1
|
Seaman RW, Galindo DG, Stinson BT, Sulima A, Rice KC, Javors MA, Ginsburg BC, Collins GT. Cardiovascular and locomotor effects of binary mixtures of common 'bath salts' constituents: Studies with methylone, methylenedioxypyrovalerone and caffeine in rats. Br J Pharmacol 2025. [PMID: 39843219 DOI: 10.1111/bph.17444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 10/09/2024] [Accepted: 11/04/2024] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND AND PURPOSE The use of 'bath salts' drug preparations has been associated with high rates of toxicity and death. Preparations often contain mixtures of drugs, including multiple synthetic cathinones or synthetic cathinones and caffeine. Little is known about the interactions of 'bath salts' constituents and adverse effects often reported by users. EXPERIMENTAL APPROACH This study used adult male Sprague-Dawley rats to characterise the cardiovascular effects, locomotor effects and pharmacokinetics of methylone, methylenedioxypyrovalerone (MDPV) and caffeine, administered alone and as binary mixtures. Dose-addition analyses were used to determine the effect levels of a strictly additive interaction for dose pairs. KEY RESULTS Methylone, MDPV and caffeine increased heart rate (HR) and locomotion, with methylone producing the largest increase in HR, MDPV producing the largest increase in locomotor activity and caffeine being the least effective in stimulating HR and locomotor activity. MDPV and caffeine increased mean arterial pressure (MAP), with caffeine being more effective than MDPV. The nature of the interactions between methylone and MDPV tended towards sub-additivity for all endpoints, whereas interactions between MDPV or methylone and caffeine tended to be additive or sub-additive for cardiovascular endpoints, and additive or supra-additive for increases in locomotion. No pharmacokinetic interactions were observed between individual constituents, but methylone appeared to display nonlinear pharmacokinetics at the largest dose evaluated. CONCLUSION AND IMPLICATIONS These findings demonstrate that 'bath salts' preparations can impact both cardiovascular and locomotor effects and suggest that interactions among constituent drugs could contribute to the 'bath salts' toxidrome reported by human users.
Collapse
Affiliation(s)
- Robert W Seaman
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - David G Galindo
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Benjamin T Stinson
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Agnieszka Sulima
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, NIDA and NIAAA, Bethesda, Maryland, USA
| | - Kenner C Rice
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, NIDA and NIAAA, Bethesda, Maryland, USA
| | - Martin A Javors
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Brett C Ginsburg
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Gregory T Collins
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- South Texas Veterans Health Care System, San Antonio, Texas, USA
| |
Collapse
|
2
|
Alharbi HY, Alnoman RB, Aljohani MS, Monier M, Tawfik EH. Design and synthesis of S-citalopram-imprinted polymeric sorbent: Characterization and application in enantioselective separation. J Chromatogr A 2024; 1727:464925. [PMID: 38776603 DOI: 10.1016/j.chroma.2024.464925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
The current work describes the efficient creation and employment of a new S-citalopram selective polymeric sorbent, made from poly(divinylbenzene-maleic anhydride-styrene). The process began by using suspension polymerization technique in the synthesis of poly(styrene-maleic anhydride-divinylbenzene) microparticles. These were then modified with ethylenediamine, developing an amido-succinic acid-based polymer derivative. The S-citalopram, a cationic molecule, was loaded onto these developed anionic polymer particles. Subsequently, the particles were post-crosslinked using glyoxal, which reacts with the amino group residues of ethylenediamine. S-citalopram was extracted from this matrix using an acidic solution, which also left behind stereo-selective cavities in the S-citalopram imprinted polymer, allowing for the selective re-adsorption of S-citalopram. The attributes of the polymer were examined through methods such as 13C NMR, FTIR, thermogravemetric and elemental analyses. SEM was used to observe the shapes and structures of the particles. The imprinted polymers demonstrated a significant ability to adsorb S-citalopram, achieving a capacity of 878 mmol/g at a preferred pH level of 8. It proved efficient in separating enantiomers of (±)-citalopram via column methods, achieving an enantiomeric purity of 97 % for R-citalopram upon introduction and 92 % for S-citalopram upon release.
Collapse
Affiliation(s)
- Hussam Y Alharbi
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia.
| | - Rua B Alnoman
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
| | - Majed S Aljohani
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
| | - M Monier
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia; Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt.
| | - Eman H Tawfik
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia; Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
3
|
Seaman RW, Lamon K, Whitton N, Latimer B, Sulima A, Rice KC, Murnane KS, Collins GT. Impacts of Self-Administered 3,4-Methylenedioxypyrovalerone (MDPV) Alone, and in Combination with Caffeine, on Recognition Memory and Striatal Monoamine Neurochemistry in Male Sprague Dawley Rats: Comparisons with Methamphetamine and Cocaine. Brain Sci 2024; 14:258. [PMID: 38539646 PMCID: PMC10969043 DOI: 10.3390/brainsci14030258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Recent data suggest that 3,4-methylenedioxypyrovalerone (MDPV) has neurotoxic effects; however, the cognitive and neurochemical consequences of MDPV self-administration remain largely unexplored. Furthermore, despite the fact that drug preparations that contain MDPV often also contain caffeine, little is known regarding the toxic effects produced by the co-use of these two stimulants. The current study investigated the degree to which self-administered MDPV or a mixture of MDPV+caffeine can produce deficits in recognition memory and alter neurochemistry relative to prototypical stimulants. Male Sprague Dawley rats were provided 90 min or 12 h access to MDPV, MDPV+caffeine, methamphetamine, cocaine, or saline for 6 weeks. Novel object recognition (NOR) memory was evaluated prior to any drug self-administration history and 3 weeks after the final self-administration session. Rats that had 12 h access to methamphetamine and those that had 90 min or 12 h access to MDPV+caffeine exhibited significant deficits in NOR, whereas no significant deficits were observed in rats that self-administered cocaine or MDPV. Striatal monoamine levels were not systematically affected. These data demonstrate synergism between MDPV and caffeine with regard to producing recognition memory deficits, highlighting the importance of recapitulating the manner in which drugs are used (e.g., in mixtures containing multiple stimulants, binge-like patterns of intake).
Collapse
Affiliation(s)
- Robert W. Seaman
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Kariann Lamon
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
- Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
- Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
| | - Nicholas Whitton
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
- Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
- Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
| | - Brian Latimer
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
- Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
- Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
| | - Agnieszka Sulima
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kenner C. Rice
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kevin S. Murnane
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
- Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
- Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
| | - Gregory T. Collins
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| |
Collapse
|
4
|
Seaman RW, Galindo DG, Stinson BT, Sulima A, Rice KC, Javors MA, Ginsburg BC, Collins GT. Cardiovascular and Locomotor Effects of Binary Mixtures of Common "Bath Salts" Constituents: Studies with Methylone, MDPV, and Caffeine in Rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578069. [PMID: 38352520 PMCID: PMC10862873 DOI: 10.1101/2024.01.31.578069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Background and Purpose The use of "Bath Salts" drug preparations has been associated with high rates of toxicity and death. Preparations often contain mixtures of drugs including multiple synthetic cathinones or synthetic cathinones and caffeine; however, little is known about whether interactions among "Bath Salts" constituents contribute to the adverse effects often reported in users. Experimental Approach This study used adult male Sprague-Dawley rats to characterize the cardiovascular effects, locomotor effects, and pharmacokinetics of methylone, MDPV, and caffeine, administered alone and as binary mixtures. Dose-addition analyses were used to determine the effect levels predicted for a strictly additive interaction for each dose pair. Key Results Methylone, MDPV, and caffeine increased heart rate and locomotion, with methylone producing the largest increase in heart rate, MDPV producing the largest increase in locomotor activity, and caffeine being the least effective in stimulating heart rate and locomotor activity. MDPV and caffeine increased mean arterial pressure, with caffeine being more effective than MDPV. The nature of the interactions between methylone and MDPV tended toward sub-additivity for all endpoints, whereas interactions between MDPV or methylone and caffeine tended to be additive or sub-additive for cardiovascular endpoints, and additive or supra-additive for increases in locomotion. No pharmacokinetic interactions were observed between individual constituents, but methylone displayed non-linear pharmacokinetics at the largest dose evaluated. Conclusion and Implications These findings demonstrate that the composition of "Bath Salts" preparations can impact both cardiovascular and locomotor effects and suggest that such interactions among constituent drugs could contribute to the "Bath Salts" toxidrome reported by human users.
Collapse
Affiliation(s)
- Robert W Seaman
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio
| | - David G Galindo
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at San Antonio
| | - Benjamin T Stinson
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at San Antonio
| | - Agnieszka Sulima
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, NIDA and NIAAA, Bethesda, MD, USA
| | - Kenner C Rice
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, NIDA and NIAAA, Bethesda, MD, USA
| | - Martin A Javors
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at San Antonio
| | - Brett C Ginsburg
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at San Antonio
| | - Gregory T Collins
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio
- South Texas Veterans Health Care System, San Antonio, TX, USA
| |
Collapse
|
5
|
Seaman RW, Lamon K, Whitton N, Latimer B, Sulima A, Rice KC, Murnane KS, Collins GT. Impacts of Self-Administered 3,4-Methylenedioxypyrovalerone (MDPV) Alone, and in Combination with Caffeine, on Recognition Memory and Striatal Monoamine Neurochemistry in Male Sprague-Dawley Rats: Comparisons with Methamphetamine and Cocaine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578247. [PMID: 38352595 PMCID: PMC10862826 DOI: 10.1101/2024.01.31.578247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Recent data suggest that 3,4-methylenedioxypyrovalerone (MDPV) has neurotoxic effects; however, the cognitive and neurochemical consequences of MDPV self-administration remain largely unexplored. Furthermore, despite the fact that drug preparations that contain MDPV often also contain caffeine, little is known regarding the toxic effects produced by the co-use of these two stimulants. The current study investigated the degree to which self-administered MDPV, or a mixture of MDPV+caffeine can produce deficits in recognition memory and alter neurochemistry relative to prototypical stimulants. Male Sprague-Dawley rats were provided 90-min or 12-h access to MDPV, MDPV+caffeine, methamphetamine, cocaine, or saline for 6 weeks. Novel object recognition (NOR) memory was evaluated prior to any drug self-administration history and 3 weeks after the final self-administration session. Rats that had 12-h access to methamphetamine and those that had 90-min or 12-h access to MDPV+caffeine exhibited significant deficits in NOR, whereas no significant deficits were observed in rats that self-administered cocaine or MDPV. Striatal mono-amine levels were not systematically affected. These data demonstrate synergism between MDPV and caffeine with regard to producing recognition memory deficits and lethality, highlighting the importance of recapitulating the manner in which drugs are used (e.g., in mixtures containing multiple stimulants, binge-like patterns of intake).
Collapse
Affiliation(s)
- Robert W Seaman
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Kariann Lamon
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
- Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
- Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Nicholas Whitton
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
- Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
- Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Brian Latimer
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
- Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
- Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Agnieszka Sulima
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States
| | - Kenner C Rice
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States
| | - Kevin S Murnane
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
- Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
- Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Gregory T Collins
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- South Texas Veterans Health Care System, San Antonio, TX, United States
| |
Collapse
|
6
|
Gannon BM, Fitzgerald LR, Godwin CO, Hughes-Meredith HD, Rice KC, Fantegrossi WE. Effects of ambient temperature on locomotor activity and place conditioning elicited by abused psychostimulants in mice: Role of 3,4-methylenedioxy moiety. Drug Alcohol Depend 2023; 250:110917. [PMID: 37579623 PMCID: PMC10481935 DOI: 10.1016/j.drugalcdep.2023.110917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/05/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND Humans often administer psychostimulants in party or music festival settings characterized by warm ambient temperatures, which may impact drug effects; however, preclinical studies rarely investigate drug effects at multiple ambient temperatures. Work with 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-methylenedioxypyrovalerone (MDPV) suggests that the presence of a 3,4-methylenedioxy ring moiety may influence ambient temperature-dependent effects. METHODS Locomotor activity and conditioned place preference dose-response curves were generated at 20±2°C for two amphetamine analogues (MDMA and methamphetamine [METH]) and two cathinone analogues (MDPV and α-pyrrolidinopentiophenone [αPVP]) in mice. Effects were then redetermined at 29±2°C for each drug and assay. RESULTS All four drugs elicited dose-dependent locomotor stimulation at the cool ambient temperature. At the warm ambient temperature, MDMA and MDPV produced sensitization to stereotypy, whereas METH and αPVP produced sensitization to locomotor activity. Regarding place conditioning, the warm ambient environment potentiated place preference elicited by doses of METH and αPVP that were sub-threshold in the cool ambient environment, but attenuated the effects of analogous doses of MDMA and MDPV. CONCLUSIONS These studies suggest that warmer ambient temperatures may potentiate typical stimulant effects for the drugs lacking the 3,4-methylenedioxy ring, but may potentiate the behaviorally toxic/adverse effects for the drugs containing a 3,4-methylenedioxy ring. Thus, preclinical abuse liability studies conducted at standard laboratory temperatures may not fully capture the effects of psychostimulants and highlight the need to model the environments in which drugs are typically used by humans.
Collapse
Affiliation(s)
- Brenda M Gannon
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Lauren R Fitzgerald
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Christopher O Godwin
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Heidi D Hughes-Meredith
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Kenner C Rice
- Drug Design and Synthesis Section, Chemical Biology Research Branch, National Institute on Drug Abuse, and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - William E Fantegrossi
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
7
|
Lo Faro AF, Sprega G, Berardinelli D, Tini A, Poyatos L, Pichini S, Farrè M, Farkas T, Busardò FP, Giunashvili L, Chankvetadze B. Development of enantioselective high-performance liquid chromatography-tandem mass spectrometry method for quantitative determination of methylone and some of its metabolites in oral fluid. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1228:123824. [PMID: 37487291 DOI: 10.1016/j.jchromb.2023.123824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023]
Abstract
In the present study an enantioselective high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for the first time for quantitative determination of the recreational drug of abuse methylone and its major metabolites in oral fluid. The simultaneous chemo- and enantioseparation of methylone and its major metabolites was performed on a polysaccharide-based chiral column based on amylose tris(5-chloro-3-methylphenylcarbamate) as chiral selector (Lux i-Amylose-3) with methanol containing 0.4 % (v/v) aqueous ammonium hydroxide as mobile phase. The time required for enantioselective analysis of methylone and its 2 major metabolites was 15 min. This method was fully validated following the Organization of Scientific Area Committees (OSAC) for Forensic Science guidelines. This method was applied for the enantioselective determination of methylone and its metabolites in oral fluid and enantioselectivity in metabolism and pharmacokinetic of the parent compound and metabolites was observed. While the first enantiomer of methylone was found at higher concentration, both metabolites shown greater concentration for the second enantiomer. The results revealed that MET undergoes an enantioselective biotransformation to its metabolites HMMC and MDC, with S-(-)-MET more rapidly metabolized and eliminated from the body.
Collapse
Affiliation(s)
- Alfredo Fabrizio Lo Faro
- Department of Excellence-Biomedical Sciences and Public Health, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Giorgia Sprega
- Department of Excellence-Biomedical Sciences and Public Health, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Diletta Berardinelli
- Department of Excellence-Biomedical Sciences and Public Health, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Anastasio Tini
- Department of Excellence-Biomedical Sciences and Public Health, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Lourdes Poyatos
- Servei de Farmacologia Clínica, Hospital Universitari Germans Trias i Pujol (HUGTiP, IGTP)- Universitat Autònoma de Barcelona, Unitat Docent HUGTiP, Badalona, Spain
| | - Simona Pichini
- National Centre on Addiction and Doping, Istituto Superiore di Sanità, Rome, Italy
| | - Magì Farrè
- Servei de Farmacologia Clínica, Hospital Universitari Germans Trias i Pujol (HUGTiP, IGTP)- Universitat Autònoma de Barcelona, Unitat Docent HUGTiP, Badalona, Spain
| | - Tivadar Farkas
- Phenomenex Inc., 411 Madrid Ave., Torrance, 90501 CA, USA
| | - Francesco Paolo Busardò
- Department of Excellence-Biomedical Sciences and Public Health, Università Politecnica delle Marche, 60121 Ancona, Italy.
| | - Lasha Giunashvili
- Tbilisi State University, Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, 0179 Tbilisi, Georgia
| | - Bezhan Chankvetadze
- Tbilisi State University, Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, 0179 Tbilisi, Georgia
| |
Collapse
|
8
|
Kuropka P, Zawadzki M, Szpot P. A narrative review of the neuropharmacology of synthetic cathinones-Popular alternatives to classical drugs of abuse. Hum Psychopharmacol 2023; 38:e2866. [PMID: 36866677 DOI: 10.1002/hup.2866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 03/04/2023]
Abstract
OBJECTIVE To review the literature on the neuropharmacology of synthetic cathinones. METHODS A comprehensive literature search was carried out across multiple databases (mainly PubMed, World Wide Web, and Google Scholar) using relevant keywords. RESULTS Cathinones exhibit a broad toxicological profile, mimicking the effects of a wide variety of 'classic drugs' such as 3,4-methylenedioxymethamphetamine (MDMA), methamphetamine and cocaine. Even small structural changes affect their interactions with key proteins. This article reviews existing knowledge of the mechanisms of action of cathinones at the molecular level, and key findings from research on their structure-activity relationship. The cathinones are also classified according to their chemical structure and neuropharmacological profiles. CONCLUSIONS Synthetic cathinones represent one of the most numerous and widespread groups among new psychoactive substances. Initially developed for therapeutic purposes, they quickly started to be used recreationally. With a rapidly increasing number of new agents entering the market, structure-activity relationship studies are valuable for assessing and predicting the addictive potential and toxicity of new and potential future substances. The neuropharmacological properties of synthetic cathinones are still not fully understood. A full elucidation of the role of some key proteins, including organic cation transporters, requires detailed studies.
Collapse
Affiliation(s)
| | - Marcin Zawadzki
- Institute of Toxicology Research, Borowa, Poland.,Department of Forensic Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Paweł Szpot
- Institute of Toxicology Research, Borowa, Poland.,Department of Forensic Medicine, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
9
|
Semi-Preparative Separation, Absolute Configuration, Stereochemical Stability and Effects on Human Neuronal Cells of MDPV Enantiomers. Molecules 2023; 28:molecules28052121. [PMID: 36903367 PMCID: PMC10003790 DOI: 10.3390/molecules28052121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Synthetic cathinones, such as 3,4-methylenedioxypyrovalerone (MDPV), are widely abused due to their psychostimulant effects. As they are chiral molecules, studies of their stereochemical stability (racemization can occur in certain temperatures and acidic/basic environments) and of their biological and/or toxicity effects (enantiomers might display different properties) are of great relevance. In this study, the liquid chromatography (LC) semi-preparative enantioresolution of MDPV was optimized to collect both enantiomers with high recovery rates and enantiomeric ratio (e.r.) values. The absolute configuration of the MDPV enantiomers was determined by electronic circular dichroism (ECD) with the aid of theoretical calculations. The first eluted enantiomer was identified as S-(-)-MDPV and the second eluted enantiomer was identified as R-(+)-MDPV. A racemization study was performed by LC-UV, showing enantiomers' stability up to 48 h at room temperature and 24 h at 37 °C. Racemization was only affected by higher temperatures. The potential enantioselectivity of MDPV in cytotoxicity and in the expression of neuroplasticity-involved proteins-brain-derived neurotrophic factor (BDNF) and cyclin-dependent kinase 5 (Cdk5)-was also evaluated using SH-SY5Y neuroblastoma cells. No enantioselectivity was observed.
Collapse
|
10
|
Development and validation of a chiral LC-MS/MS method for the separation and quantification of four synthetic cathinones in human whole blood and its application in stability analysis. Talanta 2023; 253:123986. [PMID: 36228559 DOI: 10.1016/j.talanta.2022.123986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022]
Abstract
Synthetic cathinones, a subclass of new psychoactive substances, have gained high popularity on the recreational drugs market over the past years. These drugs typically have a chiral center, so they may exist as two stereoisomers. Therefore the pharmacological, pharmacokinetic or metabolic properties of their enantiomers are expected to differ. However, these drugs are often synthesized and sold as a racemic mixture, and as a consequence, differentiation of their (R)- and (S)- enantiomers is relevant in clinical and forensic toxicology. Information about single enantiomers of synthetic cathinones is relatively scarce due to challenges of their chiral analysis. Hence, a sensitive and reliable liquid chromatography-tandem mass spectrometry method was developed and validated for the chiral separation and quantification of four synthetic cathinones in human whole blood samples. The method was fully validated in terms of linearity, limit of detection, limit of quantification, bias, precision, carryover, interferences, matrix effects, recovery and processed sample stability and successfully applied to evaluate the stability as well as enantioselective degradation of synthetic cathinones enantiomers under various storage conditions. For most of the analytes, significant enantioselective degradation was observed when stored at room temperature or refrigerated, with the E2-enantiomers observed to more rapidly degrade under both conditions. This is the first report concerning the stability and enantioselective degradation of synthetic cathinone enantiomers in whole blood. Moreover, the inversion study demonstrated enantiomeric inversion of R-(-)- and S-(+)-methylenedioxypyrovalerone (MDPV) in human whole blood and methanolic solution.
Collapse
|
11
|
Seibert E, Kunert O, Pferschy-Wenzig EM, Schmid MG. Characterization of Three Novel 4-Methylaminorex Derivatives Applied as Designer Drugs. Molecules 2022; 27:molecules27185770. [PMID: 36144500 PMCID: PMC9503756 DOI: 10.3390/molecules27185770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/01/2022] [Accepted: 09/04/2022] [Indexed: 11/19/2022] Open
Abstract
The ongoing development of more and more new psychoactive substances continues to be a huge problem in 2022 affecting the European and international drug market. Through slight alterations in the structure of illicit drugs, a way to circumvent the law is created, as the created derivatives serve as legal alternatives with similar effects. A common way of structure modification is the induction of a halogen residue. Recently, halogenated derivatives of the well-known designer drug 4-methylaminorex appeared on the market and are available in various online shops. In this study, three novel halogenated 4-methylaminorex derivatives, namely 4′-fluoro-4-methylaminorex, 4′-chloro-4-methylaminorex, and 4′-bromo-4-methylaminorex, were purchased online and characterized using nuclear magnetic resonance (NMR) spectroscopy, liquid chromatography-high-resolution mass spectrometry (LC-HRMS), and chiral high-performance liquid chromatography with ultraviolet detection (HPLC-UV). These derivatives possess two stereogenic centers, and analyses revealed that all of them were present as a racemic mixture of the trans diastereomeric form.
Collapse
Affiliation(s)
- Elisabeth Seibert
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Graz, Schubertstraße 1, 8010 Graz, Austria
| | - Olaf Kunert
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Graz, Schubertstraße 1, 8010 Graz, Austria
| | - Eva-Maria Pferschy-Wenzig
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, University of Graz, Beethovenstraße 8, 8010 Graz, Austria
| | - Martin G. Schmid
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Graz, Schubertstraße 1, 8010 Graz, Austria
- Correspondence:
| |
Collapse
|
12
|
Almeida AS, Silva B, de Pinho PG, Remião F, Fernandes C. Synthetic Cathinones: Recent Developments, Enantioselectivity Studies and Enantioseparation Methods. Molecules 2022; 27:2057. [PMID: 35408456 PMCID: PMC9000803 DOI: 10.3390/molecules27072057] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 11/17/2022] Open
Abstract
New psychoactive substances represent a public health threat since they are not controlled by international conventions, are easily accessible online and are sold as a legal alternative to illicit drugs. Among them, synthetic cathinones are widely abused due to their stimulant and hallucinogenic effects. To circumvent the law, new derivatives are clandestinely synthesized and, therefore, synthetic cathinones keep emerging on the drug market, with their chemical and toxicological properties still unknown. In this review, a literature assessment about synthetic cathinones is presented focusing on the recent developments, which include more than 50 derivatives since 2014. A summary of their toxicokinetic and toxicodynamic properties are also presented. Furthermore, synthetic cathinones are chiral compounds, meaning that they can exist as two enantiomeric forms which may present different biological and toxicological activities. To analyze the enantiomers, the development of enantiomeric resolution methods for synthetic cathinones is crucial. Many methods have been reported over the years that include mostly chromatographic and electromigration techniques, with liquid chromatography using chiral stationary phases being the technique of choice. This review intended to present an overview of enantioselectivity studies and enantioseparation analysis regarding synthetic cathinones, highlighting the relevance of chirality and current trends.
Collapse
Affiliation(s)
- Ana Sofia Almeida
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal; (A.S.A.); (B.S.)
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal; (P.G.d.P.); (F.R.)
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Bárbara Silva
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal; (A.S.A.); (B.S.)
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal; (P.G.d.P.); (F.R.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paula Guedes de Pinho
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal; (P.G.d.P.); (F.R.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Fernando Remião
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal; (P.G.d.P.); (F.R.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal; (A.S.A.); (B.S.)
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| |
Collapse
|
13
|
Seaman RW, Rice KC, Collins GT. Relative reinforcing effects of cocaine and 3,4-methylenedioxypyrovalerone (MDPV) under a concurrent access self-administration procedure in rats. Drug Alcohol Depend 2022; 232:109299. [PMID: 35063839 PMCID: PMC8919706 DOI: 10.1016/j.drugalcdep.2022.109299] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/30/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Recent evidence suggesting that polysubstance use is the norm rather than the exception highlights the need for a better understanding of interactions amongst the abuse-related effects of commonly co-abused drugs. Synthetic cathinones remain one of the most popular families of novel psychoactive substances and are typically used in preparations containing multiple stimulants. Evaluating the reinforcing effects of drugs under both single-operant procedures and procedures in which alternatives are available can provide a more complete characterization of their reinforcing effects and economic interactions. METHODS These studies utilized a drug-versus-drug choice procedure in 18 male Sprague-Dawley rats to evaluate economic interactions between the synthetic cathinone, MDPV, and cocaine in addition to how a history of concurrent access impacts reinstatement behavior. RESULTS When equi-effective doses of MDPV and cocaine were made concurrently available, approximately half of the subjects responded exclusively on the MDPV-reinforced lever whereas the other half responded exclusively on the cocaine-reinforced lever. Allocation of responding was reversed when the cost of the preferred drug increased, or the cost of the non-preferred drug decreased. Drug-paired cues and MDPV, cocaine, and methamphetamine pretreatments reinstated responding on both drug levers, regardless of preference. CONCLUSION These data demonstrate that MDPV and cocaine act as economic substitutes and suggest that measures of reinforcing effectiveness determined under a progressive ratio schedule of reinforcement can predict drug choice. These data also suggest that environmental stimuli associated with a particular drug might stimulate class-specific drug-seeking, however, further studies are needed to test the generality of this claim.
Collapse
Affiliation(s)
- Robert W Seaman
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, USA; South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Kenner C Rice
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, NIDA and NIAAA, Bethesda, MD, USA
| | - Gregory T Collins
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, USA; South Texas Veterans Health Care System, San Antonio, TX, USA.
| |
Collapse
|
14
|
Re-evaluation of the discriminative stimulus effects of lysergic acid diethylamide with male and female Sprague-Dawley rats. Behav Pharmacol 2021; 31:776-786. [PMID: 32960851 DOI: 10.1097/fbp.0000000000000589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Recent discoveries from clinical trials with psychedelic-assisted therapy have led to a resurgence of interest in the psychopharmacology of lysergic acid diethylamide (LSD). Preclinical drug discrimination is an invaluable tool to investigate the neurochemical mechanisms underlying subjective drug effects. The current study extends previous drug discrimination research by including both sexes. Adult female (n = 8) and male (n = 8) Sprague-Dawley rats were trained to discriminate 0.08 mg/kg LSD from saline under a fixed ratio 20 schedule of food reinforcement. Substitution tests were conducted with several substances, including other serotonergic hallucinogens, psychostimulants, mixed psychedelic-stimulants and synthetic cathinones. Stimulus antagonist tests were conducted with selected serotonin and dopamine antagonists. LSD-substitution with serotonergic hallucinogens was comparable between sexes. Modest but intriguing differences were observed between male and female rats in the extent of partial substitution by 3,4-methylenedioxymethamphetamine and 3,4-methylenedioxyamphetamine enantiomers and the synthetic cathinones, 3,4-methylenedioxypyrovalerone and 4-methylmethcathinone. Dopamine antagonists failed to block the LSD cue in both sexes and exerted stronger rate suppressant effects in male rats. The 5-hydroxytryptamine antagonist, (R)-(+)-a-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenyl) ethyl]-4-piperidinemethanol (MDL 100 907) blocked LSD discrimination in both sexes, although complete blockade was evident at lower doses in male rats. These results support previous findings regarding the prominent role of serotonergic activities underlying LSDs discriminative stimulus effects in male rats and generalize these findings to female rats. In consideration of the rising popularity in psychedelic-assisted psychotherapy, further research may be warranted to evaluate possible sex differences in the behavioral and subjective effects of LSD.
Collapse
|
15
|
Thomas AM, Cargile KJ, Lunn JA, Baker LE. Characterization of 3,4-methylenedioxypyrovalerone discrimination in female Sprague-Dawley rats. Behav Pharmacol 2021; 32:524-532. [PMID: 34397448 PMCID: PMC8371744 DOI: 10.1097/fbp.0000000000000647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
3,4-Methylenedioxypyrovalerone (MDPV), one of several synthetic cathinones, is a popular constituent of illicit 'bath salts'. In preclinical studies utilizing drug discrimination methods with male rodents, MDPV has been characterized as similar to both cocaine and 3,4-methylenedioxymethamphetamine-hydrochloride (MDMA). Whereas few drug discrimination studies have utilized female rats, the current study evaluated the discriminative stimulus effects of MDPV in 12 adult female Sprague-Dawley rats trained to discriminate 0.5 mg/kg MDPV from saline under a fixed ratio 20 schedule of food reinforcement. Stimulus substitution was assessed with MDPV and its enantiomers, other synthetic cathinones [alpha pyrrolidinopentiophenone-hydrochloride(α-PVP), 4-methylmethcathinone (4-MMC)], other dopamine agonists (cocaine, [+)-methamphetamine] and serotonin agonists [MDMA, lysergic acid diethylamide (LSD)] Stimulus antagonism was assessed with the dopamine D1 receptor antagonist, Sch 23390 and the D2 receptor antagonist, haloperidol. Cocaine and (+)-methamphetamine engendered full stimulus generalization to MDPV with minimal effects on response rate. LSD produced partial substitution, whereas MDMA and 4-MMC produced complete substitution, and all these serotonergic compounds produced dose-dependent response suppression. (S)-MDPV and α-PVP engendered full substitution with similar potency to the racemate, while (R)-MDPV failed to substitute up to 5 mg/kg. Both Sch 23390 and haloperidol attenuated the discrimination of low MDPV doses and essentially shifted the dose-response curve to the right but failed to block discrimination of the training dose. These findings are generally consistent with previous reports based exclusively on male rodents. Moreover, they confirm the contribution of dopaminergic mechanisms but do not rule out the possible contribution of other neurotransmitter actions to the interoceptive stimulus effects of MDPV.
Collapse
Affiliation(s)
- Angela M Thomas
- Department of Psychology, Western Michigan University, Kalamazoo, Michigan, USA
| | | | | | | |
Collapse
|
16
|
Doyle MR, Sulima A, Rice KC, Collins GT. Influence of Contingent and Noncontingent Drug Histories on the Development of High Levels of MDPV Self-Administration. J Pharmacol Exp Ther 2021; 379:108-116. [PMID: 34413199 DOI: 10.1124/jpet.121.000655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/16/2021] [Indexed: 11/22/2022] Open
Abstract
A subset of rats that self-administer 3,4-methylenedioxypyrovalerone (MDPV) develop unusually high levels of drug taking. A history of responding maintained by cocaine, but not food, prevents the development of this high-responder phenotype; however, it is unclear how histories of noncontingent cocaine exposure or self-administering drugs from other pharmacological classes would affect its development. In the current studies, 5 groups of male Sprague-Dawley rats were used to determine whether histories of responding maintained by drugs from different pharmacological classes (e.g., MDPV, cocaine, fentanyl, nicotine, or ketamine) would differentially impact the development of the high-responder phenotype when MDPV was available for self-administration. Two additional groups were used to determine whether noncontingent exposure to cocaine would prevent the development of the high-responder phenotype when MDPV was available for self-administration, and whether noncontingent exposure to MDPV would facilitate the development of the high-responder phenotype when cocaine was available for self-administration. Consistent with previous reports, a history of response-contingent cocaine, and to a lesser extent noncontingent cocaine, prevented the MDPV high-responder phenotype; however, when responding was initially maintained by fentanyl, nicotine, or ketamine, the MDPV high-responder phenotype developed in ∼45% of rats. By manipulating behavioral and pharmacological histories prior to evaluating MDPV self-administration, the current studies provide additional evidence that a history of response-contingent (or noncontingent) cocaine can prevent the transition from well regulated to aberrant drug-taking when responding is maintained by MDPV. Although the mechanism(s) that underlies this novel high-responder phenotype are unknown, elucidation may provide insight into individual differences relating to substance use disorder. SIGNIFICANCE STATEMENT: A subset of outbred Sprague-Dawley rats self-administer high levels of the synthetic cathinone 3,4-methylenedioxypyrovalerone (MDPV). Understanding the behavioral and/or pharmacological factors that can prevent the development of dysregulated MDPV self-administration may provide insight into individual differences in vulnerability to develop a substance use disorder.
Collapse
Affiliation(s)
- Michelle R Doyle
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas (M.R.D., G.T.C.); South Texas Veterans Health Care System, San Antonio, Texas (M.R.D., G.T.C.); and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, NIDA and NIAAA, Bethesda, Maryland (A.S., K.C.R.)
| | - Agnieszka Sulima
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas (M.R.D., G.T.C.); South Texas Veterans Health Care System, San Antonio, Texas (M.R.D., G.T.C.); and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, NIDA and NIAAA, Bethesda, Maryland (A.S., K.C.R.)
| | - Kenner C Rice
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas (M.R.D., G.T.C.); South Texas Veterans Health Care System, San Antonio, Texas (M.R.D., G.T.C.); and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, NIDA and NIAAA, Bethesda, Maryland (A.S., K.C.R.)
| | - Gregory T Collins
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas (M.R.D., G.T.C.); South Texas Veterans Health Care System, San Antonio, Texas (M.R.D., G.T.C.); and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, NIDA and NIAAA, Bethesda, Maryland (A.S., K.C.R.)
| |
Collapse
|
17
|
Tirri M, Frisoni P, Bilel S, Arfè R, Trapella C, Fantinati A, Corli G, Marchetti B, De-Giorgio F, Camuto C, Mazzarino M, Gaudio RM, Serpelloni G, Schifano F, Botrè F, Marti M. Worsening of the Toxic Effects of (±) Cis-4,4'-DMAR Following Its Co-Administration with (±) Trans-4,4'-DMAR: Neuro-Behavioural, Physiological, Immunohistochemical and Metabolic Studies in Mice. Int J Mol Sci 2021; 22:ijms22168771. [PMID: 34445476 PMCID: PMC8395767 DOI: 10.3390/ijms22168771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 11/16/2022] Open
Abstract
4,4’-Dimethylaminorex (4,4’-DMAR) is a new synthetic stimulant, and only a little information has been made available so far regarding its pharmaco-toxicological effects. The aim of this study was to investigate the effects of the systemic administration of both the single (±)cis (0.1–60 mg/kg) and (±)trans (30 and 60 mg/kg) stereoisomers and their co-administration (e.g., (±)cis at 1, 10 or 60 mg/kg + (±)trans at 30 mg/kg) in mice. Moreover, we investigated the effect of 4,4′-DMAR on the expression of markers of oxidative/nitrosative stress (8-OHdG, iNOS, NT and NOX2), apoptosis (Smac/DIABLO and NF-κB), and heat shock proteins (HSP27, HSP70, HSP90) in the cerebral cortex. Our study demonstrated that the (±)cis stereoisomer dose-dependently induced psychomotor agitation, sweating, salivation, hyperthermia, stimulated aggression, convulsions and death. Conversely, the (±)trans stereoisomer was ineffective whilst the stereoisomers’ co-administration resulted in a worsening of the toxic (±)cis stereoisomer effects. This trend of responses was confirmed by immunohistochemical analysis on the cortex. Finally, we investigated the potentially toxic effects of stereoisomer co-administration by studying urinary excretion. The excretion study showed that the (±)trans stereoisomer reduced the metabolism of the (±)cis form and increased its amount in the urine, possibly reflecting its increased plasma levels and, therefore, the worsening of its toxicity.
Collapse
Affiliation(s)
- Micaela Tirri
- LTTA Center and University Center of Gender Medicine, Department of Translational Medicine, Section of Legal Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (S.B.); (R.A.); (G.C.); (B.M.); (R.M.G.)
| | - Paolo Frisoni
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Sabrine Bilel
- LTTA Center and University Center of Gender Medicine, Department of Translational Medicine, Section of Legal Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (S.B.); (R.A.); (G.C.); (B.M.); (R.M.G.)
| | - Raffaella Arfè
- LTTA Center and University Center of Gender Medicine, Department of Translational Medicine, Section of Legal Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (S.B.); (R.A.); (G.C.); (B.M.); (R.M.G.)
| | - Claudio Trapella
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, 44121 Ferrara, Italy; (C.T.); (A.F.)
| | - Anna Fantinati
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, 44121 Ferrara, Italy; (C.T.); (A.F.)
| | - Giorgia Corli
- LTTA Center and University Center of Gender Medicine, Department of Translational Medicine, Section of Legal Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (S.B.); (R.A.); (G.C.); (B.M.); (R.M.G.)
| | - Beatrice Marchetti
- LTTA Center and University Center of Gender Medicine, Department of Translational Medicine, Section of Legal Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (S.B.); (R.A.); (G.C.); (B.M.); (R.M.G.)
| | - Fabio De-Giorgio
- Department of Health Care Surveillance and Bioetics, Section of Legal Medicine, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Cristian Camuto
- Laboratorio Antidoping FMSI, Largo Giulio Onesti 1, 00197 Rome, Italy; (C.C.); (M.M.); (F.B.)
| | - Monica Mazzarino
- Laboratorio Antidoping FMSI, Largo Giulio Onesti 1, 00197 Rome, Italy; (C.C.); (M.M.); (F.B.)
| | - Rosa Maria Gaudio
- LTTA Center and University Center of Gender Medicine, Department of Translational Medicine, Section of Legal Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (S.B.); (R.A.); (G.C.); (B.M.); (R.M.G.)
| | - Giovanni Serpelloni
- Neuroscience Clinical Center & TMS Unit, 37138 Verona, Italy;
- Department of Psychiatry in the College of Medicine, Drug Policy Institute, University of Florida, Gainesville, FL 32611, USA
| | - Fabrizio Schifano
- Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK;
| | - Francesco Botrè
- Laboratorio Antidoping FMSI, Largo Giulio Onesti 1, 00197 Rome, Italy; (C.C.); (M.M.); (F.B.)
- Institute of Sport Science, University of Lausanne (ISSUL), Synathlon, 1015 Lausanne, Switzerland
| | - Matteo Marti
- LTTA Center and University Center of Gender Medicine, Department of Translational Medicine, Section of Legal Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (S.B.); (R.A.); (G.C.); (B.M.); (R.M.G.)
- Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, 00186 Rome, Italy
- Correspondence:
| |
Collapse
|
18
|
Seaman RW, Doyle MR, Sulima A, Rice KC, Collins GT. Discriminative stimulus effects of 3,4-methylenedioxypyrovalerone (MDPV) and structurally related synthetic cathinones. Behav Pharmacol 2021; 32:357-367. [PMID: 33587482 PMCID: PMC8266731 DOI: 10.1097/fbp.0000000000000624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The 3,4-methylenedioxypyrovalerone (MDPV), and other structurally related synthetic cathinones, are popular alternatives to prototypical illicit psychostimulants, such as cocaine and methamphetamine. These drugs are often referred to as 'bath salts' and function either as cocaine-like inhibitors of monoamine uptake, or amphetamine-like substrates for dopamine, norepinephrine and serotonin transporters. These studies used male Sprague-Dawley rats trained to discriminate MDPV from saline to evaluate the substitution profiles of structurally related synthetic cathinones, cocaine, and other direct-acting dopamine and noradrenergic receptor agonists in order to characterize the relative contributions of dopamine, norepinephrine and serotonin to the discriminative stimulus effects of MDPV. As expected, each of the cathinones and cocaine dose-dependently increased MDPV-appropriate responding, with a rank-order potency that was positively correlated with their potency to inhibit dopamine and norepinephrine, but not serotonin, a relationship that is consistent with the rank order to maintain self-administration. The dopamine D2/3 receptor-preferring agonist quinpirole produced a modest increase in MDPV-appropriate responding, whereas the dopamine D1/5 receptor agonist, SKF 82958, nonselective dopamine receptor agonist, apomorphine, as well as the α-1, and α-2 adrenergic receptor agonists, phenylephrine and clonidine, respectively, failed to increase MDPV-appropriate responding at doses smaller than those that suppressed responding altogether. Although these studies do not support a role for serotonergic or adrenergic systems in mediating/modulating the discriminative stimulus effects of MDPV, convergent evidence is provided to suggest that the discriminative stimulus effects of MDPV are primarily mediated by its capacity to inhibit dopamine uptake, and the subsequent activation of dopamine D2 or D3 receptors.
Collapse
Affiliation(s)
- Robert W Seaman
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio
- Research Service, South Texas Veterans Health Care System, San Antonio, Texas
| | - Michelle R Doyle
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio
- Research Service, South Texas Veterans Health Care System, San Antonio, Texas
| | - Agnieszka Sulima
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, NIDA- and NIAAA-Intramural Research Programs, Bethesda, Maryland, USA
| | - Kenner C Rice
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, NIDA- and NIAAA-Intramural Research Programs, Bethesda, Maryland, USA
| | - Gregory T Collins
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio
- Research Service, South Texas Veterans Health Care System, San Antonio, Texas
| |
Collapse
|
19
|
MDPV "high-responder" rats also self-administer more oxycodone than their "low-responder" counterparts under a fixed ratio schedule of reinforcement. Psychopharmacology (Berl) 2021; 238:1183-1192. [PMID: 33484299 DOI: 10.1007/s00213-021-05764-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023]
Abstract
RATIONALE Oxycodone is one of the most commonly prescribed and most frequently abused opioid analgesics, yet little is known regarding individual vulnerabilities to oxycodone abuse. The synthetic cathinone 3,4-methylenedioxypyrovalerone (MDPV) has been shown to produce a "high-responder" phenotype characterized by increased drug intake and responding during periods of signaled drug unavailability (e.g., during post-infusion timeouts) in ~ 40% of male Sprague-Dawley rats. This phenotype also transfers to other psychostimulants (e.g., cocaine and methamphetamine), but it is unknown whether this phenotype transfers to other (non-stimulant) drugs of abuse. OBJECTIVES The present study aimed to (1) reestablish the "high-responder" phenotype in male Sprague-Dawley rats (n = 11) that acquired self-administration of MDPV (0.032 mg/kg/inf) on a fixed ratio 1 (FR1) schedule of reinforcement and (2) compare full dose-response curves for MDPV and oxycodone self-administration under an FR5 schedule of reinforcement. RESULTS MDPV was ~ 3-fold more potent at maintaining peak levels of behavior and resulted in greater overall drug intake than oxycodone. High levels of timeout responding were noted in a subset of rats that acquired MDPV self-administration ("high-responders", n = 5), and the FR5 dose-response curve for MDPV was shifted upward for these rats relative to their "low-responder" (n = 6) counterparts. "High-responders" also self-administered more infusions of oxycodone under an FR5 schedule of reinforcement than "low-responders"; however, this was not coupled with increased levels of timeout responding. CONCLUSIONS The present data suggest that a subset of individuals with a history of using synthetic cathinones may be particularly vulnerable to the abuse of oxycodone.
Collapse
|
20
|
Doyle MR, Sulima A, Rice KC, Collins GT. Interactions between reinforcement history and drug-primed reinstatement: Studies with MDPV and mixtures of MDPV and caffeine. Addict Biol 2021; 26:e12904. [PMID: 32237282 DOI: 10.1111/adb.12904] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/11/2020] [Accepted: 03/19/2020] [Indexed: 11/30/2022]
Abstract
Many drugs of abuse are mixed with other psychoactive substances (e.g., caffeine) prior to their sale or use. Synthetic cathinones (e.g., 3,4-methylenedioxypyrovalerone [MDPV]) are commonly mixed with caffeine or other cathinones (e.g., 3,4-methylenedioxy-N-methylcathinone [methylone]), and these "bath salts" mixtures (e.g., MDPV + caffeine) can exhibit supra-additive interactions with regard to their reinforcing and discriminative stimulus properties. However, little is known about relapse-related effects of drug mixtures. In these studies, male Sprague-Dawley rats self-administered 0.032 mg/kg/inf MDPV or a mixture of MDPV + caffeine (0.029 + 0.66 mg/kg/inf, respectively) and then underwent multiple rounds of extinction and reinstatement testing to evaluate the influence of reinforcement history and drug-associated stimuli on the effectiveness of saline (drug-paired stimuli alone), MDPV (0.032-1.0 mg/kg), caffeine (1.0-32 mg/kg), and mixtures of MDPV:caffeine (in 3:1, 1:1, and 1:3 ratios, relative to each drug's ED50 ) to reinstate responding. Dose-addition analyses were used to determine the nature of the drug-drug interaction for each mixture. MDPV and caffeine dose-dependently reinstated responding and were equally effective, regardless of reinforcement history. Most fixed ratio mixtures of MDPV + caffeine exhibited supra-additive interactions, reinstating responding to levels greater than was observed with caffeine and/or MDPV alone. Drug-associated stimuli also played a key role in reinstating responding, especially for caffeine. Together, these results demonstrate that the composition of drug mixtures can impact relapse-related effects of drug mixtures, and "bath salts" mixtures (MDPV + caffeine) may be more effective at promoting relapse-related behaviors than the constituents alone. Further research is needed to determine how other polysubstance reinforcement histories can impact relapse-related behaviors.
Collapse
Affiliation(s)
- Michelle R. Doyle
- Department of Pharmacology The University of Texas Health Science Center at San Antonio San Antonio Texas USA
- Research Service South Texas Veterans Health Care System San Antonio Texas USA
| | - Agnieszka Sulima
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch NIDA and NIAAA Bethesda Maryland USA
| | - Kenner C. Rice
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch NIDA and NIAAA Bethesda Maryland USA
| | - Gregory T. Collins
- Department of Pharmacology The University of Texas Health Science Center at San Antonio San Antonio Texas USA
- Research Service South Texas Veterans Health Care System San Antonio Texas USA
| |
Collapse
|
21
|
Xu P, Lai M, Fu D, Liu H, Wang Y, Shen H, Zhou W. Reinforcing and discriminative-stimulus effects of two pyrrolidine-containing synthetic cathinone derivatives in rats. Pharmacol Biochem Behav 2021; 203:173128. [PMID: 33515585 DOI: 10.1016/j.pbb.2021.173128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 11/30/2022]
Abstract
The molecular and behavioral aspects of α-pyrrolidinopentiophenone (α-PVP) have been characterized; however, how the structural modification of α-PVP affects its abuse potential is still unknown. In this study, we investigated the abuse potential of two pyrrolidinylated second-generation cathinones:4-chloro-α-pyrrolidinopentiophenone (4cl-α-PVP) and 4-chloro-α-pyrrolidinopropiophenone (4cl-α-PPP). Male Sprague-Dawley rats were trained to self-administer methamphetamine (METH, 0.05 mg·kg-1·infusion-1), α-PVP (0.05 mg·kg-1·infusion-1), 4cl-α-PVP (0.05 mg·kg-1·infusion-1), and 4cl-α-PPP (0.5 mg·kg-1·infusion-1) under a fixed ratio (FR) 1 reinforcement schedule for 10 sessions. The discriminative-stimulus effect of METH (0.8 mg/kg) from saline was tested under an FR10 schedule of food delivery. α-PVP, 4cl-α-PVP and 4cl-α-PPP produced reinforcement behaviors and presented an inverted U-shaped dose effect. The reinforcing potency was displayed with a rank order of α-PVP (0.029 mg·kg-1·infusion-1) > METH (0.040 mg·kg-1·infusion-1) > 4cl-α-PVP (0.094 mg·kg-1·infusion-1) > 4cl-α-PPP (0.51 mg·kg-1·infusion-1). All three drugs were fully substituted for the discriminative-stimulus effects of METH in rats. The substitution potency for discriminative-stimulus effects of α-PVP (ED50 = 0.4 mg/kg) was approximately equal to that of METH (ED50 = 0.3 mg/kg), while the discriminative potency of 4cl-α-PVP (ED50 = 1.0 mg/kg) and 4cl-α-PPP (ED50 = 5 mg/kg) was approximately 3 and 16-fold less than that of METH. The rank order of potency was α-PVP ≈ METH >4cl-α-PVP > 4cl-α-PPP. The present data demonstrated that 4cl-α-PVP and 4cl-α-PPP produced reinforcing effects and fully and dose-dependently substituted for the subjective effects of METH, suggesting that both 4cl-α-PVP and 4cl-α-PPP have abuse potential that may be similar to METH.
Collapse
Affiliation(s)
- Peng Xu
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing 100093, PR China
| | - Miaojun Lai
- Zhejiang Provincial Key Laboratory of Addiction, Ningbo Kangning Hospital, School of Medicine, Ningbo University, Ningbo 315201, Zhejiang Province, PR China
| | - Dan Fu
- Zhejiang Provincial Key Laboratory of Addiction, Ningbo Kangning Hospital, School of Medicine, Ningbo University, Ningbo 315201, Zhejiang Province, PR China
| | - Huifen Liu
- Zhejiang Provincial Key Laboratory of Addiction, Ningbo Kangning Hospital, School of Medicine, Ningbo University, Ningbo 315201, Zhejiang Province, PR China
| | - Youmei Wang
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing 100093, PR China
| | - Haowei Shen
- Faculty of Physiology & Pharmacology, School of Medicine, Ningbo University, Ningbo 315211, Zhejiang Province, PR China.
| | - Wenhua Zhou
- Zhejiang Provincial Key Laboratory of Addiction, Ningbo Kangning Hospital, School of Medicine, Ningbo University, Ningbo 315201, Zhejiang Province, PR China.
| |
Collapse
|
22
|
Schindler CW, Thorndike EB, Walters HM, Walther D, Rice KC, Baumann MH. Stereoselective neurochemical, behavioral, and cardiovascular effects of α-pyrrolidinovalerophenone enantiomers in male rats. Addict Biol 2020; 25:e12842. [PMID: 31724254 DOI: 10.1111/adb.12842] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 12/21/2022]
Abstract
The synthetic cathinone α-pyrrolidinovalerophenone (α-PVP) continues to be abused despite being banned by regulatory agencies. The abused formulation of α-PVP is a racemic mixture consisting of two enantiomers, S-α-PVP and R-α-PVP. In this study, we investigated the neurochemical, behavioral, and cardiovascular effects of racemic α-PVP and its enantiomers in male rats. Racemic α-PVP blocked the uptake of both dopamine and norepinephrine ex vivo, but did not block the uptake of serotonin (5-HT), at their respective transporters. S-α-PVP was slightly more potent than racemic α-PVP, while R-α-PVP was 10 to 20 times less potent at blocking dopamine and norepinephrine uptake. In microdialysis studies, racemic and S-α-PVP increased extracellular dopamine levels in the nucleus accumbens, but not levels of 5-HT. Racemic and S-α-PVP also increased locomotor activity. When tested at the same doses, S-α-PVP produced larger effects than racemic α-PVP. R-α-PVP also increased extracellular dopamine levels and locomotor activity, but only at 30 times higher doses than S-α-PVP. Racemic and S-α-PVP were self-administered by rats at 0.03 mg/kg/injection, whereas R-α-PVP was self-administered at a 10 times higher dose. Dose-effect determinations following acquisition suggested that R-α-PVP was at least 30 times less potent than S-α-PVP. Finally, racemic and S-α-PVP increased blood pressure and heart rate at doses approximately 30 times less than was required for R-α-PVP to produce similar effects. These results show that the neurochemical, behavioral, and cardiovascular effects of racemic α-PVP most likely reflect the actions of S isomer.
Collapse
Affiliation(s)
- Charles W. Schindler
- Designer Drug Research Unit, Intramural Research Program of the National Institute on Drug Abuse National Institutes of Health Baltimore Maryland USA
- Preclinical Pharmacology Section, Intramural Research Program of the National Institute on Drug Abuse National Institutes of Health Baltimore Maryland USA
| | - Eric B. Thorndike
- Preclinical Pharmacology Section, Intramural Research Program of the National Institute on Drug Abuse National Institutes of Health Baltimore Maryland USA
| | - Hailey M. Walters
- Designer Drug Research Unit, Intramural Research Program of the National Institute on Drug Abuse National Institutes of Health Baltimore Maryland USA
| | - Donna Walther
- Designer Drug Research Unit, Intramural Research Program of the National Institute on Drug Abuse National Institutes of Health Baltimore Maryland USA
| | - Kenner C. Rice
- Drug Design and Synthesis Section, Intramural Research Program of the National Institute on Drug Abuse National Institutes of Health Baltimore Maryland USA
| | - Michael H. Baumann
- Designer Drug Research Unit, Intramural Research Program of the National Institute on Drug Abuse National Institutes of Health Baltimore Maryland USA
| |
Collapse
|
23
|
Risca HI, Zuarth-Gonzalez JD, Baker LE. Conditioned place preference following concurrent treatment with 3, 4-methylenedioxypyrovalerone (MDPV) and methamphetamine in male and female Sprague-Dawley rats. Pharmacol Biochem Behav 2020; 198:173032. [PMID: 32888971 PMCID: PMC8667570 DOI: 10.1016/j.pbb.2020.173032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/31/2020] [Accepted: 08/31/2020] [Indexed: 01/31/2023]
Abstract
Synthetic cathinones gained initial popularity on the illicit drug market as a result of attempts to evade legal restrictions on other commonly abused psychostimulants. A body of published research has determined that the psychopharmacology of the synthetic cathinone 3, 4-methylenedioxypyrovalerone (MDPV) is comparable to cocaine and methamphetamine (METH). Few preclinical studies have systematically investigated concurrent use of synthetic cathinones with other psychostimulant drugs. The present study utilized conditioned place preference (CPP), a rodent model of conditioned drug reward, to evaluate the effects of concurrent treatment with MDPV and METH. Male (N = 72) and female (N = 105) Sprague-Dawley rats underwent a two-compartment biased CPP procedure, with one trial per day for eight consecutive days. Subjects were randomly assigned to the following treatment groups: saline, METH (1 mg/kg), MDPV (1, 3.2, 5.6 mg/kg) or a mixture consisting of METH (1 mg/kg) and MDPV (1, 3.2, 5.6 mg/kg). All treatments increased locomotor activity during drug conditioning trials, and most treatments produced higher activity increases in females compared to males. Although the level of CPP established by MDPV and MDPV + METH mixtures varied between males and females, sex differences were not statistically significant. Although none of the MDPV+METH mixtures produced stronger CPP than either substance alone, some mixtures of MDPV and METH produced higher increases in locomotor activity compared to either drug alone. Further studies with higher doses may be warranted to determine if concurrent use of MDPV and METH pose an enhanced risk for abuse.
Collapse
Affiliation(s)
- Harmony I Risca
- Department of Psychology, Western Michigan University, Kalamazoo, MI 49008, USA
| | | | - Lisa E Baker
- Department of Psychology, Western Michigan University, Kalamazoo, MI 49008, USA.
| |
Collapse
|
24
|
McClenahan SJ, Gunnell MG, Owens SM, Fantegrossi WE. Active vaccination reduces reinforcing effects of MDPV in male Sprague-Dawley rats trained to self-administer cocaine. Psychopharmacology (Berl) 2020; 237:2613-2620. [PMID: 32500210 PMCID: PMC7502518 DOI: 10.1007/s00213-020-05558-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 05/18/2020] [Indexed: 12/13/2022]
Abstract
RATIONALE 3,4-Methylenedioxypyrovalerone (MDPV) is a synthetic cathinone abused for its cocaine-like psychostimulant effects in "bath salts" products. While there are currently no pharmacotherapies for MDPV abuse, rodent studies suggest immunotherapy may offer a feasible treatment option. OBJECTIVES These studies tested the capacity of active vaccination to reduce the reinforcing effects of MDPV in Sprague-Dawley rats. METHODS Rats acquired cocaine self-administration (0.32 mg/kg/inf) on an FR1 schedule. Dose-effect functions for cocaine (0.032-1.0 mg/kg/inf) and MDPV (0.001-0.32 mg/kg/inf) were determined under an FR5 schedule. Rats in the vaccine group were immunized during cocaine self-administration. All rats transitioned to a progressive-ratio (PR) schedule to establish breakpoints for cocaine (0.1-1.0 mg/kg/inf) and MDPV (0.01-0.32 mg/kg/inf). Responding was extinguished, and cue-induced and MDPV-primed reinstatement (0.56 mg/kg, IP) were evaluated. RESULTS No endpoints of cocaine self-administration differed between groups, but the ED50 for MDPV self-administration was significantly lower in control relative to vaccinated rats. Under the PR schedule, MDPV was ~ 2.5-fold more potent in maintaining responding in control than vaccinated rats, but Emax was not different between groups. Vaccination did not reduce MDPV-primed reinstatement, perhaps due to a decrease in antibody titer. CONCLUSIONS Vaccination did not alter acquisition of cocaine self-administration, demonstrating pharmacological selectivity and suggesting that the vaccine did not affect learning or motivation, while effectively reducing the potency of MDPV as a reinforcer. The protective effects of the vaccine were surmounted by large unit doses of MDPV, suggesting maximal efficacy of drug-conjugate vaccines in substance abuse disorders will likely require concurrent behavior modification therapy.
Collapse
Affiliation(s)
- Samantha J McClenahan
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham, Slot 638, Little Rock, AR, 72205, USA
| | - Melinda G Gunnell
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham, Slot 638, Little Rock, AR, 72205, USA
| | - S Michael Owens
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham, Slot 638, Little Rock, AR, 72205, USA
| | - William E Fantegrossi
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham, Slot 638, Little Rock, AR, 72205, USA.
| |
Collapse
|
25
|
The synthetic cathinone 3,4-methylenedioxypyrovalerone increases impulsive action in rats. Behav Pharmacol 2020; 31:309-321. [DOI: 10.1097/fbp.0000000000000548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Metabolism, CB1 cannabinoid receptor binding and in vivo activity of synthetic cannabinoid 5F-AKB48: Implications for toxicity. Pharmacol Biochem Behav 2020; 195:172949. [PMID: 32413436 DOI: 10.1016/j.pbb.2020.172949] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/11/2020] [Indexed: 11/20/2022]
Abstract
AKB48 and its fluorinated derivative 5F-AKB48 are synthetic cannabinoids (SCs) which have caused hospitalizations and deaths in human users. Abuse of SCs is dangerous because users may mistake them for natural cannabis, which is generally considered to be unlikely to elicit adverse effects. The present studies were designed to investigate the in vitro oxidative metabolism of 5F-AKB48 by human microsomal fractions from different organs and sexes as well as recombinant human cytochrome P450s (P450s). Mass spectrometry data tentatively provides evidence for the existence of mono-, di-, and trihydroxylated metabolites in a successive metabolism. Experiments utilizing P450s revealed that the most active enzymes (CYP2D6, CYP2J2, CYP3A4, and CYP3A5) effectively produced mono- and dihydroxylated metabolites, while CYP3A4/5 also produced significant amounts of the trihydroxylated metabolite. Moreover, although the affinity and potency of Phase I metabolite 4OH-5F-AKB48 is reduced when compared to that of the parent drug, this metabolite nevertheless retains similar high affinity for CB1 receptors, and greater efficacy for G protein activation, when compared to THC. Finally, 5F-AKB48 produced time- and dose-dependent cannabimimetic effects in mice which were more potent, but shorter acting, than those of Δ9-THC, and were attenuated by prior treatment with the CB1 antagonist rimonabant. Based on our data, we hypothesize that while many cases of toxicity result from genetic mutations, which can lead to a decrease or even absence of activity for Phase I drug-metabolizing enzymes, other P450s could potentially increase their role in the metabolism of these SCs. Because many metabolites of SCs remain biologically active, they could contribute to the deleterious effects of these substances.
Collapse
|
27
|
Wronikowska O, Budzyńska B. Toxicological profile and structure–activity relationship
of new synthetic cathinones. POSTEP HIG MED DOSW 2020. [DOI: 10.5604/01.3001.0013.9252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
According to the Chief Sanitary Inspectorate, 75% of the compounds identified as new psychoactive substances in Poland are represented by synthetic cathinones. The aim of the presented paper is to describe the pharmacological profile of synthetic cathinones, including the structure-activity relationship and its impact on their biological effects. This article also includes a review of the literature on fatal and non-fatal intoxication cases associated with the administration of well-described synthetic cathinones, as well as their new derivatives. This review also characterises the influence of the amendment to the Act of August 2018 concerning the prevention of drug abuse on the process of banning new drugs and the current legal situation related to the abuse of new psychoactive substances.
Collapse
Affiliation(s)
- Olga Wronikowska
- Samodzielna Pracownia Badań Behawioralnych, Wydział Lekarsko-Dentystyczny, Uniwersytet Medyczny w Lublinie
| | - Barbara Budzyńska
- Samodzielna Pracownia Badań Behawioralnych, Wydział Lekarsko-Dentystyczny, Uniwersytet Medyczny w Lublinie
| |
Collapse
|
28
|
Riley AL, Nelson KH, To P, López-Arnau R, Xu P, Wang D, Wang Y, Shen HW, Kuhn DM, Angoa-Perez M, Anneken JH, Muskiewicz D, Hall FS. Abuse potential and toxicity of the synthetic cathinones (i.e., “Bath salts”). Neurosci Biobehav Rev 2020; 110:150-173. [DOI: 10.1016/j.neubiorev.2018.07.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/14/2018] [Accepted: 07/24/2018] [Indexed: 01/22/2023]
|
29
|
Santos‐Toscano R, Guirguis A, Davidson C. How preclinical studies have influenced novel psychoactive substance legislation in the UK and Europe. Br J Clin Pharmacol 2020; 86:452-481. [DOI: 10.1111/bcp.14224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/30/2022] Open
Affiliation(s)
- Raquel Santos‐Toscano
- School of Pharmacy & Biomedical Sciences, Faculty of Clinical & Biomedical Sciences University of Central Lancashire UK
| | - Amira Guirguis
- Swansea University Medical School, Institute of Life Sciences 2, Swansea University Swansea UK
| | - Colin Davidson
- School of Pharmacy & Biomedical Sciences, Faculty of Clinical & Biomedical Sciences University of Central Lancashire UK
| |
Collapse
|
30
|
Wojcieszak J, Andrzejczak D, Wojtas A, Gołembiowska K, Zawilska JB. Comparative neuropharmacological studies on three pyrrolidine-containing synthetic cathinones. Forensic Toxicol 2020. [DOI: 10.1007/s11419-020-00523-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Abstract
Purpose
3,4-Methylenedioxypyrovalerone (3,4-MDPV) is a prevalent member of α-pyrrolidinophenones, a group of new psychoactive substances, known for its strong psychostimulant effect resulting from potent stimulation of dopamine (DA) circuitry in the brain. As 3,4-MDPV and its derivatives are successively being scheduled, each year novel analogs appear on the market. This study aimed at examination and direct comparison of psychostimulant properties of structural isomer of 3,4-MDPV, namely 2,3-MDPV along with a model α-pyrrolidinophenone, pyrovalerone.
Methods
Open field spontaneous locomotor activity of mice was assessed as a measure of psychostimulant potency. To evaluate the in vivo pharmacological properties of the drugs, extracellular levels of DA and serotonin (5-HT) in the mouse striatum were measured using an in vivo microdialysis technique followed by high-performance liquid chromatography with electrochemical detection. Involvement of dopaminergic system in the behavioral effects of the tested α-pyrrolidinophenones was examined by pre-treatment with a selective D1-DA receptor antagonist, SCH 23390, before measurement of locomotor activity in response to the drugs.
Results
3,4-MDPV, 2,3-MDPV and pyrovalerone produced time- and dose-dependent stimulation of locomotor activity, with 3,4-MDPV being more potent than the other two compounds. Observed locomotor stimulation was mediated by elevated DA-ergic neurotransmission, as all compounds caused a significant increase of extracellular DA levels in the striatum, with 3,4-MDPV being the most potent, and psychostimulant effects were abolished by SCH 23390. Interestingly, the tested pyrovalerones caused in vivo elevation of extracellular 5-HT levels, which contrasted with their in vitro pharmacologic properties.
Conclusions
Pyrovalerone, 2,3-MDPV and 3,4-MDPV produced psychostimulant effects mediated by stimulation of dopaminergic neurotransmission. Additionally, all tested compounds elevated extracellular levels of 5-HT in vivo.
Collapse
|
31
|
Collins GT, Sulima A, Rice KC, France CP. Self-administration of the synthetic cathinones 3,4-methylenedioxypyrovalerone (MDPV) and α-pyrrolidinopentiophenone (α-PVP) in rhesus monkeys. Psychopharmacology (Berl) 2019; 236:3677-3685. [PMID: 31346629 PMCID: PMC7274354 DOI: 10.1007/s00213-019-05339-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/19/2019] [Indexed: 10/26/2022]
Abstract
RATIONALE The availability and abuse of synthetic analogues of cathinone have increased dramatically around the world. Synthetic cathinones, such as 3,4-methylenedioxypyrovalerone [MDPV] and α-pyrrolidinopentiophenone [α-PVP], are cocaine-like inhibitors of monoamine transporters and common constituents of "bath salts" or "flakka" preparations. Studies in rats suggest that MDPV and α-PVP are 3 to 4-fold more effective reinforcers than cocaine; however, comparisons of the relative reinforcing effectiveness of MDPV and α-PVP have not been reported in other species. OBJECTIVES Accordingly, in the present study, 4 adult male rhesus monkeys responding under a progressive ratio schedule of reinforcement were used to characterize the reinforcing effects of MDPV and α-PVP and to compare directly these effects with those of cocaine and methamphetamine. RESULTS MDPV was the most potent reinforcer, followed by α-PVP, methamphetamine, and cocaine. α-PVP was the most effective reinforcer, followed by MDPV, cocaine, and methamphetamine. In addition to making more responses to obtain MDPV and α-PVP, monkeys also responded for longer periods of time when MDPV or α-PVP was available compared with when either cocaine or methamphetamine was available for infusion. CONCLUSIONS These studies confirm recent reports from rodents and provide strong evidence that the synthetic cathinones MDPV and α-PVP are capable of maintaining high levels of responding for prolonged periods of time, and that they function as more effective reinforcers than either cocaine or methamphetamine. The relative strength of these reinforcing effects may account for the high rates of "bath salts" use reported in humans.
Collapse
Affiliation(s)
- Gregory T. Collins
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229, USA; Addiction Research, Treatment & Training Center of Excellence, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229, USA; South Texas Veterans Health Care System, San Antonio, Texas, 78229, USA
| | - Agnieszka Sulima
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, 20850, USA
| | - Kenner C. Rice
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, 20850, USA
| | - Charles P. France
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229, USA; Addiction Research, Treatment & Training Center of Excellence, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229, USA; Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229, USA
| |
Collapse
|
32
|
Design, synthesis and biological evaluation of a bi-specific vaccine against α-pyrrolidinovalerophenone (α-PVP) and 3,4-methylenedioxypyrovalerone (MDPV) in rats. Vaccine 2019; 38:336-344. [PMID: 31629568 DOI: 10.1016/j.vaccine.2019.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 12/22/2022]
Abstract
α-PVP (α-pyrrolidinovalerophenone) and MDPV (3,4-methylenedioxypyrovalerone) are potent abused stimulants that are members of the synthetic cathinone class of drugs. Although these drugs are taken with recreational intent, high doses can lead to unintended adverse effects including agitation, cardiovascular effects, sympathomimetic syndromes, hallucinations, and psychoses. One possible treatment is the use of a vaccine to block or attenuate adverse medical effects. These studies report the preparation of a vaccine that generates high affinity antibodies specific for both drugs and the pharmacological testing of this vaccine in male rats. Alkylation of a hydroxy-α-PVP analog with an appropriate thiol-bearing linker afforded the hapten. When hapten-conjugated carrier protein was mixed with adjuvant, the resulting vaccine stimulated production of antibodies in male Sprague Dawley rats that were found to significantly reduce α-PVP- and MDPV-induced hyperlocomotion as well as to significantly reduce the concentrations of MDPV drugs in critical organs. The novel vaccine produced high affinity antibodies against MDPV, (R)-MDPV, (S)-MDPV, and α-PVP. Cross-reactivity testing against nine structurally similar cathinones showed very limited binding, and no binding to off-target endogenous and exogenous compounds. Antibodies generated by this bi-specific vaccine also significantly shortened the duration of locomotor activity induced by both drugs up to a dose of 5.6 mg/kg in male rats.
Collapse
|
33
|
Repeated administration of synthetic cathinone 3,4-methylenedioxypyrovalerone persistently increases impulsive choice in rats. Behav Pharmacol 2019; 30:555-565. [DOI: 10.1097/fbp.0000000000000492] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
34
|
Bálint M, Darcsi A, Benkovics G, Varga E, Malanga M, Béni S. Synthesis of the chiral selector heptakis(6-O-methyl)-β-cyclodextrin by phase-transfer catalysis and hydrazine-mediated transfer-hydrogenation. Electrophoresis 2019; 40:1941-1950. [PMID: 30892708 DOI: 10.1002/elps.201900065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 11/11/2022]
Abstract
The exhaustive primary-side alkylation of cyclodextrins has never been achieved directly. The undesired and simultaneous derivatization of the secondary hydroxyl moieties generates intricate isomeric mixtures that are challenging to purify, analyse and characterize. The aim of this study was to develop a chromatography-free and up-scalable strategy towards the preparation of per-6-O-methylated cyclodextrin and to test the compound as potential chiral selector. The target molecule was prepared according to a five-step synthesis by using methyltriphenylphosphonium bromide as catalyst under heterogeneous conditions. The removal of benzyl moieties, used as temporary secondary-side protecting groups, was attained by applying hydrazine-carbonate in the presence of Pd/C. All the intermediates were obtained in high yields, thoroughly characterized and their purity was assessed by ad-hoc developed HPLC methods. The per-6-O-methylated β-cyclodextrin showed promising chiral recognition ability as background electrolyte additive in cyclodextrin-modified capillary electrophoresis using the recreational drug methylene-dioxypyrovalerone as model compound. Additionally, a model for the inclusion geometry between the single isomer host and the selected drug was developed based on the extensive 2D NMR analysis. The versatility of the proposed synthetic strategy opens the way to the industrial production of homogeneously primary-alkylated cyclodextrins and to their wide application in chiral separation of various drugs.
Collapse
Affiliation(s)
| | - András Darcsi
- Department of Pharmacognosy, Semmelweis University, Budapest, Hungary
| | | | | | - Milo Malanga
- CycloLab, Cyclodextrin R&D Ltd, Budapest, Hungary
| | - Szabolcs Béni
- Department of Pharmacognosy, Semmelweis University, Budapest, Hungary
| |
Collapse
|
35
|
Ford BM, Cabanlong CV, Tai S, Franks LN, Penthala NR, Crooks PA, Prather PL, Fantegrossi WE. Reduced Tolerance and Asymmetrical Crosstolerance to Effects of the Indole Quinuclidinone Analog PNR-4-20, a G Protein-Biased Cannabinoid 1 Receptor Agonist in Mice: Comparisons with Δ 9-Tetrahydrocannabinol and JWH-018. J Pharmacol Exp Ther 2019; 369:259-269. [PMID: 30833484 DOI: 10.1124/jpet.118.252965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 02/11/2019] [Indexed: 01/01/2023] Open
Abstract
Most cannabinoid 1 receptor (CB1R) agonists will signal through both G protein-dependent and -independent pathways in an unbiased manner. Recruitment of β-arrestin 2 desensitizes and internalizes receptors, producing tolerance that limits therapeutic utility of cannabinoids for chronic conditions. We developed the indole quinuclidinone (IQD) analog (Z)-2-((1-(4-fluorobenzyl)-1H-indol-3-yl)methylene)quinuclidin-3-one (PNR-4-20) as a novel G protein-biased agonist at CB1Rs, and the present studies determine if repeated administration of PNR-4-20 produces lesser tolerance to in vivo effects compared with unbiased CB1R agonists Δ9-tetrahydrocannabinol (Δ9-THC) and 1-pentyl-3-(1-naphthoyl)indole (JWH-018). Adult male National Institutes of Health Swiss mice were administered comparable doses of PNR-4-20 (100 mg/kg), Δ9-THC (30 mg/kg), or JWH-018 (3 mg/kg) once per day for five consecutive days to determine tolerance development to hypothermic, antinociceptive, and cataleptic effects. Persistence of tolerance was then determined after a drug abstinence period. We found that unbiased CB1R agonists Δ9-THC and JWH-018 produced similar tolerance to these effects, but lesser tolerance was observed with PNR-4-20 for hypothermic and cataleptic effects. Tolerance to the effects of PNR-4-20 completely recovered after drug abstinence, while residual tolerance was always observed with unbiased CB1R agonists. Repeated treatment with PNR-4-20 and Δ9-THC produced asymmetric crosstolerance to hypothermic effects. Importantly, binding studies suggest PNR-4-20 produced significantly less downregulation of CB1Rs relative to Δ9-THC in hypothalamus and thalamus of chronically treated mice. These studies suggest that the G protein-biased CB1R agonist PNR-4-20 produces significantly less tolerance than unbiased cannabinoid agonists, and that the IQD analogs should be investigated further as a novel molecular scaffold for development of new therapeutics.
Collapse
Affiliation(s)
- Benjamin M Ford
- Department of Pharmacology and Toxicology, College of Medicine (B.M.F., C.V.C., S.T., L.N.F., P.L.P., W.E.F.), and Department of Pharmaceutical Sciences, College of Pharmacy (N.R.P., P.A.C.), University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Christian V Cabanlong
- Department of Pharmacology and Toxicology, College of Medicine (B.M.F., C.V.C., S.T., L.N.F., P.L.P., W.E.F.), and Department of Pharmaceutical Sciences, College of Pharmacy (N.R.P., P.A.C.), University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Sherrica Tai
- Department of Pharmacology and Toxicology, College of Medicine (B.M.F., C.V.C., S.T., L.N.F., P.L.P., W.E.F.), and Department of Pharmaceutical Sciences, College of Pharmacy (N.R.P., P.A.C.), University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Lirit N Franks
- Department of Pharmacology and Toxicology, College of Medicine (B.M.F., C.V.C., S.T., L.N.F., P.L.P., W.E.F.), and Department of Pharmaceutical Sciences, College of Pharmacy (N.R.P., P.A.C.), University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Narsimha R Penthala
- Department of Pharmacology and Toxicology, College of Medicine (B.M.F., C.V.C., S.T., L.N.F., P.L.P., W.E.F.), and Department of Pharmaceutical Sciences, College of Pharmacy (N.R.P., P.A.C.), University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Peter A Crooks
- Department of Pharmacology and Toxicology, College of Medicine (B.M.F., C.V.C., S.T., L.N.F., P.L.P., W.E.F.), and Department of Pharmaceutical Sciences, College of Pharmacy (N.R.P., P.A.C.), University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Paul L Prather
- Department of Pharmacology and Toxicology, College of Medicine (B.M.F., C.V.C., S.T., L.N.F., P.L.P., W.E.F.), and Department of Pharmaceutical Sciences, College of Pharmacy (N.R.P., P.A.C.), University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - William E Fantegrossi
- Department of Pharmacology and Toxicology, College of Medicine (B.M.F., C.V.C., S.T., L.N.F., P.L.P., W.E.F.), and Department of Pharmaceutical Sciences, College of Pharmacy (N.R.P., P.A.C.), University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
36
|
Effects of the second-generation "bath salt" cathinone alpha-pyrrolidinopropiophenone (α-PPP) on behavior and monoamine neurochemistry in male mice. Psychopharmacology (Berl) 2019; 236:1107-1117. [PMID: 30276421 PMCID: PMC6443494 DOI: 10.1007/s00213-018-5044-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/19/2018] [Indexed: 10/28/2022]
Abstract
RATIONALE Synthetic cathinones ("bath salts") are β-ketone analogs of amphetamines, yet few studies have examined their potential neurotoxic effects. OBJECTIVE In the current study, we assessed the persistent behavioral and neurochemical effects of exposure to the second-generation synthetic cathinone α-pyrrolidinopropiophenone (α-PPP). METHODS Male, Swiss-Webster mice were exposed to α-PPP (80 mg/kg) using a binge-like dosing regimen (QID, q2h). Behavior was assessed 4-5 days after the dosing regimen, and neurochemistry was assessed the following day. Behavior was studied using the elevated plus maze, Y-maze, and novel object recognition tests. Regional levels of dopamine, serotonin, norepinephrine, and the major dopamine metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) were determined in the prefrontal cortex and striatum using high-pressure liquid chromatography. Additional experiments assessed the time courses of the effects of α-PPP on locomotor activity and core temperature using telemetry. RESULTS Exposure to α-PPP significantly impaired performance in the Y-maze, decreased overall exploratory activity in the novel object recognition test, and resulted in regionally specific depletions in monoamine neurochemistry. In contrast, it had no significant effect on elevated plus maze performance or object discrimination in the novel object recognition test. The locomotor-stimulant effects of α-PPP were comparable to cocaine (30 mg/kg), and α-PPP (80 mg/kg) did not induce hyperthermia. CONCLUSIONS α-PPP exposure results in persistent changes in exploratory behavior, spatial working memory, and monoamine neurochemistry. This research highlights potential dangers of α-PPP, including potential neurotoxicity, and suggests that the mechanisms underlying the persistent untoward effects of the cathinones may be distinct from those of the amphetamines.
Collapse
|
37
|
|
38
|
Risca HI, Baker LE. Contribution of monoaminergic mechanisms to the discriminative stimulus effects of 3,4-methylenedioxypyrovalerone (MDPV) in Sprague-Dawley rats. Psychopharmacology (Berl) 2019; 236:963-971. [PMID: 30554256 PMCID: PMC6571067 DOI: 10.1007/s00213-018-5145-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 12/03/2018] [Indexed: 12/21/2022]
Abstract
RATIONALE 3,4-Methylenedioxypyrovalerone (MDPV) is a popular synthetic cathinone reported to have a high abuse potential. Recent preclinical research indicates the psychopharmacology of MDPV is comparable to cocaine. Despite a recent influx of research on the psychopharmacology of MDPV, few studies have employed preclinical drug discrimination methods to discern the neurochemical mechanisms involved in its interoceptive stimulus effects. OBJECTIVE The aim of this study was to evaluate a variety of monoaminergic agents for substitution, potentiation, or antagonism in rats trained to discriminate MDPV. METHODS Male Sprague-Dawley rats were trained to discriminate 0.5 (experiment 1) or 1 mg/kg MDPV (experiment 2) from saline under an FR 20 schedule of food reinforcement. In experiment 1, MDMA, MDA, and their respective optical isomers (0.75-3 mg/kg), cocaine (2.5-20 mg/kg), GBR 12909 (5-40 mg/kg), and desipramine (3.2-10 mg/kg) were assessed for substitution. GBR 12909 (40 mg/kg) and desipramine (3.2 mg/kg) were subsequently assessed for potentiation of the MDPV cue. In experiment 2, stimulus antagonism tests were conducted with dopamine antagonists (Sch 23390, haloperidol) and serotonin antagonists (pirenperone, MDL100907, WAY 100635). RESULTS The MDMA and MDA enantiomers produced divergent results, with virtually no substitution by (-)-MDMA or (-)-MDA, partial substitution with (+)-MDA, and full substitution with (+)-MDMA, as well as full substitution by the racemates, (±)-MDMA and (±)-MDA. Consistent with previous findings, cocaine fully substituted for MDPV. Although no dose of GBR 12909 or desipramine substituted for MDPV, these reuptake inhibitors enhanced the discriminative stimulus effects of lower MDPV doses. Both D1 (Sch 23390) and D2 (haloperidol) DA antagonists attenuated 1 mg/kg MDPV discrimination, whereas none of the 5-HT antagonists assessed altered MDPV discrimination. CONCLUSIONS These findings indicate MDPV's interoceptive stimulus effects are mediated predominantly by dopaminergic actions, although serotonergic and/or noradrenergic modulation of these effects cannot be ruled out. Further investigations into the neurochemical actions involved in the discriminative stimulus effects of MDPV may serve to inform medication discovery and development for the treatment of MDPV abuse.
Collapse
Affiliation(s)
- Harmony I Risca
- Department of Psychology, Western Michigan University, Kalamazoo, MI, 49008, USA
| | - Lisa E Baker
- Department of Psychology, Western Michigan University, Kalamazoo, MI, 49008, USA.
| |
Collapse
|
39
|
Behavioral economic analysis of the reinforcing effects of "bath salts" mixtures: studies with MDPV, methylone, and caffeine in male Sprague-Dawley rats. Psychopharmacology (Berl) 2019; 236:1031-1041. [PMID: 30267131 PMCID: PMC6440875 DOI: 10.1007/s00213-018-5046-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/19/2018] [Indexed: 10/28/2022]
Abstract
RATIONALE "Bath salts" preparations often contain combinations of synthetic cathinones (e.g., 3,4-methylenedioxymethcathinone [methylone], 3,4-methylenedioxypyrovalerone [MDPV]), and caffeine, and evidence suggests that mixtures of synthetic cathinones and caffeine (e.g., MDPV + caffeine or methylone + caffeine) can be more potent and/or effective reinforcers than predicted for an additive interaction. OBJECTIVE To use demand curve analyses to compare the reinforcing effectiveness of MDPV and methylone to mixtures of MDPV + caffeine and methylone + caffeine. METHODS Male Sprague-Dawley rats acquired methylone self-administration (0.32 mg/kg/inf) under a fixed ratio (FR) 1 schedule of reinforcement and generated full dose-response curves for methylone (0.01-1 mg/kg/inf) under an FR5 schedule of reinforcement. Demand curves were then obtained for methylone, MDPV, caffeine, and methylone + caffeine and MDPV + caffeine mixtures by increasing the FR across sessions according to the following series: 3, 10, 18, 32, 56, 100, 178, etc. RESULTS: Self-administration of methylone was rapidly acquired by 87.5% of rats and was maintained across a range of doses, producing an inverted U-shaped dose-response curve. Rank order demand for the individual constituents was MDPV > methylone > caffeine. Demand for the 3:1 (but not 10:1) methylone + caffeine mixture was greater than that for methylone alone, and demand for MDPV alone was similar to both MDPV + caffeine mixtures evaluated. CONCLUSIONS These studies provide additional evidence that although methylone is an effective reinforcer, combining methylone with caffeine results in an enhanced reinforcing effectiveness compared to methylone alone. Thus, abused "bath salts" preparations containing synthetic cathinones and caffeine may have higher abuse liability than preparations containing only synthetic cathinones.
Collapse
|
40
|
Stereoselective effects of the second-generation synthetic cathinone α-pyrrolidinopentiophenone (α-PVP): assessments of conditioned taste avoidance in rats. Psychopharmacology (Berl) 2019; 236:1067-1077. [PMID: 30334086 PMCID: PMC8328279 DOI: 10.1007/s00213-018-5070-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/04/2018] [Indexed: 12/19/2022]
Abstract
RATIONALE Work with α-pyrrolidinopentiophenone (α-PVP), a second-generation synthetic cathinone, has been generally limited to the racemate. Given that with other synthetic cathinones, there are behavioral and neurochemical differences between their enantiomers, differences may also be seen with α-PVP. OBJECTIVES The present study assessed the relative contribution of each enantiomer to the aversive effects of racemic-α-PVP by comparing their ability to induce a conditioned taste avoidance. METHODS Adult male Sprague-Dawley rats were exposed every other day for four exposures to a novel saccharin solution followed immediately by an injection of 0 (saline vehicle) or 1.5, 3, or 6 mg/kg of S-, R-, or racemic-α-PVP (IP). On alternating days, all subjects were given access to water to assess any unconditioned effects of α-PVP on general fluid consumption. RESULTS Rats injected with the racemate and S-isomer of α-PVP displayed avoidance of the drug-associated saccharin solution, although this avoidance was dose-dependent only for the subjects injected with the racemate. There was no evidence of taste avoidance in animals injected with the R-enantiomer at any dose tested. Animals injected with 3 mg/kg racemic-α-PVP did not differ in avoidance from those treated with 1.5 mg/kg of the S-enantiomer, but subjects treated with 6 mg/kg racemic-α-PVP displayed a significantly stronger avoidance than those treated with 3 mg/kg S-α-PVP. CONCLUSIONS The present work suggests that the aversive effects of racemic α-PVP are mediated primarily by its S-isomer. The fact that at the highest dose tested (6 mg/kg), the racemate induces an avoidance greater than the simple additive effects of the S- and R-isomers (at 3 mg/kg) suggests that while the R-isomer may not induce taste avoidance at this dose, it may interact synergistically with the S-isomer in mediating the effects of the racemic mixture. These results were discussed in terms of similar effects with other behavioral and physiological endpoints reported with a number of psychostimulants and suggest that the enantiomers of α-PVP are an important variable in characterizing its behavioral effects.
Collapse
|
41
|
Abstract
Numerous drugs elicit locomotor stimulant effects at appropriate doses; however, we typically reserve the term psychostimulant to refer to drugs with affinity for monoamine reuptake transporters. This chapter comprises select experiments that have characterized the discriminative stimulus effects of psychostimulants using drug discrimination procedures. The substitution profiles of psychostimulants in laboratory rodents are generally consistent with those observed in human and nonhuman primate drug discrimination experiments. Notably, two major classes of psychostimulants can be distinguished as those that function as passive monoamine reuptake inhibitors (such as cocaine) and those that function as substrates for monoamine transporters and stimulate monoamine release (such as the amphetamines). Nevertheless, the discriminative stimulus effects of both classes of psychostimulant are quite similar, and drugs from different classes will substitute for one another. Most importantly, for both the cocaine-like and amphetamine-like psychostimulants, dopaminergic mechanisms most saliently determine discriminative stimulus effects, but these effects can be modulated by alterations in noradrenergic and serotonergic neurotransmission as well. Thusly, the drug discrimination assay is useful for characterizing the interoceptive effects of psychostimulants and determining the mechanisms that contribute to their subjective effects in humans.
Collapse
Affiliation(s)
- Michael D Berquist
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Slot 638, Little Rock, AR, 72205, USA
| | - William E Fantegrossi
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Slot 638, Little Rock, AR, 72205, USA.
| |
Collapse
|
42
|
Wilson CD, Tai S, Ewing L, Crane J, Lockhart T, Fujiwara R, Radominska-Pandya A, Fantegrossi WE. Convulsant Effects of Abused Synthetic Cannabinoids JWH-018 and 5F-AB-PINACA Are Mediated by Agonist Actions at CB1 Receptors in Mice. J Pharmacol Exp Ther 2019; 368:146-156. [PMID: 30420360 PMCID: PMC6323622 DOI: 10.1124/jpet.118.251157] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 11/07/2018] [Indexed: 01/29/2023] Open
Abstract
Convulsant effects of abused synthetic cannabinoid (SCB) drugs have been reported in humans and laboratory animals, but the mechanism of these effects is not known. We compared convulsant effects of partial CB1R agonist ∆9-tetrahydrocannabinol (THC), full CB1R agonist SCBs JWH-018 and 5F-AB-PINACA, and classic chemical convulsant pentylenetetrazol (PTZ) using an observational rating scale in mice. THC did not elicit convulsions, but both SCBs did so as effectively as and more potently than PTZ. SCB-elicited convulsions were attenuated by the CB1R antagonist rimonabant or by THC, or by dose regimens of THC and JWH-018, which downregulate and desensitize CB1Rs. None of these treatments altered the convulsant effects of PTZ, although diazepam attenuated PTZ-elicited convulsions without altering SCB-induced convulsant effects. Repeated administration of a subthreshold dose of PTZ kindled convulsant effects, but this was not observed with the SCBs, and no cross-kindling was observed. Repeated administration of the SCBs resulted in tolerance to convulsant effects, but no cross-tolerance to PTZ was observed. Inhibition on Phase I metabolism via nonselective inhibition of CYP450s with 1-aminobenzotriazole potentiated the hypothermic effects of the SCBs and protected against the convulsant effects of JWH-018, but not those of 5F-AB-PINACA or PTZ. Incubation of human liver microsomes with the SCBs showed that JWH-018 is eliminated via oxidation, whereas 5F-AB-PINACA is not. These studies suggest that SCB-elicited convulsions are mediated by high intrinsic efficacy at CB1Rs and that benzodiazepines may not be effective treatments. Finally, drug metabolism may dramatically modulate the convulsant effects of some, but not all, SCBs.
Collapse
Affiliation(s)
- Catheryn D Wilson
- Departments of Pharmacology and Toxicology (C.D.W., S.T., L.E., J.C., T.L., W.E.F.) and Biochemistry and Molecular Biology (R.F., A.R.-P.), College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Sherrica Tai
- Departments of Pharmacology and Toxicology (C.D.W., S.T., L.E., J.C., T.L., W.E.F.) and Biochemistry and Molecular Biology (R.F., A.R.-P.), College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Laura Ewing
- Departments of Pharmacology and Toxicology (C.D.W., S.T., L.E., J.C., T.L., W.E.F.) and Biochemistry and Molecular Biology (R.F., A.R.-P.), College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Jasmine Crane
- Departments of Pharmacology and Toxicology (C.D.W., S.T., L.E., J.C., T.L., W.E.F.) and Biochemistry and Molecular Biology (R.F., A.R.-P.), College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Taylor Lockhart
- Departments of Pharmacology and Toxicology (C.D.W., S.T., L.E., J.C., T.L., W.E.F.) and Biochemistry and Molecular Biology (R.F., A.R.-P.), College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Ryochi Fujiwara
- Departments of Pharmacology and Toxicology (C.D.W., S.T., L.E., J.C., T.L., W.E.F.) and Biochemistry and Molecular Biology (R.F., A.R.-P.), College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Anna Radominska-Pandya
- Departments of Pharmacology and Toxicology (C.D.W., S.T., L.E., J.C., T.L., W.E.F.) and Biochemistry and Molecular Biology (R.F., A.R.-P.), College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - William E Fantegrossi
- Departments of Pharmacology and Toxicology (C.D.W., S.T., L.E., J.C., T.L., W.E.F.) and Biochemistry and Molecular Biology (R.F., A.R.-P.), College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
43
|
Silva B, Pereira JA, Cravo S, Araújo AM, Fernandes C, Pinto MMM, de Pinho PG, Remião F. Multi-milligram resolution and determination of absolute configuration of pentedrone and methylone enantiomers. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1100-1101:158-164. [PMID: 30336346 DOI: 10.1016/j.jchromb.2018.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 12/14/2022]
Abstract
The enantioresolution of pentedrone and methylone was carried out at a multi-milligram scale by liquid chromatography on a Chiralpak AS® stationary phase. The excellent enantioresolution using this column allowed to collect highly pure enantiomeric fractions, achieving enantiomeric ratios higher than 98%. An overall recovery of 72% was achieved for pentedrone enantiomers and 80% for methylone. Furthermore, the absolute configuration of the enantiomers of both cathinones was determined for the first time by electronic circular dichroism (ECD) spectroscopy, with the aid of theoretical calculations, as (+)‑(S) and (-)‑(R)-pentedrone, and (-)‑(S) and (+)‑(R)‑methylone.
Collapse
Affiliation(s)
- Bárbara Silva
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - José A Pereira
- ICBAS, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal
| | - Sara Cravo
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal
| | - Ana Margarida Araújo
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal.
| | - Madalena M M Pinto
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal
| | - Paula Guedes de Pinho
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Fernando Remião
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
44
|
Effects of D1 and D2 receptor antagonists on the discriminative stimulus effects of methylendioxypyrovalerone and mephedrone in male Sprague-Dawley rats trained to discriminate D-amphetamine. Behav Pharmacol 2018; 28:586-589. [PMID: 28704276 DOI: 10.1097/fbp.0000000000000328] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Psychopharmacology research has amassed substantial evidence for similarities between synthetic cathinones and other commonly abused psychostimulants. Few studies have utilized drug discrimination methods to investigate synthetic cathinones, and the precise neurochemical substrates underlying their interoceptive effects have not been examined. The present study assessed the involvement of D1 and D2 dopaminergic receptors in the stimulus effects of 3,4-methylenedioxypyrovalerone (MDPV) and mephedrone (MEPH) in rats trained to discriminate D-amphetamine. Eight male Sprague-Dawley rats were trained to discriminate 0.5 mg/kg D-amphetamine (AMPH) from saline. Dose-response curves were then generated with AMPH (0.0-1.0 mg/kg), MDPV (0.0-1.0 mg/kg), and MEPH (0.0-2.0 mg/kg). Subsequently, Sch 39166 (0.3 mg/kg) and haloperidol (0.5 mg/kg) were administered in combination with select doses of MDPV and MEPH. Both MDPV and MEPH produced full substitution for AMPH. Sch 39166 produced a downward shift in the MDPV and MEPH dose-response curves and haloperidol produced similar results with MDPV. These preliminary findings indicate that MDPV and MEPH produce interoceptive stimuli that are similar to those produced by AMPH and that D1 and D2 dopamine receptors contribute to these effects. Additional studies are warranted to investigate the contribution of other receptor mechanisms involved in the interoceptive stimuli produced by synthetic cathinones.
Collapse
|
45
|
Reinforcing effects of abused 'bath salts' constituents 3,4-methylenedioxypyrovalerone and α-pyrrolidinopentiophenone and their enantiomers. Behav Pharmacol 2018; 28:578-581. [PMID: 28570297 DOI: 10.1097/fbp.0000000000000315] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Synthetic cathinones found in abused 'bath salts' preparations are chiral molecules. Racemic 3,4-methylenedioxypyrovalerone (MDPV) and α-pyrrolidinopentiophenone (α-PVP) are two common constituents of these preparations that have been reported to be highly effective reinforcers; however, the relative contribution of each enantiomer toward these effects has not been determined. Thus, male Sprague-Dawley rats were trained to respond for racemic MDPV or α-PVP (n=9/drug), with full dose-response curves for the racemate and the S and R enantiomers of MDPV and α-PVP generated under a progressive ratio schedule of reinforcement. Racemic mixtures of both MDPV and α-PVP as well as each enantiomer maintained responding in a dose-dependent manner, with racemic MDPV and α-PVP being equipotent. The rank order of potency within each drug was S enantiomer>racemate ≫ R enantiomer. Although both enantiomers of α-PVP were as effective as racemic α-PVP, R-MDPV was a slightly less effective reinforcer than both S and racemic MDPV. The results of these studies provide clear evidence that both enantiomers of MDPV and α-PVP function as highly effective reinforcers and likely contribute toward the abuse-related effects of 'bath salts' preparations containing racemic MDPV and/or α-PVP.
Collapse
|
46
|
Nóbrega L, Dinis-Oliveira RJ. The synthetic cathinone α-pyrrolidinovalerophenone (α-PVP): pharmacokinetic and pharmacodynamic clinical and forensic aspects. Drug Metab Rev 2018. [PMID: 29540067 DOI: 10.1080/03602532.2018.1448867] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
New psychoactive substances (NPS), often referred as 'legal highs' or 'designer drugs', are derivatives and analogs of existing psychoactive drugs that are introduced in the recreational market to circumvent existing legislation on drugs of abuse. This work aims to review the state-of-the-art regarding chemical, molecular pharmacology, and in vitro and in vivo data on toxicokinetics of the potent synthetic cathinone α-pyrrolidinovalerophenone (α-PVP or flakka or zombie drug). Chemical, pharmacological, toxicological, and clinical effects of α-PVP were searched in PubMed (U.S. National Library of Medicine) and governmental websites without limitation of the period. α-PVP is a wide spread and easy to get special type of synthetic cathinone with seemingly powerful cocaine-like stimulant effects, high brain penetration, high liability for abuse and with increased risk of adverse effects such as tachycardia, agitation, hypertension, hallucinations, delirium, mydriasis, self-injury, aggressive behavior, and suicidal ideations. α-PVP undergoes extensive metabolism via different pathways and the α-PVP itself or its metabolites β-hydroxy-α-PVP and α-PVP lactam represent the main targets for toxicological analysis in urine. There is a limited knowledge regarding the short- and long-term effects of α-PVP and metabolites, and pharmacogenetic influence, hence further clinical and forensic toxicological studies are required. Moreover, since α-PVP cannot be detected with classic routine analysis procedures, statements on the frequency of their consumption cannot be made.
Collapse
Affiliation(s)
- Leandro Nóbrega
- a Department of Public Health, Forensic Sciences, and Medical Education, Faculty of Medicine , University of Porto , Porto , Portugal
| | - Ricardo Jorge Dinis-Oliveira
- a Department of Public Health, Forensic Sciences, and Medical Education, Faculty of Medicine , University of Porto , Porto , Portugal.,b UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy , University of Porto , Porto , Portugal.,c Department of Sciences, IINFACTS - Institute of Research and Advanced Training in Health Sciences and Technologies , University Institute of Health Sciences (IUCS), CESPU, CRL , Gandra , Portugal
| |
Collapse
|
47
|
Characterization of the discriminative stimulus effects of 3,4-methylenedioxypyrovalerone in male Sprague-Dawley rats. Behav Pharmacol 2018; 28:394-400. [PMID: 28598863 DOI: 10.1097/fbp.0000000000000310] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recreational use of 3,4-methylenedioxypyrovalerone (MDPV) in the early 2000s prompted numerous scientific investigations of its behavioral and neurochemical effects. The purpose of this study was to further characterize the interoceptive stimulus effects of MDPV using a validated in-vivo drug-detection assay. Male Sprague-Dawley rats were trained to discriminate 0.3 mg/kg MDPV from saline under a fixed ratio 20 (FR 20) schedule of food reinforcement. After stimulus control was established with MDPV (∼35 training sessions), substitution tests were commenced with drugs from several chemical classes, including drugs with predominantly dopaminergic actions [MDPV, D-amphetamine, (+)-methamphetamine, (-)-cocaine], drugs with predominantly serotonergic actions [(+)-lysergic acid diethylamide, (+)-fenfluramine], and drugs with both serotonergic and dopaminergic actions (3,4-methylenedioxymethamphetamine, 4-methylmethcathinone). Full substitution for the 0.3 mg/kg MDPV cue was observed with D-amphetamine, (+)-methamphetamine, and (-)-cocaine. Surprisingly, the 5-HT releaser (+)-fenfluramine fully substituted in half the subjects, but completely suppressed responding in the remaining subjects. 3,4-Methylenedioxymethamphetamine, 4-methylmethcathinone, and (+)-lysergic acid diethylamide failed to fully substitute for MDPV. These results indicate that the MDPV cue is similar to cues produced by drugs with predominantly dopamine-increasing effects and perhaps serotonin-releasing effects among individual subjects. Given these findings, further research is warranted to directly assess the contributions of dopamine and serotonin receptor isoforms to the discriminative stimulus functions of MDPV.
Collapse
|
48
|
Abstract
Synthetic cathinones are derivatives of the naturally occurring compound cathinone, the main psychoactive ingredient in the khat plant Catha edulis. Cathinone is the β-keto analog of amphetamine, and all synthetic cathinones display a β-keto moiety in their structure. Several synthetic cathinones are widely prescribed medications (e.g., bupropion, Wellbutrin®), while others are problematic drugs of abuse (e.g., 4-methylmethcathinone, mephedrone). Similar to amphetamines, synthetic cathinones are psychomotor stimulants that exert their effects by impairing the normal function of plasma membrane transporters for dopamine (DAT), norepinephrine (NET), and 5-HT (SERT). Ring-substituted cathinones like mephedrone are transporter substrates that evoke neurotransmitter release by reversing the normal direction of transporter flux (i.e., releasers), whereas pyrrolidine-containing cathinones like 3,4-methylenedioxypyrovalerone (MDPV) are potent transporter inhibitors that block neurotransmitter uptake (i.e., blockers). Regardless of molecular mechanism, all synthetic cathinones increase extracellular monoamine concentrations in the brain, thereby enhancing cell-to-cell monoamine signaling. Here, we briefly review the mechanisms of action, structure-activity relationships, and in vivo pharmacology of synthetic cathinones. Overall, the findings show that certain synthetic cathinones are powerful drugs of abuse that could pose significant risk to users.
Collapse
|
49
|
Philogene-Khalid HL, Simmons SJ, Nayak S, Martorana RM, Su SH, Caro Y, Ranieri B, DiFurio K, Mo L, Gentile TA, Murad A, Reitz AB, Muschamp JW, Rawls SM. Stereoselective Differences between the Reinforcing and Motivational Effects of Cathinone-Derived 4-Methylmethcathinone (Mephedrone) In Self-Administering Rats. ACS Chem Neurosci 2017; 8:2648-2654. [PMID: 28885007 DOI: 10.1021/acschemneuro.7b00212] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mephedrone (4-methylmethcathinone (4-MMC)) (MEPH) is a new psychoactive substance (NPS) of the synthetic cathinone class. MEPH has a chiral center and exists as two enantiomers (R-,S-MEPH), yet stereospecific effects of MEPH have not been extensively investigated in preclinical assays. Because significant behavioral and neurochemical differences can exist between enantiomers, probing effects of stereochemistry on biological activity enables separation of adverse and therapeutic effects. Our prior work showed that R-MEPH, relative to S-MEPH, produced greater locomotor activation, place preference, and facilitation of brain reward thresholds in rodents. The present study sought to determine if MEPH enantiomers display stereospecific reward and reinforcement in rat self-administration assays. In Experiment 1, rats were trained to self-administer racemic MEPH (0.50 mg/kg/inf), and dose substitution effects of R-MEPH (0.50 mg/kg/inf) and S-MEPH (0.25, 0.50, 2.00 mg/kg/inf) were examined. In Experiment 2, separate rats were trained to self-administer R-MEPH (0.25, 0.50, 2.00 mg/kg/inf) or S-MEPH (0.25, 0.50, 2.00 mg/kg/inf) and were thereafter evaluated under progressive-ratio access conditions. Within this cohort, 50 kHz ultrasonic vocalizations (USVs) were recorded to measure potential differences in subjective positive affect associated with MEPH enantiomer self-administration. We identified enantiomer- and dose-dependent effects on infusions earned during self-administration following acquisition of racemic MEPH, with greatest infusions under low-effort, fixed-ratio 1 access conditions from low-dose S-MEPH self-administration. When taxed with progressive-ratio access conditions, rats trained to self-administer R-MEPH showed higher break points than those of rats trained to self-administer S-MEPH. Additionally, R-MEPH elicited greatest rates of 50 kHz USVs compared to S-MEPH. Taken together, these data suggest that the R-enantiomer of MEPH is primarily responsible for the rewarding, reinforcing, and motivational properties of racemic MEPH, which increases our understanding of stereospecific preferences pertaining to MEPH abuse.
Collapse
Affiliation(s)
- Helene L. Philogene-Khalid
- Department of Pharmacology,
Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, United States
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Steven J. Simmons
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Sunil Nayak
- Department of Pharmacology,
Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, United States
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Rose M. Martorana
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Shu H. Su
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Yohanka Caro
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Brona Ranieri
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Kathryn DiFurio
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Lili Mo
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Taylor A. Gentile
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Ali Murad
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Allen B. Reitz
- Fox Chase Chemical Diversity Center Inc., Doylestown, Pennsylvania 18902, United States
| | - John W. Muschamp
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Scott M. Rawls
- Department of Pharmacology,
Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, United States
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, United States
| |
Collapse
|
50
|
Gannon BM, Sulima A, Rice KC, Collins GT. Inhibition of Cocaine and 3,4-Methylenedioxypyrovalerone (MDPV) Self-Administration by Lorcaserin Is Mediated by 5-HT2C Receptors in Rats. J Pharmacol Exp Ther 2017; 364:359-366. [PMID: 29217539 PMCID: PMC5787931 DOI: 10.1124/jpet.117.246082] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/30/2017] [Indexed: 01/16/2023] Open
Abstract
Lorcaserin is a serotonin (5-HT)2C receptor-preferring agonist approved by the US Food and Drug Administration to treat obesity. Lorcaserin decreases cocaine self-administration in rats and monkeys. Although this effect is partially inhibited by a 5-HT2C receptor antagonist (SB242084), lorcaserin also has effects at 5-HT2A and 5-HT1A receptors, and the relative contribution of these receptors to its anti-cocaine effects has not been investigated. The goals of this study were to determine 1) the potency and effectiveness of lorcaserin to decrease self-administration of cocaine and 3,4-methylenedioxypyrovalerone (MDPV), a common “bath salts” constituent; and 2) the receptor(s) mediating the effects of lorcaserin on cocaine and MDPV self-administration. Male Sprague-Dawley rats (n = 6) were trained to self-administer MDPV under a progressive ratio schedule of reinforcement and maintained under this schedule with daily access to 0.32 mg/kg per infusion of cocaine or 0.032 mg/kg per infusion of MDPV. Dose-response curves for the effects of lorcaserin on cocaine and MDPV self-administration were generated by administering lorcaserin (0.1–5.6 mg/kg) 25 minutes before the start of the session. To assess the effects of 5-HT2C (SB242084, 0.1 mg/kg), 5-HT2A (MDL100907, 0.1 mg/kg), and 5-HT1A (WAY100635, 0.178 mg/kg) receptor antagonists, they were administered 15 minutes before lorcaserin. Lorcaserin decreased cocaine and MDPV self-administration with equal potency. Antagonism of 5-HT2C (but not 5-HT1A or 5-HT2A) receptors blocked the effects of lorcaserin on cocaine and MDPV self-administration. Taken together, these data provide additional support for further development of 5-HT2C receptor agonists, such as lorcaserin, for the treatment of stimulant abuse.
Collapse
Affiliation(s)
- Brenda M Gannon
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas (B.M.G., G.T.C.); South Texas Veterans Health Care System, San Antonio, Texas (G.T.C.); and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (A.S., K.C.R.)
| | - Agnieszka Sulima
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas (B.M.G., G.T.C.); South Texas Veterans Health Care System, San Antonio, Texas (G.T.C.); and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (A.S., K.C.R.)
| | - Kenner C Rice
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas (B.M.G., G.T.C.); South Texas Veterans Health Care System, San Antonio, Texas (G.T.C.); and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (A.S., K.C.R.)
| | - Gregory T Collins
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas (B.M.G., G.T.C.); South Texas Veterans Health Care System, San Antonio, Texas (G.T.C.); and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (A.S., K.C.R.)
| |
Collapse
|