1
|
An M, Davis JR, Levy JM, Serack FE, Harvey JW, Brauer PP, Pirtle CP, Berríos KN, Newby GA, Yeh WH, Kamath N, Mortberg M, Lian Y, Howard M, DeSouza-Lenz K, Guzman K, Thai A, Graffam S, Laversenne V, Coffey AA, Frei J, Pierce SE, Safar JG, Deverman BE, Minikel EV, Vallabh SM, Liu DR. In vivo base editing extends lifespan of a humanized mouse model of prion disease. Nat Med 2025; 31:1319-1328. [PMID: 39810005 DOI: 10.1038/s41591-024-03466-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025]
Abstract
Prion disease is a fatal neurodegenerative disease caused by the misfolding of prion protein (PrP) encoded by the PRNP gene. While there is currently no cure for the disease, depleting PrP in the brain is an established strategy to prevent or stall templated misfolding of PrP. Here we developed in vivo cytosine and adenine base strategies delivered by adeno-associated viruses to permanently modify the PRNP locus to achieve PrP knockdown in the mouse brain. Systemic injection of dual-adeno-associated virus PHP.eB encoding BE3.9max and single guide RNA installing PRNP R37X resulted in 37% average installation of the desired edit, 50% reduction of PrP in the mouse brain and 52% extension of lifespan in transgenic human PRNP mice inoculated with pathogenic human prion isolates representing the most common sporadic and genetic subtypes of prion disease. We further engineered base editing systems to achieve improved in vivo potency and reduced base editor expression in nontargeting tissues, resulting in 63% average PrP reduction in the mouse brain from a 6.7-fold lower viral dose, with no detected off-target editing of anticipated clinical significance observed in either human cells or mouse tissues. These findings support the potential of in vivo base editing as one-time treatment for prion disease.
Collapse
Affiliation(s)
- Meirui An
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Jessie R Davis
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Jonathan M Levy
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Fiona E Serack
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - John W Harvey
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Pamela P Brauer
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Catherine P Pirtle
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kiara N Berríos
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Gregory A Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Wei-Hsi Yeh
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Nikita Kamath
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Meredith Mortberg
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yuan Lian
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michael Howard
- Comparative Medicine, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Kenia Guzman
- Comparative Medicine, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Aaron Thai
- Comparative Medicine, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Samantha Graffam
- Comparative Medicine, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Vanessa Laversenne
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alissa A Coffey
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jeannine Frei
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sarah E Pierce
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Jiri G Safar
- Case Western Reserve University, Cleveland, OH, USA
| | - Benjamin E Deverman
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eric Vallabh Minikel
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- McCance Center for Brain Health and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
- Prion Alliance, Cambridge, MA, USA.
| | - Sonia M Vallabh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- McCance Center for Brain Health and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
- Prion Alliance, Cambridge, MA, USA.
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
2
|
Teruya K, Oguma A, Okuda M, Iwabuchi S, Konno H, Arai H, Kudo Y, Sugimoto H, Doh-Ura K. Therapeutic effect of curcumin derivative GT863 on prion-infected mice. Sci Rep 2025; 15:5444. [PMID: 39953069 PMCID: PMC11828863 DOI: 10.1038/s41598-025-89317-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/04/2025] [Indexed: 02/17/2025] Open
Abstract
In prion diseases, the cellular prion protein (PrPC) forms an abnormal, infectious, and disease-causing form known as PrPSc. Inhibition of prion propagation is a key approach for the treatment of these diseases. We report on a curcumin-based compound, GT863 (formerly known as PE859) that displays therapeutic efficacy when administered orally. GT863 inhibited abnormal prion protein formation in prion-infected neuroblastoma cells in a prion strain dependent manner: effectively for RML prion and marginally for 22 L prion. Treatment with ad libitum GT863-containing feed prolonged the incubation period of intracerebrally RML prion infected Tga20 mice by 217% increase in mean. Although the 263 K prion-infected Tg7 mice were less sensitive to GT863 than RML prion infected Tga20, treatment with ad libitum GT863-containing feed prolonged the incubation period by 39% increase in mean. The mechanism of the anti-prion effectiveness in vivo needs to be elucidated and managed. Nevertheless, GT863 could inspire the development of oral chemotherapy for prion diseases.
Collapse
Affiliation(s)
- Kenta Teruya
- Graduate School of Medicine, Tohoku University, Sendai, Japan.
- Department of Neurochemistry, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan.
| | - Ayumi Oguma
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| | | | - Sara Iwabuchi
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Hiroyuki Konno
- Graduate School of Science and Engineering, Yamagata University, Yonezawa, Japan
| | - Hiroyuki Arai
- Department of Geriatrics and Gerontology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yukitsuka Kudo
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Hachiro Sugimoto
- Green Tech Co., Ltd., Kyoto, Japan
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Katsumi Doh-Ura
- Graduate School of Medicine, Tohoku University, Sendai, Japan
- Faculty of Medical Science & Welfare, Tohoku Bunka Gakuen University, Sendai, Japan
| |
Collapse
|
3
|
Eid S, Lee S, Verkuyl CE, Almanza D, Hanna J, Shenouda S, Belotserkovsky A, Zhao W, Watts JC. The importance of prion research. Biochem Cell Biol 2024; 102:448-471. [PMID: 38996387 DOI: 10.1139/bcb-2024-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024] Open
Abstract
Over the past four decades, prion diseases have received considerable research attention owing to their potential to be transmitted within and across species as well as their consequences for human and animal health. The unprecedented nature of prions has led to the discovery of a paradigm of templated protein misfolding that underlies a diverse range of both disease-related and normal biological processes. Indeed, the "prion-like" misfolding and propagation of protein aggregates is now recognized as a common underlying disease mechanism in human neurodegenerative disorders such as Alzheimer's and Parkinson's disease, and the prion principle has led to the development of novel diagnostic and therapeutic strategies for these illnesses. Despite these advances, research into the fundamental biology of prion diseases has declined, likely due to their rarity and the absence of an acute human health crisis. Given the past translational influence, continued research on the etiology, pathogenesis, and transmission of prion disease should remain a priority. In this review, we highlight several important "unsolved mysteries" in the prion disease research field and how solving them may be crucial for the development of effective therapeutics, preventing future outbreaks of prion disease, and understanding the pathobiology of more common human neurodegenerative disorders.
Collapse
Affiliation(s)
- Shehab Eid
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Seojin Lee
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Claire E Verkuyl
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Dustin Almanza
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Joseph Hanna
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Sandra Shenouda
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Ari Belotserkovsky
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Wenda Zhao
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Casey C, Sleator RD. Prions: structure, function, evolution, and disease. Arch Microbiol 2024; 207:1. [PMID: 39572454 DOI: 10.1007/s00203-024-04200-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024]
Abstract
Prions are proteinaceous infectious particles implicated in fatal neurodegenerative disorders known as prion diseases. Herein, we provide an overview of prion biology, emphasizing the structural, functional, and evolutionary aspects of prions, along with their potential applications in protein engineering. Understanding the structure-function relationships of both healthy and disease-associated prion proteins enables a deeper understanding of the mechanisms of prion-induced neurotoxicity. Furthermore, we describe how insights into prion evolution have begun to shed light on their ancient origins and evolutionary resilience, offering deeper insights into the potential roles of prions in primordial chemical processes.
Collapse
Affiliation(s)
- Clara Casey
- Department of Biological Sciences, Munster Technological University, Bishopstown, Cork, T12 P928, Ireland
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Roy D Sleator
- Department of Biological Sciences, Munster Technological University, Bishopstown, Cork, T12 P928, Ireland.
| |
Collapse
|
5
|
Zayed M, Kook SH, Jeong BH. Potential Therapeutic Use of Stem Cells for Prion Diseases. Cells 2023; 12:2413. [PMID: 37830627 PMCID: PMC10571911 DOI: 10.3390/cells12192413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023] Open
Abstract
Prion diseases are neurodegenerative disorders that are progressive, incurable, and deadly. The prion consists of PrPSc, the misfolded pathogenic isoform of the cellular prion protein (PrPC). PrPC is involved in a variety of physiological functions, including cellular proliferation, adhesion, differentiation, and neural development. Prion protein is expressed on the membrane surface of a variety of stem cells (SCs), where it plays an important role in the pluripotency and self-renewal matrix, as well as in SC differentiation. SCs have been found to multiply the pathogenic form of the prion protein, implying their potential as an in vitro model for prion diseases. Furthermore, due to their capability to self-renew, differentiate, immunomodulate, and regenerate tissue, SCs are prospective cell treatments in many neurodegenerative conditions, including prion diseases. Regenerative medicine has become a new revolution in disease treatment in recent years, particularly with the introduction of SC therapy. Here, we review the data demonstrating prion diseases' biology and molecular mechanism. SC biology, therapeutic potential, and its role in understanding prion disease mechanisms are highlighted. Moreover, we summarize preclinical studies that use SCs in prion diseases.
Collapse
Affiliation(s)
- Mohammed Zayed
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea;
- Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Surgery, College of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Sung-Ho Kook
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea;
- Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
6
|
Vallabh SM, Zou D, Pitstick R, O’Moore J, Peters J, Silvius D, Kriz J, Jackson WS, Carlson GA, Minikel EV, Cabin DE. Therapeutic Trial of anle138b in Mouse Models of Genetic Prion Disease. J Virol 2023; 97:e0167222. [PMID: 36651748 PMCID: PMC9973041 DOI: 10.1128/jvi.01672-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023] Open
Abstract
Phenotypic screening has yielded small-molecule inhibitors of prion replication that are effective in vivo against certain prion strains but not others. Here, we sought to test the small molecule anle138b in multiple mouse models of prion disease. In mice inoculated with the RML strain of prions, anle138b doubled survival and durably suppressed astrogliosis measured by live-animal bioluminescence imaging. In knock-in mouse models of the D178N and E200K mutations that cause genetic prion disease, however, we were unable to identify a clear, quantifiable disease endpoint against which to measure therapeutic efficacy. Among untreated animals, the mutations did not impact overall survival, and bioluminescence remained low out to >20 months of age. Vacuolization and PrP deposition were observed in some brain regions in a subset of mutant animals but appeared to be unable to carry the weight of a primary endpoint in a therapeutic study. We conclude that not all animal models of prion disease are suited to well-powered therapeutic efficacy studies, and care should be taken in choosing the models that will support drug development programs. IMPORTANCE There is an urgent need to develop drugs for prion disease, a currently untreatable neurodegenerative disease. In this effort, there is a debate over which animal models can best support a drug development program. While the study of prion disease benefits from excellent animal models because prions naturally afflict many different mammals, different models have different capabilities and limitations. Here, we conducted a therapeutic efficacy study of the drug candidate anle138b in mouse models with two of the most common mutations that cause genetic prion disease. In a more typical model where prions are injected directly into the brain, we found anle138b to be effective. In the genetic models, however, the animals never reached a clear, measurable point of disease onset. We conclude that not all prion disease animal models are ideally suited to drug efficacy studies, and well-defined, quantitative disease metrics should be a priority.
Collapse
Affiliation(s)
- Sonia M. Vallabh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
- Prion Alliance, Cambridge, Massachusetts, USA
| | - Dan Zou
- Montana Veterinary Diagnostic Laboratory, Bozeman, Montana, USA
| | - Rose Pitstick
- McLaughlin Research Institute, Great Falls, Montana, USA
| | - Jill O’Moore
- McLaughlin Research Institute, Great Falls, Montana, USA
| | - Janet Peters
- McLaughlin Research Institute, Great Falls, Montana, USA
| | - Derek Silvius
- McLaughlin Research Institute, Great Falls, Montana, USA
| | - Jasna Kriz
- Cervo Brain Research Center, Université Laval, Québec, Québec, Canada
| | - Walker S. Jackson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - George A. Carlson
- Institute for Neurodegenerative Diseases, University of California—San Francisco, San Francisco, California, USA
| | - Eric Vallabh Minikel
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
- Prion Alliance, Cambridge, Massachusetts, USA
| | | |
Collapse
|
7
|
Arshad H, Watts JC. Genetically engineered cellular models of prion propagation. Cell Tissue Res 2022; 392:63-80. [PMID: 35581386 DOI: 10.1007/s00441-022-03630-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/26/2022] [Indexed: 11/02/2022]
Abstract
For over three decades, cultured cells have been a useful tool for dissecting the molecular details of prion replication and the identification of candidate therapeutics for prion disease. A major issue limiting the translatability of these studies has been the inability to reliably propagate disease-relevant, non-mouse strains of prions in cells relevant to prion pathogenesis. In recent years, fueled by advances in gene editing technology, it has become possible to propagate prions from hamsters, cervids, and sheep in immortalized cell lines originating from the central nervous system. In particular, the use of CRISPR-Cas9-mediated gene editing to generate versions of prion-permissive cell lines that lack endogenous PrP expression has provided a blank canvas upon which re-expression of PrP leads to species-matched susceptibility to prion infection. When coupled with the ability to propagate prions in cells or organoids derived from stem cells, these next-generation cellular models should provide an ideal paradigm for identifying small molecules and other biological therapeutics capable of interfering with prion replication in animal and human prion disorders. In this review, we summarize recent advances that have widened the spectrum of prion strains that can be propagated in cultured cells and cutting-edge tissue-based models.
Collapse
Affiliation(s)
- Hamza Arshad
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower Rm. 4KD481, 60 Leonard Ave, Toronto, ON, M5T 0S8, Canada.,Department of Biochemistry, University of Toronto, 1 King's College Circle, Medical Sciences Building Rm. 5207, Toronto, ON, M5S 1A8, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower Rm. 4KD481, 60 Leonard Ave, Toronto, ON, M5T 0S8, Canada. .,Department of Biochemistry, University of Toronto, 1 King's College Circle, Medical Sciences Building Rm. 5207, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
8
|
Beauchemin KS, Rees JR, Supattapone S. Alternating anti-prion regimens reduce combination drug resistance but do not further extend survival in scrapie-infected mice. J Gen Virol 2021; 102:001705. [PMID: 34904943 PMCID: PMC8744272 DOI: 10.1099/jgv.0.001705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Prion diseases are fatal and infectious neurodegenerative diseases in humans and other mammals caused by templated misfolding of the endogenous prion protein (PrP). Although there is currently no vaccine or therapy against prion disease, several classes of small-molecule compounds have been shown to increase disease-free incubation time in prion-infected mice. An apparent obstacle to effective anti-prion therapy is the emergence of drug-resistant strains during static therapy with either single compounds or multi-drug combination regimens. Here, we treated scrapie-infected mice with dynamic regimens that alternate between different classes of anti-prion drugs. The results show that alternating regimens containing various combinations of Anle138b, IND24 and IND116135 reduce the incidence of combination drug resistance, but do not significantly increase long-term disease-free survival compared to monotherapy. Furthermore, the alternating regimens induced regional vacuolation profiles resembling those generated by a single component of the alternating regimen, suggesting the emergence of strain dominance.
Collapse
Affiliation(s)
- Kathryn S. Beauchemin
- Departments of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Judy R. Rees
- Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA,Community and Family Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Surachai Supattapone
- Departments of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA,Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, USA,*Correspondence: Surachai Supattapone,
| |
Collapse
|
9
|
Arshad H, Patel Z, Mehrabian M, Bourkas MEC, Al-Azzawi ZAM, Schmitt-Ulms G, Watts JC. The aminoglycoside G418 hinders de novo prion infection in cultured cells. J Biol Chem 2021; 297:101073. [PMID: 34390689 PMCID: PMC8413896 DOI: 10.1016/j.jbc.2021.101073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/23/2021] [Accepted: 08/10/2021] [Indexed: 01/16/2023] Open
Abstract
The study of prions and the discovery of candidate therapeutics for prion disease have been facilitated by the ability of prions to replicate in cultured cells. Paradigms in which prion proteins from different species are expressed in cells with low or no expression of endogenous prion protein (PrP) have expanded the range of prion strains that can be propagated. In these systems, cells stably expressing a PrP of interest are typically generated via coexpression of a selectable marker and treatment with an antibiotic. Here, we report the unexpected discovery that the aminoglycoside G418 (Geneticin) interferes with the ability of stably transfected cultured cells to become infected with prions. In G418-resistant lines of N2a or CAD5 cells, the presence of G418 reduced levels of protease-resistant PrP following challenge with the RML or 22L strains of mouse prions. G418 also interfered with the infection of cells expressing hamster PrP with the 263K strain of hamster prions. Interestingly, G418 had minimal to no effect on protease-resistant PrP levels in cells with established prion infection, arguing that G418 selectively interferes with de novo prion infection. As G418 treatment had no discernible effect on cellular PrP levels or its localization, this suggests that G418 may specifically target prion assemblies or processes involved in the earliest stages of prion infection.
Collapse
Affiliation(s)
- Hamza Arshad
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Zeel Patel
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Mohadeseh Mehrabian
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Matthew E C Bourkas
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Zaid A M Al-Azzawi
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
10
|
Human cerebral organoids as a therapeutic drug screening model for Creutzfeldt-Jakob disease. Sci Rep 2021; 11:5165. [PMID: 33727594 PMCID: PMC7943797 DOI: 10.1038/s41598-021-84689-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/15/2021] [Indexed: 12/26/2022] Open
Abstract
Creutzfeldt-Jakob Disease (CJD) is a fatal, currently incurable, neurodegenerative disease. The search for candidate treatments would be greatly facilitated by the availability of human cell-based models of prion disease. Recently, an induced pluripotent stem cell derived human cerebral organoid model was shown to take up and propagate human CJD prions. This model offers new opportunities to screen drug candidates for the treatment of human prion diseases in an entirely human genetic background. Here we provide the first evidence that human cerebral organoids can be a viable model for CJD drug screening by using an established anti-prion compound, pentosan polysulfate (PPS). PPS delayed prion propagation in a prophylactic-like treatment paradigm and also alleviated propagation when applied following establishment of infection in a therapeutic-like treatment paradigm. This study demonstrates the utility of cerebral organoids as the first human 3D cell culture system for screening therapeutic drug candidates for human prion diseases.
Collapse
|
11
|
Mustazza C, Sbriccoli M, Minosi P, Raggi C. Small Molecules with Anti-Prion Activity. Curr Med Chem 2020; 27:5446-5479. [PMID: 31560283 DOI: 10.2174/0929867326666190927121744] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 08/08/2019] [Accepted: 09/05/2019] [Indexed: 01/20/2023]
Abstract
Prion pathologies are fatal neurodegenerative diseases caused by the misfolding of the physiological Prion Protein (PrPC) into a β-structure-rich isoform called PrPSc. To date, there is no available cure for prion diseases and just a few clinical trials have been carried out. The initial approach in the search of anti-prion agents had PrPSc as a target, but the existence of different prion strains arising from alternative conformations of PrPSc, limited the efficacy of the ligands to a straindependent ability. That has shifted research to PrPC ligands, which either act as chaperones, by stabilizing the native conformation, or inhibit its interaction with PrPSc. The role of transition-metal mediated oxidation processes in prion misfolding has also been investigated. Another promising approach is the indirect action via other cellular targets, like membrane domains or the Protein- Folding Activity of Ribosomes (PFAR). Also, new prion-specific high throughput screening techniques have been developed. However, so far no substance has been found to be able to extend satisfactorily survival time in animal models of prion diseases. This review describes the main features of the Structure-Activity Relationship (SAR) of the various chemical classes of anti-prion agents.
Collapse
Affiliation(s)
- Carlo Mustazza
- National Centre for Control and Evaluation of Medicines, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Marco Sbriccoli
- Department of Neurosciences, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Paola Minosi
- National Centre for Drug Research and Evaluation, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Carla Raggi
- National Centre for Control and Evaluation of Medicines, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
12
|
Minikel EV, Zhao HT, Le J, O'Moore J, Pitstick R, Graffam S, Carlson GA, Kavanaugh MP, Kriz J, Kim JB, Ma J, Wille H, Aiken J, McKenzie D, Doh-Ura K, Beck M, O'Keefe R, Stathopoulos J, Caron T, Schreiber SL, Carroll JB, Kordasiewicz HB, Cabin DE, Vallabh SM. Prion protein lowering is a disease-modifying therapy across prion disease stages, strains and endpoints. Nucleic Acids Res 2020; 48:10615-10631. [PMID: 32776089 PMCID: PMC7641729 DOI: 10.1093/nar/gkaa616] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/23/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
Lowering of prion protein (PrP) expression in the brain is a genetically validated therapeutic hypothesis in prion disease. We recently showed that antisense oligonucleotide (ASO)-mediated PrP suppression extends survival and delays disease onset in intracerebrally prion-infected mice in both prophylactic and delayed dosing paradigms. Here, we examine the efficacy of this therapeutic approach across diverse paradigms, varying the dose and dosing regimen, prion strain, treatment timepoint, and examining symptomatic, survival, and biomarker readouts. We recapitulate our previous findings with additional PrP-targeting ASOs, and demonstrate therapeutic benefit against four additional prion strains. We demonstrate that <25% PrP suppression is sufficient to extend survival and delay symptoms in a prophylactic paradigm. Rise in both neuroinflammation and neuronal injury markers can be reversed by a single dose of PrP-lowering ASO administered after the detection of pathological change. Chronic ASO-mediated suppression of PrP beginning at any time up to early signs of neuropathology confers benefit similar to constitutive heterozygous PrP knockout. Remarkably, even after emergence of frank symptoms including weight loss, a single treatment prolongs survival by months in a subset of animals. These results support ASO-mediated PrP lowering, and PrP-lowering therapeutics in general, as a promising path forward against prion disease.
Collapse
Affiliation(s)
- Eric Vallabh Minikel
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Prion Alliance, Cambridge, MA, 02139, USA
- Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Hien T Zhao
- Ionis Pharmaceuticals Inc, Carlsbad, CA 92010, USA
| | - Jason Le
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jill O'Moore
- McLaughlin Research Institute, Great Falls, MT 59405, USA
| | - Rose Pitstick
- McLaughlin Research Institute, Great Falls, MT 59405, USA
| | | | | | | | - Jasna Kriz
- Cervo Brain Research Center, Université Laval, Québec, QC G1J 2G3, Canada
| | | | - Jiyan Ma
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Holger Wille
- University of Alberta, Edmonton, AB T6G 2M8, Canada
| | - Judd Aiken
- University of Alberta, Edmonton, AB T6G 2M8, Canada
| | | | - Katsumi Doh-Ura
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Matthew Beck
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rhonda O'Keefe
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Tyler Caron
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Stuart L Schreiber
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | - Sonia M Vallabh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Prion Alliance, Cambridge, MA, 02139, USA
- Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
13
|
Abstract
Prions were initially discovered in studies of scrapie, a transmissible neurodegenerative disease (ND) of sheep and goats thought to be caused by slow viruses. Once scrapie was transmitted to rodents, it was discovered that the scrapie pathogen resisted inactivation by procedures that modify nucleic acids. Eventually, this novel pathogen proved to be a protein of 209 amino acids, which is encoded by a chromosomal gene. After the absence of a nucleic acid within the scrapie agent was established, the mechanism of infectivity posed a conundrum and eliminated a hypothetical virus. Subsequently, the infectious scrapie prion protein (PrPSc) enriched for β-sheet was found to be generated from the cellular prion protein (PrPC) that is predominantly α-helical. The post-translational process that features in nascent prion formation involves a templated conformational change in PrPC that results in an infectious copy of PrPSc. Thus, prions are proteins that adopt alternative conformations, which are self-propagating and found in organisms ranging from yeast to humans. Prions have been found in both Alzheimer's (AD) and Parkinson's (PD) diseases. Mutations in APP and α-synuclein genes have been shown to cause familial AD and PD. Recently, AD was found to be a double prion disorder: both Aβ and tau prions feature in this ND. Increasing evidence argues for α-synuclein prions as the cause of PD, multiple system atrophy, and Lewy body dementia.
Collapse
|
14
|
Nakagaki T, Ishibashi D, Mori T, Miyazaki Y, Takatsuki H, Tange H, Taguchi Y, Satoh K, Atarashi R, Nishida N. Administration of FK506 from Late Stage of Disease Prolongs Survival of Human Prion-Inoculated Mice. Neurotherapeutics 2020; 17:1850-1860. [PMID: 32483654 PMCID: PMC7851258 DOI: 10.1007/s13311-020-00870-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human prion diseases are etiologically categorized into three forms: sporadic, genetic, and infectious. Sporadic Creutzfeldt-Jakob disease (sCJD) is the most common type of human prion disease that manifests as subacute progressive dementia. No effective therapy for sCJD is currently available. Potential therapeutic compounds are frequently tested in rodents infected with mouse-adapted prions that differ from human prions. However, therapeutic effect varies depending on the prion strain, which is one of the reasons why candidate compounds have shown little effect in sCJD patients. We previously reported that intraperitoneal administration of FK506 was able to prolong the survival of mice infected with a mouse-adapted prion by suppressing the accumulation of abnormal prion protein (PrP) and inhibiting the activation of microglia. In this study, we tested oral administration of FK506 in knock-in mice expressing chimeric human prion protein (KiChM) that were infected with sCJD to determine if this compound is also effective against a clinically relevant human prion, i.e., one that has not been adapted to mice. Treatment with FK506, started either just before or just after disease onset, suppressed typical sCJD pathology (gliosis) and slightly but significantly prolonged the survival of sCJD-inoculated mice. It would be worthwhile to conduct a clinical trial using FK506, which has been safety-approved and is widely used as a mild immunosuppressant.
Collapse
Affiliation(s)
- Takehiro Nakagaki
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| | - Daisuke Ishibashi
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
- Department of Immunological and Molecular Pharmacology, Faculty of Pharmaceutical Science, Fukuoka University, 8-19-1 Nanakuma Jonan-ku, Fukuoka, 814-0180, Japan
| | - Tsuyoshi Mori
- Division of Microbiology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, 5200 Kiyotake-cho, Miyazaki, 889-1692, Japan
| | - Yukiko Miyazaki
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Hanae Takatsuki
- Division of Microbiology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, 5200 Kiyotake-cho, Miyazaki, 889-1692, Japan
| | - Hiroya Tange
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Yuzuru Taguchi
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Katsuya Satoh
- Department of Locomotive Rehabilitation Science, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Ryuichiro Atarashi
- Division of Microbiology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, 5200 Kiyotake-cho, Miyazaki, 889-1692, Japan
| | - Noriyuki Nishida
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| |
Collapse
|
15
|
Reidenbach AG, Mesleh MF, Casalena D, Vallabh SM, Dahlin JL, Leed AJ, Chan AI, Usanov DL, Yehl JB, Lemke CT, Campbell AJ, Shah RN, Shrestha OK, Sacher JR, Rangel VL, Moroco JA, Sathappa M, Nonato MC, Nguyen KT, Wright SK, Liu DR, Wagner FF, Kaushik VK, Auld DS, Schreiber SL, Minikel EV. Multimodal small-molecule screening for human prion protein binders. J Biol Chem 2020; 295:13516-13531. [PMID: 32723867 PMCID: PMC7521658 DOI: 10.1074/jbc.ra120.014905] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/21/2020] [Indexed: 12/16/2022] Open
Abstract
Prion disease is a rapidly progressive neurodegenerative disorder caused by misfolding and aggregation of the prion protein (PrP), and there are currently no therapeutic options. PrP ligands could theoretically antagonize prion formation by protecting the native protein from misfolding or by targeting it for degradation, but no validated small-molecule binders have been discovered to date. We deployed a variety of screening methods in an effort to discover binders of PrP, including 19F-observed and saturation transfer difference (STD) NMR spectroscopy, differential scanning fluorimetry (DSF), DNA-encoded library selection, and in silico screening. A single benzimidazole compound was confirmed in concentration-response, but affinity was very weak (Kd > 1 mm), and it could not be advanced further. The exceptionally low hit rate observed here suggests that PrP is a difficult target for small-molecule binders. Whereas orthogonal binder discovery methods could yield high-affinity compounds, non-small-molecule modalities may offer independent paths forward against prion disease.
Collapse
Affiliation(s)
- Andrew G Reidenbach
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Michael F Mesleh
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Dominick Casalena
- Facilitated Access to Screening Technologies (FAST) Lab, Novartis Institutes for Biomedical Research (NIBR), Cambridge, Massachusetts, USA
| | - Sonia M Vallabh
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Prion Alliance, Cambridge, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Jayme L Dahlin
- Harvard Medical School, Boston, Massachusetts, USA; Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Alison J Leed
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Alix I Chan
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Dmitry L Usanov
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Jenna B Yehl
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Christopher T Lemke
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Arthur J Campbell
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Rishi N Shah
- Undergraduate Research Opportunities Program (UROP), Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Om K Shrestha
- Facilitated Access to Screening Technologies (FAST) Lab, Novartis Institutes for Biomedical Research (NIBR), Cambridge, Massachusetts, USA
| | - Joshua R Sacher
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Victor L Rangel
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jamie A Moroco
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Murugappan Sathappa
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Maria Cristina Nonato
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Kong T Nguyen
- Artificial Intelligence Molecular Screen (AIMS) Awards Program, Atomwise, San Francisco, California, USA
| | - S Kirk Wright
- Facilitated Access to Screening Technologies (FAST) Lab, Novartis Institutes for Biomedical Research (NIBR), Cambridge, Massachusetts, USA
| | - David R Liu
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Howard Hughes Medical Institute, Chevy Chase, Maryland, USA; Department of Chemistry & Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Florence F Wagner
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Virendar K Kaushik
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Douglas S Auld
- Facilitated Access to Screening Technologies (FAST) Lab, Novartis Institutes for Biomedical Research (NIBR), Cambridge, Massachusetts, USA
| | - Stuart L Schreiber
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Department of Chemistry & Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Eric Vallabh Minikel
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Prion Alliance, Cambridge, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
16
|
Towards a treatment for genetic prion disease: trials and biomarkers. Lancet Neurol 2020; 19:361-368. [PMID: 32199098 DOI: 10.1016/s1474-4422(19)30403-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 01/19/2023]
Abstract
Prion disease is a rare, fatal, and exceptionally rapid neurodegenerative disease. Although incurable, prion disease follows a clear pathogenic mechanism, in which a single gene gives rise to a single prion protein (PrP) capable of converting into the sole causal disease agent, the misfolded prion. As efforts progress to leverage this mechanistic knowledge toward rational therapies, a principal challenge will be the design of clinical trials. Previous trials in prion disease have been done in symptomatic patients who are often profoundly debilitated at enrolment. About 15% of prion disease cases are genetic, creating an opportunity for early therapeutic intervention to delay or prevent disease. Highly variable age of onset and absence of established prodromal biomarkers might render infeasible existing models for testing drugs before disease onset. Advancement of near-term targeted therapeutics could crucially depend on thoughtful design of rigorous presymptomatic trials.
Collapse
|
17
|
Ma Y, Ma J. Immunotherapy against Prion Disease. Pathogens 2020; 9:E216. [PMID: 32183309 PMCID: PMC7157205 DOI: 10.3390/pathogens9030216] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/12/2020] [Accepted: 03/12/2020] [Indexed: 11/17/2022] Open
Abstract
The term "prion disease" encompasses a group of neurodegenerative diseases affecting both humans and animals. Currently, there is no effective therapy and all forms of prion disease are invariably fatal. Because of (a) the outbreak of bovine spongiform encephalopathy in cattle and variant Creutzfeldt-Jakob disease in humans; (b) the heated debate about the prion hypothesis; and (c) the availability of a natural prion disease in rodents, the understanding of the pathogenic process in prion disease is much more advanced compared to that of other neurodegenerative disorders, which inspired many attempts to develop therapeutic strategies against these fatal diseases. In this review, we focus on immunotherapy against prion disease. We explain our rationale for immunotherapy as a plausible therapeutic choice, review previous trials using either active or passive immunization, and discuss potential strategies for overcoming the hurdles in developing a successful immunotherapy. We propose that immunotherapy is a plausible and practical therapeutic strategy and advocate more studies in this area to develop effective measures to control and treat these devastating disorders.
Collapse
Affiliation(s)
| | - Jiyan Ma
- Center for Neurodegenerative Science, Van Andel Institute, 333 Bostwick Avenue N.E., Grand Rapids, MI 49503, USA;
| |
Collapse
|
18
|
Krance SH, Luke R, Shenouda M, Israwi AR, Colpitts SJ, Darwish L, Strauss M, Watts JC. Cellular models for discovering prion disease therapeutics: Progress and challenges. J Neurochem 2020; 153:150-172. [PMID: 31943194 DOI: 10.1111/jnc.14956] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/22/2022]
Abstract
Prions, which cause fatal neurodegenerative disorders such as Creutzfeldt-Jakob disease, are misfolded and infectious protein aggregates. Currently, there are no treatments available to halt or even delay the progression of prion disease in the brain. The infectious nature of prions has resulted in animal paradigms that accurately recapitulate all aspects of prion disease, and these have proven to be instrumental for testing the efficacy of candidate therapeutics. Nonetheless, infection of cultured cells with prions provides a much more powerful system for identifying molecules capable of interfering with prion propagation. Certain lines of cultured cells can be chronically infected with various types of mouse prions, and these models have been used to unearth candidate anti-prion drugs that are at least partially efficacious when administered to prion-infected rodents. However, these studies have also revealed that not all types of prions are equal, and that drugs active against mouse prions are not necessarily effective against prions from other species. Despite some recent progress, the number of cellular models available for studying non-mouse prions remains limited. In particular, human prions have proven to be particularly challenging to propagate in cultured cells, which has severely hindered the discovery of drugs for Creutzfeldt-Jakob disease. In this review, we summarize the cellular models that are presently available for discovering and testing drugs capable of blocking the propagation of prions and highlight challenges that remain on the path towards developing therapies for prion disease.
Collapse
Affiliation(s)
- Saffire H Krance
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Russell Luke
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Marc Shenouda
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Ahmad R Israwi
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Sarah J Colpitts
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Lina Darwish
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Maximilian Strauss
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Raymond GJ, Zhao HT, Race B, Raymond LD, Williams K, Swayze EE, Graffam S, Le J, Caron T, Stathopoulos J, O'Keefe R, Lubke LL, Reidenbach AG, Kraus A, Schreiber SL, Mazur C, Cabin DE, Carroll JB, Minikel EV, Kordasiewicz H, Caughey B, Vallabh SM. Antisense oligonucleotides extend survival of prion-infected mice. JCI Insight 2019; 5:131175. [PMID: 31361599 PMCID: PMC6777807 DOI: 10.1172/jci.insight.131175] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Prion disease is a fatal, incurable neurodegenerative disease of humans and other mammals caused by conversion of cellular prion protein (PrPC) into a self-propagating neurotoxic conformer (prions; PrPSc). Strong genetic proofs of concept support lowering PrP expression as a therapeutic strategy. Antisense oligonucleotides (ASOs) can provide a practical route to lowering 1 target mRNA in the brain, but their development for prion disease has been hindered by 3 unresolved issues from prior work: uncertainty about mechanism of action, unclear potential for efficacy against established prion infection, and poor tolerability of drug delivery by osmotic pumps. Here, we test ASOs delivered by bolus intracerebroventricular injection to intracerebrally prion-infected WT mice. Prophylactic treatments given every 2–3 months extended survival times 61%–98%, and a single injection at 120 days after infection, near the onset of clinical signs, extended survival 55% (87 days). In contrast, a nontargeting control ASO was ineffective. Thus, PrP lowering is the mechanism of action of ASOs effective against prion disease in vivo, and infrequent — or even single — bolus injections of ASOs can slow prion neuropathogenesis and markedly extend survival, even when initiated near clinical signs. These findings should empower development of PrP-lowering therapy for prion disease. ASO-mediated prion protein suppression delays disease and extends survival, even in mice with established prion infection.
Collapse
Affiliation(s)
- Gregory J Raymond
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | | | - Brent Race
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | - Lynne D Raymond
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | - Katie Williams
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | - Eric E Swayze
- Ionis Pharmaceuticals Inc., Carlsbad, California, USA
| | - Samantha Graffam
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Jason Le
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Tyler Caron
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Rhonda O'Keefe
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Lori L Lubke
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | | | - Allison Kraus
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | | | - Curt Mazur
- Ionis Pharmaceuticals Inc., Carlsbad, California, USA
| | | | | | - Eric Vallabh Minikel
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts, USA.,Prion Alliance, Cambridge, Massachusetts, USA
| | | | - Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | - Sonia M Vallabh
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts, USA.,Prion Alliance, Cambridge, Massachusetts, USA
| |
Collapse
|
20
|
Yamaguchi K, Kamatari YO, Ono F, Shibata H, Fuse T, Elhelaly AE, Fukuoka M, Kimura T, Hosokawa-Muto J, Ishikawa T, Tobiume M, Takeuchi Y, Matsuyama Y, Ishibashi D, Nishida N, Kuwata K. A designer molecular chaperone against transmissible spongiform encephalopathy slows disease progression in mice and macaques. Nat Biomed Eng 2019; 3:206-219. [PMID: 30948810 DOI: 10.1038/s41551-019-0349-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/07/2019] [Indexed: 01/10/2023]
Abstract
Transmissible spongiform encephalopathies (TSEs) are fatal neurodegenerative diseases that lack therapeutic solutions. Here, we show that the molecular chaperone (N,N'-([cyclohexylmethylene]di-4,1-phenylene)bis(2-[1-pyrrolidinyl]acetamide)), designed via docking simulations, molecular dynamics simulations and quantum chemical calculations, slows down the progress of TSEs. In vitro, the designer molecular chaperone stabilizes the normal cellular prion protein, eradicates prions in infected cells, prevents the formation of drug-resistant strains and directly inhibits the interaction between prions and abnormal aggregates, as shown via real-time quaking-induced conversion and in vitro conversion NMR. Weekly intraperitoneal injection of the chaperone in prion-infected mice prolonged their survival, and weekly intravenous administration of the compound in macaques infected with bovine TSE slowed down the development of neurological and psychological symptoms and reduced the concentration of disease-associated biomarkers in the animals' cerebrospinal fluid. The de novo rational design of chaperone compounds could lead to therapeutics that can bind to different prion protein strains to ameliorate the pathology of TSEs.
Collapse
Affiliation(s)
- Keiichi Yamaguchi
- Center for Emerging Infectious Diseases, Gifu University, Gifu, Japan.,United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan.,Institute for Protein Research, Osaka University, Osaka, Japan
| | - Yuji O Kamatari
- Center for Emerging Infectious Diseases, Gifu University, Gifu, Japan.,Life Science Research Center, Gifu University, Gifu, Japan
| | - Fumiko Ono
- Faculty of Animal Crisis Management, Chiba Institute of Science, Choshi, Japan.,Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan
| | - Hiroaki Shibata
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Japan.,Center for Development of Advanced Medical Technology, Jichi Medical University, Shimotsuke, Japan
| | - Takayuki Fuse
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Abdelazim Elsayed Elhelaly
- Center for Emerging Infectious Diseases, Gifu University, Gifu, Japan.,United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan.,Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Suez Canal University, Ismalia, Egypt
| | - Mayuko Fukuoka
- Center for Emerging Infectious Diseases, Gifu University, Gifu, Japan.,United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Tsutomu Kimura
- Center for Emerging Infectious Diseases, Gifu University, Gifu, Japan.,Department of Chemistry, Faulty of Science Division II, Tokyo University of Science, Tokyo, Japan
| | - Junji Hosokawa-Muto
- Center for Emerging Infectious Diseases, Gifu University, Gifu, Japan.,First Department of Forsenic Science, National Research Institute of Police Science, Kashiwa, Japan
| | - Takeshi Ishikawa
- Center for Emerging Infectious Diseases, Gifu University, Gifu, Japan.,Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan
| | - Minoru Tobiume
- Department of Pathology, National Institute of Infectious Disease, Tokyo, Japan
| | - Yoshinori Takeuchi
- Department of Biostatistics, School of Public Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Matsuyama
- Department of Biostatistics, School of Public Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daisuke Ishibashi
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Noriyuki Nishida
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Kazuo Kuwata
- Center for Emerging Infectious Diseases, Gifu University, Gifu, Japan. .,United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan. .,Department of Gene and Development, Graduate School of Medicine, Gifu University, Gifu, Japan.
| |
Collapse
|
21
|
Bourkas MEC, Arshad H, Al-Azzawi ZAM, Halgas O, Shikiya RA, Mehrabian M, Schmitt-Ulms G, Bartz JC, Watts JC. Engineering a murine cell line for the stable propagation of hamster prions. J Biol Chem 2019; 294:4911-4923. [PMID: 30705093 DOI: 10.1074/jbc.ra118.007135] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/30/2019] [Indexed: 01/23/2023] Open
Abstract
Prions are infectious protein aggregates that cause several fatal neurodegenerative diseases. Prion research has been hindered by a lack of cellular paradigms for studying the replication of prions from different species. Although hamster prions have been widely used to study prion replication in animals and within in vitro amplification systems, they have proved challenging to propagate in cultured cells. Because the murine catecholaminergic cell line CAD5 is susceptible to a diverse range of mouse prion strains, we hypothesized that it might also be capable of propagating nonmouse prions. Here, using CRISPR/Cas9-mediated genome engineering, we demonstrate that CAD5 cells lacking endogenous mouse PrP expression (CAD5-PrP-/- cells) can be chronically infected with hamster prions following stable expression of hamster PrP. When exposed to the 263K, HY, or 139H hamster prion strains, these cells stably propagated high levels of protease-resistant PrP. Hamster prion replication required absence of mouse PrP, and hamster PrP inhibited the propagation of mouse prions. Cellular homogenates from 263K-infected cells exhibited prion seeding activity in the RT-QuIC assay and were infectious to naïve cells expressing hamster PrP. Interestingly, murine N2a neuroblastoma cells ablated for endogenous PrP expression were susceptible to mouse prions, but not hamster prions upon expression of cognate PrP, suggesting that CAD5 cells either possess cellular factors that enhance or lack factors that restrict the diversity of prion strains that can be propagated. We conclude that transfected CAD5-PrP-/- cells may be a useful tool for assessing the biology of prion strains and dissecting the mechanism of prion replication.
Collapse
Affiliation(s)
- Matthew E C Bourkas
- From the Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada M5T 0S8.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5T 0S8
| | - Hamza Arshad
- From the Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada M5T 0S8.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5T 0S8
| | - Zaid A M Al-Azzawi
- From the Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada M5T 0S8.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5T 0S8
| | - Ondrej Halgas
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5T 0S8
| | - Ronald A Shikiya
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, 68178
| | - Mohadeseh Mehrabian
- From the Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada M5T 0S8.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada M5T 0S8, and
| | - Gerold Schmitt-Ulms
- From the Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada M5T 0S8.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada M5T 0S8, and
| | - Jason C Bartz
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, 68178
| | - Joel C Watts
- From the Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada M5T 0S8, .,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5T 0S8
| |
Collapse
|
22
|
Ladner-Keay CL, Ross L, Perez-Pineiro R, Zhang L, Bjorndahl TC, Cashman N, Wishart DS. A simple in vitro assay for assessing the efficacy, mechanisms and kinetics of anti-prion fibril compounds. Prion 2018; 12:280-300. [PMID: 30223704 PMCID: PMC6277192 DOI: 10.1080/19336896.2018.1525254] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 09/01/2018] [Accepted: 09/11/2018] [Indexed: 10/28/2022] Open
Abstract
Prion diseases are caused by the conversion of normal cellular prion proteins (PrP) into lethal prion aggregates. These prion aggregates are composed of proteinase K (PK) resistant fibrils and comparatively PK-sensitive oligomers. Currently there are no anti-prion pharmaceuticals available to treat or prevent prion disease. Methods of discovering anti-prion molecules rely primarily on relatively complex cell-based, tissue slice or animal-model assays that measure the effects of small molecules on the formation of PK-resistant prion fibrils. These assays are difficult to perform and do not detect the compounds that directly inhibit oligomer formation or alter prion conversion kinetics. We have developed a simple cell-free method to characterize the impact of anti-prion fibril compounds on both the oligomer and fibril formation. In particular, this assay uses shaking-induced conversion (ShIC) of recombinant PrP in a 96-well format and resolution enhanced native acidic gel electrophoresis (RENAGE) to generate, assess and detect PrP fibrils in a high throughput fashion. The end-point PrP fibrils from this assay can be further characterized by PK analysis and negative stain transmission electron microscopy (TEM). This cell-free, gel-based assay generates metrics to assess anti-prion fibril efficacy and kinetics. To demonstrate its utility, we characterized the action of seven well-known anti-prion molecules: Congo red, curcumin, GN8, quinacrine, chloropromazine, tetracycline, and TUDCA (taurourspdeoxycholic acid), as well as four suspected anti-prion compounds: trans-resveratrol, rosmarinic acid, myricetin and ferulic acid. These findings suggest that this in vitro assay could be useful in identifying and comprehensively assessing novel anti-prion fibril compounds. Abbreviations: PrP, prion protein; PK, proteinase K; ShIC, shaking-induced conversion; RENAGE, resolution enhanced native acidic gel electrophoresis; TEM, transmission electron microscopy; TUDCA, taurourspdeoxycholic acid; BSE, bovine spongiform encephalopathy; CWD, chronic wasting disease; CJD, Creutzfeldt Jakob disease; GSS, Gerstmann-Sträussler-Scheinker syndrome; FFI, fatal familial insomnia; PrPc, cellular prion protein; recPrPC, recombinant monomeric prion protein; PrPSc, infectious particle of misfolded prion protein; RT-QuIC, real-time quaking-induced conversion; PMCA, Protein Misfolding Cyclic Amplification; LPS, lipopolysaccharide; EGCG, epigallocatechin gallate; GN8, 2-pyrrolidin-1-yl-N-[4-[4-(2-pyrrolidin-1-yl-acetylamino)-benzyl]-phenyl]-acetamide; DMSO, dimethyl sulfoxide; ScN2A, scrapie infected neuroblastoma cells; IC50, inhibitory concentration for 50% reduction; recMoPrP 23-231, recombinant full-length mouse prion protein residues 23-231; EDTA; PICUP, photo-induced cross-linking of unmodified protein; BSA, bovine serum albumin;; PMSF, phenylmethanesulfonyl fluoride.
Collapse
Affiliation(s)
| | - Li Ross
- Brain Research Centre, University of British Columbia, Vancouver, Canada
| | | | - Lun Zhang
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Trent C. Bjorndahl
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Neil Cashman
- Brain Research Centre, University of British Columbia, Vancouver, Canada
| | - David S. Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
- Department of Computing Science, University of Alberta, Edmonton, Canada
| |
Collapse
|
23
|
The function of the cellular prion protein in health and disease. Acta Neuropathol 2018; 135:159-178. [PMID: 29151170 DOI: 10.1007/s00401-017-1790-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 12/11/2022]
Abstract
The essential role of the cellular prion protein (PrPC) in prion disorders such as Creutzfeldt-Jakob disease is well documented. Moreover, evidence is accumulating that PrPC may act as a receptor for protein aggregates and transduce neurotoxic signals in more common neurodegenerative disorders, such as Alzheimer's disease. Although the pathological roles of PrPC have been thoroughly characterized, a general consensus on its physiological function within the brain has not yet been established. Knockout studies in various organisms, ranging from zebrafish to mice, have implicated PrPC in a diverse range of nervous system-related activities that include a key role in the maintenance of peripheral nerve myelination as well as a general ability to protect against neurotoxic stimuli. Thus, the function of PrPC may be multifaceted, with different cell types taking advantage of unique aspects of its biology. Deciphering the cellular function(s) of PrPC and the consequences of its absence is not simply an academic curiosity, since lowering PrPC levels in the brain is predicted to be a powerful therapeutic strategy for the treatment of prion disease. In this review, we outline the various approaches that have been employed in an effort to uncover the physiological and pathological functions of PrPC. While these studies have revealed important clues about the biology of the prion protein, the precise reason for PrPC's existence remains enigmatic.
Collapse
|
24
|
Diack AB, Bartz JC. Experimental models of human prion diseases and prion strains. HANDBOOK OF CLINICAL NEUROLOGY 2018; 153:69-84. [PMID: 29887156 DOI: 10.1016/b978-0-444-63945-5.00004-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Prion strains occur in natural prion diseases, including prion diseases of humans. Prion strains can correspond with differences in the clinical signs and symptoms of disease and the distribution of prion infectivity in the host and are hypothesized to be encoded by strain-specific differences in the conformation of the disease-specific isoform of the host-encoded prion protein, PrPTSE. Prion strains can differ in biochemical properties of PrPTSE that can include the relative sensitivity to digestion with proteinase K and conformational stability in denaturants. These strain-specific biochemical properties of field isolates are maintained upon transmission to experimental animal models of prion disease. Experimental human models of prion disease include traditional and gene-targeted mice that express endogenous PrPC. Transgenic mice that express different polymorphs of human PrPC or mutations in human PrPC that correspond with familial forms of human prion disease have been generated that can recapitulate the clinical, pathologic, and biochemical features of disease. These models aid in understanding disease pathogenesis, evaluating zoonotic potential of animal prion diseases, and assessing human-to-human transmission of disease. Models of sporadic or familial forms of disease offer an opportunity to define mechanisms of disease, identify key neurodegenerative pathways, and assess therapeutic interventions.
Collapse
Affiliation(s)
- Abigail B Diack
- Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, United Kingdom.
| | - Jason C Bartz
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, United States
| |
Collapse
|
25
|
Wang X, Noroozian Z, Lynch M, Armstrong N, Schneider R, Liu M, Ghodrati F, Zhang AB, Yang YJ, Hall AC, Solarski M, Killackey SA, Watts JC. Strains of Pathological Protein Aggregates in Neurodegenerative Diseases. Discoveries (Craiova) 2017; 5:e78. [PMID: 32309596 PMCID: PMC7159837 DOI: 10.15190/d.2017.8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The presence of protein aggregates in the brain is a hallmark of neurodegenerative disorders such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). Considerable evidence has revealed that the pathological protein aggregates in many neurodegenerative diseases are able to self-propagate, which may enable pathology to spread from cell-to-cell within the brain. This property is reminiscent of what occurs in prion diseases such as Creutzfeldt-Jakob disease. A widely recognized feature of prion disorders is the existence of distinct strains of prions, which are thought to represent unique protein aggregate structures. A number of recent studies have pointed to the existence of strains of protein aggregates in other, more common neurodegenerative illnesses such as AD, PD, and related disorders. In this review, we outline the pathobiology of prion strains and discuss how the concept of protein aggregate strains may help to explain the heterogeneity inherent to many human neurodegenerative disorders.
Collapse
Affiliation(s)
- Xinzhu Wang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Zeinab Noroozian
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Sunnybrook Research Institute - Biological Sciences, Toronto, ON, Canada
| | - Madelaine Lynch
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Sunnybrook Research Institute - Biological Sciences, Toronto, ON, Canada
| | - Nicholas Armstrong
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Raphael Schneider
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada.,Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
| | - Mingzhe Liu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Sunnybrook Research Institute - Biological Sciences, Toronto, ON, Canada
| | - Farinaz Ghodrati
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Ashley B Zhang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Yoo Jeong Yang
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Amanda C Hall
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Michael Solarski
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Samuel A Killackey
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
26
|
Giles K, Olson SH, Prusiner SB. Developing Therapeutics for PrP Prion Diseases. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a023747. [PMID: 28096242 DOI: 10.1101/cshperspect.a023747] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The prototypical PrP prion diseases are invariably fatal, and the search for agents to treat them spans more than 30 years, with limited success. However, in the last few years, the application of high-throughput screening, medicinal chemistry, and pharmacokinetic optimization has led to important advances. The PrP prion inoculation paradigm provides a robust assay for testing therapeutic efficacy, and a dozen compounds have been reported that lead to meaningful extension in survival of prion-infected mice. Here, we review the history and recent progress in the field, focusing on studies validated in animal models. Based on screens in cells infected with mouse-passaged PrP prions, orally available compounds were generated that double or even triple the survival of mice infected with the same prion strain. Unfortunately, no compounds have yet shown efficacy against human prions. Nevertheless, the speed of the recent advances brings hope that an effective therapeutic can be developed. A successful treatment for any neurodegenerative disease would be a major achievement, and the growing understanding that the more common neurodegenerative diseases, including Alzheimer's and Parkinson's, progress by an analogous prion mechanism serves to highlight the importance of antiprion therapeutics.
Collapse
Affiliation(s)
- Kurt Giles
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94143.,Department of Neurology, University of California, San Francisco, San Francisco, California 94143
| | - Steven H Olson
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94143.,Department of Neurology, University of California, San Francisco, San Francisco, California 94143
| | - Stanley B Prusiner
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94143.,Department of Neurology, University of California, San Francisco, San Francisco, California 94143.,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94143
| |
Collapse
|
27
|
Kondru N, Manne S, Greenlee J, West Greenlee H, Anantharam V, Halbur P, Kanthasamy A, Kanthasamy A. Integrated Organotypic Slice Cultures and RT-QuIC (OSCAR) Assay: Implications for Translational Discovery in Protein Misfolding Diseases. Sci Rep 2017; 7:43155. [PMID: 28233859 PMCID: PMC5324099 DOI: 10.1038/srep43155] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/19/2017] [Indexed: 01/13/2023] Open
Abstract
Protein misfolding is a key pathological event in neurodegenerative diseases like prion diseases, synucleinopathies, and tauopathies that are collectively termed protein misfolding disorders. Prions are a prototypic model to study protein aggregation biology and therapeutic development. Attempts to develop anti-prion therapeutics have been impeded by the lack of screening models that faithfully replicate prion diseases and the lack of rapid, sensitive biological screening systems. Therefore, a sensitive model encompassing prion replication and neurotoxicity would be indispensable to the pursuit of intervention strategies. We present an ultra-sensitive screening system coupled to an ex vivo prion organotypic slice culture model to rapidly advance rationale-based high-throughput therapeutic strategies. This hybrid Organotypic Slice Culture Assay coupled with RT-QuIC (OSCAR) permits sensitive, specific and quantitative detection of prions from an infectious slice culture model on a reduced time scale. We demonstrate that the anti-prion activity of test compounds can be readily resolved based on the power and kinetics of seeding activity in the OSCAR screening platform and that the prions generated in slice cultures are biologically active. Collectively, our results imply that OSCAR is a robust model of prion diseases that offers a promising platform for understanding prion proteinopathies and advancing anti-prion therapeutics.
Collapse
Affiliation(s)
- Naveen Kondru
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Sireesha Manne
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Justin Greenlee
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50011, USA
| | - Heather West Greenlee
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Vellareddy Anantharam
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Patrick Halbur
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Arthi Kanthasamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Anumantha Kanthasamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
28
|
Pagadala NS, Syed K, Bhat R. In silico strategies on prion pathogenic conversion and inhibition from PrPC–PrPSc. Expert Opin Drug Discov 2017; 12:241-248. [DOI: 10.1080/17460441.2017.1287171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Nataraj S. Pagadala
- Department of Medical Microbiology and Immunology, 6-020 Katz Group Centre, University of Alberta, Edmonton, Canada
| | - Khajamohiddin Syed
- Unit for Drug Discovery Research, Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, South Africa
| | - Rakesh Bhat
- Department of Medical Microbiology and Immunology, 6-020 Katz Group Centre, University of Alberta, Edmonton, Canada
| |
Collapse
|