1
|
Aqul AA, Ramirez CM, Lopez AM, Burns DK, Repa JJ, Turley SD. Molecular markers of brain cholesterol homeostasis are unchanged despite a smaller brain mass in a mouse model of cholesteryl ester storage disease. Lipids 2022; 57:3-16. [PMID: 34618372 PMCID: PMC8766890 DOI: 10.1002/lipd.12325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 01/03/2023]
Abstract
Lysosomal acid lipase (LAL), encoded by the gene LIPA, facilitates the intracellular processing of lipids by hydrolyzing cholesteryl esters and triacylglycerols present in newly internalized lipoproteins. Loss-of-function mutations in LIPA result in cholesteryl ester storage disease (CESD) or Wolman disease when mutations cause complete loss of LAL activity. Although the phenotype of a mouse CESD model has been extensively characterized, there has not been a focus on the brain at different stages of disease progression. In the current studies, whole-brain mass and the concentrations of cholesterol in both the esterified (EC) and unesterified (UC) fractions were measured in Lal-/- and matching Lal+/+ mice (FVB-N strain) at ages ranging from 14 up to 280 days after birth. Compared to Lal+/+ controls at 50, 68-76, 140-142, and 230-280 days of age, Lal-/- mice had brain weights that averaged approximately 6%, 7%, 18%, and 20% less, respectively. Brain EC levels were higher in the Lal-/- mice at every age, being elevated 27-fold at 230-280 days. Brain UC concentrations did not show a genotypic difference at any age. The elevated brain EC levels in the Lal-/- mice did not reflect EC in residual blood. An mRNA expression analysis for an array of genes involved in the synthesis, catabolism, storage, and transport of cholesterol in the brains of 141-day old mice did not detect any genotypic differences although the relative mRNA levels for several markers of inflammation were moderately elevated in the Lal-/- mice. The possible sites of EC accretion in the central nervous system are discussed.
Collapse
Affiliation(s)
- Amal A. Aqul
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas TX 75390 USA
| | - Charina M. Ramirez
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas TX 75390 USA
| | - Adam M. Lopez
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas TX 75390 USA
| | - Dennis K. Burns
- Department of Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas TX 75390 USA
| | - Joyce J. Repa
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas TX 75390 USA
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas TX 75390 USA
| | - Stephen D. Turley
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas TX 75390 USA
| |
Collapse
|
2
|
Ramirez CM, Taylor AM, Lopez AM, Repa JJ, Turley SD. Delineation of metabolic responses of Npc1 -/-nih mice lacking the cholesterol-esterifying enzyme SOAT2 to acute treatment with 2-hydroxypropyl-β-cyclodextrin. Steroids 2020; 164:108725. [PMID: 32890578 PMCID: PMC7680374 DOI: 10.1016/j.steroids.2020.108725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/14/2020] [Accepted: 08/25/2020] [Indexed: 12/26/2022]
Abstract
Lipids present in lipoproteins cleared from the circulation are processed sequentially by three major proteins within the late endosomal/lysosomal (E/L) compartment of all cells: lysosomal acid lipase (LAL), Niemann-Pick (NPC) C2 and NPC1. When all three of these proteins are functioning normally, unesterified cholesterol (UC) exits the E/L compartment and is used in plasma membrane maintenance and various pathways in the endoplasmic reticulum including esterification by sterol O-acyltransferase 2 (SOAT2) or SOAT1 depending partly on cell type. Mutations in either NPC2 or NPC1 result in continual entrapment of UC and glycosphingolipids leading to neurodegeneration, pulmonary dysfunction, splenomegaly and liver damage. To date, the most effective agent for promoting release of entrapped UC in nearly all organs of NPC1-deficient mice and cats is 2-hydroxypropyl-β-cyclodextrin (2HPβCD). The cytotoxic nature of the liberated UC triggers various defenses including suppression of sterol synthesis and increased esterification. The present studies, using the Npc1-/-nih mouse model, measured the comparative quantitative importance of these two responses in the liver versus the spleen of Npc1-/-: Soat2+/+ and Npc1-/-: Soat2-/- mice in the 24 h following a single acute treatment with 2HPβCD. In the liver but not the spleen of both types of mice suppression of synthesis alone or in combination with increased esterification provided the major defense against the rise in unsequestered cellular UC content. These findings have implications for systemic 2HPβCD treatment in NPC1 patients in view of the purportedly low levels of SOAT2 activity in human liver.
Collapse
Affiliation(s)
- Charina M Ramirez
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anna M Taylor
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Adam M Lopez
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joyce J Repa
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Stephen D Turley
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
3
|
Ohshiro T, Morita H, Nur EAA, Hosoda K, Uchida R, Tomoda H. Voluhemins, new inhibitors of sterol O-acyltransferase, produced by Volutella citrinella BF-0440. J Antibiot (Tokyo) 2020; 73:748-755. [PMID: 32467602 DOI: 10.1038/s41429-020-0327-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/13/2020] [Accepted: 05/07/2020] [Indexed: 11/09/2022]
Abstract
New compounds, designated voluhemins A (1) and B (2), are isolated from the culture broth of the fungal strain Volutella citrinella BF-0440 along with structurally related known NK12838 (3). Spectroscopic data, including 1D and 2D NMR, elucidated their structures. Compounds 1-3 have a common indoline-diterpene core and two additional isoprenyl moieties. Compounds 1 and 3 contain a hemiaminal unit, while 2 is O-methylated 1. Their inhibitory activities toward sterol O-acyltransferase (SOAT) 1 and 2 isozymes in SOAT1- and SOAT2-expressing Chinese hamster ovary (CHO) cells show that 2 selectively inhibits the SOAT2 isozyme.
Collapse
Affiliation(s)
- Taichi Ohshiro
- Department of Microbial Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan. .,Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan. .,Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
| | - Haruka Morita
- Department of Microbial Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Elyza Aiman Azizah Nur
- Department of Microbial Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Kanji Hosoda
- Department of Microbial Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.,Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Ryuji Uchida
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Hiroshi Tomoda
- Department of Microbial Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan. .,Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| |
Collapse
|
4
|
LIPA gene mutations affect the composition of lipoproteins: Enrichment in ACAT-derived cholesteryl esters. Atherosclerosis 2020; 297:8-15. [DOI: 10.1016/j.atherosclerosis.2020.01.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 01/17/2020] [Accepted: 01/29/2020] [Indexed: 01/18/2023]
|
5
|
Abstract
Lipid droplets (LDs) are key sites of neutral lipid storage that can be found in all cells. Metabolic imbalances between the synthesis and degradation of LDs can result in the accumulation of significant amounts of lipid deposition, a characteristic feature of hepatocytes in patients with fatty liver disease, a leading indication for liver transplant in the United States. In this review, the authors highlight new literature related to the synthesis and autophagic catabolism of LDs, discussing key proteins and machinery involved in these processes. They also discuss recent findings that have revealed novel genetic risk factors associated with LD biology that contribute to lipid retention in the diseased liver.
Collapse
Affiliation(s)
- Ryan J. Schulze
- Department of Biochemistry and Molecular Biology and the Center for Digestive Diseases, Mayo Clinic, Rochester, Minnesota
| | - Mark A. McNiven
- Department of Biochemistry and Molecular Biology and the Center for Digestive Diseases, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
6
|
Lopez AM, Jones RD, Repa JJ, Turley SD. Niemann-Pick C1-deficient mice lacking sterol O-acyltransferase 2 have less hepatic cholesterol entrapment and improved liver function. Am J Physiol Gastrointest Liver Physiol 2018; 315:G454-G463. [PMID: 29878847 PMCID: PMC6230690 DOI: 10.1152/ajpgi.00124.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 01/31/2023]
Abstract
Cholesteryl esters are generated at multiple sites in the body by sterol O-acyltransferase (SOAT) 1 or SOAT2 in various cell types and lecithin cholesterol acyltransferase in plasma. Esterified cholesterol and triacylglycerol contained in lipoproteins cleared from the circulation via receptor-mediated or bulk-phase endocytosis are hydrolyzed by lysosomal acid lipase within the late endosomal/lysosomal (E/L) compartment. Then, through the successive actions of Niemann-Pick C (NPC) 2 and NPC 1, unesterified cholesterol (UC) is exported from the E/L compartment to the cytosol. Mutations in either NPC1 or NPC2 lead to continuing entrapment of UC in all organs, resulting in multisystem disease, which includes hepatic dysfunction and in some cases liver failure. These studies investigated primarily whether elimination of SOAT2 in NPC1-deficient mice impacted hepatic UC sequestration, inflammation, and transaminase activities. Measurements were made in 7-wk-old mice fed a low-cholesterol chow diet or one enriched with cholesterol starting 2 wk before study. In the chow-fed mice, NPC1:SOAT2 double knockouts, compared with their littermates lacking only NPC1, had 20% less liver mass, 28% lower hepatic UC concentrations, and plasma alanine aminotransferase and aspartate aminotransferase activities that were decreased by 48% and 36%, respectively. mRNA expression levels for several markers of inflammation were all significantly lower in the NPC1 mutants lacking SOAT2. The existence of a new class of potent and selective SOAT2 inhibitors provides an opportunity for exploring if suppression of this enzyme could potentially become an adjunctive therapy for liver disease in NPC1 deficiency. NEW & NOTEWORTHY In Niemann-Pick type C1 (NPC1) disease, the entrapment of unesterified cholesterol (UC) in the endosomal/lysosomal compartment of all cells causes multiorgan disease, including neurodegeneration, pulmonary dysfunction, and liver failure. Some of this sequestered UC entered cells initially in the esterified form. When sterol O-acyltransferase 2, a cholesterol esterifying enzyme present in enterocytes and hepatocytes, is eliminated in NPC1-deficient mice, there is a reduction in their hepatomegaly, hepatic UC content, and cellular injury.
Collapse
Affiliation(s)
- Adam M Lopez
- Department of Internal Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Ryan D Jones
- Department of Physiology, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Joyce J Repa
- Department of Internal Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
- Department of Physiology, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Stephen D Turley
- Department of Internal Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| |
Collapse
|
7
|
Lopez AM, Chuang JC, Turley SD. Impact of loss of SOAT2 function on disease progression in the lysosomal acid lipase-deficient mouse. Steroids 2018; 130:7-14. [PMID: 29246491 PMCID: PMC5760480 DOI: 10.1016/j.steroids.2017.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 01/27/2023]
Abstract
Although only a small proportion of cholesterol in the body is esterified, in several diseases marked expansion of the esterified cholesterol (EC) pool occurs. These include Wolman disease (WD) and Cholesteryl Ester Storage Disease (CESD) which both result from mutations in LIPA, the gene that encodes lysosomal acid lipase (LAL). The respective contributions that our three cholesterol esterifying enzymes make to EC production, especially in disorders like CESD, are not well defined. The current studies represent a detailed exploration of our earlier findings in young male LAL-deficient mice also missing sterol O-acyltransferase 2 (SOAT2, also called ACAT2). Here we show that, even as they aged, male and female Lal-/-: Soat2- /- mice, compared to Lal-/-: Soat2+/+ littermates, had appreciably less hepatomegaly as well as a marked reduction in the level of sequestration of EC, in liver transaminase activities, and in hepatic mRNA expression levels for markers of inflammation. Loss of SOAT2 function also dramatically curtailed EC entrapment in the small intestine of the LAL-deficient mice. Together, these data imply that SOAT2 inhibition, if applied concurrently with enzyme replacement therapy for LAL deficiency, may blunt the re-esterification of newly released unesterified cholesterol thereby improving clinical outcomes.
Collapse
Affiliation(s)
- Adam M Lopez
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States.
| | - Jen-Chieh Chuang
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States.
| | - Stephen D Turley
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States.
| |
Collapse
|
8
|
Chuang JC, Lopez AM, Turley SD. Quantitation of the rates of hepatic and intestinal cholesterol synthesis in lysosomal acid lipase-deficient mice before and during treatment with ezetimibe. Biochem Pharmacol 2017; 135:116-125. [PMID: 28322747 PMCID: PMC5489310 DOI: 10.1016/j.bcp.2017.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/14/2017] [Indexed: 01/28/2023]
Abstract
Esterified cholesterol (EC) and triglycerides, contained within lipoproteins taken up by cells, are hydrolysed by lysosomal acid lipase (LAL) in the late endosomal/lysosomal (E/L) compartment. The resulting unesterified cholesterol (UC) is transported via Niemann-Pick type C2 and C1 into the cytosolic compartment where it enters a putative pool of metabolically active cholesterol that is utilized in accordance with cellular needs. Loss-of-function mutations in LIPA, the gene encoding LAL, result in dramatic increases in tissue concentrations of EC, a hallmark feature of Wolman disease and cholesteryl ester storage disease (CESD). The lysosomal sequestration of EC causes cells to respond to a perceived deficit of sterol by increasing their rate of cholesterol synthesis, particularly in the liver. A similar compensatory response occurs with treatments that disrupt the enterohepatic movement of cholesterol or bile acids. Here we measured rates of cholesterol synthesis in vivo in the liver and small intestine of a mouse model for CESD given the cholesterol absorption inhibitor ezetimibe from weaning until early adulthood. Consistent with previous findings, this treatment significantly reduced the amount of EC sequestered in the liver (from 132.43±7.35 to 70.07±6.04mg/organ) and small intestine (from 2.78±0.21 to 1.34±0.09mg/organ) in the LAL-deficient mice even though their rates of hepatic and intestinal cholesterol synthesis were either comparable to, or exceeded those in matching untreated Lal-/- mice. These data reveal the role of intestinal cholesterol absorption in driving the expansion of tissue EC content and disease progression in LAL deficiency.
Collapse
Affiliation(s)
- Jen-Chieh Chuang
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, United States.
| | - Adam M Lopez
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, United States.
| | - Stephen D Turley
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, United States.
| |
Collapse
|
9
|
Warrier M, Zhang J, Bura K, Kelley K, Wilson MD, Rudel LL, Brown JM. Sterol O-Acyltransferase 2-Driven Cholesterol Esterification Opposes Liver X Receptor-Stimulated Fecal Neutral Sterol Loss. Lipids 2016; 51:151-7. [PMID: 26729489 PMCID: PMC5221701 DOI: 10.1007/s11745-015-4116-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 12/18/2015] [Indexed: 11/28/2022]
Abstract
Statin drugs have proven a successful and relatively safe therapy for the treatment of atherosclerotic cardiovascular disease (CVD). However, even with the substantial low-density lipoprotein (LDL) cholesterol lowering achieved with statin treatment, CVD remains the top cause of death in developed countries. Selective inhibitors of the cholesterol esterifying enzyme sterol-O acyltransferase 2 (SOAT2) hold great promise as effective CVD therapeutics. In mouse models, previous work has demonstrated that either antisense oligonucleotide (ASO) or small molecule inhibitors of SOAT2 can effectively reduce CVD progression, and even promote regression of established CVD. Although it is well known that SOAT2-driven cholesterol esterification can alter both the packaging and retention of atherogenic apoB-containing lipoproteins, here we set out to determine whether SOAT2-driven cholesterol esterification can also impact basal and liver X receptor (LXR)-stimulated fecal neutral sterol loss. These studies demonstrate that SOAT2 is a negative regulator of LXR-stimulated fecal neutral sterol loss in mice.
Collapse
Affiliation(s)
- Manya Warrier
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Jun Zhang
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Kanwardeep Bura
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Kathryn Kelley
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Martha D Wilson
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Lawrence L Rudel
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - J Mark Brown
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA.
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|