1
|
Fischer C, Schreiber Y, Nitsch R, Vogt J, Thomas D, Geisslinger G, Tegeder I. Lysophosphatidic Acid Receptors LPAR5 and LPAR2 Inversely Control Hydroxychloroquine-Evoked Itch and Scratching in Mice. Int J Mol Sci 2024; 25:8177. [PMID: 39125747 PMCID: PMC11312285 DOI: 10.3390/ijms25158177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Lysophosphatidic acids (LPAs) evoke nociception and itch in mice and humans. In this study, we assessed the signaling paths. Hydroxychloroquine was injected intradermally to evoke itch in mice, which evoked an increase of LPAs in the skin and in the thalamus, suggesting that peripheral and central LPA receptors (LPARs) were involved in HCQ-evoked pruriception. To unravel the signaling paths, we assessed the localization of candidate genes and itching behavior in knockout models addressing LPAR5, LPAR2, autotaxin/ENPP2 and the lysophospholipid phosphatases, as well as the plasticity-related genes Prg1/LPPR4 and Prg2/LPPR3. LacZ reporter studies and RNAscope revealed LPAR5 in neurons of the dorsal root ganglia (DRGs) and in skin keratinocytes, LPAR2 in cortical and thalamic neurons, and Prg1 in neuronal structures of the dorsal horn, thalamus and SSC. HCQ-evoked scratching behavior was reduced in sensory neuron-specific Advillin-LPAR5-/- mice (peripheral) but increased in LPAR2-/- and Prg1-/- mice (central), and it was not affected by deficiency of glial autotaxin (GFAP-ENPP2-/-) or Prg2 (PRG2-/-). Heat and mechanical nociception were not affected by any of the genotypes. The behavior suggested that HCQ-mediated itch involves the activation of peripheral LPAR5, which was supported by reduced itch upon treatment with an LPAR5 antagonist and autotaxin inhibitor. Further, HCQ-evoked calcium fluxes were reduced in primary sensory neurons of Advillin-LPAR5-/- mice. The results suggest that LPA-mediated itch is primarily mediated via peripheral LPAR5, suggesting that a topical LPAR5 blocker might suppress "non-histaminergic" itch.
Collapse
Affiliation(s)
- Caroline Fischer
- Institute for Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (C.F.); (D.T.); (G.G.)
| | - Yannick Schreiber
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt am Main, Germany;
| | - Robert Nitsch
- Institute for Translational Neuroscience, Medical Faculty, WWU Münster, 48149 Münster, Germany;
| | - Johannes Vogt
- Department of Molecular and Translational Neurosciences, Institute for Anatomy and Center of Molecular Medicine Cologne (CMMC), and Cologne Excellence Cluster for Aging associated Diseases (CECAD), University of Cologne, 50923 Köln, Germany;
| | - Dominique Thomas
- Institute for Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (C.F.); (D.T.); (G.G.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt am Main, Germany;
| | - Gerd Geisslinger
- Institute for Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (C.F.); (D.T.); (G.G.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt am Main, Germany;
- Fraunhofer Cluster of Excellence of Immune Mediated Diseases (CIMD), 60596 Frankfurt am Main, Germany
| | - Irmgard Tegeder
- Institute for Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (C.F.); (D.T.); (G.G.)
| |
Collapse
|
2
|
Komisarska P, Pinyosinwat A, Saleem M, Szczuko M. Carrageenan as a Potential Factor of Inflammatory Bowel Diseases. Nutrients 2024; 16:1367. [PMID: 38732613 PMCID: PMC11085445 DOI: 10.3390/nu16091367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Carrageenan is a widely used food additive and is seen as a potential candidate in the pharmaceutical industry. However, there are two faces to carrageenan that allows it to be used positively for therapeutic purposes. Carrageenan can be used to create edible films and for encapsulating drugs, and there is also interest in the use of carrageenan for food printing. Carrageenan is a naturally occurring polysaccharide gum. Depending on the type of carrageenan, it is used in regulating the composition of intestinal microflora, including the increase in the population of Bifidobacterium bacteria. On the other hand, the studies have demonstrated the harmfulness of carrageenan in animal and human models, indicating a direct link between diet and intestinal inflammatory states. Carrageenan changes the intestinal microflora, especially Akkermansia muciniphilia, degrades the mucous barrier and breaks down the mucous barrier, causing an inflammatory reaction. It directly affects epithelial cells by activating the pro-inflammatory nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) pathway. The mechanism is based on activation of the TLR4 receptor, alterations in macrophage activity, production of proinflammatory cytokines and activation of innate immune pathways. Carrageenan increases the content of Bacteroidetes bacteria, also causing a reduction in the number of short chain fatty acid (SCFA)-producing bacteria. The result is damage to the integrity of the intestinal membrane and reduction of the mucin layer. The group most exposed to the harmful effects of carrageenan are people suffering from intestinal inflammation, including Crohn disease (CD) and ulcerative colitis (UC).
Collapse
Affiliation(s)
| | | | | | - Małgorzata Szczuko
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland (M.S.)
| |
Collapse
|
3
|
Petersen-Cherubini CL, Murphy SP, Xin M, Liu Y, Deffenbaugh JL, Jahan I, Rau CN, Yang Y, Lovett-Racke AE. Autotaxin in encephalitogenic CD4 T cells as a therapeutic target for multiple sclerosis. Eur J Immunol 2024; 54:e2350561. [PMID: 37850588 PMCID: PMC10843518 DOI: 10.1002/eji.202350561] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/19/2023]
Abstract
Multiple sclerosis (MS) is an immune-mediated inflammatory disease of the CNS. A defining characteristic of MS is the ability of autoreactive T lymphocytes to cross the blood-brain barrier and mediate inflammation within the CNS. Previous work from our lab found the gene Enpp2 to be highly upregulated in murine encephalitogenic T cells. Enpp2 encodes for the protein autotaxin, a secreted glycoprotein that catalyzes the production of lysophosphatidic acid and promotes transendothelial migration of T cells from the bloodstream into the lymphatic system. The present study sought to characterize autotaxin expression in T cells during CNS autoimmune disease and determine its potential therapeutic value. Myelin-activated CD4 T cells upregulated expression of autotaxin in vitro, and ex vivo analysis of CNS-infiltrating CD4 T cells showed significantly higher autotaxin expression compared with cells from healthy mice. In addition, inhibiting autotaxin in myelin-specific T cells reduced their encephalitogenicity in adoptive transfer studies and decreased in vitro cell motility. Importantly, using two mouse models of MS, treatment with an autotaxin inhibitor ameliorated EAE severity, decreased the number of CNS infiltrating T and B cells, and suppressed relapses, suggesting autotaxin may be a promising therapeutic target in the treatment of MS.
Collapse
Affiliation(s)
- Cora L. Petersen-Cherubini
- The Ohio State University – Neuroscience Graduate Program
- The Ohio State University – Wexner Medical Center – Department of Microbial Infection and Immunity
| | - Shawn P. Murphy
- The Ohio State University – Wexner Medical Center – Department of Microbial Infection and Immunity
| | - Matthew Xin
- The Ohio State University – Wexner Medical Center – Department of Microbial Infection and Immunity
| | - Yue Liu
- The Ohio State University – Wexner Medical Center – Department of Microbial Infection and Immunity
| | - Joshua L. Deffenbaugh
- The Ohio State University – Wexner Medical Center – Department of Microbial Infection and Immunity
| | - Ishrat Jahan
- The Ohio State University – Wexner Medical Center – Department of Microbial Infection and Immunity
| | - Christina N. Rau
- The Ohio State University – Wexner Medical Center – Department of Microbial Infection and Immunity
| | - Yuhong Yang
- The Ohio State University – Wexner Medical Center – Department of Neurology
| | - Amy E. Lovett-Racke
- The Ohio State University – Wexner Medical Center – Department of Microbial Infection and Immunity
- The Ohio State University – Wexner Medical Center – Department of Neuroscience
| |
Collapse
|
4
|
Shi W, Peng K, Yu H, Wang Z, Xia S, Xiao S, Tian D, Vallance BA, Yu Q. Autotaxin (ATX) inhibits autophagy leading to exaggerated disruption of intestinal epithelial barrier in colitis. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166647. [PMID: 36746254 DOI: 10.1016/j.bbadis.2023.166647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/02/2023] [Accepted: 01/17/2023] [Indexed: 02/08/2023]
Abstract
Inflammatory bowel disease (IBD) is an immune-mediated disease. Autotaxin (ATX) is associated with increased inflammatory molecules, however, its effect on IBD is not well understood. Autophagy plays an important role in IBD, whether ATX and autophagy act in concert in IBD remains unknown. This study is to explore the possible mechanisms of ATX affecting autophagy leading to the disruption of intestinal epithelial barrier, thereby exacerbating colitis. The expression of ATX was upregulated in UC patients and dextran sulfate sodium (DSS)-induced colitis mice. Here, we described that providing an ATX inhibitor during DSS colitis increased autophagy and ameliorated colonic inflammation. Conversely, intrarectal administration with recombinant (r)ATX increased colitis and decreased autophagy. This pro-colitic effect was attenuated in mice treated with rapamycin, resulting in increased autophagy activity and mild colitis. Moreover, the inhibitory effect of rATX on autophagy was confirmed in vitro and was reversed by the addition of rapamycin. The damaging effects of ATX on epithelial barrier function were reversed by ATX inhibitor or rapamycin treatment. In sum, our results show that ATX can inhibit autophagy through the mTOR pathway, resulting in exaggerated damage to the intestinal epithelial barrier during colitis. These findings suggest that ATX may be a key pro-colitic factor, and represent a potential therapeutic target for treating IBD in the future.
Collapse
Affiliation(s)
- Wenjie Shi
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, China; Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Kaixin Peng
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, China; Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Hongbing Yu
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Zi Wang
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, China; Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Shuhong Xia
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, China; Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Siqi Xiao
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, China; Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, China; Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Bruce A Vallance
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Qin Yu
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, China; Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| |
Collapse
|
5
|
Roy S, Chakrabarti M, Dasgupta H, Mahale A, Tripathi S, Sharma V, Banerjee M, Kulkarni OP. Inhibition of Autotaxin Ameliorates LPA-Mediated Neuroinflammation and Alleviates Neurological Dysfunction in Acute Hepatic Encephalopathy. ACS Chem Neurosci 2022; 13:2829-2841. [PMID: 36112416 DOI: 10.1021/acschemneuro.2c00046] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Growing evidence suggests an essential role of neuroinflammation in behavioral abnormalities associated with hepatic encephalopathy (HE). Here, we report the involvement of autotaxin-lysophosphatidic acid (LPA) signaling in HE's pathogenesis. We demonstrate that the autotaxin (ATX) inhibitor PF-8380 attenuates neuroinflammation and improves neurological dysfunction in the mouse model of HE. In the thioacetamide (TAA)-induced model of HE, we found a twofold increase in the levels of ammonia in the brain and in plasma along with a significant change in HE-related behavioral parameters. Mice with HE show an increased brain weight, increased levels of tumor necrosis factor-α (TNF-α), IL-1β (interleukin-1β), interleukin-6 (IL-6), and LPA 18:0 in the cerebral cortex and hippocampus, and increased levels of LPA 18:0 in plasma. Treatment with the autotaxin inhibitor (ATXi) did not affect liver injury, as we observed no change in liver function markers including aspartate aminotransferase (AST), alanine aminotransferase (ALT), and total bilirubin (TBIL) and no change in ammonia levels in the brain and plasma. However, ATXi treatment significantly ameliorated the neuroinflammation, reduced the levels of LPA 18:0 in the cerebral cortex and hippocampus in the brain and plasma, and reduced brain edema and the levels of IL1β, IL-6, and TNF-α. The neurobehavioral symptoms for HE such as the cognitive and motor function deficit and overall clinical grading score were significantly improved in ATXi-treated mice. Mouse astrocytes and microglia stimulated with NH4CL with or without ATXi showed significant attenuation of oxidative stress and the neuroinflammatory effect of NH4CL in ATXi-treated cells.
Collapse
Affiliation(s)
- Subhasis Roy
- TCG Life Sciences Private Ltd., Biolab, Bengal Intelligent Park Ltd., Block EP and GP, Sector V, Salt Lake, Kolkata 700091, West Bengal, India
| | - Monali Chakrabarti
- TCG Life Sciences Private Ltd., Biolab, Bengal Intelligent Park Ltd., Block EP and GP, Sector V, Salt Lake, Kolkata 700091, West Bengal, India
| | - Hemantika Dasgupta
- TCG Life Sciences Private Ltd., Biolab, Bengal Intelligent Park Ltd., Block EP and GP, Sector V, Salt Lake, Kolkata 700091, West Bengal, India
| | - Ashutosh Mahale
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani-Hyderabad Campus, Hyderabad 500078, India
| | - Shraddha Tripathi
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani-Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Ranga Reddy District, Hyderabad 500078, India
| | - Vivek Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani-Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Ranga Reddy District, Hyderabad 500078, India
| | - Manish Banerjee
- TCG Life Sciences Private Ltd., Biolab, Bengal Intelligent Park Ltd., Block EP and GP, Sector V, Salt Lake, Kolkata 700091, West Bengal, India
| | - Onkar Prakash Kulkarni
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani-Hyderabad Campus, Hyderabad 500078, India
| |
Collapse
|
6
|
Joshi L, Plastira I, Bernhart E, Reicher H, Triebl A, Köfeler HC, Sattler W. Inhibition of Autotaxin and Lysophosphatidic Acid Receptor 5 Attenuates Neuroinflammation in LPS-Activated BV-2 Microglia and a Mouse Endotoxemia Model. Int J Mol Sci 2021; 22:ijms22168519. [PMID: 34445223 PMCID: PMC8395174 DOI: 10.3390/ijms22168519] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 12/22/2022] Open
Abstract
Increasing evidence suggests that systemic inflammation triggers a neuroinflammatory response that involves sustained microglia activation. This response has deleterious consequences on memory and learning capability in experimental animal models and in patients. However, the mechanisms connecting systemic inflammation and microglia activation remain poorly understood. Here, we identify the autotaxin (ATX)/lysophosphatidic acid (LPA)/LPA-receptor axis as a potential pharmacological target to modulate the LPS-mediated neuroinflammatory response in vitro (the murine BV-2 microglia cell line) and in vivo (C57BL/6J mice receiving a single i.p. LPS injection). In LPS-stimulated (20 ng/mL) BV-2 cells, we observed increased phosphorylation of transcription factors (STAT1, p65, and c-Jun) that are known to induce a proinflammatory microglia phenotype. LPS upregulated ATX, TLR4, and COX2 expression, amplified NO production, increased neurotoxicity of microglia conditioned medium, and augmented cyto-/chemokine concentrations in the cellular supernatants. PF8380 (a type I ATX inhibitor, used at 10 and 1 µM) and AS2717638 (an LPA5 antagonist, used at 1 and 0.1 µM) attenuated these proinflammatory responses, at non-toxic concentrations, in BV-2 cells. In vivo, we demonstrate accumulation of PF8380 in the mouse brain and an accompanying decrease in LPA concentrations. In vivo, co-injection of LPS (5 mg/kg body weight) and PF8380 (30 mg/kg body weight), or LPS/AS2717638 (10 mg/kg body weight), significantly attenuated LPS-induced iNOS, TNFα, IL-1β, IL-6, and CXCL2 mRNA expression in the mouse brain. On the protein level, PF8380 and AS2717638 significantly reduced TLR4, Iba1, GFAP and COX2 expression, as compared to LPS-only injected animals. In terms of the communication between systemic inflammation and neuroinflammation, both inhibitors significantly attenuated LPS-mediated systemic TNFα and IL-6 synthesis, while IL-1β was only reduced by PF8380. Inhibition of ATX and LPA5 may thus provide an opportunity to protect the brain from the toxic effects that are provoked by systemic endotoxemia.
Collapse
Affiliation(s)
- Lisha Joshi
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (L.J.); (I.P.); (E.B.); (H.R.)
| | - Ioanna Plastira
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (L.J.); (I.P.); (E.B.); (H.R.)
| | - Eva Bernhart
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (L.J.); (I.P.); (E.B.); (H.R.)
| | - Helga Reicher
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (L.J.); (I.P.); (E.B.); (H.R.)
| | - Alexander Triebl
- Core Facility Mass Spectrometry, Medical University of Graz, 8010 Graz, Austria; (A.T.); (H.C.K.)
| | - Harald C. Köfeler
- Core Facility Mass Spectrometry, Medical University of Graz, 8010 Graz, Austria; (A.T.); (H.C.K.)
- BioTechMed Graz, 8010 Graz, Austria
| | - Wolfgang Sattler
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (L.J.); (I.P.); (E.B.); (H.R.)
- BioTechMed Graz, 8010 Graz, Austria
- Correspondence: ; Tel.: +43-316-385-71950
| |
Collapse
|
7
|
Xia W, Kolli AR, Koshibu K, Martin F, Kondylis A, Kuczaj A, Tan WT, Yeo YS, Tan G, Teng C, Woon K, Schneider T, Talikka M, Phillips BW, Vanscheeuwijck P, Peitsch MC, Hoeng J. In Vivo Profiling of a Natural Alkaloid, Anatabine, in Rodents: Pharmacokinetics and Anti-Inflammatory Efficacy. JOURNAL OF NATURAL PRODUCTS 2021; 84:1012-1021. [PMID: 33706515 DOI: 10.1021/acs.jnatprod.0c01044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Natural alkaloids, a large class of plant-derived substances, have attracted considerable interest because of their pharmacological activities. In this study, the in vivo pharmacokinetics and anti-inflammatory profile of anatabine, a naturally occurring alkaloid, were characterized in rodents. Anatabine was found to be bioavailable and brain-penetrant following systemic administration. Following intraperitoneal (i.p.) administration (1, 2, and 5 mg/kg), anatabine caused a dose-dependent reduction in carrageenan-induced paw edema in rats; in mice, it inhibited the production of pro-inflammatory cytokines and simultaneously elevated the levels of an anti-inflammatory cytokine in a dose-dependent manner 2 h after lipopolysaccharide challenge. Furthermore, anatabine (∼10 and ∼20 mg/kg/day for 4 weeks; inhalation exposure) had effects in a murine model of multiple sclerosis, reducing neurological deficits and bodyweight loss. Comparative studies of the pharmacokinetics and anti-inflammatory activity of anatabine demonstrated its bioequivalence in rats following i.p. administration and inhalation exposure. This study not only provides the first detailed profile of anatabine pharmacokinetics in rodents but also comprehensively characterizes the anti-inflammatory activities of anatabine in acute and chronic inflammatory models. These findings provide a basis for further characterizing and optimizing the anti-inflammatory properties of anatabine.
Collapse
Affiliation(s)
- Wenhao Xia
- Philip Morris International Research Laboratories Pte Ltd, 50 Science Park Road, Singapore 117406
| | - Aditya Reddy Kolli
- Philip Morris Products S.A., Quai Jeanrenaud 5, Neuchatel, CH-2000, Switzerland
| | - Kyoko Koshibu
- Philip Morris Products S.A., Quai Jeanrenaud 5, Neuchatel, CH-2000, Switzerland
| | - Florian Martin
- Philip Morris Products S.A., Quai Jeanrenaud 5, Neuchatel, CH-2000, Switzerland
| | - Athanasios Kondylis
- Philip Morris Products S.A., Quai Jeanrenaud 5, Neuchatel, CH-2000, Switzerland
| | - Arkadiusz Kuczaj
- Philip Morris Products S.A., Quai Jeanrenaud 5, Neuchatel, CH-2000, Switzerland
| | - Wei Teck Tan
- Philip Morris International Research Laboratories Pte Ltd, 50 Science Park Road, Singapore 117406
| | - Ying Shan Yeo
- Philip Morris International Research Laboratories Pte Ltd, 50 Science Park Road, Singapore 117406
| | - Glenda Tan
- Philip Morris International Research Laboratories Pte Ltd, 50 Science Park Road, Singapore 117406
| | - Charles Teng
- Philip Morris International Research Laboratories Pte Ltd, 50 Science Park Road, Singapore 117406
| | - Kaing Woon
- Philip Morris International Research Laboratories Pte Ltd, 50 Science Park Road, Singapore 117406
| | - Thomas Schneider
- Philip Morris Products S.A., Quai Jeanrenaud 5, Neuchatel, CH-2000, Switzerland
| | - Marja Talikka
- Philip Morris Products S.A., Quai Jeanrenaud 5, Neuchatel, CH-2000, Switzerland
| | - Blaine W Phillips
- Philip Morris International Research Laboratories Pte Ltd, 50 Science Park Road, Singapore 117406
| | | | - Manuel C Peitsch
- Philip Morris Products S.A., Quai Jeanrenaud 5, Neuchatel, CH-2000, Switzerland
| | - Julia Hoeng
- Philip Morris Products S.A., Quai Jeanrenaud 5, Neuchatel, CH-2000, Switzerland
| |
Collapse
|
8
|
Tan Z, Lei H, Guo M, Chen Y, Zhai X. An updated patent review of autotaxin inhibitors (2017-present). Expert Opin Ther Pat 2021; 31:421-434. [PMID: 33342311 DOI: 10.1080/13543776.2021.1867106] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION The ATX-LPA axis is an attractive target for therapeutic intervention in a variety of diseases, such as tumor metastasis, fibrosis, pruritus, multiple sclerosis, inflammation, autoimmune conditions, metabolic syndrome, and so on. Accordingly, considerable efforts have been devoted to the development of new chemical entities capable of modulating the ATX-LPA axis. AREAS COVERED This review aims to provide an overview of novel ATX inhibitors reported in patents from September 2016 to August 2020, discussing their structural characteristics and inhibitory potency in vitro and in vivo. EXPERT OPINION In the past four years, the classification of ATX inhibitors based on binding modes has brought great benefits to the discovery of more efficacious inhibitors. In addition to GLPG1690 currently in phase III clinical studies for IPF, BBT-877, and BLD-0409 as potent ATX inhibitors have been enrolled in phase I clinical evaluation; meanwhile, many effective molecules were also reported successively. However, most emerging ATX inhibitors in the last four years are closely analogs of previous entities, such as GLPG1690 and PF-8380, which translate into the urgently identification of ATX inhibitors with diverse structural features and promising properties in the near future.
Collapse
Affiliation(s)
- Zehui Tan
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Hongrui Lei
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Ming Guo
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Yuxiang Chen
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Xin Zhai
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
9
|
Wang Z, Shi W, Tian D, Qin H, Vallance BA, Yang H, Yu HB, Yu Q. Autotaxin stimulates LPA2 receptor in macrophages and exacerbates dextran sulfate sodium-induced acute colitis. J Mol Med (Berl) 2020; 98:1781-1794. [PMID: 33128578 DOI: 10.1007/s00109-020-01997-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 10/02/2020] [Accepted: 10/20/2020] [Indexed: 01/12/2023]
Abstract
Autotaxin (ATX) is a secreted enzyme that hydrolyzes lysophosphatidylcholine (LPC) to lysophosphatidic acid (LPA) and choline. ATX has been implicated in multiple chronic inflammatory diseases, but little is known about its role in the development of inflammatory bowel disease (IBD). Here, we investigated how ATX contributed to intestinal inflammation during colitis. We found that ATX expression levels were upregulated in the intestines of ulcerative colitis (UC) patients in acute state as well as in the intestines of dextran sulfate sodium (DSS)-induced colitis mice, which is likely due to increased infiltration of inflammatory cells including macrophages. Intriguingly, the inhibition of ATX activity led to reduced production of inflammatory cytokines, as well as attenuated colitis. These findings suggest that ATX may display strong pro-inflammatory properties. Supporting this, treatment with recombinant mouse ATX (rmATX) increased the production of inflammatory cytokines and enzymes in mouse macrophage cell line RAW264.7 and bone marrow-derived macrophages (BMDM), whereas silencing ATX by siRNA reduced LPS-stimulated production of pro-inflammatory factors. Notably, we found that the levels of LPA2 (an LPA receptor) were dramatically upregulated in rmATX-treated RAW264.7 cells and DSS-treated mice. Gene silencing of lpa2 in RAW264.7 cells by siRNA led to reduced production of inflammatory cytokines. Moreover, adenovirus-mediated delivery of lpa2 short hairpin RNA into DSS-treated mice ameliorated colitis. Collectively, our research suggests that ATX may exacerbate DSS-induced colitis by activating LPA2 receptor in macrophages and represent a promising target for the treatment of IBD. KEY MESSAGES: Increased ATX expression and secretion in colitic colons are likely due to increased infiltration of inflammatory cells including macrophages. Recombinant ATX promotes, but ATX silencing inhibits, the production of inflammatory cytokines in LPS-stimulated RAW264.7 cells and BMDM. •LPA2 mediates the pro-inflammatory effects of ATX on macrophages. Inhibition of ATX and downregulation of LPA2 ameliorate DSS-induced colitis.
Collapse
Affiliation(s)
- Zi Wang
- Department of Gastroenterology, Tongji Hospital, Huazhong University of Science and Technology, Jiefang Avenue, 1095, 430030, Wuhan, People's Republic of China
| | - Wenjie Shi
- Department of Gastroenterology, Tongji Hospital, Huazhong University of Science and Technology, Jiefang Avenue, 1095, 430030, Wuhan, People's Republic of China
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital, Huazhong University of Science and Technology, Jiefang Avenue, 1095, 430030, Wuhan, People's Republic of China
| | - Hua Qin
- Department of Gastroenterology, Tongji Hospital, Huazhong University of Science and Technology, Jiefang Avenue, 1095, 430030, Wuhan, People's Republic of China
| | - Bruce A Vallance
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Hyungjun Yang
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Hong B Yu
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada.
| | - Qin Yu
- Department of Gastroenterology, Tongji Hospital, Huazhong University of Science and Technology, Jiefang Avenue, 1095, 430030, Wuhan, People's Republic of China.
| |
Collapse
|
10
|
Kim SJ, Howe C, Mitchell J, Choo J, Powers A, Oikonomopoulos A, Pothoulakis C, Hommes DW, Im E, Rhee SH. Autotaxin loss accelerates intestinal inflammation by suppressing TLR4-mediated immune responses. EMBO Rep 2020; 21:e49332. [PMID: 32875703 DOI: 10.15252/embr.201949332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 07/20/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
Autotaxin (ATX) converts lysophosphatidylcholine and sphingosyl-phosphorylcholine into lysophosphatidic acid and sphingosine 1-phosphate, respectively. Despite the pivotal function of ATX in lipid metabolism, mechanisms by which ATX regulates immune and inflammatory disorders remain elusive. Here, using myeloid cell lineage-restricted Atx knockout mice, we show that Atx deficiency disrupts membrane microdomains and lipid rafts, resulting in the inhibition of Toll-like receptor 4 (TLR4) complex formation and the suppression of adaptor recruitment, thereby inhibiting TLR4-mediated responses in macrophages. Accordingly, TLR4-induced innate immune functions, including phagocytosis and iNOS expression, are attenuated in Atx-deficient macrophages. Consequently, Atx-/- mice exhibit a higher bacterial prevalence in the intestinal mucosa compared to controls. When combined with global Il10-/- mice, which show spontaneous colitis due to the translocation of luminal commensal microbes into the mucosa, myeloid cell lineage-restricted Atx knockout accelerates colitis development compared to control littermates. Collectively, our data reveal that Atx deficiency compromises innate immune responses, thereby promoting microbe-associated gut inflammation.
Collapse
Affiliation(s)
- Su Jin Kim
- Department of Biological Sciences, Oakland University, Rochester, MI, USA.,College of Pharmacy, Pusan National University, Busan, Korea
| | - Cody Howe
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Jonathon Mitchell
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Jieun Choo
- College of Pharmacy, Pusan National University, Busan, Korea
| | - Alexandra Powers
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Angelos Oikonomopoulos
- Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Charalabos Pothoulakis
- Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Daniel W Hommes
- Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Eunok Im
- College of Pharmacy, Pusan National University, Busan, Korea
| | - Sang Hoon Rhee
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| |
Collapse
|
11
|
Lei H, Guo M, Li X, Jia F, Li C, Yang Y, Cao M, Jiang N, Ma E, Zhai X. Discovery of Novel Indole-Based Allosteric Highly Potent ATX Inhibitors with Great In Vivo Efficacy in a Mouse Lung Fibrosis Model. J Med Chem 2020; 63:7326-7346. [DOI: 10.1021/acs.jmedchem.0c00506] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Hongrui Lei
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ming Guo
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaopeng Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fang Jia
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Changtao Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Yang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Meng Cao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Nan Jiang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Enlong Ma
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin Zhai
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
12
|
Plastira I, Bernhart E, Joshi L, Koyani CN, Strohmaier H, Reicher H, Malle E, Sattler W. MAPK signaling determines lysophosphatidic acid (LPA)-induced inflammation in microglia. J Neuroinflammation 2020; 17:127. [PMID: 32326963 PMCID: PMC7178949 DOI: 10.1186/s12974-020-01809-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
Background In the extracellular environment, lysophosphatidic acid (LPA) species are generated via autotaxin (ATX)-mediated hydrolysis of lysophospholipid precursors. Members of the LPA family are potent lipid mediators transmitting signals via six different G protein-coupled LPA receptors (LPAR1-6). The LPA signaling axis is indispensable for brain development and function of the nervous system; however, during damage of the central nervous system, LPA levels can increase and aberrant signaling events counteract brain function. Here, we investigated regulation of the ATX/LPA/LPAR axis in response to lipopolysaccharide-induced systemic inflammation in mice and potential neurotoxic polarization programs in LPA-activated primary murine microglia. Methods In vivo, LPAR1-6 expression was established by qPCR in whole murine brain homogenates and in FACS-sorted microglia. ELISAs were used to quantitate LPA concentrations in the brain and cyto-/chemokine secretion from primary microglia in vitro. Transcription factor phosphorylation was analyzed by immunoblotting, and plasma membrane markers were analyzed by flow cytometry. We used MAPK inhibitors to study signal integration by the JNK, p38, and ERK1/2 branches in response to LPA-mediated activation of primary microglia. Results Under acute and chronic inflammatory conditions, we observed a significant increase in LPA concentrations and differential regulation of LPAR, ATX (encoded by ENPP2), and cytosolic phospholipase A2 (encoded by PLA2G4A) gene expression in the brain and FACS-sorted microglia. During pathway analyses in vitro, the use of specific MAPK antagonists (SP600125, SB203580, and PD98059) revealed that JNK and p38 inhibition most efficiently attenuated LPA-induced phosphorylation of proinflammatory transcription factors (STAT1 and -3, p65, and c-Jun) and secretion of IL-6 and TNFα. All three inhibitors decreased LPA-mediated secretion of IL-1β, CXCL10, CXCL2, and CCL5. The plasma membrane marker CD40 was solely inhibited by SP600125 while all three inhibitors affected expression of CD86 and CD206. All MAPK antagonists reduced intracellular COX-2 and Arg1 as well as ROS and NO formation, and neurotoxicity of microglia-conditioned media. Conclusion In the present study, we show that systemic inflammation induces aberrant ATX/LPA/LPAR homeostasis in the murine brain. LPA-mediated polarization of primary microglia via MAPK-dependent pathways induces features reminiscent of a neurotoxic phenotype.
Collapse
Affiliation(s)
- Ioanna Plastira
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6/6, 8010, Graz, Austria
| | - Eva Bernhart
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6/6, 8010, Graz, Austria
| | - Lisha Joshi
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6/6, 8010, Graz, Austria
| | - Chintan N Koyani
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6/6, 8010, Graz, Austria.,Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Heimo Strohmaier
- Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Helga Reicher
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6/6, 8010, Graz, Austria
| | - Ernst Malle
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6/6, 8010, Graz, Austria
| | - Wolfgang Sattler
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6/6, 8010, Graz, Austria. .,Center for Explorative Lipidomics, BioTechMed, Graz, Austria.
| |
Collapse
|
13
|
Genetic deletion of Autotaxin from CD11b+ cells decreases the severity of experimental autoimmune encephalomyelitis. PLoS One 2020; 15:e0226050. [PMID: 32240164 PMCID: PMC7117669 DOI: 10.1371/journal.pone.0226050] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/17/2020] [Indexed: 02/08/2023] Open
Abstract
Autotaxin (ATX) is a secreted lysophospholipase D catalyzing the extracellular production of lysophosphatidic acid (LPA), a growth factor-like signaling lysophospholipid. ATX and LPA signaling have been incriminated in the pathogenesis of different chronic inflammatory diseases and various types of cancer. In this report, deregulated ATX and LPA levels were detected in the spinal cord and plasma of mice during the development of experimental autoimmune encephalomyelitis (EAE). Among the different sources of ATX expression in the inflamed spinal cord, F4/80+ CD11b+ cells, mostly activated macrophages and microglia, were found to express ATX, further suggesting an autocrine role for ATX/LPA in their activation, an EAE hallmark. Accordingly, ATX genetic deletion from CD11b+ cells attenuated the severity of EAE, thus proposing a pathogenic role for the ATX/LPA axis in neuroinflammatory disorders.
Collapse
|
14
|
The Structural Binding Mode of the Four Autotaxin Inhibitor Types that Differentially Affect Catalytic and Non-Catalytic Functions. Cancers (Basel) 2019; 11:cancers11101577. [PMID: 31623219 PMCID: PMC6826961 DOI: 10.3390/cancers11101577] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/27/2019] [Accepted: 10/08/2019] [Indexed: 12/20/2022] Open
Abstract
Autotaxin (ATX) is a secreted lysophospholipase D, catalysing the conversion of lysophosphatidylcholine (LPC) to bioactive lysophosphatidic acid (LPA). LPA acts through two families of G protein-coupled receptors (GPCRs) controlling key cellular responses, and it is implicated in many physiological processes and pathologies. ATX, therefore, has been established as an important drug target in the pharmaceutical industry. Structural and biochemical studies of ATX have shown that it has a bimetallic nucleophilic catalytic site, a substrate-binding (orthosteric) hydrophobic pocket that accommodates the lipid alkyl chain, and an allosteric tunnel that can accommodate various steroids and LPA. In this review, first, we revisit what is known about ATX-mediated catalysis, crucially in light of allosteric regulation. Then, we present the known ATX catalysis-independent functions, including binding to cell surface integrins and proteoglycans. Next, we analyse all crystal structures of ATX bound to inhibitors and present them based on the four inhibitor types that are established based on the binding to the orthosteric and/or the allosteric site. Finally, in light of these data we discuss how mechanistic differences might differentially modulate the activity of the ATX-LPA signalling axis, and clinical applications including cancer.
Collapse
|
15
|
Pleotropic Roles of Autotaxin in the Nervous System Present Opportunities for the Development of Novel Therapeutics for Neurological Diseases. Mol Neurobiol 2019; 57:372-392. [PMID: 31364025 DOI: 10.1007/s12035-019-01719-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/23/2019] [Indexed: 12/23/2022]
Abstract
Autotaxin (ATX) is a soluble extracellular enzyme that is abundant in mammalian plasma and cerebrospinal fluid (CSF). It has two known enzymatic activities, acting as both a phosphodiesterase and a phospholipase. The majority of its biological effects have been associated with its ability to liberate lysophosphatidic acid (LPA) from its substrate, lysophosphatidylcholine (LPC). LPA has diverse pleiotropic effects in the central nervous system (CNS) and other tissues via the activation of a family of six cognate G protein-coupled receptors. These LPA receptors (LPARs) are expressed in some combination in all known cell types in the CNS where they mediate such fundamental cellular processes as proliferation, differentiation, migration, chronic inflammation, and cytoskeletal organization. As a result, dysregulation of LPA content may contribute to many CNS and PNS disorders such as chronic inflammatory or neuropathic pain, glioblastoma multiforme (GBM), hemorrhagic hydrocephalus, schizophrenia, multiple sclerosis, Alzheimer's disease, metabolic syndrome-induced brain damage, traumatic brain injury, hepatic encephalopathy-induced cerebral edema, macular edema, major depressive disorder, stress-induced psychiatric disorder, alcohol-induced brain damage, HIV-induced brain injury, pruritus, and peripheral nerve injury. ATX activity is now known to be the primary biological source of this bioactive signaling lipid, and as such, represents a potentially high-value drug target. There is currently one ATX inhibitor entering phase III clinical trials, with several additional preclinical compounds under investigation. This review discusses the physiological and pathological significance of the ATX-LPA-LPA receptor signaling axis and summarizes the evidence for targeting this pathway for the treatment of CNS diseases.
Collapse
|
16
|
Nojiri T, Kurano M, Araki O, Nakawatari K, Nishikawa M, Shimamoto S, Igarashi K, Kano K, Aoki J, Kihara S, Murakami M, Yatomi Y. Serum autotaxin levels are associated with Graves' disease. Endocr J 2019; 66:409-422. [PMID: 30814442 DOI: 10.1507/endocrj.ej18-0451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Graves' Disease is a representative autoimmune thyroid disease that presents with hyperthyroidism. Emerging evidence has shown the involvement of lysophosphatidic acid (LPA) and its producing enzyme, autotaxin (ATX), in the pathogenesis of various diseases; among them, the involvement of the ATX/LPA axis in some immunological disturbances has been proposed. In this study, we investigated the association between serum ATX levels and Graves' disease. We measured the levels of serum total ATX and ATX isoforms (classical ATX and novel ATX) in patients with untreated Graves' disease, Graves' disease treated with anti-thyroid drugs, patients with subacute thyroiditis, silent thyroiditis, Plummer's disease, or Hashimoto's thyroiditis, and patients who had undergone a total thyroidectomy, as well as normal subjects. The serum total ATX and ATX isoform levels were higher in the patients with Graves' disease, compared with the levels in the healthy subjects and the patients with subacute thyroiditis. Treatment with anti-thyroid drugs significantly decreased the serum ATX levels. The serum ATX levels and the changes in serum ATX levels during treatment were moderately or strongly correlated with the serum concentrations or the changes in thyroid hormones. However, the administration of T3 or T4 did not increase the expression or serum levels of ATX in 3T3L1 adipocytes or wild-type mice. In conclusion, the serum ATX levels were higher in subjects with Graves' disease, possibly because of a mechanism that does not involve hyperthyroidism. These results suggest the possible involvement of the ATX/LPA axis in the pathogenesis of Graves' disease.
Collapse
Affiliation(s)
- Takahiro Nojiri
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Makoto Kurano
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Osamu Araki
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Kazuki Nakawatari
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Masako Nishikawa
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Koji Igarashi
- Bioscience Division, TOSOH Corporation, Kanagawa, Japan
| | - Kuniyuki Kano
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | - Junken Aoki
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | - Shinji Kihara
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masami Murakami
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
17
|
Lötsch J, Schiffmann S, Schmitz K, Brunkhorst R, Lerch F, Ferreiros N, Wicker S, Tegeder I, Geisslinger G, Ultsch A. Machine-learning based lipid mediator serum concentration patterns allow identification of multiple sclerosis patients with high accuracy. Sci Rep 2018; 8:14884. [PMID: 30291263 PMCID: PMC6173715 DOI: 10.1038/s41598-018-33077-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/11/2018] [Indexed: 02/07/2023] Open
Abstract
Based on increasing evidence suggesting that MS pathology involves alterations in bioactive lipid metabolism, the present analysis was aimed at generating a complex serum lipid-biomarker. Using unsupervised machine-learning, implemented as emergent self-organizing maps of neuronal networks, swarm intelligence and Minimum Curvilinear Embedding, a cluster structure was found in the input data space comprising serum concentrations of d = 43 different lipid-markers of various classes. The structure coincided largely with the clinical diagnosis, indicating that the data provide a basis for the creation of a biomarker (classifier). This was subsequently assessed using supervised machine-learning, implemented as random forests and computed ABC analysis-based feature selection. Bayesian statistics-based biomarker creation was used to map the diagnostic classes of either MS patients (n = 102) or healthy subjects (n = 301). Eight lipid-markers passed the feature selection and comprised GluCerC16, LPA20:4, HETE15S, LacCerC24:1, C16Sphinganine, biopterin and the endocannabinoids PEA and OEA. A complex classifier or biomarker was developed that predicted MS at a sensitivity, specificity and accuracy of approximately 95% in training and test data sets, respectively. The present successful application of serum lipid marker concentrations to MS data is encouraging for further efforts to establish an MS biomarker based on serum lipidomics.
Collapse
Affiliation(s)
- Jörn Lötsch
- Institute of Clinical Pharmacology, Goethe-University, Theodor - Stern - Kai 7, 60590, Frankfurt am Main, Germany.
- Fraunhofer Institute of Molecular Biology and Applied Ecology - Project Group Translational Medicine and Pharmacology (IME-TMP), Theodor - Stern - Kai 7, 60590, Frankfurt am Main, Germany.
| | - Susanne Schiffmann
- Fraunhofer Institute of Molecular Biology and Applied Ecology - Project Group Translational Medicine and Pharmacology (IME-TMP), Theodor - Stern - Kai 7, 60590, Frankfurt am Main, Germany
| | - Katja Schmitz
- Institute of Clinical Pharmacology, Goethe-University, Theodor - Stern - Kai 7, 60590, Frankfurt am Main, Germany
| | - Robert Brunkhorst
- Department of Neurology, Goethe-University Hospital, Theodor - Stern - Kai 7, 60590, Frankfurt am Main, Germany
| | - Florian Lerch
- DataBionics Research Group, University of Marburg, Hans - Meerwein - Straße 22, 35032, Marburg, Germany
| | - Nerea Ferreiros
- Institute of Clinical Pharmacology, Goethe-University, Theodor - Stern - Kai 7, 60590, Frankfurt am Main, Germany
| | - Sabine Wicker
- Occupational Health Service, University Hospital Frankfurt, Theodor - Stern - Kai 7, 60590, Frankfurt am Main, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Goethe-University, Theodor - Stern - Kai 7, 60590, Frankfurt am Main, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Goethe-University, Theodor - Stern - Kai 7, 60590, Frankfurt am Main, Germany
- Fraunhofer Institute of Molecular Biology and Applied Ecology - Project Group Translational Medicine and Pharmacology (IME-TMP), Theodor - Stern - Kai 7, 60590, Frankfurt am Main, Germany
| | - Alfred Ultsch
- DataBionics Research Group, University of Marburg, Hans - Meerwein - Straße 22, 35032, Marburg, Germany
| |
Collapse
|
18
|
Ninou I, Kaffe E, Müller S, Budd DC, Stevenson CS, Ullmer C, Aidinis V. Pharmacologic targeting of the ATX/LPA axis attenuates bleomycin-induced pulmonary fibrosis. Pulm Pharmacol Ther 2018; 52:32-40. [DOI: 10.1016/j.pupt.2018.08.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 08/16/2018] [Indexed: 02/08/2023]
|
19
|
Jiang D, Ju W, Wu X, Zhan X. Elevated lysophosphatidic acid levels in the serum and cerebrospinal fluid in patients with multiple sclerosis: therapeutic response and clinical implication. Neurol Res 2018; 40:335-339. [PMID: 29557721 DOI: 10.1080/01616412.2018.1446256] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND To date, although great effort has been made to identify biomarkers of multiple sclerosis (MS), it remains unclear whether lysophosphatidic acid (LPA) can be used as a biomarker for MS. METHODS This study compared the LPA levels in the serum and cerebrospinal fluid (CSF) in patients with MS in relapse versus in remission and investigated the change in LPA levels in MS patients in relapse after treatment. Forty-one patients with relapsing-remitting MS (RRMS) (21 patients in relapse and 20 patients in remission) and 21 patients with non-inflammatory, non-vascular neurological diseases as controls were included in this study. MS patients in relapse received standard glucocorticoid treatment. LPA concentrations in serum and CSF were measured using an inorganic phosphate quantification assay. RESULTS LPA levels in the serum and CSF were significantly higher in MS patients in relapse than in MS patients in remission and control patients (P < 0.05). The LPA level in MS patients in relapse was significantly reduced after treatment (P < 0.05). CONCLUSION LPA concentrations in the serum and CSF may be used as biomarkers to monitor disease activity and therapeutic response in MS patients.
Collapse
Affiliation(s)
- Dongxiao Jiang
- a Department of Neurology , Weihai Central Hospital Affiliated to Medical College of Qingdao University , Weihai , China
| | - Weiping Ju
- a Department of Neurology , Weihai Central Hospital Affiliated to Medical College of Qingdao University , Weihai , China
| | - Xijun Wu
- a Department of Neurology , Weihai Central Hospital Affiliated to Medical College of Qingdao University , Weihai , China
| | - Xia Zhan
- a Department of Neurology , Weihai Central Hospital Affiliated to Medical College of Qingdao University , Weihai , China
| |
Collapse
|
20
|
Benesch MGK, MacIntyre ITK, McMullen TPW, Brindley DN. Coming of Age for Autotaxin and Lysophosphatidate Signaling: Clinical Applications for Preventing, Detecting and Targeting Tumor-Promoting Inflammation. Cancers (Basel) 2018; 10:cancers10030073. [PMID: 29543710 PMCID: PMC5876648 DOI: 10.3390/cancers10030073] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/10/2018] [Accepted: 03/12/2018] [Indexed: 12/13/2022] Open
Abstract
A quarter-century after the discovery of autotaxin in cell culture, the autotaxin-lysophosphatidate (LPA)-lipid phosphate phosphatase axis is now a promising clinical target for treating chronic inflammatory conditions, mitigating fibrosis progression, and improving the efficacy of existing cancer chemotherapies and radiotherapy. Nearly half of the literature on this axis has been published during the last five years. In cancer biology, LPA signaling is increasingly being recognized as a central mediator of the progression of chronic inflammation in the establishment of a tumor microenvironment which promotes cancer growth, immune evasion, metastasis, and treatment resistance. In this review, we will summarize recent advances made in understanding LPA signaling with respect to chronic inflammation and cancer. We will also provide perspectives on the applications of inhibitors of LPA signaling in preventing cancer initiation, as adjuncts extending the efficacy of current cancer treatments by blocking inflammation caused by either the cancer or the cancer therapy itself, and by disruption of the tumor microenvironment. Overall, LPA, a simple molecule that mediates a plethora of biological effects, can be targeted at its levels of production by autotaxin, LPA receptors or through LPA degradation by lipid phosphate phosphatases. Drugs for these applications will soon be entering clinical practice.
Collapse
Affiliation(s)
- Matthew G K Benesch
- Discipline of Surgery, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL AlB 3V6, Canada.
- Signal Transduction Research Group, Cancer Research Institute of Northern Alberta, Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada.
| | - Iain T K MacIntyre
- Discipline of Surgery, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL AlB 3V6, Canada.
| | - Todd P W McMullen
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G7, Canada.
| | - David N Brindley
- Signal Transduction Research Group, Cancer Research Institute of Northern Alberta, Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada.
| |
Collapse
|
21
|
Nakajima S, Gotoh M, Fukasawa K, Murofushi H, Murakami-Murofushi K. 2-O-Carba-oleoyl cyclic phosphatidic acid induces glial proliferation through the activation of lysophosphatidic acid receptor. Brain Res 2017; 1681:44-51. [PMID: 29278716 DOI: 10.1016/j.brainres.2017.12.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 01/20/2023]
Abstract
Lysophosphatidic acid (LPA) and cyclic phosphatidic acid (cPA) are one of the lipid mediators regulating cell proliferation and differentiation through the activation of LPA receptors. An LPA receptor-mediated signal is important for the development of the central nervous system, while it has been demonstrated that LPA caused microglial activation and astroglial dysfunction. Previously, we have reported that cPA and carba analog of cPA, 2-O-carba-cPA (2ccPA), protected neural damage caused by transient ischemia. However, little is known about the target cell of cPA/2ccPA in the central nervous systems. Here, we examined the effect of 2ccPA on glial proliferation and differentiation using the primary astrocytes and oligodendrocyte precursor cells (OPCs) cultures. 2ccPA increased the DNA synthesis of astrocytes and OPCs, but it did not reduce the formazan production in the mitochondria. Further, 2ccPA increased the cell number and cell survival against oxidative stress. The inhibition of LPA receptors by ki16425 abolished 2ccPA-induced DNA synthesis. Extracellular signal-regulated kinase (ERK) was activated by 2ccPA, which contributed to the astroglial DNA synthesis. These results suggest that 2ccPA is a beneficial regulator of glial population through the activation of LPA receptor without reduction of mitochondrial activity.
Collapse
Affiliation(s)
- Shingo Nakajima
- Endowed Research Division of Human Welfare Sciences, Ochanomizu University, Tokyo, Japan
| | - Mari Gotoh
- Institute for Human Life Innovation, Ochanomizu University, Tokyo, Japan
| | - Keiko Fukasawa
- Endowed Research Division of Human Welfare Sciences, Ochanomizu University, Tokyo, Japan
| | - Hiromu Murofushi
- Endowed Research Division of Human Welfare Sciences, Ochanomizu University, Tokyo, Japan
| | | |
Collapse
|
22
|
Schmitz K, Brunkhorst R, de Bruin N, Mayer CA, Häussler A, Ferreiros N, Schiffmann S, Parnham MJ, Tunaru S, Chun J, Offermanns S, Foerch C, Scholich K, Vogt J, Wicker S, Lötsch J, Geisslinger G, Tegeder I. Dysregulation of lysophosphatidic acids in multiple sclerosis and autoimmune encephalomyelitis. Acta Neuropathol Commun 2017; 5:42. [PMID: 28578681 PMCID: PMC5457661 DOI: 10.1186/s40478-017-0446-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 05/21/2017] [Indexed: 01/18/2023] Open
Abstract
Abstract Bioactive lipids contribute to the pathophysiology of multiple sclerosis. Here, we show that lysophosphatidic acids (LPAs) are dysregulated in multiple sclerosis (MS) and are functionally relevant in this disease. LPAs and autotaxin, the major enzyme producing extracellular LPAs, were analyzed in serum and cerebrospinal fluid in a cross-sectional population of MS patients and were compared with respective data from mice in the experimental autoimmune encephalomyelitis (EAE) model, spontaneous EAE in TCR1640 mice, and EAE in Lpar2-/- mice. Serum LPAs were reduced in MS and EAE whereas spinal cord LPAs in TCR1640 mice increased during the ‘symptom-free’ intervals, i.e. on resolution of inflammation during recovery hence possibly pointing to positive effects of brain LPAs during remyelination as suggested in previous studies. Peripheral LPAs mildly re-raised during relapses but further dropped in refractory relapses. The peripheral loss led to a redistribution of immune cells from the spleen to the spinal cord, suggesting defects of lymphocyte homing. In support, LPAR2 positive T-cells were reduced in EAE and the disease was intensified in Lpar2 deficient mice. Further, treatment with an LPAR2 agonist reduced clinical signs of relapsing-remitting EAE suggesting that the LPAR2 agonist partially compensated the endogenous loss of LPAs and implicating LPA signaling as a novel treatment approach. Graphical abstract Graphical summary of lysophosphatidic signaling in multiple sclerosis![]() Electronic supplementary material The online version of this article (doi:10.1186/s40478-017-0446-4) contains supplementary material, which is available to authorized users.
Collapse
|
23
|
Nikolaou A, Kokotou MG, Limnios D, Psarra A, Kokotos G. Autotaxin inhibitors: a patent review (2012-2016). Expert Opin Ther Pat 2017; 27:815-829. [DOI: 10.1080/13543776.2017.1323331] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Aikaterini Nikolaou
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Maroula G. Kokotou
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Limnios
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasia Psarra
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - George Kokotos
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|