1
|
Valerio MR, Cipolla C, Greco M, Mesi C, Modica F, Gebbia V, Scandurra G, Sambataro D. Unusual presentation of luminal breast carcinoma metastatic to the brain and coma: a case report of dramatic response to abemaciclib and literature review. Ther Adv Med Oncol 2025; 17:17588359251317847. [PMID: 40162001 PMCID: PMC11954534 DOI: 10.1177/17588359251317847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/17/2025] [Indexed: 04/02/2025] Open
Abstract
Patients with luminal breast cancer (BC) may develop central nervous system metastases in 20%-40% of cases. Radiation or surgical therapy represents the cornerstone of treating central nervous system metastases. Meanwhile, the best practice for metastatic luminal BC involves using cyclin-dependent kinase 4/6 inhibitors combined with endocrine therapy. To our knowledge, this is the first case to report a dramatic response of breast metastases to abemaciclib plus endocrine therapy without radiation therapy, particularly in a patient who presented with seizures and sudden coma. She received brain surgery to control a large bleeding metastasis. Abemaciclib was crushed and diluted in water for administration via the nasogastric tube, while an upfront fulvestrant was given since aromatase inhibitors cannot be diluted. Beyond the radiological response, the clinical improvement was notable, with complete symptom recovery to the point where she is again working. Our paper supports the activity of abemaciclib in brain metastases from luminal BC and includes a review of the medical literature. Further investigation is warranted in this clinical setting.
Collapse
Affiliation(s)
- Maria Rosaria Valerio
- Medical Oncology Unit, University Hospital “Policlinico P. Giaccone,” University of Palermo, Palermo, Italy
| | - Calogero Cipolla
- Breast Unit, University Hospital “Policlinico P. Giaccone,” University of Palermo, Palermo, Italy
| | - Martina Greco
- Medical Oncology Unit, University Hospital “Policlinico P. Giaccone,” University of Palermo, Palermo, Italy
| | - Chiara Mesi
- Medical Oncology Unit, University Hospital “Policlinico P. Giaccone,” University of Palermo, Palermo, Italy
| | - Francesca Modica
- Radiology Unit, Department of Biomedicine, Neuroscience and Advanced Diagnostic (Bi.N.D.), University Hospital “Policlinico P. Giaccone,” University of Palermo, Palermo, Italy
| | - Vittorio Gebbia
- Medical Oncology, Department of Medicine and Surgery, Kore University of Enna, Cd Santa Panasia, Enna 90100, Italy
| | - Giuseppa Scandurra
- Chair of Medical Oncology, Kore University of Enna, Enna, Italy
- Medical Oncology Unit, Ospedale Cannizzaro, Catania, Italy
| | - Daniela Sambataro
- Chair of Medical Oncology, Kore University of Enna, Italy
- Medical Oncology Unit, Ospedale Umberto I, Enna, Italy
| |
Collapse
|
2
|
Sangubotla R, Gubbiyappa KS, Devarapogu R, Kim J. Modern insights of nanotheranostics in the glioblastoma: An updated review. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167653. [PMID: 39756713 DOI: 10.1016/j.bbadis.2024.167653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/08/2024] [Accepted: 12/28/2024] [Indexed: 01/07/2025]
Abstract
Glioblastoma multiforme (GBM) is a highly malignant subtype of glioma, originating from the glial cells that provide support to other neurons in the brain. GBM predominantly impacts the cerebral hemisphere of the brain, with minimal effects on the cerebellum, brain stem, or spinal cord. Individuals diagnosed with GBM commonly encounter a range of symptoms, starting from auditory abnormalities to seizures. Recently, cell membrane-camouflaged nanoparticles (CMCNPs) are evolving as promising theranostic agents that can carry specific biological moieties from their biological origin and effectively target GBM cells. Moreover, exosomes have gained widespread scientific attention as an effective drug delivery approach due to their excellent stability in the bloodstream, high biocompatibility, low immune response, and inherent targeting capabilities. Exosomes derived from specific cell types can transport endogenous signaling molecules that have therapeutic promise for GBM therapy. In this context, researchers are utilizing various techniques to isolate exosomes from liquid biomarkers from patients, such as serum and cerebrospinal fluid (CSF). Proper isolation of exosomes may induce the clinical diagnosis in GBM due to their commercial accessibility and real-time monitoring options. Since exosomes are unable to penetrate the blood-brain barrier (BBB), strategic theranostic methods are ideal. For this, understanding interactions between glioma-specific exosomes in the TME and biomarkers is necessary. The versatile characteristics of NPs and their capacity to cross the BBB enable them to be indispensable against GBM. In this review article, we discussed the recent theranostic applications of nanotechnology by comparing the limitations of existing nanotechnology-based approaches.
Collapse
Affiliation(s)
- Roopkumar Sangubotla
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam Daero, Seongnam-Si, Gyeonggi-Do 13120, Republic of Korea
| | - Kumar Shiva Gubbiyappa
- GITAM School of Pharmacy, GITAM Deemed to be University, Rudraram, Patencheru, Sangareddy Dist, 502329, Telangana, India
| | - Rajakumari Devarapogu
- Department of Zoology, Sri Venkateswara University, Tirupati, Andhra Pradesh 517502, India
| | - Jongsung Kim
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam Daero, Seongnam-Si, Gyeonggi-Do 13120, Republic of Korea.
| |
Collapse
|
3
|
Rechberger JS, Toll SA, Biswas S, You HB, Chow WD, Kendall N, Navalkele P, Khatua S. Advances in the Repurposing and Blood-Brain Barrier Penetrance of Drugs in Pediatric Brain Tumors. Cancers (Basel) 2025; 17:439. [PMID: 39941807 PMCID: PMC11816256 DOI: 10.3390/cancers17030439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Central nervous system (CNS) tumors are the leading cause of cancer-related mortality in children, with prognosis remaining dismal for some of these malignancies. Though the past two decades have seen advancements in surgery, radiation, and targeted therapy, major unresolved hurdles continue to undermine the therapeutic efficacy. These include challenges in suboptimal drug delivery through the blood-brain barrier (BBB), marked intra-tumoral molecular heterogeneity, and the elusive tumor microenvironment. Drug repurposing or re-tasking FDA-approved drugs with evidence of penetration into the CNS, using newer methods of intracranial drug delivery facilitating optimal drug exposure, has been an area of intense research. This could be a valuable tool, as most of these agents have already gone through the lengthy process of drug development and the evaluation of safety risks and the optimal pharmacokinetic profile. They can now be used and tested in clinics with an accelerated and different approach. Conclusions: The next-generation therapeutic strategy should prioritize repurposing oncologic and non-oncologic drugs that have been used for other indication, and have demonstrated robust preclinical activity against pediatric brain tumors. In combination with novel drug delivery techniques, these drugs could hold significant therapeutic promise in pediatric neurooncology.
Collapse
Affiliation(s)
| | - Stephanie A. Toll
- Children’s Hospital of Michigan, Central Michigan University School of Medicine, Saginaw, MI 48602, USA;
| | - Subhasree Biswas
- Bronglais General Hospital, Caradog Road, Aberystwyth SY23 1ER, Wales, UK;
| | - Hyo Bin You
- Mayo Clinic Alix School of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (H.B.Y.); (W.D.C.)
| | - William D. Chow
- Mayo Clinic Alix School of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (H.B.Y.); (W.D.C.)
| | - Nicholas Kendall
- School of Medicine, University of South Dakota Sanford, Vermillion, SD 57069, USA;
| | - Pournima Navalkele
- Division of Oncology, Children’s Hospital of Orange County, Orange, CA 92868, USA;
| | - Soumen Khatua
- Department of Pediatric Hematology/Oncology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| |
Collapse
|
4
|
Lentzas A, de Gooijer MC, Zuidema S, Meurs A, Çitirikkaya CH, Venekamp N, Beijnen JH, van Tellingen O. ATP-binding cassette transporter inhibitor potency and substrate drug affinity are critical determinants of successful drug delivery enhancement to the brain. Fluids Barriers CNS 2024; 21:62. [PMID: 39103921 DOI: 10.1186/s12987-024-00562-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/28/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Pharmacotherapy for brain diseases is severely compromised by the blood-brain barrier (BBB). ABCB1 and ABCG2 are drug transporters that restrict drug entry into the brain and their inhibition can be used as a strategy to boost drug delivery and pharmacotherapy for brain diseases. METHODS We employed elacridar and tariquidar in mice to explore the conditions for effective inhibition at the BBB. Abcg2;Abcb1a/b knockout (KO), Abcb1a/b KO, Abcg2 KO and wild-type (WT) mice received a 3 h i.p. infusion of a cocktail of 8 typical substrate drugs in combination with elacridar or tariquidar at a range of doses. Abcg2;Abcb1a/b KO mice were used as the reference for complete inhibition, while single KO mice were used to assess the potency to inhibit the remaining transporter. Brain and plasma drug levels were measured by LC-MS/MS. RESULTS Complete inhibition of ABCB1 at the BBB is achieved when the elacridar plasma level reaches 1200 nM, whereas tariquidar requires at least 4000 nM. Inhibition of ABCG2 is more difficult. Elacridar inhibits ABCG2-mediated efflux of weak but not strong ABCG2 substrates. Strikingly, tariquidar does not enhance the brain uptake of any ABCG2-subtrate drug. Similarly, elacridar, but not tariquidar, was able to inhibit its own brain efflux in ABCG2-proficient mice. The plasma protein binding of elacridar and tariquidar was very high but similar in mouse and human plasma, facilitating the translation of mouse data to humans. CONCLUSIONS This work shows that elacridar is an effective pharmacokinetic-enhancer for the brain delivery of ABCB1 and weaker ABCG2 substrate drugs when a plasma concentration of 1200 nM is exceeded.
Collapse
Affiliation(s)
- Aristeidis Lentzas
- Division of Pharmacology, The Netherlands Cancer Institute, Room H3.010, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Mark C de Gooijer
- Division of Pharmacology, The Netherlands Cancer Institute, Room H3.010, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M1 3WE, UK
- The Christie NHS Foundation Trust, Manchester, M20 4BX, UK
| | - Stefanie Zuidema
- Division of Pharmacology, The Netherlands Cancer Institute, Room H3.010, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Amber Meurs
- Division of Pharmacology, The Netherlands Cancer Institute, Room H3.010, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Ceren H Çitirikkaya
- Division of Pharmacology, The Netherlands Cancer Institute, Room H3.010, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Nikkie Venekamp
- Division of Pharmacology, The Netherlands Cancer Institute, Room H3.010, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
- Department of Pharmacy, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Pharmacoepidemiology and Clinical Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, The Netherlands
| | - Olaf van Tellingen
- Division of Pharmacology, The Netherlands Cancer Institute, Room H3.010, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands.
- Mouse Cancer Clinic, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Rathi S, Oh JH, Zhang W, Mladek AC, Garcia DA, Xue Z, Burgenske DM, Zhang W, Le J, Zhong W, Sarkaria JN, Elmquist WF. Preclinical Systemic Pharmacokinetics, Dose Proportionality, and Central Nervous System Distribution of the ATM Inhibitor WSD0628, a Novel Radiosensitizer for the Treatment of Brain Tumors. J Pharmacol Exp Ther 2024; 390:260-275. [PMID: 38858089 PMCID: PMC11264258 DOI: 10.1124/jpet.123.001971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024] Open
Abstract
Radiation therapy, a standard treatment option for many cancer patients, induces DNA double-strand breaks (DSBs), leading to cell death. Ataxia telangiectasia mutated (ATM) kinase is a key regulator of DSB repair, and ATM inhibitors are being explored as radiosensitizers for various tumors, including primary and metastatic brain tumors. Efficacy of radiosensitizers for brain tumors may be influenced by a lack of effective drug delivery across the blood-brain barrier. The objective of this study was to evaluate the systemic pharmacokinetics and mechanisms that influence the central nervous system (CNS) distribution of WSD0628, a novel and potent ATM inhibitor, in the mouse. Further, we have used these observations to form the basis of predicting effective exposures for clinical application. We observed a greater than dose proportional increase in exposure, likely due to saturation of clearance processes. Our results show that WSD0628 is orally bioavailable and CNS penetrant, with unbound partitioning in CNS (i.e., unbound tissue partition coefficient) between 0.15 and 0.3. CNS distribution is not limited by the efflux transporters P-glycoprotein and breast cancer resistant protein. WSD0628 is distributed uniformly among different brain regions. Thus, WSD0628 has favorable pharmacokinetic properties and potential for further exploration to determine the pharmacodynamics-pharmacokinetics efficacy relationship in CNS tumors. This approach will provide critical insights for the clinical translation of WSD0628 for the treatment of primary and secondary brain tumors. SIGNIFICANCE STATEMENT: This study evaluates the preclinical systemic pharmacokinetics, dose proportionality, and mechanisms influencing CNS distribution of WSD0628, a novel ATM inhibitor for the treatment of brain tumors. Results indicate that WSD0628 is orally bioavailable and CNS penetrant without efflux transporter liability. We also observed a greater than dose proportional increase in exposure in both the plasma and brain. These favorable pharmacokinetic properties indicate WSD0628 has potential for further exploration for use as a radiosensitizer in the treatment of brain tumors.
Collapse
Affiliation(s)
- Sneha Rathi
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., W.Q.Z., J.L., W.F.E.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., D.A.G., Z.X., D.M.B., J.N.S.); and WayShine Biopharm, Shanghai, China (W.Z.)
| | - Ju-Hee Oh
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., W.Q.Z., J.L., W.F.E.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., D.A.G., Z.X., D.M.B., J.N.S.); and WayShine Biopharm, Shanghai, China (W.Z.)
| | - Wenjuan Zhang
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., W.Q.Z., J.L., W.F.E.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., D.A.G., Z.X., D.M.B., J.N.S.); and WayShine Biopharm, Shanghai, China (W.Z.)
| | - Ann C Mladek
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., W.Q.Z., J.L., W.F.E.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., D.A.G., Z.X., D.M.B., J.N.S.); and WayShine Biopharm, Shanghai, China (W.Z.)
| | - Darwin A Garcia
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., W.Q.Z., J.L., W.F.E.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., D.A.G., Z.X., D.M.B., J.N.S.); and WayShine Biopharm, Shanghai, China (W.Z.)
| | - Zhiyi Xue
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., W.Q.Z., J.L., W.F.E.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., D.A.G., Z.X., D.M.B., J.N.S.); and WayShine Biopharm, Shanghai, China (W.Z.)
| | - Danielle M Burgenske
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., W.Q.Z., J.L., W.F.E.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., D.A.G., Z.X., D.M.B., J.N.S.); and WayShine Biopharm, Shanghai, China (W.Z.)
| | - Wenqiu Zhang
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., W.Q.Z., J.L., W.F.E.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., D.A.G., Z.X., D.M.B., J.N.S.); and WayShine Biopharm, Shanghai, China (W.Z.)
| | - Jiayan Le
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., W.Q.Z., J.L., W.F.E.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., D.A.G., Z.X., D.M.B., J.N.S.); and WayShine Biopharm, Shanghai, China (W.Z.)
| | - Wei Zhong
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., W.Q.Z., J.L., W.F.E.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., D.A.G., Z.X., D.M.B., J.N.S.); and WayShine Biopharm, Shanghai, China (W.Z.)
| | - Jann N Sarkaria
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., W.Q.Z., J.L., W.F.E.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., D.A.G., Z.X., D.M.B., J.N.S.); and WayShine Biopharm, Shanghai, China (W.Z.)
| | - William F Elmquist
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., W.Q.Z., J.L., W.F.E.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., D.A.G., Z.X., D.M.B., J.N.S.); and WayShine Biopharm, Shanghai, China (W.Z.)
| |
Collapse
|
6
|
Tripathy DK, Panda LP, Biswal S, Barhwal K. Insights into the glioblastoma tumor microenvironment: current and emerging therapeutic approaches. Front Pharmacol 2024; 15:1355242. [PMID: 38523646 PMCID: PMC10957596 DOI: 10.3389/fphar.2024.1355242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/07/2024] [Indexed: 03/26/2024] Open
Abstract
Glioblastoma (GB) is an intrusive and recurrent primary brain tumor with low survivability. The heterogeneity of the tumor microenvironment plays a crucial role in the stemness and proliferation of GB. The tumor microenvironment induces tumor heterogeneity of cancer cells by facilitating clonal evolution and promoting multidrug resistance, leading to cancer cell progression and metastasis. It also plays an important role in angiogenesis to nourish the hypoxic tumor environment. There is a strong interaction of neoplastic cells with their surrounding microenvironment that comprise several immune and non-immune cellular components. The tumor microenvironment is a complex network of immune components like microglia, macrophages, T cells, B cells, natural killer (NK) cells, dendritic cells and myeloid-derived suppressor cells, and non-immune components such as extracellular matrix, endothelial cells, astrocytes and neurons. The prognosis of GB is thus challenging, making it a difficult target for therapeutic interventions. The current therapeutic approaches target these regulators of tumor micro-environment through both generalized and personalized approaches. The review provides a summary of important milestones in GB research, factors regulating tumor microenvironment and promoting angiogenesis and potential therapeutic agents widely used for the treatment of GB patients.
Collapse
Affiliation(s)
- Dev Kumar Tripathy
- Department of Physiology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, India
| | - Lakshmi Priya Panda
- Department of Physiology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, India
| | - Suryanarayan Biswal
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Kalpana Barhwal
- Department of Physiology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, India
| |
Collapse
|
7
|
Cooper E, Oyagawa CRM, Johnson R, Choi PJ, Foliaki JM, Correia J, Schweder P, Heppner P, Mee E, Turner C, Faull R, Denny WA, Dragunow M, Jose J, Park TIH. Involvement of the tumour necrosis factor receptor system in glioblastoma cell death induced by palbociclib-heptamethine cyanine dye conjugate. Cell Commun Signal 2024; 22:30. [PMID: 38212807 PMCID: PMC10782607 DOI: 10.1186/s12964-023-01277-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/14/2023] [Indexed: 01/13/2024] Open
Abstract
Glioblastoma is the most common and aggressive primary brain tumour in adults. The development of anti-brain cancer agents are challenged by the blood-brain barrier and the resistance conferred by the local tumour microenvironment. Heptamethine cyanine dyes (HMCDs) are a class of near-infrared fluorescence compounds that have recently emerged as promising agents for drug delivery. We conjugated palbociclib, a cyclin-dependent kinase (CDK) 4/6 inhibitor, to an HMCD, MHI-148, and conducted drug activity analysis on primary patient-derived glioblastoma cell lines. In addition to the expected cytostatic activity, our in vitro studies revealed that palbociclib-MHI-148 conjugate resulted in an almost 100-fold increase in cytotoxicity compared to palbociclib alone. This shift of palbociclib from cytostatic to cytotoxic when conjugated to MHI-148 was due to increased DNA damage, as indicated by an increase in γH2AX foci, followed by an increased expression of key extrinsic apoptosis genes, including TP53, TNFR1, TRAIL, FADD and caspase 8. In addition, we observed a time-dependent increase in the cell surface expression of TNFR1, consistent with an observed increase in the secretion TNFα, followed by TNFR1 endocytosis at 48 h. The treatment of patient GBM cells with the palbociclib-MHI-148 conjugate prevented TNFα-induced NFκB translocation, suggesting conjugate-induced TNFR1 signalling favoured the TNFR1-mediated apoptotic response rather than the pro-inflammatory response pathway. Notably, pharmacological inhibition of endocytosis of TNFR1, and siRNA-knockdown of TNFR1 reversed the palbociclib-MHI-148-induced cell death. These results show a novel susceptibility of glioblastoma cells to TNFR1-dependent apoptosis, dependent on inhibition of canonical NFκB signalling using our previously reported palbociclib-HMCD conjugate. Video Abstract.
Collapse
Affiliation(s)
- Elizabeth Cooper
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- Department of Pharmacology, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- Neurosurgery Research Unit, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Caitlin R M Oyagawa
- Department of Pharmacology, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- Neurosurgery Research Unit, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Rebecca Johnson
- Department of Pharmacology, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- Neurosurgery Research Unit, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Peter J Choi
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Jena Macapagal Foliaki
- Department of Pharmacology, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- Neurosurgery Research Unit, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Jason Correia
- Neurosurgery Research Unit, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- Department of Neurosurgery, Auckland City Hospital, Private Bag 92024, Auckland, 1142, New Zealand
| | - Patrick Schweder
- Neurosurgery Research Unit, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- Department of Neurosurgery, Auckland City Hospital, Private Bag 92024, Auckland, 1142, New Zealand
| | - Peter Heppner
- Neurosurgery Research Unit, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- Department of Neurosurgery, Auckland City Hospital, Private Bag 92024, Auckland, 1142, New Zealand
| | - Edward Mee
- Neurosurgery Research Unit, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- Department of Neurosurgery, Auckland City Hospital, Private Bag 92024, Auckland, 1142, New Zealand
| | - Clinton Turner
- Neurosurgery Research Unit, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- Department of Anatomical Pathology, Auckland City Hospital, 2 Park Road, LabPlus, Auckland, New Zealand
| | - Richard Faull
- Neurosurgery Research Unit, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - William A Denny
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Mike Dragunow
- Department of Pharmacology, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
- Neurosurgery Research Unit, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| | - Jiney Jose
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| | - Thomas I-H Park
- Department of Pharmacology, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
- Neurosurgery Research Unit, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| |
Collapse
|
8
|
Zhang W, Oh JH, Zhang W, Rathi S, Le J, Talele S, Sarkaria JN, Elmquist WF. How Much is Enough? Impact of Efflux Transporters on Drug delivery Leading to Efficacy in the Treatment of Brain Tumors. Pharm Res 2023; 40:2731-2746. [PMID: 37589827 PMCID: PMC10841221 DOI: 10.1007/s11095-023-03574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/19/2023] [Indexed: 08/18/2023]
Abstract
The lack of effective chemotherapeutic agents for the treatment of brain tumors is a serious unmet medical need. This can be attributed, in part, to inadequate delivery through the blood-brain barrier (BBB) and the tumor-cell barrier, both of which have active efflux transporters that can restrict the transport of many potentially effective agents for both primary and metastatic brain tumors. This review briefly summarizes the components and function of the normal BBB with respect to drug penetration into the brain and the alterations in the BBB due to brain tumor that could influence drug delivery. Depending on what is rate-limiting a compound's distribution, the limited permeability across the BBB and the subsequent delivery into the tumor cell can be greatly influenced by efflux transporters and these are discussed in some detail. Given these complexities, it is necessary to quantify the extent of brain distribution of the active (unbound) drug to compare across compounds and to inform potential for use against brain tumors. In this regard, the metric, Kp,uu, a brain-to-plasma unbound partition coefficient, is examined and its current use is discussed. However, the extent of active drug delivery is not the only determinant of effective therapy. In addition to Kp,uu, drug potency is an important parameter that should be considered alongside drug delivery in drug discovery and development processes. In other words, to answer the question - How much is enough? - one must consider how much can be delivered with how much needs to be delivered.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Ju-Hee Oh
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Wenqiu Zhang
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Sneha Rathi
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Jiayan Le
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Surabhi Talele
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - William F Elmquist
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
9
|
Gomes I, Abreu C, Costa L, Casimiro S. The Evolving Pathways of the Efficacy of and Resistance to CDK4/6 Inhibitors in Breast Cancer. Cancers (Basel) 2023; 15:4835. [PMID: 37835528 PMCID: PMC10571967 DOI: 10.3390/cancers15194835] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
The approval of cyclin-dependent kinase 4 and 6 inhibitors (CDK4/6i) in combination with endocrine therapy (ET) has remarkably improved the survival outcomes of patients with advanced hormone receptor-positive (HR+) breast cancer (BC), becoming the new standard of care treatment in these patients. Despite the efficacy of this therapeutic combination, intrinsic and acquired resistance inevitably occurs and represents a major clinical challenge. Several mechanisms associated with resistance to CDK4/6i have been identified, including both cell cycle-related and cell cycle-nonspecific mechanisms. This review discusses new insights underlying the mechanisms of action of CDK4/6i, which are more far-reaching than initially thought, and the currently available evidence of the mechanisms of resistance to CDK4/6i in BC. Finally, it highlights possible treatment strategies to improve CDK4/6i efficacy, summarizing the most relevant clinical data on novel combination therapies involving CDK4/6i.
Collapse
Affiliation(s)
- Inês Gomes
- Luis Costa Lab, Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisbon, Portugal;
| | - Catarina Abreu
- Oncology Division, Hospital de Santa Maria—Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal;
| | - Luis Costa
- Luis Costa Lab, Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisbon, Portugal;
- Oncology Division, Hospital de Santa Maria—Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal;
| | - Sandra Casimiro
- Luis Costa Lab, Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisbon, Portugal;
| |
Collapse
|
10
|
Israel LL, Sun T, Braubach O, Cox A, Shatalova ES, Rashid HM, Galstyan A, Grodzinski Z, Song XY, Chepurna O, Ljubimov VA, Chiechi A, Sharma S, Phebus C, Wang Y, Ljubimova JY, Black KL, Holler E. β-Amyloid targeting nanodrug for neuron-specific delivery of nucleic acids in Alzheimer's disease mouse models. J Control Release 2023; 361:636-658. [PMID: 37544515 DOI: 10.1016/j.jconrel.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/08/2023]
Abstract
Delivery of therapeutic substances into the brain poses a significant challenge in the treatment of neurological disorders. This is primarily due to the blood-brain barrier (BBB), which restricts access, alongside the limited stability and distribution of these agents within the brain tissue. Here we demonstrate an efficient delivery of microRNA (miRNA) and antisense RNA preferentially to neurons compared to astroglia in the brain of healthy and Alzheimer's disease mice, via disulfide-linked conjugation with poly(ß-L-malic acid-trileucine)-copolymer a biodegradable, amphiphilic, and multivalent platform. By conjugating a D-configured (D3)-peptide (vector) for specific targeting, highly efficient delivery across the BBB is achieved through the Low-Density Lipoprotein Receptor-Related Protein-1 (LRP-1) transcytosis pathway, amyloid beta (Aβ) peptides. Nanodrug distribution was determined by fluorescent labeling and analyzed by microscopy in neurons, astroglia, and in extracellular amyloid plaques typical for Alzheimer's disease. Whereas D-configured BBB-vectors can efficiently target neurons, L-configured (e.g., AP2-peptide) guided vector can only cross BBB but not seem to bind neurons. An analysis of post-injection fluorescence distribution, and RNA-seq followed by real-time PCR validation, confirmed a successful in vivo delivery of morpholino-miRNA-186 nanoconjugates into mouse brain. The size and fluorescence intensity of the intracellular nanodrug particulates were analyzed and verified by a competition with non-fluorescent conjugates. Differentially expressed genes (DEGs) from RNA-seq were identified in the nanodrug injected mice, and the changes of selected DEGs related to Alzheimer's disease were further validated by western blot and real-time PCR. Collectively, these results demonstrated that D3-peptide-conjugated nanopolymer drug is able to achieve neuron-selective delivery of miRNA and can serve as an efficient brain delivery vehicle in Alzheimer's disease (AD) mouse models.
Collapse
Affiliation(s)
- Liron L Israel
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles 90048, USA
| | - Tao Sun
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles 90048, USA
| | - Oliver Braubach
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles 90048, USA
| | - Alysia Cox
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles 90048, USA
| | | | | | - Anna Galstyan
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles 90048, USA
| | - Zachary Grodzinski
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles 90048, USA
| | - Xue Ying Song
- Cedars-Sinai Cancer Applied Genomics Shared Resource, Cedars-Sinai Medical Center, Los Angeles 90048, USA
| | - Oksana Chepurna
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles 90048, USA
| | - Vladimir A Ljubimov
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles 90048, USA
| | - Antonella Chiechi
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles 90048, USA
| | - Sachin Sharma
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles 90048, USA
| | - Connor Phebus
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles 90048, USA
| | - Yizhou Wang
- Cedars-Sinai Cancer Applied Genomics Shared Resource, Cedars-Sinai Medical Center, Los Angeles 90048, USA
| | - Julia Y Ljubimova
- Terasaki Institute of Biomedical Innovation, Los Angeles, 90024, USA..
| | - Keith L Black
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles 90048, USA.
| | - Eggehard Holler
- Terasaki Institute of Biomedical Innovation, Los Angeles, 90024, USA..
| |
Collapse
|
11
|
Lei Z, Tian Q, Teng Q, Wurpel JND, Zeng L, Pan Y, Chen Z. Understanding and targeting resistance mechanisms in cancer. MedComm (Beijing) 2023; 4:e265. [PMID: 37229486 PMCID: PMC10203373 DOI: 10.1002/mco2.265] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/05/2023] [Accepted: 03/23/2023] [Indexed: 05/27/2023] Open
Abstract
Resistance to cancer therapies has been a commonly observed phenomenon in clinical practice, which is one of the major causes of treatment failure and poor patient survival. The reduced responsiveness of cancer cells is a multifaceted phenomenon that can arise from genetic, epigenetic, and microenvironmental factors. Various mechanisms have been discovered and extensively studied, including drug inactivation, reduced intracellular drug accumulation by reduced uptake or increased efflux, drug target alteration, activation of compensatory pathways for cell survival, regulation of DNA repair and cell death, tumor plasticity, and the regulation from tumor microenvironments (TMEs). To overcome cancer resistance, a variety of strategies have been proposed, which are designed to enhance the effectiveness of cancer treatment or reduce drug resistance. These include identifying biomarkers that can predict drug response and resistance, identifying new targets, developing new targeted drugs, combination therapies targeting multiple signaling pathways, and modulating the TME. The present article focuses on the different mechanisms of drug resistance in cancer and the corresponding tackling approaches with recent updates. Perspectives on polytherapy targeting multiple resistance mechanisms, novel nanoparticle delivery systems, and advanced drug design tools for overcoming resistance are also reviewed.
Collapse
Affiliation(s)
- Zi‐Ning Lei
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Qin Tian
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Qiu‐Xu Teng
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - John N. D. Wurpel
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Leli Zeng
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Yihang Pan
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| |
Collapse
|
12
|
Selective protection of normal cells from chemotherapy, while killing drug-resistant cancer cells. Oncotarget 2023; 14:193-206. [PMID: 36913303 PMCID: PMC10010629 DOI: 10.18632/oncotarget.28382] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023] Open
Abstract
Cancer therapy is limited by toxicity in normal cells and drug-resistance in cancer cells. Paradoxically, cancer resistance to certain therapies can be exploited for protection of normal cells, simultaneously enabling the selective killing of resistant cancer cells by using antagonistic drug combinations, which include cytotoxic and protective drugs. Depending on the mechanisms of drug-resistance in cancer cells, the protection of normal cells can be achieved with inhibitors of CDK4/6, caspases, Mdm2, mTOR, and mitogenic kinases. When normal cells are protected, the selectivity and potency of multi-drug combinations can be further enhanced by adding synergistic drugs, in theory, eliminating the deadliest cancer clones with minimal side effects. I also discuss how the recent success of Trilaciclib may foster similar approaches into clinical practice, how to mitigate systemic side effects of chemotherapy in patients with brain tumors and how to ensure that protective drugs would only protect normal cells (not cancer cells) in a particular patient.
Collapse
|
13
|
Poumeaud F, Fontanier A, Dion J, Mathevet Q, Cointault O, Uro-Coste E, Marty C, Dalenc F, Girardie P, Rataboul A. Severe toxic rhabdomyolysis under combined palbociclib and simvastatin treatment: A case report. Front Oncol 2022; 12:1026434. [PMID: 36591506 PMCID: PMC9795206 DOI: 10.3389/fonc.2022.1026434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
We report the fourth described case of severe toxic rhabdomyolysis occurring in an 81-year-old woman caused by the concomitant administration of palbociclib taken at the usual dosage (125 mg per day) and simvastatin. To the best of our knowledge, this is the first reported case successfully treated by plasma exchanges, with complete functional recovery within two months. The severity of this case justifies further consideration of pharmacokinetic interactions between palbociclib or other CDK-4-6 inhibitors and statins, which potentially increase the risk of an adverse event.
Collapse
Affiliation(s)
- François Poumeaud
- Department of Medical Oncology, Institut Claudius Regaud - Institut Universitaire du Cancer de Toulouse - Oncopole, Toulouse, France
| | - Anna Fontanier
- Department of Clinical Pharmacy, Institut Claudius Regaud - Institut Universitaire du Cancer de Toulouse - Oncopole, Toulouse, France
| | - Jérémie Dion
- Department of Internal Medicine and Clinical Immunology, Centre Hospitalier Universitaire Toulouse, Toulouse, France
| | - Quentin Mathevet
- Department of Clinical Pharmacy, Institut Claudius Regaud - Institut Universitaire du Cancer de Toulouse - Oncopole, Toulouse, France
| | - Olivier Cointault
- Department of Nephrology, Centre Hospitalier Universitaire Toulouse, Toulouse, France
| | - Emmanuelle Uro-Coste
- Department of Anatomo-pathology, Institut Universitaire du Cancer de Toulouse – Oncopole, Toulouse, France
| | - Céline Marty
- Department of Clinical Pharmacy, Institut Claudius Regaud - Institut Universitaire du Cancer de Toulouse - Oncopole, Toulouse, France
| | - Florence Dalenc
- Department of Medical Oncology, Institut Claudius Regaud - Institut Universitaire du Cancer de Toulouse - Oncopole, Toulouse, France
| | - Pierre Girardie
- Department of Neurology, Centre Hospitalier Universitai Toulouse – Purpan, Toulouse, France
| | - Anaïs Rataboul
- Department of Medical Oncology, Institut Claudius Regaud - Institut Universitaire du Cancer de Toulouse - Oncopole, Toulouse, France,*Correspondence: Anaïs Rataboul,
| |
Collapse
|
14
|
Curtaz CJ, Kiesel L, Meybohm P, Wöckel A, Burek M. Anti-Hormonal Therapy in Breast Cancer and Its Effect on the Blood-Brain Barrier. Cancers (Basel) 2022; 14:cancers14205132. [PMID: 36291916 PMCID: PMC9599962 DOI: 10.3390/cancers14205132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
The molecular receptor status of breast cancer has implications for prognosis and long-term metastasis. Although metastatic luminal B-like, hormone-receptor-positive, HER2−negative, breast cancer causes brain metastases less frequently than other subtypes, though tumor metastases in the brain are increasingly being detected of this patient group. Despite the many years of tried and tested use of a wide variety of anti-hormonal therapeutic agents, there is insufficient data on their intracerebral effectiveness and their ability to cross the blood-brain barrier. In this review, we therefore summarize the current state of knowledge on anti-hormonal therapy and its intracerebral impact and effects on the blood-brain barrier in breast cancer.
Collapse
Affiliation(s)
- Carolin J. Curtaz
- Department of Gynecology and Obstetrics, University Hospital Würzburg, 97080 Würzburg, Germany
- Correspondence:
| | - Ludwig Kiesel
- Department of Gynecology and Obstetrics, University Hospital of Münster, 48143 Münster, Germany
| | - Patrick Meybohm
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Achim Wöckel
- Department of Gynecology and Obstetrics, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Malgorzata Burek
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
15
|
Brickute D, Chen C, Braga M, Barnes C, Wang N, Allott L, Aboagye EO. Design, synthesis, and evaluation of a novel PET imaging agent targeting lipofuscin in senescent cells. RSC Adv 2022; 12:26372-26381. [PMID: 36275107 PMCID: PMC9475417 DOI: 10.1039/d2ra04535d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/06/2022] [Indexed: 02/02/2023] Open
Abstract
Promoting a senescent phenotype to suppress tumour progression may present an alternative strategy for treating cancer and encourages the development of positron emission tomography (PET) imaging biomarkers for assessing response to treatment. The accumulation of lipofuscin deposits in senescent cells is visualised using the pathology stain Sudan Black B (SBB) which is an emerging biomarker of senescence. We describe the design, synthesis and evaluation of [18F]fluoroethyltriazole-SBB ([18F]FET-SBB), a fluorine-18 radiolabelled derivative of SBB. The in vitro uptake of [18F]FET-SBB in a senescent cell line corelated with lipofuscin deposits; in vivo PET imaging and metabolite analysis confirm a favourable pharmacokinetic and metabolic profile for further studies of in vivo models of senescence.
Collapse
Affiliation(s)
- Diana Brickute
- Comprehensive Cancer Imaging Centre, Imperial College London, Hammersmith HospitalDu Cane RoadLondonW12 0NNUK
| | - Cen Chen
- Comprehensive Cancer Imaging Centre, Imperial College London, Hammersmith HospitalDu Cane RoadLondonW12 0NNUK
| | - Marta Braga
- Comprehensive Cancer Imaging Centre, Imperial College London, Hammersmith HospitalDu Cane RoadLondonW12 0NNUK
| | - Chris Barnes
- Comprehensive Cancer Imaging Centre, Imperial College London, Hammersmith HospitalDu Cane RoadLondonW12 0NNUK
| | - Ning Wang
- Comprehensive Cancer Imaging Centre, Imperial College London, Hammersmith HospitalDu Cane RoadLondonW12 0NNUK
| | - Louis Allott
- Positron Emission Tomography Research Centre, Faculty of Health Sciences, University of HullCottingham Road, Kingston upon HullHU6 7RXUK,Department of Biomedical Sciences, Faculty of Health Sciences, University of HullCottingham Road, Kingston upon HullHU6 7RXUK
| | - Eric O. Aboagye
- Comprehensive Cancer Imaging Centre, Imperial College London, Hammersmith HospitalDu Cane RoadLondonW12 0NNUK
| |
Collapse
|
16
|
Yin L, Yao Z, Wang Y, Mazuranic M. Investigational cyclin-dependent kinase 4/6 inhibitor GLR2007 demonstrates activity against isocitrate dehydrogenase wild-type glioblastoma and other solid tumors in mice xenograft models. Front Oncol 2022; 12:915862. [PMID: 36033522 PMCID: PMC9403987 DOI: 10.3389/fonc.2022.915862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/21/2022] [Indexed: 11/18/2022] Open
Abstract
Cyclin-dependent kinases, CDK4 and CDK6, are essential in regulating the cell cycle, which is disrupted in cancers like isocitrate dehydrogenase wild-type glioblastoma (GBM). Currently marketed CDK4/6 inhibitors, including abemaciclib, have shown preclinical efficacy in solid tumors, but factors such as poor blood–brain barrier (BBB) penetration limit their efficacy in GBM. GLR2007 is an investigational CDK4/6 inhibitor with the potential for improved BBB penetration. In vitro assays were used to assess the potency and inhibition of CDK4/6 enzymatic activity of GLR2007. Using in vivo assays, the distribution of radiolabeled GLR2007 in rats was determined through quantitative whole-body autoradiography. The antitumor efficacy of GLR2007 was evaluated in human GBM and breast cancer orthotopic mice xenograft models, and human lung, colorectal, and liver cancer in a subcutaneous xenograft model. In tumor cell line proliferation assays, GLR2007 inhibited proliferation at lower concentration values than abemaciclib in 19 of 20 GBM, five of seven breast, 20 of 21 lung, and 24 of 24 liver cancer cell lines. Total levels of radiolabeled GLR2007 in the brains of rats exceeded those in plasma by 2.3–4.5-fold from 2–6 hours after dosing. A xenograft model showed that, compared with vehicle control, 50 mg/kg GLR2007 induced 95.9% tumor growth inhibition (TGI) (P<0.001) in GBM orthotopic xenografts, 81.4% TGI (P=0.037) in breast cancer orthotopic xenografts, and 91.5% TGI (P<0.001) in colorectal cancer subcutaneous xenografts. These studies show possible BBB penetration of GLR2007 and demonstrate its potential as a CDK4/6 inhibitor for the treatment of solid tumors, including GBM.
Collapse
Affiliation(s)
- Lei Yin
- Gan & Lee Pharmaceuticals, Beijing, China
- *Correspondence: Lei Yin,
| | | | - Yue Wang
- Gan & Lee Pharmaceuticals USA Corp., Bridgewater, NJ, United States
| | | |
Collapse
|
17
|
Rathi S, Griffith JI, Zhang W, Zhang W, Oh JH, Talele S, Sarkaria JN, Elmquist WF. The influence of the blood-brain barrier in the treatment of brain tumours. J Intern Med 2022; 292:3-30. [PMID: 35040235 DOI: 10.1111/joim.13440] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Brain tumours have a poor prognosis and lack effective treatments. The blood-brain barrier (BBB) represents a major hurdle to drug delivery to brain tumours. In some locations in the tumour, the BBB may be disrupted to form the blood-brain tumour barrier (BBTB). This leaky BBTB enables diagnosis of brain tumours by contrast enhanced magnetic resonance imaging; however, this disruption is heterogeneous throughout the tumour. Thus, relying on the disrupted BBTB for achieving effective drug concentrations in brain tumours has met with little clinical success. Because of this, it would be beneficial to design drugs and drug delivery strategies to overcome the 'normal' BBB to effectively treat the brain tumours. In this review, we discuss the role of BBB/BBTB in brain tumour diagnosis and treatment highlighting the heterogeneity of the BBTB. We also discuss various strategies to improve drug delivery across the BBB/BBTB to treat both primary and metastatic brain tumours. Recognizing that the BBB represents a critical determinant of drug efficacy in central nervous system tumours will allow a more rapid translation from basic science to clinical application. A more complete understanding of the factors, such as BBB-limited drug delivery, that have hindered progress in treating both primary and metastatic brain tumours, is necessary to develop more effective therapies.
Collapse
Affiliation(s)
- Sneha Rathi
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Jessica I Griffith
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Wenjuan Zhang
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Wenqiu Zhang
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Ju-Hee Oh
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Surabhi Talele
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - William F Elmquist
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
18
|
Fu H, Wu ZX, Lei ZN, Teng QX, Yang Y, Ashby CR, Lei Y, Lian Y, Chen ZS. The Resistance of Cancer Cells to Palbociclib, a Cyclin-Dependent Kinase 4/6 Inhibitor, is Mediated by the ABCB1 Transporter. Front Pharmacol 2022; 13:861642. [PMID: 35350768 PMCID: PMC8957877 DOI: 10.3389/fphar.2022.861642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Palbociclib was approved by the United States Food and Drug Administration for use, in combination with letrozole, as a first-line treatment for estrogen receptor-positive/human epidermal growth factor receptor 2-negative (ER+/HER2-) postmenopausal metastatic breast cancer. However, recent studies show that palbociclib may be an inhibitor of the ABCB1 transporter, although this remains to be elucidated. Therefore, we conducted experiments to determine the interaction of palbociclib with the ABCB1 transporter. Our in vitro results indicated that the efficacy of palbociclib was significantly decreased in the ABCB1-overexpressing cell lines. Furthermore, the resistance of ABCB1-overexpressing cells to palbociclib was reversed by 3 μM of the ABCB1 inhibitor, verapamil. Moreover, the incubation of ABCB1-overexpressing KB-C2 and SW620/Ad300 cells with up to 5 μM of palbociclib for 72 h, significantly upregulated the protein expression of ABCB1. The incubation with 3 µM of palbociclib for 2h significantly increased the intracellular accumulation of [3H]-paclitaxel, a substrate of ABCB1, in ABCB1 overexpressing KB-C2 cells but not in the corresponding non-resistant parental KB-3-1 cell line. However, the incubation of KB-C2 cells with 3 μM of palbociclib for 72 h decreased the intracellular accumulation of [3H]-paclitaxel due to an increase in the expression of the ABCB1 protein. Palbociclib produced a concentration-dependent increase in the basal ATPase activity of the ABCB1 transporter (EC50 = 4.73 μM). Molecular docking data indicated that palbociclib had a high binding affinity for the ABCB1 transporter at the substrate binding site, suggesting that palbociclib may compete with other ABCB1 substrates for the substrate binding site of the ABCB1. Overall, our results indicate that palbociclib is a substrate for the ABCB1 transporter and that its in vitro anticancer efficacy is significantly decreased in cancer cells overexpressing the ABCB1.
Collapse
Affiliation(s)
- Han Fu
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States.,Guangdong Provincial Key Laboratory of Digestive Cancer Research, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Yixiong Lei
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Yuyin Lian
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| |
Collapse
|
19
|
Quader S, Kataoka K, Cabral H. Nanomedicine for brain cancer. Adv Drug Deliv Rev 2022; 182:114115. [PMID: 35077821 DOI: 10.1016/j.addr.2022.114115] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/18/2021] [Accepted: 01/12/2022] [Indexed: 02/06/2023]
Abstract
CNS tumors remain among the deadliest forms of cancer, resisting conventional and new treatment approaches, with mortality rates staying practically unchanged over the past 30 years. One of the primary hurdles for treating these cancers is delivering drugs to the brain tumor site in therapeutic concentration, evading the blood-brain (tumor) barrier (BBB/BBTB). Supramolecular nanomedicines (NMs) are increasingly demonstrating noteworthy prospects for addressing these challenges utilizing their unique characteristics, such as improving the bioavailability of the payloadsviacontrolled pharmacokinetics and pharmacodynamics, BBB/BBTB crossing functions, superior distribution in the brain tumor site, and tumor-specific drug activation profiles. Here, we review NM-based brain tumor targeting approaches to demonstrate their applicability and translation potential from different perspectives. To this end, we provide a general overview of brain tumor and their treatments, the incidence of the BBB and BBTB, and their role on NM targeting, as well as the potential of NMs for promoting superior therapeutic effects. Additionally, we discuss critical issues of NMs and their clinical trials, aiming to bolster the potential clinical applications of NMs in treating these life-threatening diseases.
Collapse
Affiliation(s)
- Sabina Quader
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 212-0821, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 212-0821, Japan.
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
20
|
Blethen KE, Arsiwala TA, Fladeland RA, Sprowls SA, Panchal DM, Adkins CE, Kielkowski BN, Earp LE, Glass MJ, Pritt TA, Cabuyao YM, Aulakh S, Lockman PR. Modulation of the blood-tumor barrier to enhance drug delivery and efficacy for brain metastases. Neurooncol Adv 2021; 3:v133-v143. [PMID: 34859240 PMCID: PMC8633736 DOI: 10.1093/noajnl/vdab123] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The blood-brain barrier is the selectively permeable vasculature of the brain vital for maintaining homeostasis and neurological function. Low permeability is beneficial in the presence of toxins and pathogens in the blood. However, in the presence of metastatic brain tumors, it is a challenge for drug delivery. Although the blood-tumor barrier is slightly leaky, it still is not permissive enough to allow the accumulation of therapeutic drug concentrations in brain metastases. Herein, we discuss the differences between primary brain tumors and metastatic brain tumors vasculature, effects of therapeutics on the blood-tumor barrier, and characteristics to be manipulated for more effective drug delivery.
Collapse
Affiliation(s)
- Kathryn E Blethen
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA
| | - Tasneem A Arsiwala
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA
| | - Ross A Fladeland
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA
| | - Samuel A Sprowls
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA
| | - Dhruvi M Panchal
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA.,Department of Chemical and Biomedical Engineering, Benjamin M. Statler College of Engineering and Mineral Resources, West Virginia University, Morgantown, West Virginia, USA
| | - Chris E Adkins
- Department of Pharmaceutical Sciences, School of Pharmacy, South University, Savannah, Georgia, USA
| | - Brooke N Kielkowski
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA
| | - Leland E Earp
- Department of Cancer Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Morgan J Glass
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA
| | - Trenton A Pritt
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA
| | - Yssabela M Cabuyao
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA
| | - Sonikpreet Aulakh
- Department of Cancer Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Paul R Lockman
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
21
|
Fang Z, Chen L, Moser MAJ, Zhang W, Qin Z, Zhang B. Electroporation-Based Therapy for Brain Tumors: A Review. J Biomech Eng 2021; 143:100802. [PMID: 33991087 DOI: 10.1115/1.4051184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Indexed: 12/21/2022]
Abstract
Electroporation-based therapy (EBT), as a high-voltage-pulse technology has been prevalent with favorable clinical outcomes in the treatment of various solid tumors. This review paper aims to promote the clinical translation of EBT for brain tumors. First, we briefly introduced the mechanism of pore formation in a cell membrane activated by external electric fields using a single cell model. Then, we summarized and discussed the current in vitro and in vivo preclinical studies, in terms of (1) the safety and effectiveness of EBT for brain tumors in animal models, and (2) the blood-brain barrier (BBB) disruption induced by EBT. Two therapeutic effects could be achieved in EBT for brain tumors simultaneously, i.e., the tumor ablation induced by irreversible electroporation (IRE) and transient BBB disruption induced by reversible electroporation (RE). The BBB disruption could potentially improve the uptake of antitumor drugs thereby enhancing brain tumor treatment. The challenges that hinder the application of EBT in the treatment of human brain tumors are discussed in the review paper as well.
Collapse
Affiliation(s)
- Zheng Fang
- Energy-Based Tumor Ablation Laboratory, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Lingchao Chen
- Department of Neurosurgery, Huashan Hospital Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Michael A J Moser
- Department of Surgery, University of Saskatchewan, Saskatoon SK S7N 5A9, Canada
| | - Wenjun Zhang
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon SK S7N 5A9, Canada
| | - Zhiyong Qin
- Department of Neurosurgery, Huashan Hospital Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Bing Zhang
- Energy-Based Tumor Ablation Laboratory, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| |
Collapse
|
22
|
Kizilbash SH, Gupta SK, Parrish KE, Laramy JK, Kim M, Gampa G, Carlson BL, Bakken KK, Mladek AC, Schroeder MA, Decker PA, Elmquist WF, Sarkaria JN. In Vivo Efficacy of Tesevatinib in EGFR-Amplified Patient-Derived Xenograft Glioblastoma Models May Be Limited by Tissue Binding and Compensatory Signaling. Mol Cancer Ther 2021; 20:1009-1018. [PMID: 33785646 DOI: 10.1158/1535-7163.mct-20-0640] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/02/2021] [Accepted: 03/23/2021] [Indexed: 11/16/2022]
Abstract
Tesevatinib is a potent oral brain penetrant EGFR inhibitor currently being evaluated for glioblastoma therapy. Tesevatinib distribution was assessed in wild-type (WT) and Mdr1a/b(-/-)Bcrp(-/-) triple knockout (TKO) FVB mice after dosing orally or via osmotic minipump; drug-tissue binding was assessed by rapid equilibrium dialysis. Two hours after tesevatinib dosing, brain concentrations in WT and TKO mice were 0.72 and 10.03 μg/g, respectively. Brain-to-plasma ratios (Kp) were 0.53 and 5.73, respectively. With intraperitoneal infusion, brain concentrations were 1.46 and 30.6 μg/g (Kp 1.16 and 25.10), respectively. The brain-to-plasma unbound drug concentration ratios were substantially lower (WT mice, 0.03-0.08; TKO mice, 0.40-1.75). Unbound drug concentrations in brains of WT mice were 0.78 to 1.59 ng/g. In vitro cytotoxicity and EGFR pathway signaling were evaluated using EGFR-amplified patient-derived glioblastoma xenograft models (GBM12, GBM6). In vivo pharmacodynamics and efficacy were assessed using athymic nude mice bearing either intracranial or flank tumors treated by oral gavage. Tesevatinib potently reduced cell viability [IC50 GBM12 = 11 nmol/L (5.5 ng/mL), GBM6 = 102 nmol/L] and suppressed EGFR signaling in vitro However, tesevatinib efficacy compared with vehicle in intracranial (GBM12, median survival: 23 vs. 18 days, P = 0.003) and flank models (GBM12, median time to outcome: 41 vs. 33 days, P = 0.007; GBM6, 44 vs. 33 days, P = 0.007) was modest and associated with partial inhibition of EGFR signaling. Overall, tesevatinib efficacy in EGFR-amplified PDX GBM models is robust in vitro but relatively modest in vivo, despite a high brain-to-plasma ratio. This discrepancy may be explained by drug-tissue binding and compensatory signaling.
Collapse
Affiliation(s)
| | - Shiv K Gupta
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Karen E Parrish
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Janice K Laramy
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Minjee Kim
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Gautham Gampa
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Brett L Carlson
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Katrina K Bakken
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Ann C Mladek
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Mark A Schroeder
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Paul A Decker
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - William F Elmquist
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
23
|
Banerjee K, Núñez FJ, Haase S, McClellan BL, Faisal SM, Carney SV, Yu J, Alghamri MS, Asad AS, Candia AJN, Varela ML, Candolfi M, Lowenstein PR, Castro MG. Current Approaches for Glioma Gene Therapy and Virotherapy. Front Mol Neurosci 2021; 14:621831. [PMID: 33790740 PMCID: PMC8006286 DOI: 10.3389/fnmol.2021.621831] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive primary brain tumor in the adult population and it carries a dismal prognosis. Inefficient drug delivery across the blood brain barrier (BBB), an immunosuppressive tumor microenvironment (TME) and development of drug resistance are key barriers to successful glioma treatment. Since gliomas occur through sequential acquisition of genetic alterations, gene therapy, which enables to modification of the genetic make-up of target cells, appears to be a promising approach to overcome the obstacles encountered by current therapeutic strategies. Gene therapy is a rapidly evolving field with the ultimate goal of achieving specific delivery of therapeutic molecules using either viral or non-viral delivery vehicles. Gene therapy can also be used to enhance immune responses to tumor antigens, reprogram the TME aiming at blocking glioma-mediated immunosuppression and normalize angiogenesis. Nano-particles-mediated gene therapy is currently being developed to overcome the BBB for glioma treatment. Another approach to enhance the anti-glioma efficacy is the implementation of viro-immunotherapy using oncolytic viruses, which are immunogenic. Oncolytic viruses kill tumor cells due to cancer cell-specific viral replication, and can also initiate an anti-tumor immunity. However, concerns still remain related to off target effects, and therapeutic and transduction efficiency. In this review, we describe the rationale and strategies as well as advantages and disadvantages of current gene therapy approaches against gliomas in clinical and preclinical studies. This includes different delivery systems comprising of viral, and non-viral delivery platforms along with suicide/prodrug, oncolytic, cytokine, and tumor suppressor-mediated gene therapy approaches. In addition, advances in glioma treatment through BBB-disruptive gene therapy and anti-EGFRvIII/VEGFR gene therapy are also discussed. Finally, we discuss the results of gene therapy-mediated human clinical trials for gliomas. In summary, we highlight the progress, prospects and remaining challenges of gene therapies aiming at broadening our understanding and highlighting the therapeutic arsenal for GBM.
Collapse
Affiliation(s)
- Kaushik Banerjee
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Felipe J. Núñez
- Laboratory of Molecular and Cellular Therapy, Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Santiago Haase
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Brandon L. McClellan
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Immunology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Syed M. Faisal
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Stephen V. Carney
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Cancer Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Jin Yu
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Mahmoud S. Alghamri
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Antonela S. Asad
- Departamento de Biología e Histología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro J. Nicola Candia
- Departamento de Biología e Histología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maria Luisa Varela
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Marianela Candolfi
- Departamento de Biología e Histología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pedro R. Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maria G. Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
24
|
Riess C, Irmscher N, Salewski I, Strüder D, Classen CF, Große-Thie C, Junghanss C, Maletzki C. Cyclin-dependent kinase inhibitors in head and neck cancer and glioblastoma-backbone or add-on in immune-oncology? Cancer Metastasis Rev 2021; 40:153-171. [PMID: 33161487 PMCID: PMC7897202 DOI: 10.1007/s10555-020-09940-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022]
Abstract
Cyclin-dependent kinases (CDK) control the cell cycle and play a crucial role in oncogenesis. Pharmacologic inhibition of CDK has contributed to the recent clinical approval of dual CDK4/6 inhibitors for the treatment of breast and small cell lung cancer. While the anticancer cell effects of CDK inhibitors are well-established, preclinical and early clinical studies describe additional mechanisms of action such as chemo- and radiosensitization or immune stimulation. The latter offers great potential to incorporate CDK inhibitors in immune-based treatments. However, dosing schedules and accurate timing of each combination partner need to be respected to prevent immune escape and resistance. In this review, we provide a detailed summary of CDK inhibitors in the two solid cancer types head and neck cancer and glioblastoma multiforme; it describes the molecular mechanisms of response vs. resistance and covers strategies to avoid resistance by the combination of immunotherapy or targeted therapy.
Collapse
Affiliation(s)
- Christin Riess
- Department of Medicine, Clinic III - Hematology, Oncology and Palliative Care, Rostock University Medical Center, Rostock, Germany
- University Children's and Adolescents' Hospital, Rostock University Medical Center, Rostock, Germany
| | - Nina Irmscher
- Department of Medicine, Clinic III - Hematology, Oncology and Palliative Care, Rostock University Medical Center, Rostock, Germany
| | - Inken Salewski
- Department of Medicine, Clinic III - Hematology, Oncology and Palliative Care, Rostock University Medical Center, Rostock, Germany
| | - Daniel Strüder
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery "Otto Körner", Rostock University Medical Center, Rostock, Germany
| | - Carl-Friedrich Classen
- University Children's and Adolescents' Hospital, Rostock University Medical Center, Rostock, Germany
| | - Christina Große-Thie
- Department of Medicine, Clinic III - Hematology, Oncology and Palliative Care, Rostock University Medical Center, Rostock, Germany
| | - Christian Junghanss
- Department of Medicine, Clinic III - Hematology, Oncology and Palliative Care, Rostock University Medical Center, Rostock, Germany
| | - Claudia Maletzki
- Department of Medicine, Clinic III - Hematology, Oncology and Palliative Care, Rostock University Medical Center, Rostock, Germany.
| |
Collapse
|
25
|
de Gooijer MC, Kemper EM, Buil LCM, Çitirikkaya CH, Buckle T, Beijnen JH, van Tellingen O. ATP-binding cassette transporters restrict drug delivery and efficacy against brain tumors even when blood-brain barrier integrity is lost. CELL REPORTS MEDICINE 2021; 2:100184. [PMID: 33521698 PMCID: PMC7817868 DOI: 10.1016/j.xcrm.2020.100184] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/21/2020] [Accepted: 12/16/2020] [Indexed: 12/22/2022]
Abstract
The impact of a compromised blood-brain barrier (BBB) on the drug treatment of intracranial tumors remains controversial. We characterize the BBB integrity in several intracranial tumor models using magnetic resonance imaging, fluorescent dyes, and autoradiography and determine the distribution and efficacy of docetaxel in brain tumors grafted in Abcb1-proficient and Abcb1-deficient mice. Leakiness of the tumor vasculature varies from extensive to absent. Regardless of the extent of leakiness, tumor blood vessels express ATP-binding cassette transporters (Abcb1 and Abcg2). A leaky vasculature results in higher docetaxel tumor levels compared to normal brain. Nevertheless, Abcb1 can reduce drug distribution and efficacy even in leaky models. Thus, BBB leakiness does not ensure the unimpeded access of ATP-binding cassette transporter substrate drugs. Therapeutic responses may be observed, but the full potential of such therapeutics may still be attenuated. Consequently, BBB-penetrable drugs with little to no affinity for efflux transporters are preferred for the treatment of intracranial tumors. Blood-brain barrier integrity in brain tumor models varies from intact to absent Brain tumor vessels express drug efflux transporters Drug transporters can impede drug entry and efficacy, even in leaky tumors Low-affinity ABC transporter drugs are favored candidates for treating brain tumors
Collapse
Affiliation(s)
- Mark C de Gooijer
- Division of Pharmacology, the Netherlands Cancer Institute, Amsterdam, the Netherlands.,Mouse Cancer Clinic, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - E Marleen Kemper
- Department of Hospital Pharmacy, Academic Medical Center, Amsterdam, the Netherlands
| | - Levi C M Buil
- Division of Pharmacology, the Netherlands Cancer Institute, Amsterdam, the Netherlands.,Mouse Cancer Clinic, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ceren H Çitirikkaya
- Division of Pharmacology, the Netherlands Cancer Institute, Amsterdam, the Netherlands.,Mouse Cancer Clinic, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Tessa Buckle
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jos H Beijnen
- Division of Pharmacology, the Netherlands Cancer Institute, Amsterdam, the Netherlands.,Department of Pharmacy and Pharmacology, the Netherlands Cancer Institute, Amsterdam, the Netherlands.,Division of Pharmacoepidemiology and Clinical Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Olaf van Tellingen
- Division of Pharmacology, the Netherlands Cancer Institute, Amsterdam, the Netherlands.,Mouse Cancer Clinic, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
26
|
Griffith JI, Rathi S, Zhang W, Zhang W, Drewes LR, Sarkaria JN, Elmquist WF. Addressing BBB Heterogeneity: A New Paradigm for Drug Delivery to Brain Tumors. Pharmaceutics 2020; 12:E1205. [PMID: 33322488 PMCID: PMC7763839 DOI: 10.3390/pharmaceutics12121205] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022] Open
Abstract
Effective treatments for brain tumors remain one of the most urgent and unmet needs in modern oncology. This is due not only to the presence of the neurovascular unit/blood-brain barrier (NVU/BBB) but also to the heterogeneity of barrier alteration in the case of brain tumors, which results in what is referred to as the blood-tumor barrier (BTB). Herein, we discuss this heterogeneity, how it contributes to the failure of novel pharmaceutical treatment strategies, and why a "whole brain" approach to the treatment of brain tumors might be beneficial. We discuss various methods by which these obstacles might be overcome and assess how these strategies are progressing in the clinic. We believe that by approaching brain tumor treatment from this perspective, a new paradigm for drug delivery to brain tumors might be established.
Collapse
Affiliation(s)
- Jessica I. Griffith
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA; (S.R.); (W.Z.); (W.Z.)
| | - Sneha Rathi
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA; (S.R.); (W.Z.); (W.Z.)
| | - Wenqiu Zhang
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA; (S.R.); (W.Z.); (W.Z.)
| | - Wenjuan Zhang
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA; (S.R.); (W.Z.); (W.Z.)
| | - Lester R. Drewes
- Department of Biomedical Sciences, University of Minnesota Medical School—Duluth, Duluth, MN 55812, USA;
| | - Jann N. Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55902, USA;
| | - William F. Elmquist
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA; (S.R.); (W.Z.); (W.Z.)
| |
Collapse
|
27
|
Lazow MA, Johnson SL, Johnson ND, Breneman JC, Dexheimer PJ, Szabo S, Pressey JG. Genome-Driven Therapy for Chemotherapy-Resistant Metastatic CDK6-Amplified Osteosarcoma. JCO Precis Oncol 2020; 4:498-504. [PMID: 35050742 DOI: 10.1200/po.20.00032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Margot A Lazow
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Sheryl L Johnson
- Division of Pathology and Laboratory Medicine, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.,Department of Pathology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Neil D Johnson
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - John C Breneman
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Phillip J Dexheimer
- Department of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Sara Szabo
- Division of Pathology and Laboratory Medicine, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.,Department of Pathology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Joseph G Pressey
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
28
|
Yadav P, Shah K. An overview on synthetic and pharmaceutical prospective of pyrido[2,3-d]pyrimidines scaffold. Chem Biol Drug Des 2020; 97:633-648. [PMID: 32946161 DOI: 10.1111/cbdd.13800] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/30/2020] [Accepted: 09/03/2020] [Indexed: 12/26/2022]
Abstract
Pyrido[2,3-d]pyrimidine, a fused hetero-bicyclic nucleus containing pyridine and pyrimidine rings has attained the momentary attention in the sphere of multicomponent synthetic protocol and medicinal chemist. Pyrido[2,3-d]pyrimidine derived drugs have manifested diverse pharmacological activities, particularly, anti-inflammatory, cytotoxic, antimicrobial, phosphodiesterase inhibitors and cytokine inhibitors etc. The present review illustrates various modern synthetic strategies adopted, the structure-activity relationship (SAR) aspects and discloses the extensive crucial biological properties (anticancer, anti-infectious, anti-diabetics and CNS agents) of pyrido[2,3-d]pyrimidines.
Collapse
Affiliation(s)
- Pratibha Yadav
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, India
| | - Kamal Shah
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, India
| |
Collapse
|
29
|
Li J, Jiang J, Wu J, Bao X, Sanai N. Physiologically Based Pharmacokinetic Modeling of Central Nervous System Pharmacokinetics of CDK4/6 Inhibitors to Guide Selection of Drug and Dosing Regimen for Brain Cancer Treatment. Clin Pharmacol Ther 2020; 109:494-506. [PMID: 32799335 PMCID: PMC7854954 DOI: 10.1002/cpt.2021] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/06/2020] [Indexed: 12/21/2022]
Abstract
A better understanding of the human central nervous system (CNS) pharmacokinetics is critical to the selection of the right drug and refinement of dosing regimen for more effective treatment of primary and metastatic brain cancer. Using the physiologically‐based pharmacokinetic (PBPK) modeling approach, we systematically compared the CNS pharmacokinetics of three cyclin D‐cyclin dependent kinase 4 and 6 (CDK4/6) inhibitors (ribociclib, palbociclib, and abemaciclib) in patients with cancer. A PBPK model platform was developed and verified for predicting plasma and CNS pharmacokinetics. Target engagement ratio (TER), defined as the ratio of the average steady‐state unbound drug brain concentration to the in vitro half‐maximal inhibitory concentration (IC50) for CDK4/6 inhibition, was used as a crude predictor of efficacy. As compared with ribociclib and palbociclib, abemaciclib penetrated into the human brain to a larger extent, but at a slower rate, and was retained in the brain longer. Following the standard dosing regimens, the predicted CDK4/6 TERs were 26/5.2 for abemaciclib, 2.4/0.62 for ribociclib, and 0.36/0.27 for palbociclib. Simulations suggested that abemaciclib achieved comparable TERs following twice daily or daily dosing; ribociclib may sufficiently inhibit both CDK4 and CDK6 at the maximum tolerated dose; whereas, palbociclib achieved TERs < 0.5 even at a dose 50% higher than the standard dose. In conclusion, the PBPK modeling, supported by available preclinical and clinical evidence, suggests that abemaciclib is the best CDK4/6 inhibitor for brain cancer treatment, whereas palbociclib is not recommended. The model refined dosing regimen is 300 mg daily on a 4‐weeks‐on schedule for abemaciclib, and 900 mg daily on a 3‐weeks‐on/1‐week‐off schedule for ribociclib.
Collapse
Affiliation(s)
- Jing Li
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Jun Jiang
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Jianmei Wu
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Xun Bao
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Nader Sanai
- Barrow Neurological Institute, St. Joseph's Hospital & Medical Center, Phoenix, Arizona, USA
| |
Collapse
|
30
|
Cai S, Wang J, Zeng W, Cheng X, Liu L, Li W. Lysine-specific histone demethylase 1B (LSD2/KDM1B) represses p53 expression to promote proliferation and inhibit apoptosis in colorectal cancer through LSD2-mediated H3K4me2 demethylation. Aging (Albany NY) 2020; 12:14990-15001. [PMID: 32726297 PMCID: PMC7425427 DOI: 10.18632/aging.103558] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/04/2020] [Indexed: 11/25/2022]
Abstract
Epigenetic alterations have been reported to play critical roles in the development of colorectal cancer (CRC). However, the biological function of the lysine-specific histone demethylase 1B (LSD2/KDM1B) in CRC is not well understood. Therefore, we investigated the characteristics of LSD2 in CRC. We observed significant upregulation of LSD2 in CRC tissue compared to that in normal colorectal tissue. LSD2 promotes CRC cell proliferation and inhibits cell apoptosis through cell cycle regulation, promoting CRC progression both in vitro and in vivo. We found that LSD2 performs these functions by inhibiting the p53-p21-Rb pathway. Finally, we found that LSD2 directly binds to p53 and represses p53 expression via H3K4me2 demethylation at the p53 promoter. Our results revealed that LSD2 acts as an oncogene by binding and inhibiting p53 activity in CRC. Thus, LSD2 may be a new molecular target for CRC treatment.
Collapse
Affiliation(s)
- Shaoxin Cai
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
- Department of Surgical Oncology, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Jinsi Wang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
- Department of Surgical Oncology, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Wei Zeng
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
- Department of Surgical Oncology, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Xuefei Cheng
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
- Department of Surgical Oncology, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Lihang Liu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
- Department of Surgical Oncology, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Weihua Li
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
- Department of Surgical Oncology, Fujian Provincial Hospital, Fuzhou 350001, China
| |
Collapse
|
31
|
Gampa G, Kenchappa RS, Mohammad AS, Parrish KE, Kim M, Crish JF, Luu A, West R, Hinojosa AQ, Sarkaria JN, Rosenfeld SS, Elmquist WF. Enhancing Brain Retention of a KIF11 Inhibitor Significantly Improves its Efficacy in a Mouse Model of Glioblastoma. Sci Rep 2020; 10:6524. [PMID: 32300151 PMCID: PMC7162859 DOI: 10.1038/s41598-020-63494-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/21/2020] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma, the most lethal primary brain cancer, is extremely proliferative and invasive. Tumor cells at tumor/brain-interface often exist behind a functionally intact blood-brain barrier (BBB), and so are shielded from exposure to therapeutic drug concentrations. An ideal glioblastoma treatment needs to engage targets that drive proliferation as well as invasion, with brain penetrant therapies. One such target is the mitotic kinesin KIF11, which can be inhibited with ispinesib, a potent molecularly-targeted drug. Although, achieving durable brain exposures of ispinesib is critical for adequate tumor cell engagement during mitosis, when tumor cells are vulnerable, for efficacy. Our results demonstrate that the delivery of ispinesib is restricted by P-gp and Bcrp efflux at BBB. Thereby, ispinesib distribution is heterogeneous with concentrations substantially lower in invasive tumor rim (intact BBB) compared to glioblastoma core (disrupted BBB). We further find that elacridar—a P-gp and Bcrp inhibitor—improves brain accumulation of ispinesib, resulting in remarkably reduced tumor growth and extended survival in a rodent model of glioblastoma. Such observations show the benefits and feasibility of pairing a potentially ideal treatment with a compound that improves its brain accumulation, and supports use of this strategy in clinical exploration of cell cycle-targeting therapies in brain cancers.
Collapse
Affiliation(s)
- Gautham Gampa
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | | | - Afroz S Mohammad
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Karen E Parrish
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Minjee Kim
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - James F Crish
- Department of Cancer Biology, Cleveland Clinic, Cleveland, OH, USA
| | - Amanda Luu
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Rita West
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | | | - William F Elmquist
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
32
|
Gomez-Zepeda D, Taghi M, Scherrmann JM, Decleves X, Menet MC. ABC Transporters at the Blood-Brain Interfaces, Their Study Models, and Drug Delivery Implications in Gliomas. Pharmaceutics 2019; 12:pharmaceutics12010020. [PMID: 31878061 PMCID: PMC7022905 DOI: 10.3390/pharmaceutics12010020] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/13/2019] [Accepted: 12/20/2019] [Indexed: 12/22/2022] Open
Abstract
Drug delivery into the brain is regulated by the blood-brain interfaces. The blood-brain barrier (BBB), the blood-cerebrospinal fluid barrier (BCSFB), and the blood-arachnoid barrier (BAB) regulate the exchange of substances between the blood and brain parenchyma. These selective barriers present a high impermeability to most substances, with the selective transport of nutrients and transporters preventing the entry and accumulation of possibly toxic molecules, comprising many therapeutic drugs. Transporters of the ATP-binding cassette (ABC) superfamily have an important role in drug delivery, because they extrude a broad molecular diversity of xenobiotics, including several anticancer drugs, preventing their entry into the brain. Gliomas are the most common primary tumors diagnosed in adults, which are often characterized by a poor prognosis, notably in the case of high-grade gliomas. Therapeutic treatments frequently fail due to the difficulty of delivering drugs through the brain barriers, adding to diverse mechanisms developed by the cancer, including the overexpression or expression de novo of ABC transporters in tumoral cells and/or in the endothelial cells forming the blood-brain tumor barrier (BBTB). Many models have been developed to study the phenotype, molecular characteristics, and function of the blood-brain interfaces as well as to evaluate drug permeability into the brain. These include in vitro, in vivo, and in silico models, which together can help us to better understand their implication in drug resistance and to develop new therapeutics or delivery strategies to improve the treatment of pathologies of the central nervous system (CNS). In this review, we present the principal characteristics of the blood-brain interfaces; then, we focus on the ABC transporters present on them and their implication in drug delivery; next, we present some of the most important models used for the study of drug transport; finally, we summarize the implication of ABC transporters in glioma and the BBTB in drug resistance and the strategies to improve the delivery of CNS anticancer drugs.
Collapse
Affiliation(s)
- David Gomez-Zepeda
- Inserm, UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (M.T.); (J.-M.S.); (X.D.)
- Sorbonne Paris Cité, Université Paris Descartes, 75006 Paris, France
- Sorbonne Paris Cité, Université Paris Diderot, 75013 Paris, France
- Correspondence: (D.G.-Z.); (M.-C.M.)
| | - Méryam Taghi
- Inserm, UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (M.T.); (J.-M.S.); (X.D.)
- Sorbonne Paris Cité, Université Paris Descartes, 75006 Paris, France
- Sorbonne Paris Cité, Université Paris Diderot, 75013 Paris, France
| | - Jean-Michel Scherrmann
- Inserm, UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (M.T.); (J.-M.S.); (X.D.)
- Sorbonne Paris Cité, Université Paris Descartes, 75006 Paris, France
- Sorbonne Paris Cité, Université Paris Diderot, 75013 Paris, France
| | - Xavier Decleves
- Inserm, UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (M.T.); (J.-M.S.); (X.D.)
- Sorbonne Paris Cité, Université Paris Descartes, 75006 Paris, France
- Sorbonne Paris Cité, Université Paris Diderot, 75013 Paris, France
- UF Biologie du médicament et toxicologie, Hôpital Cochin, AP HP, 75006 Paris, France
| | - Marie-Claude Menet
- Inserm, UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (M.T.); (J.-M.S.); (X.D.)
- Sorbonne Paris Cité, Université Paris Descartes, 75006 Paris, France
- Sorbonne Paris Cité, Université Paris Diderot, 75013 Paris, France
- UF Hormonologie adulte, Hôpital Cochin, AP HP, 75006 Paris, France
- Correspondence: (D.G.-Z.); (M.-C.M.)
| |
Collapse
|
33
|
Loretan L, Moskovszky LE, Kurrer M, Exner GU, Trojan A. Efficacy of a CDK4/6 Inhibitor in a Patient with Breast Cancer and Liposarcoma: A Case Report and Review of the Literature. Breast Care (Basel) 2019; 14:325-328. [PMID: 31798393 PMCID: PMC6883449 DOI: 10.1159/000493370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The cyclin D/cyclin-dependent kinase (CDK)4/6 inhibitor of the CDK4 (INK4)/retinoblastoma (Rb) pathway plays a crucial role in cell cycle progression. Selective CDK4/6 inhibitors specifically target a variety of tumors, with the main focus on hormone receptor(HR)-positive and human epidermal growth factor receptor 2(HER2)-negative breast cancer (BC). CASE REPORT We report on the efficacy of neoadjuvant palbociclib and letrozole application in a patient suffering from invasive estrogen receptor (ER)+/HER2- BC and concurrent well-differentiated and dedifferentiated liposarcoma (WD-DDLPS) of the thigh. Clinical and histological workup upon surgery revealed significant regressive changes in both the liposarcoma and the BC. The 24-month follow-up shows no signs of disease. CONCLUSION CDK4/6 inhibitors exhibit a high therapeutic potential, although reliable prognostic markers need to be identified.
Collapse
Affiliation(s)
| | | | - Michael Kurrer
- Gemeinschaftspraxis Pathologie Zürich, Zürich, Switzerland
| | | | | |
Collapse
|
34
|
Zhang D, Hop CECA, Patilea-Vrana G, Gampa G, Seneviratne HK, Unadkat JD, Kenny JR, Nagapudi K, Di L, Zhou L, Zak M, Wright MR, Bumpus NN, Zang R, Liu X, Lai Y, Khojasteh SC. Drug Concentration Asymmetry in Tissues and Plasma for Small Molecule-Related Therapeutic Modalities. Drug Metab Dispos 2019; 47:1122-1135. [PMID: 31266753 PMCID: PMC6756291 DOI: 10.1124/dmd.119.086744] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/10/2019] [Indexed: 02/06/2023] Open
Abstract
The well accepted "free drug hypothesis" for small-molecule drugs assumes that only the free (unbound) drug concentration at the therapeutic target can elicit a pharmacologic effect. Unbound (free) drug concentrations in plasma are readily measurable and are often used as surrogates for the drug concentrations at the site of pharmacologic action in pharmacokinetic-pharmacodynamic analysis and clinical dose projection in drug discovery. Furthermore, for permeable compounds at pharmacokinetic steady state, the free drug concentration in tissue is likely a close approximation of that in plasma; however, several factors can create and maintain disequilibrium between the free drug concentration in plasma and tissue, leading to free drug concentration asymmetry. These factors include drug uptake and extrusion mechanisms involving the uptake and efflux drug transporters, intracellular biotransformation of prodrugs, membrane receptor-mediated uptake of antibody-drug conjugates, pH gradients, unique distribution properties (covalent binders, nanoparticles), and local drug delivery (e.g., inhalation). The impact of these factors on the free drug concentrations in tissues can be represented by K p,uu, the ratio of free drug concentration between tissue and plasma at steady state. This review focuses on situations in which free drug concentrations in tissues may differ from those in plasma (e.g., K p,uu > or <1) and discusses the limitations of the surrogate approach of using plasma-free drug concentration to predict free drug concentrations in tissue. This is an important consideration for novel therapeutic modalities since systemic exposure as a driver of pharmacologic effects may provide limited value in guiding compound optimization, selection, and advancement. Ultimately, a deeper understanding of the relationship between free drug concentrations in plasma and tissues is needed.
Collapse
Affiliation(s)
- Donglu Zhang
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Cornelis E C A Hop
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Gabriela Patilea-Vrana
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Gautham Gampa
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Herana Kamal Seneviratne
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Jashvant D Unadkat
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Jane R Kenny
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Karthik Nagapudi
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Li Di
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Lian Zhou
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Mark Zak
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Matthew R Wright
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Namandjé N Bumpus
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Richard Zang
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Xingrong Liu
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Yurong Lai
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - S Cyrus Khojasteh
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| |
Collapse
|
35
|
Jove M, Spencer JA, Hubbard ME, Holden EC, O'Dea RD, Brook BS, Phillips RM, Smye SW, Loadman PM, Twelves CJ. Cellular Uptake and Efflux of Palbociclib In Vitro in Single Cell and Spheroid Models. J Pharmacol Exp Ther 2019; 370:242-251. [PMID: 31189729 DOI: 10.1124/jpet.119.256693] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/06/2019] [Indexed: 01/03/2025] Open
Abstract
Adequate drug distribution through tumors is essential for treatment to be effective. Palbociclib is a cyclin-dependent kinase 4/6 inhibitor approved for use in patients with hormone receptor positive, human epidermal growth factor receptor 2 negative metastatic breast cancer. It has unusual physicochemical properties, which may significantly influence its distribution in tumor tissue. We studied the penetration and distribution of palbociclib in vitro, including the use of multicellular three-dimensional models and mathematical modeling. MCF-7 and DLD-1 cell lines were grown as single cell suspensions (SCS) and spheroids; palbociclib uptake and efflux were studied using liquid chromatography-tandem mass spectrometry. Intracellular concentrations of palbociclib for MCF-7 SCS (C max 3.22 µM) and spheroids (C max 2.91 µM) were 32- and 29-fold higher and in DLD-1, 13- and 7-fold higher, respectively, than the media concentration (0.1 μM). Total palbociclib uptake was lower in DLD-1 cells than MCF-7 cells in both SCS and spheroids. Both uptake and efflux of palbociclib were slower in spheroids than SCS. These data were used to develop a mathematical model of palbociclib transport that quantifies key parameters determining drug penetration and distribution. The model reproduced qualitatively most features of the experimental data and distinguished between SCS and spheroids, providing additional support for hypotheses derived from the experimental data. Mathematical modeling has the potential for translating in vitro data into clinically relevant estimates of tumor drug concentrations. SIGNIFICANCE STATEMENT: This study explores palbociclib uptake and efflux in single cell suspension and spheroid models of cancer. Large intracellular concentrations of palbociclib are found after drug exposure. The data from this study may aid understanding of the intratumoural pharmacokinetics of palbociclib, which is useful in understanding how drug distributes within tumor tissue and optimizing drug efficacy. Biomathematical modelling has the potential to derive intratumoural drug concentrations from plasma pharmacokinetics in patients.
Collapse
Affiliation(s)
- M Jove
- Institut Català d'Oncologia, Medical Oncology Department, Barcelona, Spain (M.J.); Institute of Cancer Therapeutics, University of Bradford, Bradford, United Kingdom (J.A.S., P.M.L.); School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, United Kingdom (M.E.H., E.C.H., R.D.O., B.S.B.); School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, United Kingdom (R.M.P.); School of Medicine, University of Leeds, Leeds, United Kingdom (S.W.S.); and University of Leeds and Leeds Teaching Hospitals, National Health Service Trust, St. James's University Hospital, Leeds, United Kingdom (C.J.T.)
| | - J A Spencer
- Institut Català d'Oncologia, Medical Oncology Department, Barcelona, Spain (M.J.); Institute of Cancer Therapeutics, University of Bradford, Bradford, United Kingdom (J.A.S., P.M.L.); School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, United Kingdom (M.E.H., E.C.H., R.D.O., B.S.B.); School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, United Kingdom (R.M.P.); School of Medicine, University of Leeds, Leeds, United Kingdom (S.W.S.); and University of Leeds and Leeds Teaching Hospitals, National Health Service Trust, St. James's University Hospital, Leeds, United Kingdom (C.J.T.)
| | - M E Hubbard
- Institut Català d'Oncologia, Medical Oncology Department, Barcelona, Spain (M.J.); Institute of Cancer Therapeutics, University of Bradford, Bradford, United Kingdom (J.A.S., P.M.L.); School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, United Kingdom (M.E.H., E.C.H., R.D.O., B.S.B.); School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, United Kingdom (R.M.P.); School of Medicine, University of Leeds, Leeds, United Kingdom (S.W.S.); and University of Leeds and Leeds Teaching Hospitals, National Health Service Trust, St. James's University Hospital, Leeds, United Kingdom (C.J.T.)
| | - E C Holden
- Institut Català d'Oncologia, Medical Oncology Department, Barcelona, Spain (M.J.); Institute of Cancer Therapeutics, University of Bradford, Bradford, United Kingdom (J.A.S., P.M.L.); School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, United Kingdom (M.E.H., E.C.H., R.D.O., B.S.B.); School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, United Kingdom (R.M.P.); School of Medicine, University of Leeds, Leeds, United Kingdom (S.W.S.); and University of Leeds and Leeds Teaching Hospitals, National Health Service Trust, St. James's University Hospital, Leeds, United Kingdom (C.J.T.)
| | - R D O'Dea
- Institut Català d'Oncologia, Medical Oncology Department, Barcelona, Spain (M.J.); Institute of Cancer Therapeutics, University of Bradford, Bradford, United Kingdom (J.A.S., P.M.L.); School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, United Kingdom (M.E.H., E.C.H., R.D.O., B.S.B.); School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, United Kingdom (R.M.P.); School of Medicine, University of Leeds, Leeds, United Kingdom (S.W.S.); and University of Leeds and Leeds Teaching Hospitals, National Health Service Trust, St. James's University Hospital, Leeds, United Kingdom (C.J.T.)
| | - B S Brook
- Institut Català d'Oncologia, Medical Oncology Department, Barcelona, Spain (M.J.); Institute of Cancer Therapeutics, University of Bradford, Bradford, United Kingdom (J.A.S., P.M.L.); School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, United Kingdom (M.E.H., E.C.H., R.D.O., B.S.B.); School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, United Kingdom (R.M.P.); School of Medicine, University of Leeds, Leeds, United Kingdom (S.W.S.); and University of Leeds and Leeds Teaching Hospitals, National Health Service Trust, St. James's University Hospital, Leeds, United Kingdom (C.J.T.)
| | - R M Phillips
- Institut Català d'Oncologia, Medical Oncology Department, Barcelona, Spain (M.J.); Institute of Cancer Therapeutics, University of Bradford, Bradford, United Kingdom (J.A.S., P.M.L.); School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, United Kingdom (M.E.H., E.C.H., R.D.O., B.S.B.); School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, United Kingdom (R.M.P.); School of Medicine, University of Leeds, Leeds, United Kingdom (S.W.S.); and University of Leeds and Leeds Teaching Hospitals, National Health Service Trust, St. James's University Hospital, Leeds, United Kingdom (C.J.T.)
| | - S W Smye
- Institut Català d'Oncologia, Medical Oncology Department, Barcelona, Spain (M.J.); Institute of Cancer Therapeutics, University of Bradford, Bradford, United Kingdom (J.A.S., P.M.L.); School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, United Kingdom (M.E.H., E.C.H., R.D.O., B.S.B.); School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, United Kingdom (R.M.P.); School of Medicine, University of Leeds, Leeds, United Kingdom (S.W.S.); and University of Leeds and Leeds Teaching Hospitals, National Health Service Trust, St. James's University Hospital, Leeds, United Kingdom (C.J.T.)
| | - P M Loadman
- Institut Català d'Oncologia, Medical Oncology Department, Barcelona, Spain (M.J.); Institute of Cancer Therapeutics, University of Bradford, Bradford, United Kingdom (J.A.S., P.M.L.); School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, United Kingdom (M.E.H., E.C.H., R.D.O., B.S.B.); School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, United Kingdom (R.M.P.); School of Medicine, University of Leeds, Leeds, United Kingdom (S.W.S.); and University of Leeds and Leeds Teaching Hospitals, National Health Service Trust, St. James's University Hospital, Leeds, United Kingdom (C.J.T.)
| | - C J Twelves
- Institut Català d'Oncologia, Medical Oncology Department, Barcelona, Spain (M.J.); Institute of Cancer Therapeutics, University of Bradford, Bradford, United Kingdom (J.A.S., P.M.L.); School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, United Kingdom (M.E.H., E.C.H., R.D.O., B.S.B.); School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, United Kingdom (R.M.P.); School of Medicine, University of Leeds, Leeds, United Kingdom (S.W.S.); and University of Leeds and Leeds Teaching Hospitals, National Health Service Trust, St. James's University Hospital, Leeds, United Kingdom (C.J.T.)
| |
Collapse
|
36
|
Abstract
Deregulated cell division, resulting in aberrant cell proliferation, is one of the key hallmarks of cancer. Cyclin-dependent kinases (CDKs) play a central role in cell cycle progression in cancer, and the clinical development of the CDK4/6 inhibitors palbociclib, ribociclib, and abemaciclib has changed clinical practice in the setting of endocrine-receptor positive breast cancer. Results of pivotal phase II and III trials investigating these CDK4/6 inhibitors in patients with endocrine receptor-positive, advanced breast cancer have demonstrated a significant improvement in progression-free survival, with a safe toxicity profile. No validated biomarkers of sensitivity or resistance exist at the moment. Future development of CDK4/6 inhibitors in breast cancer should focus on the identification of predictive biomarkers, the development of drug combinations to overcome resistance, and the application of CDK4/6 inhibitors to other breast cancer subtypes.
Collapse
|
37
|
Abstract
OPINION STATEMENT Oral inhibitors of CDK4/6 have been shown to increase response rates and prolong disease control when combined with endocrine therapy in hormone-responsive (HR+) HER2-negative advanced breast cancer. Palbociclib, ribociclib and abemaciclib are all approved in combination with non-steroidal aromatase inhibitors in first-line therapy for post-menopausal women, with a 40-45% improvement in progression-free survival seen with the addition of any of these CDK4/6 inhibitors. Additional approved indications, including first- and second-line combination therapy for pre-menopausal women, combination with fulvestrant and use as monotherapy, vary with each agent and are reviewed fully in the subsequent texts. These agents also differ in their toxicity profiles and monitoring requirements, and prescribers should be aware of the individual requirements for each agent. Current clinical trials are investigating the expanded use of these agents in other breast cancer subtypes, such as HER2-positive and triple-negative breast cancer, as well as in the adjuvant and neoadjuvant treatments of early breast cancer. Resistance to CDK4/6 inhibition can occur through multiple mechanisms. Rational combinations with other therapies, such as PI3K inhibitors, HER2-directed therapies and immunotherapy, are being explored.
Collapse
Affiliation(s)
- Conleth G Murphy
- Department of Medical Oncology, Bon Secours Hospital, College Road, Cork, Ireland.
- University College Cork, Cork, Ireland.
| |
Collapse
|
38
|
CNS penetration of the CDK4/6 inhibitor ribociclib in non-tumor bearing mice and mice bearing pediatric brain tumors. Cancer Chemother Pharmacol 2019; 84:447-452. [PMID: 31079218 DOI: 10.1007/s00280-019-03864-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/03/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE Ribociclib, an orally bioavailable small-molecule CDK4/6 inhibitor is currently undergoing evaluation to treat pediatric central nervous system (CNS) tumors. However, it is crucial that it penetrates the brain and tumor. Thus, the objectives of the present study were to derive a clinically relevant mouse dosage for cerebral microdialysis studies, and to characterize ribociclib CNS penetration in non-tumor bearing mice and in mice bearing DIPGx7 (glioma) cortical allograft tumors. METHODS A plasma pharmacokinetic study of ribociclib (100 mg/kg, orally) was performed in CD1 nude mice bearing glioma cortical allografts to obtain initial plasma pharmacokinetic parameters and to derive D-optimal plasma sampling time-points for microdialysis studies. Using a cerebral microdialysis technique, the extracellular fluid (ECF) disposition of ribociclib was evaluated after a single oral ribociclib dose (100 mg/kg) in non-tumor bearing mice and in mice bearing glioma cortical allografts. A one-compartment plasma model with absorption and ECF compartments were fit to plasma and ECF concentration-time data using a nonlinear mixed effects modeling approach (NONMEM 7.2). RESULTS The mean unbound ribociclib plasma exposure (6812 ng/ml*h) was similar to that observed clinically at recommended dosages in adults. The median ribociclib ECF to plasma partition coefficient (Kp,uu) in non-tumor bearing and glioma mice was 0.10 and 0.07, respectively, and was not statistically different (t test, p = 0.19). CONCLUSIONS The CNS penetration observed was encouraging enough to move ribociclib forward with preclinical efficacy studies in models of pediatric brain tumors.
Collapse
|
39
|
Chaturvedi S, Rashid M, Malik MY, Agarwal A, Singh SK, Gayen JR, Wahajuddin M. Neuropharmacokinetics: a bridging tool between CNS drug development and therapeutic outcome. Drug Discov Today 2019; 24:1166-1175. [PMID: 30898661 DOI: 10.1016/j.drudis.2019.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/11/2019] [Accepted: 02/19/2019] [Indexed: 12/27/2022]
Abstract
WHO classified neurological disorders to be among 6.3% of the global disease burden. Among the most central aspects of CNS drug development is the ability of novel molecules to cross the blood-brain barrier (BBB) to reach the target site over a desired time period for therapeutic action. Based on various aspects, brain pharmacokinetics is considered to be one of the foremost perspectives for the higher attrition rate of CNS biologics. Although drug traits are important, the BBB and blood-cerebrospinal fluid barrier together with transporters become the mechanistic approach behind CNS drug delivery. The present review emphasizes neuropharmacokinetic parameters, their importance, an assessment approach and the vast effect of transporters to brain drug distribution for CNS drug discovery.
Collapse
Affiliation(s)
- Swati Chaturvedi
- Academy of Scientific and Innovative Research, New Delhi, India; Pharmaceutics and Pharmacokinetics Division, CSIR - Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Mamunur Rashid
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Mohd Yaseen Malik
- Academy of Scientific and Innovative Research, New Delhi, India; Pharmaceutics and Pharmacokinetics Division, CSIR - Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Arun Agarwal
- Academy of Scientific and Innovative Research, New Delhi, India; Pharmaceutics and Pharmacokinetics Division, CSIR - Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Sandeep K Singh
- Academy of Scientific and Innovative Research, New Delhi, India; Pharmaceutics and Pharmacokinetics Division, CSIR - Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Jiaur R Gayen
- Academy of Scientific and Innovative Research, New Delhi, India; Pharmaceutics and Pharmacokinetics Division, CSIR - Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Muhammad Wahajuddin
- Academy of Scientific and Innovative Research, New Delhi, India; Pharmaceutics and Pharmacokinetics Division, CSIR - Central Drug Research Institute, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
40
|
Gupta SK, Smith EJ, Mladek AC, Tian S, Decker PA, Kizilbash SH, Kitange GJ, Sarkaria JN. PARP Inhibitors for Sensitization of Alkylation Chemotherapy in Glioblastoma: Impact of Blood-Brain Barrier and Molecular Heterogeneity. Front Oncol 2019; 8:670. [PMID: 30723695 PMCID: PMC6349736 DOI: 10.3389/fonc.2018.00670] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 12/19/2018] [Indexed: 12/22/2022] Open
Abstract
Prognosis of patients with glioblastoma (GBM) remains dismal despite maximal surgical resection followed by aggressive chemo-radiation therapy. Almost every GBM, regardless of genotype, relapses as aggressive recurrent disease. Sensitization of GBM cells to chemo-radiation is expected to extend survival of patients with GBM by enhancing treatment efficacy. The PARP family of enzymes has a pleiotropic role in DNA repair and metabolism and has emerged as an attractive target for sensitization of cancer cells to genotoxic therapies. However, despite promising results from a number of preclinical studies, progress of clinical trials involving PARP inhibitors (PARPI) has been slower in GBM as compared to other malignancies. Preclinical in vivo studies have uncovered limitations of PARPI-mediated targeting of base excision repair, considered to be the likely mechanism of sensitization for temozolomide (TMZ)-resistant GBM. Nevertheless, PARPI remain a promising sensitizing approach for at least a subset of GBM tumors that are inherently sensitive to TMZ. Our PDX preclinical trial has helped delineate MGMT promoter hyper-methylation as a biomarker of the PARPI veliparib-mediated sensitization. In clinical trials, MGMT promoter hyper-methylation now is being studied as a potential predictive biomarker not only for response to TMZ therapy alone, but also PARPI-mediated sensitization of TMZ therapy. Besides the combination approach being investigated, IDH1/2 mutant gliomas associated with 2-hydroxygluterate (2HG)-mediated homologous recombination (HR) defect may potentially benefit from PARPI monotherapy. In this article, we discuss existing results and provide additional data in support of potential alternative mechanisms of sensitization that would help identify potential biomarkers for PARPI-based therapeutic approaches to GBM.
Collapse
Affiliation(s)
- Shiv K Gupta
- Departments of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Emily J Smith
- Departments of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Ann C Mladek
- Departments of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Shulan Tian
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States
| | - Paul A Decker
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States
| | - Sani H Kizilbash
- Departments of Oncology, Mayo Clinic, Rochester, MN, United States
| | - Gaspar J Kitange
- Departments of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Jann N Sarkaria
- Departments of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
41
|
Robert M, Frenel JS, Bourbouloux E, Berton Rigaud D, Patsouris A, Augereau P, Gourmelon C, Campone M. Pharmacokinetic drug evaluation of abemaciclib for advanced breast cancer. Expert Opin Drug Metab Toxicol 2019; 15:85-91. [DOI: 10.1080/17425255.2019.1559816] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Marie Robert
- Medical Oncology, Institut de Cancérologie de l’Ouest, René Gauducheau, St Herblain, France
| | - Jean-Sébastien Frenel
- Medical Oncology, Institut de Cancérologie de l’Ouest, René Gauducheau, St Herblain, France
| | - Emmanuelle Bourbouloux
- Medical Oncology, Institut de Cancérologie de l’Ouest, René Gauducheau, St Herblain, France
| | | | - Anne Patsouris
- Medical Oncology, Institut de Cancérologie de l’Ouest, Paul Papin, Angers, France
| | - Paule Augereau
- Medical Oncology, Institut de Cancérologie de l’Ouest, Paul Papin, Angers, France
| | - Carole Gourmelon
- Medical Oncology, Institut de Cancérologie de l’Ouest, René Gauducheau, St Herblain, France
| | - Mario Campone
- Medical Oncology, Institut de Cancérologie de l’Ouest, René Gauducheau, St Herblain, France
- Medical Oncology, Centre de Recherche en Cancérologie Nantes-Angers (CRCNA), France
| |
Collapse
|
42
|
Ghosh D, Nandi S, Bhattacharjee S. Combination therapy to checkmate Glioblastoma: clinical challenges and advances. Clin Transl Med 2018; 7:33. [PMID: 30327965 PMCID: PMC6191404 DOI: 10.1186/s40169-018-0211-8] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/01/2018] [Indexed: 12/11/2022] Open
Abstract
Combination therapy is increasingly becoming the cornerstone of current day antitumor therapy. Glioblastoma multiforme is an aggressive brain tumor with a dismal median survival post diagnosis and a high rate of disease recurrence. The poor prognosis can be attributed to unique treatment limitations, which include the infiltrative nature of tumor cells, failure of anti-glioma drugs to cross the blood-brain barrier, tumor heterogeneity and the highly metastatic and angiogenic nature of the tumor making cells resistant to chemotherapy. Combination therapy approach is being developed against glioblastoma with new innovative combination drug regimens being tested in preclinical and clinical trials. In this review, we discuss the pathophysiology of glioblastoma, diagnostic markers, therapeutic targeting strategies, current treatment limitations, novel combination therapies in the context of current treatment options and the ongoing clinical trials for glioblastoma therapy.
Collapse
Affiliation(s)
- Debarati Ghosh
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Saikat Nandi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| | | |
Collapse
|
43
|
de Gooijer MC, Buil LCM, Çitirikkaya CH, Hermans J, Beijnen JH, van Tellingen O. ABCB1 Attenuates the Brain Penetration of the PARP Inhibitor AZD2461. Mol Pharm 2018; 15:5236-5243. [PMID: 30252484 DOI: 10.1021/acs.molpharmaceut.8b00742] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors are a relatively new class of anticancer agents that have attracted attention for treatment of glioblastoma because of their ability to potentiate temozolomide chemotherapy. Previous studies have demonstrated that sufficient brain penetration is a prerequisite for efficacy of PARP inhibitors in glioma mouse models. Unfortunately, however, most of the PARP inhibitors developed to date have a limited brain penetration due to the presence of P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) at the blood-brain barrier. AZD2461 is a novel PARP inhibitor that is unaffected by P-gp mediated resistance in breast cancer models and thus appears to have promising characteristics for brain penetration. We here use a comprehensive set of in vitro and in vivo models to study the brain penetration and oral bioavailability of AZD2461. We report that AZD2461 has a good membrane permeability. However, it is a substrate of P-gp and BCRP, and P-gp in particular limits its brain penetration in vivo. We show that AZD2461 has a low oral bioavailability, although it is not affected by P-gp and BCRP. Together, these findings are not in favor of further development of AZD2461 for treatment of glioblastoma.
Collapse
Affiliation(s)
| | | | | | | | - Jos H Beijnen
- Department of Pharmacy and Pharmacology , The Netherlands Cancer Institute/MC Slotervaart Hospital , Louwesweg 6 , 1066 EC Amsterdam , The Netherlands.,Division of Pharmacoepidemiology and Clinical Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands
| | | |
Collapse
|
44
|
Hartz AMS, Schulz JA, Sokola BS, Edelmann SE, Shen AN, Rempe RG, Zhong Y, Seblani NE, Bauer B. Isolation of Cerebral Capillaries from Fresh Human Brain Tissue. J Vis Exp 2018. [PMID: 30272660 DOI: 10.3791/57346] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Understanding blood-brain barrier function under physiological and pathophysiological conditions is critical for the development of new therapeutic strategies that hold the promise to enhance brain drug delivery, improve brain protection, and treat brain disorders. However, studying the human blood-brain barrier function is challenging. Thus, there is a critical need for appropriate models. In this regard, brain capillaries isolated from human brain tissue represent a unique tool to study barrier function as close to the human in vivo situation as possible. Here, we describe an optimized protocol to isolate capillaries from human brain tissue at a high yield and with consistent quality and purity. Capillaries are isolated from fresh human brain tissue using mechanical homogenization, density-gradient centrifugation, and filtration. After the isolation, the human brain capillaries can be used for various applications including leakage assays, live cell imaging, and immune-based assays to study protein expression and function, enzyme activity, or intracellular signaling. Isolated human brain capillaries are a unique model to elucidate the regulation of the human blood-brain barrier function. This model can provide insights into central nervous system (CNS) pathogenesis, which will help the development of therapeutic strategies for treating CNS disorders.
Collapse
Affiliation(s)
- Anika M S Hartz
- Sanders-Brown Center on Aging, Department of Pharmacology and Nutritional Sciences, University of Kentucky
| | - Julia A Schulz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky
| | - Brent S Sokola
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky
| | - Stephanie E Edelmann
- Sanders-Brown Center on Aging, Department of Pharmacology and Nutritional Sciences, University of Kentucky
| | - Andrew N Shen
- Sanders-Brown Center on Aging, Department of Pharmacology and Nutritional Sciences, University of Kentucky
| | - Ralf G Rempe
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky
| | - Yu Zhong
- Sanders-Brown Center on Aging, Department of Pharmacology and Nutritional Sciences, University of Kentucky
| | | | - Bjoern Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky;
| |
Collapse
|
45
|
Ribociclib shows potential for pharmacokinetic drug-drug interactions being a substrate of ABCB1 and potent inhibitor of ABCB1, ABCG2 and CYP450 isoforms in vitro. Biochem Pharmacol 2018; 154:10-17. [DOI: 10.1016/j.bcp.2018.04.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/13/2018] [Indexed: 11/20/2022]
|
46
|
Barriers to Effective Drug Treatment for Brain Metastases: A Multifactorial Problem in the Delivery of Precision Medicine. Pharm Res 2018; 35:177. [PMID: 30003344 DOI: 10.1007/s11095-018-2455-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/30/2018] [Indexed: 12/12/2022]
Abstract
The treatment of metastatic lesions in the brain represents a serious unmet medical need in the field of neuro-oncology. Even though many effective compounds have demonstrated success in treating peripheral (non-CNS) tumors with targeted agents, one aspect of this lack of success in the brain may be related to poor delivery of otherwise effective compounds. Many factors can influence the brain delivery of these agents, but one key barrier is a heterogeneously "leaky" BBB that expresses efflux transporters that limit the BBB permeability for many targeted agents. Future success in therapeutics for brain metastases must take into account the adequate delivery of "active, free drug" to the target, and may include combinations of targeted drugs that are appropriate to address each individual patient's tumor type. This review discusses some issues that are pertinent to precision medicine for brain metastases, using specific examples of tumor types that have a high incidence of brain metastases.
Collapse
|
47
|
Kim M, Ma DJ, Calligaris D, Zhang S, Feathers RW, Vaubel RA, Meaux I, Mladek AC, Parrish KE, Jin F, Barriere C, Debussche L, Watters J, Tian S, Decker PA, Eckel-Passow JE, Kitange GJ, Johnson AJ, Parney IF, Anastasiadis PZ, Agar NYR, Elmquist WF, Sarkaria JN. Efficacy of the MDM2 Inhibitor SAR405838 in Glioblastoma Is Limited by Poor Distribution Across the Blood-Brain Barrier. Mol Cancer Ther 2018; 17:1893-1901. [PMID: 29970480 DOI: 10.1158/1535-7163.mct-17-0600] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/24/2017] [Accepted: 06/25/2018] [Indexed: 01/12/2023]
Abstract
Controversy exists surrounding whether heterogeneous disruption of the blood-brain barrier (BBB), as seen in glioblastoma (GBM), leads to adequate drug delivery sufficient for efficacy in GBM. This question is especially important when using potent, targeted agents that have a poor penetration across an intact BBB. Efficacy of the murine double minute-2 (MDM2) inhibitor SAR405838 was tested in patient-derived xenograft (PDX) models of GBM. In vitro efficacy of SAR405838 was evaluated in PDX models with varying MDM2 expression and those with high (GBM108) and low (GBM102) expression were evaluated for flank and orthotopic efficacy. BBB permeability, evaluated using TexasRed-3 kDa dextran, was significantly increased in GBM108 through VEGFA overexpression. Drug delivery, MRI, and orthotopic survival were compared between BBB-intact (GBM108-vector) and BBB-disrupted (GBM108-VEGFA) models. MDM2-amplified PDX lines with high MDM2 expression were sensitive to SAR405838 in comparison with MDM2 control lines in both in vitro and heterotopic models. In contrast with profound efficacy observed in flank xenografts, SAR405838 was ineffective in orthotopic tumors. Although both GBM108-vector and GBM108-VEGFA readily imaged on MRI following gadolinium contrast administration, GBM108-VEGFA tumors had a significantly enhanced drug and gadolinium accumulation, as determined by MALDI-MSI. Enhanced drug delivery in GBM108-VEGFA translated into a marked improvement in orthotopic efficacy. This study clearly shows that limited drug distribution across a partially intact BBB may limit the efficacy of targeted agents in GBM. Brain penetration of targeted agents is a critical consideration in any precision medicine strategy for GBM. Mol Cancer Ther; 17(9); 1893-901. ©2018 AACR.
Collapse
Affiliation(s)
- Minjee Kim
- University of Minnesota, Minneapolis, Minnesota
| | | | - David Calligaris
- Brigham and Women's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | | | | | - Fang Jin
- Mayo Clinic, Rochester, Minnesota
| | | | | | | | | | | | | | | | | | | | | | - Nathalie Y R Agar
- Brigham and Women's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Dana Farber Cancer Institute, Boston, Massachusetts
| | | | | |
Collapse
|
48
|
Robey RW, Pluchino KM, Hall MD, Fojo AT, Bates SE, Gottesman MM. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat Rev Cancer 2018; 18:452-464. [PMID: 29643473 PMCID: PMC6622180 DOI: 10.1038/s41568-018-0005-8] [Citation(s) in RCA: 1254] [Impact Index Per Article: 179.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Most patients who die of cancer have disseminated disease that has become resistant to multiple therapeutic modalities. Ample evidence suggests that the expression of ATP-binding cassette (ABC) transporters, especially the multidrug resistance protein 1 (MDR1, also known as P-glycoprotein or P-gp), which is encoded by ABC subfamily B member 1 (ABCB1), can confer resistance to cytotoxic and targeted chemotherapy. However, the development of MDR1 as a therapeutic target has been unsuccessful. At the time of its discovery, appropriate tools for the characterization and clinical development of MDR1 as a therapeutic target were lacking. Thirty years after the initial cloning and characterization of MDR1 and the implication of two additional ABC transporters, the multidrug resistance-associated protein 1 (MRP1; encoded by ABCC1)), and ABCG2, in multidrug resistance, interest in investigating these transporters as therapeutic targets has waned. However, with the emergence of new data and advanced techniques, we propose to re-evaluate whether these transporters play a clinical role in multidrug resistance. With this Opinion article, we present recent evidence indicating that it is time to revisit the investigation into the role of ABC transporters in efficient drug delivery in various cancer types and at the blood-brain barrier.
Collapse
Affiliation(s)
- Robert W Robey
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kristen M Pluchino
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Antonio T Fojo
- Division of Hematology/Oncology, Department of Medicine, Columbia University/New York Presbyterian Hospital, Manhattan, NY, USA
- James J. Peters VA Medical Center, Bronx, NY, USA
| | - Susan E Bates
- Division of Hematology/Oncology, Department of Medicine, Columbia University/New York Presbyterian Hospital, Manhattan, NY, USA
- James J. Peters VA Medical Center, Bronx, NY, USA
| | - Michael M Gottesman
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
49
|
Therapeutic Potential and Utility of Elacridar with Respect to P-glycoprotein Inhibition: An Insight from the Published In Vitro, Preclinical and Clinical Studies. Eur J Drug Metab Pharmacokinet 2018; 42:915-933. [PMID: 28374336 DOI: 10.1007/s13318-017-0411-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The occurrence of efflux mechanisms via Permeability-glycoprotein (P-gp) recognized as an important physiological process impedes drug entry or transport across membranes into tissues. In some instances, either low oral bioavailability or lack of brain penetration has been attributed to P-gp mediated efflux activity. Therefore, the objective of development of P-gp inhibitors was to facilitate the attainment of higher drug exposures in tissues. Many third-generation P-gp inhibitors such as elacridar, tariquidar, zosuquidar, etc. have entered clinical development to fulfil the promise. The body of evidence from in vitro and in vivo preclinical and clinical data reviewed in this paper provides the basis for an effective blockade of P-gp efflux mechanism by elacridar. However, clinical translation of the promise has been elusive not just for elacridar but also for other P-gp inhibitors in this class. The review provides introspection and perspectives on the lack of clinical translation of this class of drugs and a broad framework of strategies and considerations in the potential application of elacridar and other P-gp inhibitors in oncology therapeutics.
Collapse
|
50
|
de Gooijer MC, de Vries NA, Buckle T, Buil LCM, Beijnen JH, Boogerd W, van Tellingen O. Improved Brain Penetration and Antitumor Efficacy of Temozolomide by Inhibition of ABCB1 and ABCG2. Neoplasia 2018; 20:710-720. [PMID: 29852323 PMCID: PMC6030392 DOI: 10.1016/j.neo.2018.05.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 01/09/2023] Open
Abstract
The anticancer drug temozolomide is the only drug with proven activity against high-grade gliomas and has therefore become a part of the standard treatment of these tumors. P-glycoprotein (P-gp; ABCB1) and breast cancer resistance protein (BCRP; ABCG2) are transport proteins, which are present at the blood-brain barrier and limit the brain uptake of substrate drugs. We have studied the effect of P-gp and BCRP on the pharmacokinetics and pharmacodynamics of temozolomide, making use of a comprehensive set of in vitro transport experiments and in vivo pharmacokinetic and antitumor efficacy experiments using wild-type, Abcg2−/−, Abcb1a/b−/−, and Abcb1a/b;Abcg2−/− mice. We here show that the combined deletion of Abcb1a/b and Abcg2 increases the brain penetration of temozolomide by 1.5-fold compared to wild-type controls (P < .001) without changing the systemic drug exposure. Moreover, the same increase was achieved when temozolomide was given to wild-type mice in combination with the dual P-gp/BCRP inhibitor elacridar (GF120918). The antitumor efficacy of temozolomide against three different intracranial tumor models was significantly enhanced when Abcb1a/b and Abcg2 were genetically deficient or pharmacologically inhibited in recipient mice. These findings call for further clinical testing of temozolomide in combination with elacridar for the treatment of gliomas, as this offers the perspective of further improving the antitumor efficacy of this already active agent.
Collapse
Affiliation(s)
- Mark C de Gooijer
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands; Mouse Cancer Clinic, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Nienke A de Vries
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Tessa Buckle
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Levi C M Buil
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands; Mouse Cancer Clinic, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Jos H Beijnen
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands; Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute/MC Slotervaart Hospital, Louwesweg 6, 1066 EC, Amsterdam, The Netherlands; Division of Pharmacoepidemiology and Clinical Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Willem Boogerd
- Department of Medical Oncology, The Netherlands Cancer Institute (Antoni van Leeuwenhoek Hospital), Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands; Department of Neurology, Slotervaart Hospital, Louwesweg 6, 1066 EC, Amsterdam, The Netherlands
| | - Olaf van Tellingen
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands; Mouse Cancer Clinic, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|