1
|
Piccirillo F, Liporace P, Nusca A, Nafisio V, Corlianò A, Magarò F, Antonelli Incalzi R, Ussia GP, Grigioni F. Effects of Finerenone on Cardiovascular and Chronic Kidney Diseases: A New Weapon against Cardiorenal Morbidity and Mortality-A Comprehensive Review. J Cardiovasc Dev Dis 2023; 10:236. [PMID: 37367401 PMCID: PMC10299623 DOI: 10.3390/jcdd10060236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Patients with cardiovascular disease (CVD) and chronic kidney disease (CKD) show high rates of cardiorenal outcomes. In addition, the progression towards renal failure and cardiovascular events rises as CKD worsens. Several studies suggest that the activation of the mineralocorticoid receptor (MR) induces cardiac and renal injury, including inflammation and fibrosis. Finerenone is a novel, nonsteroidal, selective MR antagonist (MRA) which has demonstrated anti-inflammatory and anti-fibrotic effects in pre-clinical studies. Moreover, two large trials (FIDELIO-DKD and FIGARO-DKD) investigated the renal and cardiovascular outcomes in patients with mild to severe CKD in type 2 diabetes which received finerenone. On these bases, this comprehensive review aims to summarize the current knowledge regarding finerenone and its effects on CKD and the cardiovascular system, emphasizing its role in modifying cardiorenal outcomes.
Collapse
Affiliation(s)
- Francesco Piccirillo
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (F.P.); (P.L.); (V.N.); (A.C.); (F.M.); (R.A.I.); (G.P.U.); (F.G.)
- Research Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Paola Liporace
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (F.P.); (P.L.); (V.N.); (A.C.); (F.M.); (R.A.I.); (G.P.U.); (F.G.)
- Research Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Annunziata Nusca
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (F.P.); (P.L.); (V.N.); (A.C.); (F.M.); (R.A.I.); (G.P.U.); (F.G.)
- Research Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Vincenzo Nafisio
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (F.P.); (P.L.); (V.N.); (A.C.); (F.M.); (R.A.I.); (G.P.U.); (F.G.)
- Research Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Andrea Corlianò
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (F.P.); (P.L.); (V.N.); (A.C.); (F.M.); (R.A.I.); (G.P.U.); (F.G.)
- Research Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Francesca Magarò
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (F.P.); (P.L.); (V.N.); (A.C.); (F.M.); (R.A.I.); (G.P.U.); (F.G.)
- Research Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Raffaele Antonelli Incalzi
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (F.P.); (P.L.); (V.N.); (A.C.); (F.M.); (R.A.I.); (G.P.U.); (F.G.)
- Research Unit of Geriatrics, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Gian Paolo Ussia
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (F.P.); (P.L.); (V.N.); (A.C.); (F.M.); (R.A.I.); (G.P.U.); (F.G.)
- Research Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Francesco Grigioni
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (F.P.); (P.L.); (V.N.); (A.C.); (F.M.); (R.A.I.); (G.P.U.); (F.G.)
- Research Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| |
Collapse
|
2
|
Dong Z, Dai H, Feng Z, Liu W, Gao Y, Liu F, Zhang Z, Zhang N, Dong X, Zhao Q, Zhou X, Du J, Liu B. Mechanism of herbal medicine on hypertensive nephropathy (Review). Mol Med Rep 2021; 23:234. [PMID: 33537809 PMCID: PMC7893801 DOI: 10.3892/mmr.2021.11873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022] Open
Abstract
Hypertensive nephropathy is the most common complication of hypertension, and is one of the main causes of end-stage renal disease (ESRD) in numerous countries. The basic pathological feature of hypertensive nephropathy is arteriolosclerosis followed by renal parenchymal damage. The etiology of this disease is complex, and its pathogenesis is mainly associated with renal hemodynamic changes and vascular remodeling. Despite the increased knowledge on the pathogenesis of hypertensive nephropathy, the current clinical treatment methods are still not effective in preventing the development of the disease to ESRD. Herbal medicine, which is used to relieve symptoms, can improve hypertensive nephropathy through multiple targets. Since there are few clinical studies on the treatment of hypertensive nephropathy with herbal medicine, this article aims to review the progress on the basic research on the treatment of hypertensive nephropathy with herbal medicine, including regulation of the renin angiotensin system, inhibition of sympathetic excitation, antioxidant stress and anti-inflammatory protection of endothelial cells, and improvement of obesity-associated factors. Herbal medicine with different components plays a synergistic and multi-target role in the treatment of hypertensive nephropathy. The description of the mechanism of herbal medicine in the treatment of hypertensive nephropathy will contribute towards the progress of modern medicine.
Collapse
Affiliation(s)
- Zhaocheng Dong
- Beijing Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Haoran Dai
- Shunyi Branch, Beijing Traditional Chinese Medicine Hospital, Beijing 101300, P.R. China
| | - Zhandong Feng
- Beijing Chinese Medicine Hospital Pinggu Hospital, Beijing 101200, P.R. China
| | - Wenbin Liu
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010, P.R. China
| | - Yu Gao
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010, P.R. China
| | - Fei Liu
- Beijing Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Zihan Zhang
- Beijing Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Na Zhang
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010, P.R. China
| | - Xuan Dong
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010, P.R. China
| | - Qihan Zhao
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010, P.R. China
| | - Xiaoshan Zhou
- Beijing Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Jieli Du
- Beijing Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Baoli Liu
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010, P.R. China
| |
Collapse
|
3
|
Treesaranuwattana T, Wong KYH, Brooks DL, Tay CS, Williams GH, Williams JS, Pojoga LH. Lysine-Specific Demethylase-1 Deficiency Increases Agonist Signaling Via the Mineralocorticoid Receptor. Hypertension 2020; 75:1045-1053. [PMID: 32160100 DOI: 10.1161/hypertensionaha.119.13821] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
LSD1 (lysine-specific demethylase-1) is an epigenetic regulator of gene transcription. LSD1 risk allele in humans and LSD1 deficiency (LSD1+/-) in mice confer increasing salt-sensitivity of blood pressure with age, which evolves into salt-sensitive hypertension in older individuals. However, the mechanism underlying the relationship between LSD1 and salt-sensitivity of blood pressure remains elusive. Here, we show that LSD1 genotype (in humans) and LSD1 deficiency (in mice) lead to similar associations with increased blood pressure and urine potassium levels but with decreased aldosterone levels during a liberal salt diet. Thus, we hypothesized that LSD1 deficiency leads to an MR (mineralocorticoid receptor)-dependent hypertensive state. Yet, further studies in LSD1+/- mice treated with the MR antagonist eplerenone demonstrate that hypertension, kaliuria, and albuminuria are substantially improved, suggesting that the ligand-independent activation of the MR is the underlying cause of this LSD1 deficiency-mediated phenotype. Indeed, while MR and epithelial sodium channel expression levels were increased in LSD1+/- mouse kidney tissues, aldosterone secretion from LSD1+/- glomerulosa cells was significantly lower. Collectively, these data establish that LSD1 deficiency leads to an inappropriate activation and increased levels of the MR during a liberal salt regimen and suggest that inhibiting the MR pathway is a useful strategy for treatment of hypertension in human LSD1 risk allele carriers.
Collapse
Affiliation(s)
- Thitinan Treesaranuwattana
- From the Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (T.T., K.Y.H.W., D.L.B., C.S.T., G.H.W., J.S.W., L.H.P.).,Division of Endocrinology and Metabolism, Rajavithi Hospital, Rangsit University, Bangkok, Thailand (T.T.)
| | - Kelly Yin Han Wong
- From the Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (T.T., K.Y.H.W., D.L.B., C.S.T., G.H.W., J.S.W., L.H.P.).,Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia (K.Y.H.W., C.S.T.)
| | - Danielle L Brooks
- From the Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (T.T., K.Y.H.W., D.L.B., C.S.T., G.H.W., J.S.W., L.H.P.)
| | - Chee Sin Tay
- From the Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (T.T., K.Y.H.W., D.L.B., C.S.T., G.H.W., J.S.W., L.H.P.).,Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia (K.Y.H.W., C.S.T.)
| | - Gordon H Williams
- From the Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (T.T., K.Y.H.W., D.L.B., C.S.T., G.H.W., J.S.W., L.H.P.)
| | - Jonathan S Williams
- From the Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (T.T., K.Y.H.W., D.L.B., C.S.T., G.H.W., J.S.W., L.H.P.)
| | - Luminita H Pojoga
- From the Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (T.T., K.Y.H.W., D.L.B., C.S.T., G.H.W., J.S.W., L.H.P.)
| |
Collapse
|
4
|
Lian X, Matthaeus C, Kaßmann M, Daumke O, Gollasch M. Pathophysiological Role of Caveolae in Hypertension. Front Med (Lausanne) 2019; 6:153. [PMID: 31355199 PMCID: PMC6635557 DOI: 10.3389/fmed.2019.00153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/20/2019] [Indexed: 12/02/2022] Open
Abstract
Caveolae, flask-shaped cholesterol-, and glycosphingolipid-rich membrane microdomains, contain caveolin 1, 2, 3 and several structural proteins, in particular Cavin 1-4, EHD2, pacsin2, and dynamin 2. Caveolae participate in several physiological processes like lipid uptake, mechanosensitivity, or signaling events and are involved in pathophysiological changes in the cardiovascular system. They serve as a specific membrane platform for a diverse set of signaling molecules like endothelial nitric oxide synthase (eNOS), and further maintain vascular homeostasis. Lack of caveolins causes the complete loss of caveolae; induces vascular disorders, endothelial dysfunction, and impaired myogenic tone; and alters numerous cellular processes, which all contribute to an increased risk for hypertension. This brief review describes our current knowledge on caveolae in vasculature, with special focus on their pathophysiological role in hypertension.
Collapse
Affiliation(s)
- Xiaoming Lian
- Experimental and Clinical Research Center—A Joint Cooperation Between the Charité–University Medicine Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Claudia Matthaeus
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Mario Kaßmann
- Experimental and Clinical Research Center—A Joint Cooperation Between the Charité–University Medicine Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Oliver Daumke
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Maik Gollasch
- Experimental and Clinical Research Center—A Joint Cooperation Between the Charité–University Medicine Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Medical Clinic for Nephrology and Internal Intensive Care, Berlin, Germany
| |
Collapse
|
5
|
Modulation of Nitric Oxide Synthases by Oxidized LDLs: Role in Vascular Inflammation and Atherosclerosis Development. Int J Mol Sci 2019; 20:ijms20133294. [PMID: 31277498 PMCID: PMC6651385 DOI: 10.3390/ijms20133294] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022] Open
Abstract
The maintenance of physiological levels of nitric oxide (NO) produced by eNOS represents a key element for vascular endothelial homeostasis. On the other hand, NO overproduction, due to the activation of iNOS under different stress conditions, leads to endothelial dysfunction and, in the late stages, to the development of atherosclerosis. Oxidized LDLs (oxLDLs) represent the major candidates to trigger biomolecular processes accompanying endothelial dysfunction and vascular inflammation leading to atherosclerosis, though the pathophysiological mechanism still remains to be elucidated. Here, we summarize recent evidence suggesting that oxLDLs produce significant impairment in the modulation of the eNOS/iNOS machinery, downregulating eNOS via the HMGB1-TLR4-Caveolin-1 pathway. On the other hand, increased oxLDLs lead to sustained activation of the scavenger receptor LOX-1 and, subsequently, to NFkB activation, which, in turn, increases iNOS, leading to EC oxidative stress. Finally, these events are associated with reduced protective autophagic response and accelerated apoptotic EC death, which activates atherosclerotic development. Taken together, this information sheds new light on the pathophysiological mechanisms of oxLDL-related impairment of EC functionality and opens new perspectives in atherothrombosis prevention.
Collapse
|
6
|
Huang Y, Ting PY, Yao TM, Homma T, Brooks D, Katayama Rangel I, Adler GK, Romero JR, Williams JS, Pojoga LH, Williams GH. Histone demethylase LSD1 deficiency and biological sex: impact on blood pressure and aldosterone production. J Endocrinol 2019; 240:111-122. [PMID: 30400034 PMCID: PMC6824586 DOI: 10.1530/joe-18-0247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 10/26/2018] [Indexed: 12/15/2022]
Abstract
Human risk allele carriers of lysine-specific demethylase 1 (LSD1) and LSD1-deficient mice have salt-sensitive hypertension for unclear reasons. We hypothesized that LSD1 deficiency causes dysregulation of aldosterone's response to salt intake resulting in increased cardiovascular risk factors (blood pressure and microalbumin). Furthermore, we determined the effect of biological sex on these potential abnormalities. To test our hypotheses, LSD1 male and female heterozygote-knockout (LSD1+/-) and WT mice were assigned to two age groups: 18 weeks and 36 weeks. Plasma aldosterone levels and aldosterone production from zona glomerulosa cells studied ex vivo were greater in both male and female LSD1+/- mice consuming a liberal salt diet as compared to WT mice consuming the same diet. However, salt-sensitive blood pressure elevation and increased microalbuminuria were only observed in male LSD1+/- mice. These data suggest that LSD1 interacts with aldosterone's secretory response to salt intake. Lack of LSD1 causes inappropriate aldosterone production on a liberal salt diet; males appear to be more sensitive to this aldosterone increase as males, but not females, develop salt sensitivity of blood pressure and increased microalbuminuria. The mechanism responsible for the cardiovascular protective effect in females is uncertain but may be related to estrogen modulating the effect of mineralocorticoid receptor activation.
Collapse
Affiliation(s)
- Yuefei Huang
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Pei Yee Ting
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tham M Yao
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tsuyoshi Homma
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Danielle Brooks
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Isis Katayama Rangel
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gail K Adler
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jose R Romero
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan S Williams
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Luminita H Pojoga
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gordon H Williams
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Davel AP, Jaffe IZ, Tostes RC, Jaisser F, Belin de Chantemèle EJ. New roles of aldosterone and mineralocorticoid receptors in cardiovascular disease: translational and sex-specific effects. Am J Physiol Heart Circ Physiol 2018; 315:H989-H999. [PMID: 29957022 DOI: 10.1152/ajpheart.00073.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent advances in the field of mineralocorticoid receptor (MR) and its ligand aldosterone expanded the role of this hormone and its receptor far beyond their initial function as a regulator of Na+ and K+ homeostasis in epithelial cells. The symposium "New Roles of Aldosterone and Mineralocorticoid Receptors in Cardiovascular Disease: Translational and Sex-Specific Effects" presented at the 38th World Congress of the International Union of Physiological Sciences (Rio de Janeiro, Brazil) highlighted the contribution of extrarenal MRs to cardiovascular disease. This symposium showcased how MRs expressed in endothelial, vascular smooth muscle, and immune cells plays a critical role in the development of vascular disease associated with aging, obesity, and chronic aldosterone stimulation and demonstrated that MR antagonism prevents the acute renal dysfunction and tubular injury induced by ischemia-reperfusion injury. It was also shown that the adipocyte-derived hormone leptin is a new direct regulator of aldosterone secretion and that leptin-mediated aldosterone production is a major contributor to obesity-associated hypertension in women. Sex differences in the role of aldosterone and of endothelial MR in the cardiovascular outcomes of obesity were highlighted. This review summarizes these important emerging concepts regarding the contribution of aldosterone and cell-specific MR to cardiovascular disease in male and female subjects and further supports sex-specific benefits of MR antagonist drugs to be tested in additional populations.
Collapse
Affiliation(s)
- Ana Paula Davel
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas , Campinas, Sâo Paulo , Brazil
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute Tufts Medical Center , Boston, Massachusetts
| | - Rita C Tostes
- Departments of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo , Ribeirao Preto, Sâo Paulo , Brazil
| | - Frederic Jaisser
- Institut National de la Santé et de la Recherche Médicale, UMRS 1138, Centre de Recherche des Cordeliers, Pierre et Marie Curie University, Paris Descartes University , Paris , France
| | | |
Collapse
|
8
|
Mayurasakorn K, Hasanah N, Homma T, Homma M, Rangel IK, Garza AE, Romero JR, Adler GK, Williams GH, Pojoga LH. Caloric restriction improves glucose homeostasis, yet increases cardiometabolic risk in caveolin-1-deficient mice. Metabolism 2018; 83:92-101. [PMID: 29410348 PMCID: PMC10619427 DOI: 10.1016/j.metabol.2018.01.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/18/2017] [Accepted: 01/17/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND PURPOSE The plasma membrane protein caveolin-1 (CAV-1) has been shown to be involved in modulating glucose homeostasis and the actions of the renin-angiotensin-aldosterone system (RAAS). Caloric restriction (CR) is widely accepted as an effective therapeutic approach to improve insulin sensitivity and reduce the severity of diabetes. Recent data indicate that polymorphisms of the CAV-1 gene are strongly associated with insulin resistance, hypertension and metabolic abnormalities in non-obese individuals. Therefore, we sought to determine whether CR improves the metabolic and cardiovascular (CV) risk factors in the lean CAV-1 KO mice. MATERIALS/METHODS Twelve- to fourteen-week-old CAV-1 knockout (KO) and genetically matched wild-type (WT) male mice were randomized by genotype to one of two dietary regimens: ad libitum (ad lib) food intake or 40% CR for 4 weeks. Three weeks following the onset of dietary restriction, all groups were assessed for insulin sensitivity. At the end of the study, all groups were assessed for fasting glucose, insulin, HOMA-IR, lipids, corticosterone levels and blood pressure (BP). Aldosterone secretion was determined from acutely isolated Zona Glomerulosa cells. RESULTS We confirmed that the CAV-1 KO mice on the ad lib diet display a phenotype consistent with the cardiometabolic syndrome, as shown by higher systolic BP (SBP), plasma glucose, HOMA-IR and aldosterone levels despite lower body weight compared with WT mice on the ad lib diet. CAV-1 KO mice maintained their body weight on the ad lib diet, but had substantially greater weight loss with CR, as compared to caloric restricted WT mice. CR-mediated changes in weight were associated with dramatic improvements in glucose and insulin tolerance in both genotypes. These responses to CR, however, were more robust in CAV-1KO vs. WT mice and were accompanied by reductions in plasma glucose, insulin and HOMA-IR in CAV-1KO but not WT mice. Surprisingly, in the CAV-1 KO, but not in WT mice, CR was associated with increased SBP and aldosterone levels, suggesting that in CAV-1 KO mice CR induced an increase in some CV risk factors. CONCLUSIONS CR improved the metabolic phenotype in CAV-1 KO mice by increasing insulin sensitivity; nevertheless, this intervention also increased CV risk by inappropriate adaptive responses in the RAAS and BP.
Collapse
Affiliation(s)
- Korapat Mayurasakorn
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Nurul Hasanah
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Universiti Teknologi MARA, Kuala Lumpur, Malaysia
| | - Tsuyoshi Homma
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mika Homma
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Isis Katayama Rangel
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Amanda E Garza
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jose R Romero
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Gail K Adler
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Gordon H Williams
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Luminita H Pojoga
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Abstract
Besides the well-known renal effects of aldosterone, the hormone is now known to have direct vascular effects. Clinical observations underline substantial adverse effects of aldosterone on cardiovascular function. The source of systemic circulating aldosterone is the adrenal gland zona glomerulosa cells through stimulus-secretion coupling involving depolarization, opening of L- and T-type calcium channels and aldosterone synthase activation. Local formation and release in peripheral tissues such as perivascular fat is recognized. Where does aldosterone affect the vasculature? Mineralocorticoid receptors (MRs) are present in endothelial and vascular smooth muscle cells, and MR-independent pathways are also involved. The vascular effects of aldosterone are complex, both concentration and temporal and spatial aspects are relevant. The acute response includes vasodilation through endothelial nitric oxide formation and vasoconstrictor effects through endothelial-contracting cyclooxygenase-derived factors and a changed calcium handling. The response to aldosterone can change within the same blood vessels depending on the exposure time and status of the endothelium. Chronic responses involve changed levels of reactive oxygen radicals, endothelial Na-influx and smooth muscle calcium channel expression. Furthermore, perivascular cells for example mast cells have also been suggested to participate in the chronic response. Moreover, the vascular effect of aldosterone depends on the status of the endothelium which is likely the cause of the very different responses to aldosterone and MR treatment observed in human studies going from increased to decreased flow depending on whether the patient had prior cardiovascular disease with endothelial dysfunction or not. A preponderance of constrictor versus dilator responses to aldosterone could therefore be involved in the detrimental vascular actions of the hormone in the setting of endothelial dysfunction and contribute to explain the beneficial action of MR blockers on blood pressure and target organ injury.
Collapse
|
10
|
Mayyas F, Alzoubi KH, Bonyan R. The role of spironolactone on myocardial oxidative stress in rat model of streptozotocin-induced diabetes. Cardiovasc Ther 2017; 35. [DOI: 10.1111/1755-5922.12242] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 12/04/2016] [Accepted: 12/09/2016] [Indexed: 11/30/2022] Open
Affiliation(s)
- Fadia Mayyas
- Department of Clinical Pharmacy; Faculty of Pharmacy; Jordan University of Science and Technology; Irbid Jordan
| | - Karem H. Alzoubi
- Department of Clinical Pharmacy; Faculty of Pharmacy; Jordan University of Science and Technology; Irbid Jordan
| | - Ruwidah Bonyan
- Department of Clinical Pharmacy; Faculty of Pharmacy; Jordan University of Science and Technology; Irbid Jordan
| |
Collapse
|
11
|
Forrester SJ, Elliott KJ, Kawai T, Obama T, Boyer MJ, Preston KJ, Yan Z, Eguchi S, Rizzo V. Caveolin-1 Deletion Prevents Hypertensive Vascular Remodeling Induced by Angiotensin II. Hypertension 2016; 69:79-86. [PMID: 27895190 DOI: 10.1161/hypertensionaha.116.08278] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 08/14/2016] [Accepted: 10/20/2016] [Indexed: 11/16/2022]
Abstract
It has been proposed that membrane microdomains, caveolae, in vascular cells are critical for signal transduction and downstream functions induced by angiotensin II (AngII). We have tested our hypothesis that caveolin-1 (Cav1), a major structural protein of vascular caveolae, plays a critical role in the development of vascular remodeling by AngII via regulation of epidermal growth factor receptor and vascular endothelial adhesion molecule-1. Cav1-/- and control Cav+/+ mice were infused with AngII for 2 weeks to induce vascular remodeling and hypertension. On AngII infusion, histological assessments demonstrated medial hypertrophy and perivascular fibrosis of aorta and coronary and renal arteries in Cav1+/+ mice compared with sham-operated Cav1+/+ mice. AngII-infused Cav1+/+ mice also showed a phenotype of cardiac hypertrophy with increased heart weight to body weight ratio compared with control Cav1+/+ mice. In contrast, Cav1-/- mice infused with AngII showed attenuation of vascular remodeling but not cardiac hypertrophy. Similar levels of AngII-induced hypertension were found in both Cav1+/+ and Cav1-/- mice as assessed by telemetry. In Cav1+/+ mice, AngII enhanced tyrosine-phosphorylated epidermal growth factor receptor staining in the aorta, which was attenuated in Cav1-/- mice infused with AngII. Enhanced Cav1 and vascular endothelial adhesion molecule-1 expression was also observed in aorta from AngII-infused Cav1+/+ mice but not in Cav1-/- aorta. Experiments with vascular cells further provided a potential mechanism for our in vivo findings. These data suggest that Cav1, and presumably caveolae, in vascular smooth muscle and the endothelium plays a critical role in vascular remodeling and inflammation independent of blood pressure or cardiac hypertrophy regulation.
Collapse
Affiliation(s)
- Steven J Forrester
- From the Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (S.J.F., K.J.E., T.K., T.O., M.J.B., K.J.P., S.E., V.R.); and Department of Medicine, University of Virginia, Charlottesville (Z.Y.)
| | - Katherine J Elliott
- From the Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (S.J.F., K.J.E., T.K., T.O., M.J.B., K.J.P., S.E., V.R.); and Department of Medicine, University of Virginia, Charlottesville (Z.Y.)
| | - Tatsuo Kawai
- From the Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (S.J.F., K.J.E., T.K., T.O., M.J.B., K.J.P., S.E., V.R.); and Department of Medicine, University of Virginia, Charlottesville (Z.Y.)
| | - Takashi Obama
- From the Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (S.J.F., K.J.E., T.K., T.O., M.J.B., K.J.P., S.E., V.R.); and Department of Medicine, University of Virginia, Charlottesville (Z.Y.)
| | - Michael J Boyer
- From the Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (S.J.F., K.J.E., T.K., T.O., M.J.B., K.J.P., S.E., V.R.); and Department of Medicine, University of Virginia, Charlottesville (Z.Y.)
| | - Kyle J Preston
- From the Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (S.J.F., K.J.E., T.K., T.O., M.J.B., K.J.P., S.E., V.R.); and Department of Medicine, University of Virginia, Charlottesville (Z.Y.)
| | - Zhen Yan
- From the Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (S.J.F., K.J.E., T.K., T.O., M.J.B., K.J.P., S.E., V.R.); and Department of Medicine, University of Virginia, Charlottesville (Z.Y.)
| | - Satoru Eguchi
- From the Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (S.J.F., K.J.E., T.K., T.O., M.J.B., K.J.P., S.E., V.R.); and Department of Medicine, University of Virginia, Charlottesville (Z.Y.)
| | - Victor Rizzo
- From the Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (S.J.F., K.J.E., T.K., T.O., M.J.B., K.J.P., S.E., V.R.); and Department of Medicine, University of Virginia, Charlottesville (Z.Y.)
| |
Collapse
|
12
|
Chi L, Hu X, Zhang W, Bai T, Zhang L, Zeng H, Guo R, Zhang Y, Tian H. Adipokine CTRP6 improves PPARγ activation to alleviate angiotensin II-induced hypertension and vascular endothelial dysfunction in spontaneously hypertensive rats. Biochem Biophys Res Commun 2016; 482:727-734. [PMID: 27871858 DOI: 10.1016/j.bbrc.2016.11.102] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 11/17/2016] [Indexed: 11/26/2022]
Abstract
Angiotensin II (AngII) is the most important component of angiotensin, which has been regarded as a major contributor to the incidence of hypertension and vascular endothelial dysfunction. The adipocytokine C1q/TNF-related protein 6 (CTRP6) was recently reported to have multiple protective effects on cardiac and cardiovascular function. However, the exact role of CTRP6 in the progression of AngII induced hypertension and vascular endothelial function remains unclear. Here, we showed that serum CTRP6 content was significantly downregulated in SHRs, accompanied by a marked increase in arterial systolic pressure and serum AngII, CRP and ET-1 content. Then, pcDNA3.1-mediated CTRP6 delivery or CTRP6 siRNA was injected into SHRs. CTRP6 overexpression caused a significant decrease in AngII expression and AngII-mediated hypertension and vascular endothelial inflammation. In contrast, CTRP6 knockdown had the opposite effect to CTRP6 overexpression. Moreover, we found that CTRP6 positively regulated the activation of the ERK1/2 signaling pathway and the expression of peroxisome proliferator-activated receptor γ (PPARγ), a recently proven negative regulator of AngII, in the brain and vascular endothelium of SHRs. Finally, CTRP6 was overexpressed in endothelial cells, and caused a significant increase in PPARγ activation and suppression in AngII-mediated vascular endothelial dysfunction and apoptosis. The effect of that could be rescued by the ERK inhibitor PD98059. In contrast, silencing CTRP6 suppressed PPARγ activation and exacerbated AngII-mediated vascular endothelial dysfunction and apoptosis. In conclusion, CTRP6 improves PPARγ activation and alleviates AngII-induced hypertension and vascular endothelial dysfunction.
Collapse
Affiliation(s)
- Liyi Chi
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, China; Departments of Cardiology, The 451st Hospital of People's Liberation Army, China
| | - Xiaojing Hu
- Department of Cardiology, The Ninth Affiliated Hospital of Medical College of Xi'an Jiaotong University, China
| | - Wentao Zhang
- Affiliated Xi'an Honghui Hospital of Medical College of Xi'an Jiaotong University, China
| | - Tiao Bai
- Department of Gereology, The Ninth Affiliated Hospital of Medical College of Xi'an Jiaotong University, China
| | - Linjing Zhang
- Departments of Cardiology, The 451st Hospital of People's Liberation Army, China
| | - Hua Zeng
- Departments of Cardiology, The 451st Hospital of People's Liberation Army, China
| | - Ruirui Guo
- Departments of Cardiology, The 451st Hospital of People's Liberation Army, China
| | - Yanhai Zhang
- Departments of Cardiology, The 451st Hospital of People's Liberation Army, China.
| | - Hongyan Tian
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, China.
| |
Collapse
|