant role in the development of absence epilepsy. This receptor, therefore, may have been considered as an effective goal for absence seizure inhibition.
Collapse
|
6
|
Li R, Zhao Y, Yourick JJ, Sprando RL, Gao X. Phenotypical, functional and transcriptomic comparison of two modified methods of hepatocyte differentiation from human induced pluripotent stem cells. Biomed Rep 2022; 16:43. [PMID: 35371477 PMCID: PMC8972237 DOI: 10.3892/br.2022.1526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Directed differentiation of human induced pluripotent stem cells (iPSCs) into hepatocytes could provide an unlimited source of liver cells, and therefore holds great promise for regenerative medicine, disease modeling, drug screening and toxicology studies. Various methods have been established during the past decade to differentiate human iPSCs into hepatocyte-like cells (HLCs) using growth factors and/or small molecules. However, direct comparison of the differentiation efficiency and the quality of the final HLCs between different methods has rarely been reported. In the current study, two hepatocyte differentiation methods were devised, termed Method 1 and 2, through modifying existing well-known hepatocyte differentiation strategies, and the resultant cells were compared phenotypically and functionally at different stages of hepatocyte differentiation. Compared to Method 1, higher differentiation efficiency and reproducibility were observed in Method 2, which generated highly homogeneous functional HLCs at the end of the differentiation process. The cells exhibited morphology closely resembling primary human hepatocytes and expressed high levels of hepatic protein markers. More importantly, these HLCs demonstrated several essential characteristics of mature hepatocytes, including major serum protein (albumin, fibronectin and α-1 antitrypsin) secretion, urea release, glycogen storage and inducible cytochrome P450 activity. Further transcriptomic comparison of the HLCs derived from the two methods identified 1,481 differentially expressed genes (DEGs); 290 Gene Ontology terms in the biological process category were enriched by these genes, which were further categorized into 34 functional classes. Pathway analysis of the DEGs identified several signaling pathways closely involved in hepatocyte differentiation of pluripotent stem cells, including 'signaling pathways regulating pluripotency of stem cells', 'Wnt signaling pathway', 'TGF-beta signaling pathway' and 'PI3K-Akt signaling pathway'. These results may provide a molecular basis for the differences observed between the two differentiation methods and suggest ways to further improve hepatocyte differentiation in order to obtain more mature HLCs for biomedical applications.
Collapse
Affiliation(s)
- Rong Li
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| | - Yang Zhao
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| | - Jeffrey J Yourick
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| | - Robert L Sprando
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| | - Xiugong Gao
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| |
Collapse
|
7
|
Szczepanska-Sadowska E, Wsol A, Cudnoch-Jedrzejewska A, Czarzasta K, Żera T. Multiple Aspects of Inappropriate Action of Renin-Angiotensin, Vasopressin, and Oxytocin Systems in Neuropsychiatric and Neurodegenerative Diseases. J Clin Med 2022; 11:908. [PMID: 35207180 PMCID: PMC8877782 DOI: 10.3390/jcm11040908] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 02/04/2023] Open
Abstract
The cardiovascular system and the central nervous system (CNS) closely cooperate in the regulation of primary vital functions. The autonomic nervous system and several compounds known as cardiovascular factors, especially those targeting the renin-angiotensin system (RAS), the vasopressin system (VPS), and the oxytocin system (OTS), are also efficient modulators of several other processes in the CNS. The components of the RAS, VPS, and OTS, regulating pain, emotions, learning, memory, and other cognitive processes, are present in the neurons, glial cells, and blood vessels of the CNS. Increasing evidence shows that the combined function of the RAS, VPS, and OTS is altered in neuropsychiatric/neurodegenerative diseases, and in particular in patients with depression, Alzheimer's disease, Parkinson's disease, autism, and schizophrenia. The altered function of the RAS may also contribute to CNS disorders in COVID-19. In this review, we present evidence that there are multiple causes for altered combined function of the RAS, VPS, and OTS in psychiatric and neurodegenerative disorders, such as genetic predispositions and the engagement of the RAS, VAS, and OTS in the processes underlying emotions, memory, and cognition. The neuroactive pharmaceuticals interfering with the synthesis or the action of angiotensins, vasopressin, and oxytocin can improve or worsen the effectiveness of treatment for neuropsychiatric/neurodegenerative diseases. Better knowledge of the multiple actions of the RAS, VPS, and OTS may facilitate programming the most efficient treatment for patients suffering from the comorbidity of neuropsychiatric/neurodegenerative and cardiovascular diseases.
Collapse
Affiliation(s)
- Ewa Szczepanska-Sadowska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.W.); (A.C.-J.); (K.C.); (T.Ż.)
| | | | | | | | | |
Collapse
|
8
|
Weiss JB, Phillips CJ, Malin EW, Gorantla VS, Harding JW, Salgar SK. Stem cell, Granulocyte-Colony Stimulating Factor and/or Dihexa to promote limb function recovery in a rat sciatic nerve damage-repair model: Experimental animal studies. Ann Med Surg (Lond) 2021; 71:102917. [PMID: 34703584 PMCID: PMC8524106 DOI: 10.1016/j.amsu.2021.102917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 11/04/2022] Open
Abstract
Background Optimizing nerve regeneration and re-innervation of target muscle/s is the key for improved functional recovery following peripheral nerve damage. We investigated whether administration of mesenchymal stem cell (MSC), Granulocyte-Colony Stimulating Factor (G-CSF) and/or Dihexa can improve recovery of limb function following peripheral nerve damage in rat sciatic nerve transection-repair model. Materials and methods There were 10 experimental groups (n = 6–8 rats/group). Bone marrow derived syngeneic MSCs (2 × 106; passage≤6), G-CSF (200–400 μg/kg b.wt.), Dihexa (2–4 mg/kg b.wt.) and/or Vehicle were administered to male Lewis rats locally via hydrogel at the site of nerve repair, systemically (i.v./i.p), and/or to gastrocnemius muscle. The limb sensory and motor functions were assessed at 1–2 week intervals post nerve repair until the study endpoint (16 weeks). Results The sensory function in all nerve boundaries (peroneal, tibial, sural) returned to nearly normal by 8 weeks (Grade 2.7 on a scale of Grade 0–3 [0 = No function; 3 = Normal function]) in all groups combined. The peroneal nerve function recovered quickly with return of function at one week (∼2.0) while sural nerve function recovered rather slowly at four weeks (∼1.0). Motor function at 8–16 weeks post-nerve repair as determined by walking foot print grades significantly (P < 0.05) improved with MSC + G-CSF or MSC + Dihexa administrations into gastrocnemius muscle and mitigated foot flexion contractures. Conclusions These findings demonstrate MSC, G-CSF and Dihexa are promising candidates for adjunct therapies to promote limb functional recovery after surgical nerve repair, and have implications in peripheral nerve injury and limb transplantation. IACUC No.215064. G-CSF in combination with MSCs improved limb function recovery in sciatic nerve transection- repair model. Dihexa in combination with MSC improved limb function recovery in sciatic nerve transection- repair model. Foot flexion contractures were reduced with G-CSF & MSC or Dihexa & MSC administration into target muscle gastrocnemius. MSC, G-CSF or Dihexa combination therapy is attractive, feasible & promising in peripheral nerve injury repair and have implications in limb transplantation. The findings warrant further investigation to understand the cellular/molecular mechanisms.
Collapse
Affiliation(s)
- Jessica B Weiss
- Department of Surgery, Madigan Army Medical Center, Tacoma, Fort Lewis, Washington, USA
| | - Cody J Phillips
- Department of Surgery, Madigan Army Medical Center, Tacoma, Fort Lewis, Washington, USA
| | - Edward W Malin
- Department of Surgery, Madigan Army Medical Center, Tacoma, Fort Lewis, Washington, USA
| | - Vijay S Gorantla
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Joseph W Harding
- Department of Integrative Physiology & Neuroscience, Washington State University, Pullman, WA, USA
| | - Shashikumar K Salgar
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, Fort Lewis, Washington, USA
| |
Collapse
|
9
|
Desole C, Gallo S, Vitacolonna A, Montarolo F, Bertolotto A, Vivien D, Comoglio P, Crepaldi T. HGF and MET: From Brain Development to Neurological Disorders. Front Cell Dev Biol 2021; 9:683609. [PMID: 34179015 PMCID: PMC8220160 DOI: 10.3389/fcell.2021.683609] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/30/2021] [Indexed: 12/22/2022] Open
Abstract
Hepatocyte growth factor (HGF) and its tyrosine kinase receptor, encoded by the MET cellular proto-oncogene, are expressed in the nervous system from pre-natal development to adult life, where they are involved in neuronal growth and survival. In this review, we highlight, beyond the neurotrophic action, novel roles of HGF-MET in synaptogenesis during post-natal brain development and the connection between deregulation of MET expression and developmental disorders such as autism spectrum disorder (ASD). On the pharmacology side, HGF-induced MET activation exerts beneficial neuroprotective effects also in adulthood, specifically in neurodegenerative disease, and in preclinical models of cerebral ischemia, spinal cord injuries, and neurological pathologies, such as Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). HGF is a key factor preventing neuronal death and promoting survival through pro-angiogenic, anti-inflammatory, and immune-modulatory mechanisms. Recent evidence suggests that HGF acts on neural stem cells to enhance neuroregeneration. The possible therapeutic application of HGF and HGF mimetics for the treatment of neurological disorders is discussed.
Collapse
Affiliation(s)
- Claudia Desole
- Department of Oncology, University of Turin, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Simona Gallo
- Department of Oncology, University of Turin, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Annapia Vitacolonna
- Department of Oncology, University of Turin, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Francesca Montarolo
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy.,Neurobiology Unit, Neurology, CReSM (Regional Referring Center of Multiple Sclerosis), San Luigi Gonzaga University Hospital, Orbassano, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Antonio Bertolotto
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy.,Neurobiology Unit, Neurology, CReSM (Regional Referring Center of Multiple Sclerosis), San Luigi Gonzaga University Hospital, Orbassano, Italy
| | - Denis Vivien
- INSERM U1237, University of Caen, Gyp Cyceron, Caen, France.,Department of Clinical Research, Caen-Normandie University Hospital, Caen, France
| | - Paolo Comoglio
- IFOM, FIRC Institute for Molecular Oncology, Milan, Italy
| | - Tiziana Crepaldi
- Department of Oncology, University of Turin, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| |
Collapse
|
10
|
L-3-n-Butylphthalide improves synaptic and dendritic spine plasticity and ameliorates neurite pathology in Alzheimer's disease mouse model and cultured hippocampal neurons. Mol Neurobiol 2020; 58:1260-1274. [PMID: 33146400 DOI: 10.1007/s12035-020-02183-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 10/20/2020] [Indexed: 01/23/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia among elderly people. Despite enormous efforts, the pathogenesis of AD still remains unclear and no drug has yet been proved to be disease-modifying. As the basis of learning and memory, the plasticity of synapse and dendritic spine has been impaired during AD progression. Previous studies have showed a protective effect of L-3-n-butylphthalide (L-NBP) on cognitive deficits in AD, we wonder whether this protective effect is associated with positive alterations on synapse and dendritic spines. In this study, we first of all confirmed the anti-dementia effect of L-NBP in 13-month-old APP/PS1 mice, and then investigated the alterations in synaptic and dendritic spine plasticity due to L-NBP treatment both in vivo and in vitro. We also conducted preliminary studies and found the possible mechanisms related to the inhibition of over-activated complement cascade and the remodeling of actin cytoskeleton. Besides, we also found extra benefits of L-NBP on presynaptic dystrophic neurites and attempted to give explanations from the view of autophagy regulation. Taken together, our study added some new evidence to the application of L-NBP in AD treatment and provided deeper insight into the relevant mechanisms for future study.
Collapse
|
11
|
Hallberg M, Larhed M. From Angiotensin IV to Small Peptidemimetics Inhibiting Insulin-Regulated Aminopeptidase. Front Pharmacol 2020; 11:590855. [PMID: 33178027 PMCID: PMC7593869 DOI: 10.3389/fphar.2020.590855] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/18/2020] [Indexed: 12/26/2022] Open
Abstract
It was reported three decades ago that intracerebroventricular injection of angiotensin IV (Ang IV, Val-Tyr-Ile-His-Pro-Phe) improved memory and learning in the rat. There are several explanations for these positive effects of the hexapeptide and related analogues on cognition available in the literature. In 2001, it was proposed that the insulin-regulated aminopeptidase (IRAP) is a main target for Ang IV and that Ang IV serves as an inhibitor of the enzyme. The focus of this review is the efforts to stepwise transform the hexapeptide into more drug-like Ang IV peptidemimetics serving as IRAP inhibitors. Moreover, the discovery of IRAP inhibitors by virtual and substance library screening and direct design applying knowledge of the structure of IRAP and of related enzymes is briefly presented.
Collapse
Affiliation(s)
- Mathias Hallberg
- The Beijer Laboratory, Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, BMC, Uppsala University, Uppsala, Sweden
| | - Mats Larhed
- Department of Medicinal Chemistry, Science for Life Laboratory, BMC, Uppsala University, Uppsala, Sweden
| |
Collapse
|
12
|
Royea J, Hamel E. Brain angiotensin II and angiotensin IV receptors as potential Alzheimer's disease therapeutic targets. GeroScience 2020; 42:1237-1256. [PMID: 32700176 DOI: 10.1007/s11357-020-00231-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that is multifactorial in nature. Yet, despite being the most common form of dementia in the elderly, AD's primary cause remains unknown. As such, there is currently little to offer AD patients as the vast majority of recently tested therapies have either failed in well-controlled clinical trials or inadequately treat AD. Recently, emerging preclinical and clinical evidence has associated the brain renin angiotensin system (RAS) to AD pathology. Accordingly, various components of the brain RAS were shown to be altered in AD patients and mouse models, including the angiotensin II type 1 (AT1R), angiotensin IV receptor (AT4R), and Mas receptors. Collectively, the changes observed within the RAS have been proposed to contribute to many of the neuropathological hallmarks of AD, including the neuronal, cognitive, and vascular dysfunctions. Accumulating evidence has additionally identified antihypertensive medications targeting the RAS, particularly angiotensin receptor blockers (ARBs) and angiotensin-converting enzyme inhibitors (ACEIs), to delay AD onset and progression. In this review, we will discuss the emergence of the RAS's involvement in AD and highlight putative mechanisms of action underlying ARB's beneficial effects that may explain their ability to modify the risk of developing AD or AD progression. The RAS may provide novel molecular targets for recovering memory pathways, cerebrovascular function, and other pathological landmarks of AD.
Collapse
Affiliation(s)
- Jessika Royea
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, 3801 University Street, Montréal, QC, H3A 2B4, Canada
| | - Edith Hamel
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, 3801 University Street, Montréal, QC, H3A 2B4, Canada.
| |
Collapse
|
13
|
Wright JW, Harding JW. Contributions by the Brain Renin-Angiotensin System to Memory, Cognition, and Alzheimer's Disease. J Alzheimers Dis 2020; 67:469-480. [PMID: 30664507 DOI: 10.3233/jad-181035] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive neuron losses in memory-associated brain structures that rob patients of their dignity and quality of life. Five drugs have been approved by the FDA to treat AD but none modify or significantly slow disease progression. New therapies are needed to delay the course of this disease with the ultimate goal of preventing neuron losses and preserving memory functioning. In this review we describe the renin-angiotensin II (AngII) system (RAS) with specific regard to its deleterious contributions to hypertension, facilitation of neuroinflammation and oxidative stress, reduced cerebral blood flow, tissue remodeling, and disruption of memory consolidation and retrieval. There is evidence that components of the RAS, AngIV and Ang(1-7), are positioned to counter such damaging influences and these systems are detailed with the goal of drawing attention to their importance as drug development targets. Ang(1-7) binds at the Mas receptor, while AngIV binds at the AT4 receptor subtype, and these receptor numbers are significantly decreased in AD patients, accompanied by declines in brain aminopeptidases A and N, enzymes essential for the synthesis of AngIV. Potent analogs may be useful to counter these changes and facilitate neuronal functioning and reduce apoptosis in memory associated brain structures of AD patients.
Collapse
Affiliation(s)
- John W Wright
- Department of Psychology, Washington State University, Pullman, WA, USA.,Department of Integrative Physiology and Neuroscience, and Program in Biotechnology, Washington State University, Pullman, WA, USA.,M3 Biotechnology, Inc., Seattle, WA, USA
| | - Joseph W Harding
- Department of Psychology, Washington State University, Pullman, WA, USA.,Department of Integrative Physiology and Neuroscience, and Program in Biotechnology, Washington State University, Pullman, WA, USA.,M3 Biotechnology, Inc., Seattle, WA, USA
| |
Collapse
|
14
|
Fidalgo S, Patel M, Quadir A, Sadiq W, Gard PR. Decreased behavioural and neurochemical effects of angiotensin IV following prenatal alcohol exposure in the mouse. Neuropeptides 2019; 77:101931. [PMID: 31079845 DOI: 10.1016/j.npep.2019.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/26/2019] [Accepted: 05/01/2019] [Indexed: 11/30/2022]
Abstract
Angiotensin IV (ang IV) is known to improve learning and memory in animal models but the mechanism is unclear. We have previously demonstrated sex differences in the pro-cognitive effects of ang IV, and that prenatal alcohol exposure (PAE) abolishes these effects. This study aimed to explore a possible mechanism underlying the sex differences and the effects of PAE in male mice. Mouse breeding harems received 5% ethanol in drinking water throughout pregnancy and lactation in a two-bottle schedule. The effects of ang IV were assessed in offspring at 4 months of age using the open field test, novel object recognition test and elevated plus maze. Aminopeptidase activity of brain insulin-regulated aminopeptidase (IRAP), a putative target of ang IV, was determined. As seen in a previous similar study, ang IV administered immediately after the second training trial significantly improved novel object recognition 24 h later in male mice but not female. PAE abolished this pro-cognitive effect in males. PAE also increased anxiety-like behaviour in male but not female offspring. Ang IV decreased the aminopeptidase activity of brain IRAP in control male, but not female, mice; PAE abolished this inhibitory effect. Ang IV improved memory consolidation in male but not female mice and PAE abolished this effect in the males. While the effects of PAE may be related to increased anxiety; ang IV decreased the aminopeptidase activity in male but not female mice and PAE abolished this inhibitory effect. The results therefore suggest that improvements in learning and memory induced by peripheral administration of ang IV correlate with a reduction of the enzyme activity of IRAP. This is the first demonstration that ang IV administered peripherally can induce long-term (24 h) changes in IRAP function which are probably not simple competitive inhibition and the first demonstration that PAE alters IRAP activity.
Collapse
Affiliation(s)
- Sara Fidalgo
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Moulsecoomb, Brighton BN2 4GJ, UK
| | - Mira Patel
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Moulsecoomb, Brighton BN2 4GJ, UK
| | - Angela Quadir
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Moulsecoomb, Brighton BN2 4GJ, UK.
| | - Wafia Sadiq
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Moulsecoomb, Brighton BN2 4GJ, UK
| | - Paul R Gard
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Moulsecoomb, Brighton BN2 4GJ, UK.
| |
Collapse
|
15
|
Ho JK, Nation DA. Cognitive benefits of angiotensin IV and angiotensin-(1-7): A systematic review of experimental studies. Neurosci Biobehav Rev 2018; 92:209-225. [PMID: 29733881 PMCID: PMC8916541 DOI: 10.1016/j.neubiorev.2018.05.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/23/2018] [Accepted: 05/02/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVES To explore effects of the brain renin-angiotensin system (RAS) on cognition. DESIGN Systematic review of experimental (non-human) studies assessing cognitive effects of RAS peptides angiotensin-(3-8) [Ang IV] and angiotensin-(1-7) [Ang-(1-7)] and their receptors, the Ang IV receptor (AT4R) and the Mas receptor. RESULTS Of 450 articles identified, 32 met inclusion criteria. Seven of 11 studies of normal animals found Ang IV had beneficial effects on tests of passive or conditioned avoidance and object recognition. In models of cognitive deficit, eight of nine studies found Ang IV and its analogs (Nle1-Ang IV, dihexa, LVV-hemorphin-7) improved performance on spatial working memory and passive avoidance tasks. Two of three studies examining Ang-(1-7) found it benefited memory. Mas receptor removal was associated with reduced fear memory in one study. CONCLUSION Studies of cognitive impairment show salutary effects of acute administration of Ang IV and its analogs, as well as AT4R activation. Brain RAS peptides appear most effective administered intracerebroventricularly, close to the time of learning acquisition or retention testing. Ang-(1-7) shows anti-dementia qualities.
Collapse
Affiliation(s)
- Jean K Ho
- Department of Psychology, University of Southern California, Los Angeles, CA, USA.
| | - Daniel A Nation
- Department of Psychology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
16
|
Asumda FZ, Hatzistergos KE, Dykxhoorn DM, Jakubski S, Edwards J, Thomas E, Schiff ER. Differentiation of hepatocyte-like cells from human pluripotent stem cells using small molecules. Differentiation 2018; 101:16-24. [PMID: 29626713 PMCID: PMC6055513 DOI: 10.1016/j.diff.2018.03.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 03/18/2018] [Accepted: 03/21/2018] [Indexed: 12/19/2022]
Abstract
A variety of approaches have been developed for the derivation of hepatocyte-like cells from pluripotent stem cells. Currently, most of these strategies employ step-wise differentiation approaches with recombinant growth-factors or small-molecule analogs to recapitulate developmental signaling pathways. Here, we tested the efficacy of a small-molecule based differentiation protocol for the generation of hepatocyte-like cells from human pluripotent stem cells. Quantitative gene-expression, immunohistochemical, and western blot analyses for SOX17, FOXA2, CXCR4, HNF4A, AFP, indicated the stage-specific differentiation into definitive endoderm, hepatoblast and hepatocyte-like derivatives. Furthermore, hepatocyte-like cells displayed morphological and functional features characteristic of primary hepatocytes, as indicated by the production of ALB (albumin) and α-1-antitrypsin (A1AT), as well as glycogen storage capacity by periodic acid-Schiff staining. Together, these data support that the small-molecule based hepatic differentiation protocol is a simple, reproducible, and inexpensive method to efficiently drive the differentiation of human pluripotent stem cells towards a hepatocyte-like phenotype, for downstream pharmacogenomic and regenerative medicine applications.
Collapse
Affiliation(s)
- Faizal Z Asumda
- Schiff Center for Liver Diseases, University of Miami Miller School of Medicine, Miami, FL 33136, United States.
| | - Konstantinos E Hatzistergos
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Derek M Dykxhoorn
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Silvia Jakubski
- Sylvester Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Jasmine Edwards
- Sylvester Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Emmanuel Thomas
- Sylvester Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Eugene R Schiff
- Schiff Center for Liver Diseases, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| |
Collapse
|
17
|
Vanga SR, Sävmarker J, Ng L, Larhed M, Hallberg M, Åqvist J, Hallberg A, Chai SY, Gutiérrez-de-Terán H. Structural Basis of Inhibition of Human Insulin-Regulated Aminopeptidase (IRAP) by Aryl Sulfonamides. ACS OMEGA 2018; 3:4509-4521. [PMID: 30023895 PMCID: PMC6045421 DOI: 10.1021/acsomega.8b00595] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 04/16/2018] [Indexed: 05/07/2023]
Abstract
The insulin-regulated aminopeptidase (IRAP) is a membrane-bound zinc metallopeptidase with many important regulatory functions. It has been demonstrated that inhibition of IRAP by angiotensin IV (Ang IV) and other peptides, as well as more druglike inhibitors, improves cognition in several rodent models. We recently reported a series of aryl sulfonamides as small-molecule IRAP inhibitors and a promising scaffold for pharmacological intervention. We have now expanded with a number of derivatives, report their stability in liver microsomes, and characterize the activity of the whole series in a new assay performed on recombinant human IRAP. Several compounds, such as the new fluorinated derivative 29, present submicromolar affinity and high metabolic stability. Starting from the two binding modes previously proposed for the sulfonamide scaffold, we systematically performed molecular dynamics simulations and binding affinity estimation with the linear interaction energy method for the full compound series. The significant agreement with experimental affinities suggests one of the binding modes, which was further confirmed by the excellent correlation for binding affinity differences between the selected pair of compounds obtained by rigorous free energy perturbation calculations. The new experimental data and the computationally derived structure-activity relationship of the sulfonamide series provide valuable information for further lead optimization of novel IRAP inhibitors.
Collapse
Affiliation(s)
- Sudarsana Reddy Vanga
- Department
of Cell and Molecular Biology, BMC, Box 596, Uppsala University, SE-751
24 Uppsala, Sweden
| | - Jonas Sävmarker
- Department of Medicinal Chemistry and Science for Life Laboratory, Department
of Medicinal Chemistry, Uppsala University,
BMC, SE-751 24 Uppsala, Sweden
| | - Leelee Ng
- Biomedicine
Discovery Institute, Department of Physiology, Monash University, Clayton, Victoria 3800, Australia
| | - Mats Larhed
- Department of Medicinal Chemistry and Science for Life Laboratory, Department
of Medicinal Chemistry, Uppsala University,
BMC, SE-751 24 Uppsala, Sweden
| | - Mathias Hallberg
- The
Beijer Laboratory, Department of Pharmaceutical Biosciences, Division
of Biological Research on Drug Dependence, Uppsala University, BMC, SE-751 23 Uppsala, Sweden
| | - Johan Åqvist
- Department
of Cell and Molecular Biology, BMC, Box 596, Uppsala University, SE-751
24 Uppsala, Sweden
| | - Anders Hallberg
- Department of Medicinal Chemistry and Science for Life Laboratory, Department
of Medicinal Chemistry, Uppsala University,
BMC, SE-751 24 Uppsala, Sweden
| | - Siew Yeen Chai
- Biomedicine
Discovery Institute, Department of Physiology, Monash University, Clayton, Victoria 3800, Australia
- E-mail: . Phone: +61 3 990 52515. Fax: +61 3 990 52547 (S.Y.C.)
| | - Hugo Gutiérrez-de-Terán
- Department
of Cell and Molecular Biology, BMC, Box 596, Uppsala University, SE-751
24 Uppsala, Sweden
- E-mail: . Phone: +46 18 471 5056. Fax: +46 18 53 69 71 (H.G.-d.-T.)
| |
Collapse
|
18
|
Huber G, Schuster F, Raasch W. Brain renin-angiotensin system in the pathophysiology of cardiovascular diseases. Pharmacol Res 2017; 125:72-90. [PMID: 28687340 DOI: 10.1016/j.phrs.2017.06.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/28/2017] [Accepted: 06/28/2017] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases (CVD) are among the main causes of death globally and in this context hypertension represents one of the key risk factors for developing a CVD. It is well established that the peripheral renin-angiotensin system (RAS) plays an important role in regulating blood pressure (BP). All components of the classic RAS can also be found in the brain but, in contrast to the peripheral RAS, how the endogenous RAS is involved in modulating cardiovascular effects in the brain is not fully understood yet. It is a complex system that may work differently in diverse areas of the brain and is linked to the peripheral system by the circumventricular organs (CVO), which do not have a blood brain barrier (BBB). In this review, we focus on the brain angiotensin peptides, their interactions with each other, and the consequences in the central nervous system (CNS) concerning cardiovascular control. Additionally, we present potential drug targets in the brain RAS for the treatment of hypertension.
Collapse
Affiliation(s)
- Gianna Huber
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany; CBBM (Center of Brain, Behavior and Metabolism), Lübeck, Germany
| | - Franziska Schuster
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany; CBBM (Center of Brain, Behavior and Metabolism), Lübeck, Germany
| | - Walter Raasch
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany; CBBM (Center of Brain, Behavior and Metabolism), Lübeck, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany.
| |
Collapse
|
19
|
Low-dose chronic prenatal alcohol exposure abolishes the pro-cognitive effects of angiotensin IV. Behav Brain Res 2017; 329:140-147. [DOI: 10.1016/j.bbr.2017.04.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 04/20/2017] [Accepted: 04/22/2017] [Indexed: 11/19/2022]
|
20
|
Braszko JJ. Indispensable role of the voltage-gated calcium channels in the procognitive effects of angiotensin IV. Brain Res Bull 2017; 130:118-124. [DOI: 10.1016/j.brainresbull.2017.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/03/2017] [Indexed: 02/01/2023]
|
21
|
Diwakarla S, Nylander E, Grönbladh A, Vanga SR, Shamsudin Y, Gutiérrez-de-Terán H, Sävmarker J, Ng L, Pham V, Lundbäck T, Jenmalm-Jensen A, Svensson R, Artursson P, Zelleroth S, Engen K, Rosenström U, Larhed M, Åqvist J, Chai SY, Hallberg M. Aryl Sulfonamide Inhibitors of Insulin-Regulated Aminopeptidase Enhance Spine Density in Primary Hippocampal Neuron Cultures. ACS Chem Neurosci 2016; 7:1383-1392. [PMID: 27501164 DOI: 10.1021/acschemneuro.6b00146] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The zinc metallopeptidase insulin regulated aminopeptidase (IRAP), which is highly expressed in the hippocampus and other brain regions associated with cognitive function, has been identified as a high-affinity binding site of the hexapeptide angiotensin IV (Ang IV). This hexapeptide is thought to facilitate learning and memory by binding to the catalytic site of IRAP to inhibit its enzymatic activity. In support of this hypothesis, low molecular weight, nonpeptide specific inhibitors of IRAP have been shown to enhance memory in rodent models. Recently, it was demonstrated that linear and macrocyclic Ang IV-derived peptides can alter the shape and increase the number of dendritic spines in hippocampal cultures, properties associated with enhanced cognitive performance. After screening a library of 10 500 drug-like substances for their ability to inhibit IRAP, we identified a series of low molecular weight aryl sulfonamides, which exhibit no structural similarity to Ang IV, as moderately potent IRAP inhibitors. A structural and biological characterization of three of these aryl sulfonamides was performed. Their binding modes to human IRAP were explored by docking calculations combined with molecular dynamics simulations and binding affinity estimations using the linear interaction energy method. Two alternative binding modes emerged from this analysis, both of which correctly rank the ligands according to their experimental binding affinities for this series of compounds. Finally, we show that two of these drug-like IRAP inhibitors can alter dendritic spine morphology and increase spine density in primary cultures of hippocampal neurons.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Leelee Ng
- Biomedicine Discovery Institute, Department of Physiology, Monash University , Clayton, Victoria 3800, Australia
| | - Vi Pham
- Biomedicine Discovery Institute, Department of Physiology, Monash University , Clayton, Victoria 3800, Australia
| | - Thomas Lundbäck
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics, Karolinska Institute , 171 77 Solna, Sweden
| | - Annika Jenmalm-Jensen
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics, Karolinska Institute , 171 77 Solna, Sweden
| | | | | | | | | | | | | | | | - Siew Yeen Chai
- Biomedicine Discovery Institute, Department of Physiology, Monash University , Clayton, Victoria 3800, Australia
| | | |
Collapse
|
22
|
Cortical gene expression correlates of temporal lobe epileptogenicity. ACTA ACUST UNITED AC 2016; 23:181-90. [PMID: 27354343 DOI: 10.1016/j.pathophys.2016.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/19/2016] [Accepted: 05/27/2016] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Despite being one of the most common neurological diseases, it is unknown whether there may be a genetic basis to temporal lobe epilepsy (TLE). Whole genome analyses were performed to test the hypothesis that temporal cortical gene expression differs between TLE patients with high vs. low baseline seizure frequency. METHODS Baseline seizure frequency was used as a clinical measure of epileptogenicity. Twenty-four patients in high or low seizure frequency groups (median seizures/month) underwent anterior temporal lobectomy with amygdalohippocampectomy for intractable TLE. RNA was isolated from the lateral temporal cortex and submitted for expression analysis. Genes significantly associated with baseline seizure frequency on likelihood ratio test were identified based on >0.90 area under the ROC curve, P value of <0.05. RESULTS Expression levels of forty genes were significantly associated with baseline seizure frequency. Of the seven most significant, four have been linked to other neurologic diseases. Expression levels associated with high seizure frequency included low expression of Homeobox A10, Forkhead box A2, Lymphoblastic leukemia derived sequence 1, HGF activator, Kelch repeat and BTB (POZ) domain containing 11, Thanatos-associated protein domain containing 8 and Heparin sulfate (glucosamine) 3-O-sulfotransferase 3A1. CONCLUSIONS This study describes novel associations between forty known genes and a clinical marker of epileptogenicity, baseline seizure frequency. Four of the seven discussed have been previously related to other neurologic diseases. Future investigation of these genes could establish new biomarkers for predicting epileptogenicity, and could have significant implications for diagnosis and management of temporal lobe epilepsy, as well as epilepsy pathogenesis.
Collapse
|
23
|
Diwakarla S, Nylander E, Grönbladh A, Vanga SR, Khan YS, Gutiérrez-de-Terán H, Ng L, Pham V, Sävmarker J, Lundbäck T, Jenmalm-Jensen A, Andersson H, Engen K, Rosenström U, Larhed M, Åqvist J, Chai SY, Hallberg M. Binding to and Inhibition of Insulin-Regulated Aminopeptidase by Macrocyclic Disulfides Enhances Spine Density. Mol Pharmacol 2016; 89:413-24. [PMID: 26769413 DOI: 10.1124/mol.115.102533] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/13/2016] [Indexed: 01/28/2023] Open
Abstract
Angiotensin IV (Ang IV) and related peptide analogs, as well as nonpeptide inhibitors of insulin-regulated aminopeptidase (IRAP), have previously been shown to enhance memory and cognition in animal models. Furthermore, the endogenous IRAP substrates oxytocin and vasopressin are known to facilitate learning and memory. In this study, the two recently synthesized 13-membered macrocyclic competitive IRAP inhibitors HA08 and HA09, which were designed to mimic the N terminus of oxytocin and vasopressin, were assessed and compared based on their ability to bind to the IRAP active site, and alter dendritic spine density in rat hippocampal primary cultures. The binding modes of the IRAP inhibitors HA08, HA09, and of Ang IV in either the extended or γ-turn conformation at the C terminus to human IRAP were predicted by docking and molecular dynamics simulations. The binding free energies calculated with the linear interaction energy method, which are in excellent agreement with experimental data and simulations, have been used to explain the differences in activities of the IRAP inhibitors, both of which are structurally very similar, but differ only with regard to one stereogenic center. In addition, we show that HA08, which is 100-fold more potent than the epimer HA09, can enhance dendritic spine number and alter morphology, a process associated with memory facilitation. Therefore, HA08, one of the most potent IRAP inhibitors known today, may serve as a suitable starting point for medicinal chemistry programs aided by MD simulations aimed at discovering more drug-like cognitive enhancers acting via augmenting synaptic plasticity.
Collapse
Affiliation(s)
- Shanti Diwakarla
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Erik Nylander
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Alfhild Grönbladh
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Sudarsana Reddy Vanga
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Yasmin Shamsudin Khan
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Hugo Gutiérrez-de-Terán
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Leelee Ng
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Vi Pham
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Jonas Sävmarker
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Thomas Lundbäck
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Annika Jenmalm-Jensen
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Hanna Andersson
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Karin Engen
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Ulrika Rosenström
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Mats Larhed
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Johan Åqvist
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Siew Yeen Chai
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Mathias Hallberg
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| |
Collapse
|
24
|
Abstract
Met tyrosine kinase receptor, also known as c-Met, is the HGF (hepatocyte growth factor) receptor. The HGF/Met pathway has a prominent role in cardiovascular remodelling after tissue injury. The present review provides a synopsis of the cellular and molecular mechanisms underlying the effects of HGF/Met in the heart and blood vessels. In vivo, HGF/Met function is particularly important for the protection of the heart in response to both acute and chronic insults, including ischaemic injury and doxorubicin-induced cardiotoxicity. Accordingly, conditional deletion of Met in cardiomyocytes results in impaired organ defence against oxidative stress. After ischaemic injury, activation of Met provides strong anti-apoptotic stimuli for cardiomyocytes through PI3K (phosphoinositide 3-kinase)/Akt and MAPK (mitogen-activated protein kinase) cascades. Recently, we found that HGF/Met is also important for autophagy regulation in cardiomyocytes via the mTOR (mammalian target of rapamycin) pathway. HGF/Met induces proliferation and migration of endothelial cells through Rac1 (Ras-related C3 botulinum toxin substrate 1) activation. In fibroblasts, HGF/Met antagonizes the actions of TGFβ1 (transforming growth factor β1) and AngII (angiotensin II), thus preventing fibrosis. Moreover, HGF/Met influences the inflammatory response of macrophages and the immune response of dendritic cells, indicating its protective function against atherosclerotic and autoimmune diseases. The HGF/Met axis also plays an important role in regulating self-renewal and myocardial regeneration through the enhancement of cardiac progenitor cells. HGF/Met has beneficial effects against myocardial infarction and endothelial dysfunction: the cellular and molecular mechanisms underlying repair function in the heart and blood vessels are common and include pro-angiogenic, anti-inflammatory and anti-fibrotic actions. Thus administration of HGF or HGF mimetics may represent a promising therapeutic agent for the treatment of both coronary and peripheral artery disease.
Collapse
|
25
|
Uribe PM, Kawas LH, Harding JW, Coffin AB. Hepatocyte growth factor mimetic protects lateral line hair cells from aminoglycoside exposure. Front Cell Neurosci 2015; 9:3. [PMID: 25674052 PMCID: PMC4309183 DOI: 10.3389/fncel.2015.00003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/05/2015] [Indexed: 11/13/2022] Open
Abstract
Loss of sensory hair cells from exposure to certain licit drugs (e.g., aminoglycoside antibiotics, platinum-based chemotherapy agents) can result in permanent hearing loss. Here we ask if allosteric activation of the hepatocyte growth factor (HGF) cascade via Dihexa, a small molecule drug candidate, can protect hair cells from aminoglycoside toxicity. Unlike native HGF, Dihexa is chemically stable and blood-brain barrier permeable. As a synthetic HGF mimetic, it forms a functional ligand by dimerizing with endogenous HGF to activate the HGF receptor and downstream signaling cascades. To evaluate Dihexa as a potential hair cell protectant, we used the larval zebrafish lateral line, which possesses hair cells that are homologous to mammalian inner ear hair cells and show similar responses to toxins. A dose-response relationship for Dihexa protection was established using two ototoxins, neomycin and gentamicin. We found that a Dihexa concentration of 1 μM confers optimal protection from acute treatment with either ototoxin. Pretreatment with Dihexa does not affect the amount of fluorescently tagged gentamicin that enters hair cells, indicating that Dihexa’s protection is likely mediated by intracellular events and not by inhibiting aminoglycoside entry. Dihexa-mediated protection is attenuated by co-treatment with the HGF antagonist 6-AH, further evidence that HGF activation is a component of the observed protection. Additionally, Dihexa’s robust protection is partially attenuated by co-treatment with inhibitors of the downstream HGF targets Akt, TOR and MEK. Addition of an amino group to the N-terminal of Dihexa also attenuates the protective response, suggesting that even small substitutions greatly alter the specificity of Dihexa for its target. Our data suggest that Dihexa confers protection of hair cells through an HGF-mediated mechanism and that Dihexa holds clinical potential for mitigating chemical ototoxicity.
Collapse
Affiliation(s)
- Phillip M Uribe
- Department of Integrative Physiology and Neuroscience, Washington State University Pullman, WA, USA
| | - Leen H Kawas
- Department of Integrative Physiology and Neuroscience, Washington State University Pullman, WA, USA ; M3 Biotechnology, Inc. Seattle, WA, USA
| | - Joseph W Harding
- Department of Integrative Physiology and Neuroscience, Washington State University Pullman, WA, USA ; M3 Biotechnology, Inc. Seattle, WA, USA
| | - Allison B Coffin
- Department of Integrative Physiology and Neuroscience, Washington State University Pullman, WA, USA ; College of Arts and Sciences, Washington State University Vancouver, WA, USA
| |
Collapse
|
26
|
Wright JW, Kawas LH, Harding JW. The development of small molecule angiotensin IV analogs to treat Alzheimer's and Parkinson's diseases. Prog Neurobiol 2014; 125:26-46. [PMID: 25455861 DOI: 10.1016/j.pneurobio.2014.11.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 11/17/2014] [Accepted: 11/19/2014] [Indexed: 02/07/2023]
Abstract
Alzheimer's (AD) and Parkinson's (PD) diseases are neurodegenerative diseases presently without effective drug treatments. AD is characterized by general cognitive impairment, difficulties with memory consolidation and retrieval, and with advanced stages episodes of agitation and anger. AD is increasing in frequency as life expectancy increases. Present FDA approved medications do little to slow disease progression and none address the underlying progressive loss of synaptic connections and neurons. New drug design approaches are needed beyond cholinesterase inhibitors and N-methyl-d-aspartate receptor antagonists. Patients with PD experience the symptomatic triad of bradykinesis, tremor-at-rest, and rigidity with the possibility of additional non-motor symptoms including sleep disturbances, depression, dementia, and autonomic nervous system failure. This review summarizes available information regarding the role of the brain renin-angiotensin system (RAS) in learning and memory and motor functions, with particular emphasis on research results suggesting a link between angiotensin IV (AngIV) interacting with the AT4 receptor subtype. Currently there is controversy over the identity of this AT4 receptor protein. Albiston and colleagues have offered convincing evidence that it is the insulin-regulated aminopeptidase (IRAP). Recently members of our laboratory have presented evidence that the brain AngIV/AT4 receptor system coincides with the brain hepatocyte growth factor/c-Met receptor system. In an effort to resolve this issue we have synthesized a number of small molecule AngIV-based compounds that are metabolically stable, penetrate the blood-brain barrier, and facilitate compromised memory and motor systems. These research efforts are described along with details concerning a recently synthesized molecule, Dihexa that shows promise in overcoming memory and motor dysfunctions by augmenting synaptic connectivity via the formation of new functional synapses.
Collapse
Affiliation(s)
- John W Wright
- Departments of Psychology, Integrative Physiology and Neuroscience and Program in Biotechnology, Washington State University, Pullman, WA 99164-4820, USA; M3 Biotechnology, Inc., 4000 Mason Rd Suite 300, Box 352141, Seattle, WA 98195-2141, USA.
| | - Leen H Kawas
- Departments of Psychology, Integrative Physiology and Neuroscience and Program in Biotechnology, Washington State University, Pullman, WA 99164-4820, USA; M3 Biotechnology, Inc., 4000 Mason Rd Suite 300, Box 352141, Seattle, WA 98195-2141, USA
| | - Joseph W Harding
- Departments of Psychology, Integrative Physiology and Neuroscience and Program in Biotechnology, Washington State University, Pullman, WA 99164-4820, USA; M3 Biotechnology, Inc., 4000 Mason Rd Suite 300, Box 352141, Seattle, WA 98195-2141, USA
| |
Collapse
|