1
|
Samy BA, Raman K, Velayutham S, Senthilkumar N, Thirumalaivasan N, Kanagaraj K, Pothu R, Boddula R, Radwan AB, Al-Qahtani N. Natural product extract fractions as potential arthritis treatments: A detailed analysis using in-silico, in-vivo, and in-vitro methods. Int Immunopharmacol 2025; 144:113595. [PMID: 39580856 DOI: 10.1016/j.intimp.2024.113595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/13/2024] [Accepted: 11/06/2024] [Indexed: 11/26/2024]
Abstract
Two characteristics of the systemic autoimmune disease rheumatoid arthritis (RA) include extra-articular involvement and inflammatory arthritis. It is a long-term inflammatory condition that mostly affects the synovial joints and is often triggered by a confluence of environmental factors, including tobacco use, and genetics. The review investigates natural products' role in arthritis through three key approaches. In-silico analysis identifies molecular mechanisms and targets of these products, revealing their potential for therapeutic use. In-vivo studies evaluate how well these products work and their safety in reducing joint inflammation. In-vitro studies focus on how these compounds interact at the cellular level and their effects on signaling pathways. Together, these approaches offer a comprehensive understanding of how natural products could benefit arthritis management. This review focuses on translational studies and highlights the possible role of natural compounds as adjunctive therapies to conventional arthritis treatments. In conclusion, this study indicates that natural products have potential advantages in treating osteoarthritis and rheumatoid arthritis based on in-silico analysis which shows anti-inflammatory effects, in-vivo studies that reduce joint inflammation, and in-vitro studies that amplify arthritis management. To improve the therapeutic advantages of natural products utilized for treating arthritis, an all-inclusive examination has been done to give direction for the following research efforts.
Collapse
Affiliation(s)
- Bharathiraja Anthony Samy
- Department of Pharmacology, JKKMRFs Annai JKK Sampoorani Ammal College of Pharmacy (Affiliated by The Tamil Nadu Dr. M.G.R. Medical University, Chennai, Tamil Nadu, India), B. Komarapalayam, Namakkal, Tamil Nadu, India
| | - Kannan Raman
- Department of Pharmacology, JKKMRFs Annai JKK Sampoorani Ammal College of Pharmacy (Affiliated by The Tamil Nadu Dr. M.G.R. Medical University, Chennai, Tamil Nadu, India), B. Komarapalayam, Namakkal, Tamil Nadu, India
| | - Suresh Velayutham
- Department of Pharmacology, JKKMRFs Annai JKK Sampoorani Ammal College of Pharmacy (Affiliated by The Tamil Nadu Dr. M.G.R. Medical University, Chennai, Tamil Nadu, India), B. Komarapalayam, Namakkal, Tamil Nadu, India
| | - Nangan Senthilkumar
- Department of Chemistry, Allied Sciences, Graphic Era Hill University, Dehradun 248002, India
| | - Natesan Thirumalaivasan
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Kuppusamy Kanagaraj
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China.
| | - Ramyakrishna Pothu
- School of Physics and Electronics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Rajender Boddula
- Department of Chemistry, Allied Sciences, Graphic Era Hill University, Dehradun 248002, India; Allied Sciences, Department of Chemistry, Graphic Era Deemed to be University, Dehradun, Uttarakhand 248002, India; Center for Advanced Materials (CAM), Qatar University, 2713 Doha, Qatar.
| | | | - Noora Al-Qahtani
- Center for Advanced Materials (CAM), Qatar University, 2713 Doha, Qatar; Central Laboratories Unit (CLU), Qatar University, Doha 2713, Qatar.
| |
Collapse
|
2
|
Tomsen-Melero J, Moltó-Abad M, Merlo-Mas J, Díaz-Riascos ZV, Cristóbal-Lecina E, Soldevila A, Altendorfer-Kroath T, Danino D, Ionita I, Pedersen JS, Snelling L, Clay H, Carreño A, Corchero JL, Pulido D, Casas J, Veciana J, Simó Schwartz, Sala S, Font A, Birngruber T, Royo M, Córdoba A, Ventosa N, Abasolo I, González-Mira E. Targeted nanoliposomes to improve enzyme replacement therapy of Fabry disease. SCIENCE ADVANCES 2024; 10:eadq4738. [PMID: 39671483 DOI: 10.1126/sciadv.adq4738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/07/2024] [Indexed: 12/15/2024]
Abstract
The central nervous system represents a major target tissue for therapeutic approach of numerous lysosomal storage disorders. Fabry disease arises from the lack or dysfunction of the lysosomal alpha-galactosidase A (GLA) enzyme, resulting in substrate accumulation and multisystemic clinical manifestations. Current enzyme replacement therapies (ERTs) face limited effectiveness due to poor enzyme biodistribution in target tissues and inability to reach the brain. We present an innovative drug delivery strategy centered on a peptide-targeted nanoliposomal formulation, designated as nanoGLA, engineered to selectively deliver a recombinant human GLA (rhGLA) to target tissues. In a Fabry mouse model, nanoGLA demonstrated improved efficacy, inducing a notable reduction in Gb3 deposits in contrast to non-nanoformulated GLA, even in the brain, highlighting the potential of the nanoGLA to address both systemic and cerebrovascular manifestations of Fabry disease. The EMA has granted the Orphan Drug Designation to this product, underscoring the potential clinical superiority of nanoGLA over authorized ERTs and encouraging to advance it toward clinical translation.
Collapse
Affiliation(s)
- Judit Tomsen-Melero
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Marc Moltó-Abad
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
- Clinical Biochemistry, Drug Delivery & Targeting (CB-DDT), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Josep Merlo-Mas
- Nanomol Technologies SL, Campus de la UAB, 08193 Bellaterra, Spain
| | - Zamira V Díaz-Riascos
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
- Clinical Biochemistry, Drug Delivery & Targeting (CB-DDT), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
- Functional Validaton & Preclinical Research (FVPR)/U20 ICTS Nanbiosis, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Edgar Cristóbal-Lecina
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
- Institut de Química Avançada de Catalunya (IQAC-CSIC), c/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | | | - Thomas Altendorfer-Kroath
- JOANNEUM RESEARCH-Institute for Biomedical Research and Technologies (HEALTH), Neue Stiftingtalstraße 2, 8010 Graz, Austria
| | - Dganit Danino
- Cryo-EM Laboratory of Soft Matter, Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, 32000 Haifa, Israel
- Cryo-EM and Self-Assembly Laboratory, Guangdong-Technion Israel Institute of Technology, Shantou, China
| | - Inbal Ionita
- Cryo-EM Laboratory of Soft Matter, Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Jan Skov Pedersen
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
| | | | - Hazel Clay
- Labcorp Drug Development, Harrogate HG3 IPY, UK
| | - Aida Carreño
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - José L Corchero
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Genètica i de Microbiologia, Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Daniel Pulido
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
- Institut de Química Avançada de Catalunya (IQAC-CSIC), c/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Josefina Casas
- Institut de Química Avançada de Catalunya (IQAC-CSIC), c/ Jordi Girona 18-26, 08034 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain
| | - Jaume Veciana
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Simó Schwartz
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
- Clinical Biochemistry, Drug Delivery & Targeting (CB-DDT), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
- Servei de Bioquímica, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Santi Sala
- Nanomol Technologies SL, Campus de la UAB, 08193 Bellaterra, Spain
| | | | - Thomas Birngruber
- JOANNEUM RESEARCH-Institute for Biomedical Research and Technologies (HEALTH), Neue Stiftingtalstraße 2, 8010 Graz, Austria
| | - Miriam Royo
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
- Institut de Química Avançada de Catalunya (IQAC-CSIC), c/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Alba Córdoba
- Nanomol Technologies SL, Campus de la UAB, 08193 Bellaterra, Spain
| | - Nora Ventosa
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Ibane Abasolo
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
- Clinical Biochemistry, Drug Delivery & Targeting (CB-DDT), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
- Functional Validaton & Preclinical Research (FVPR)/U20 ICTS Nanbiosis, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
- Servei de Bioquímica, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Elisabet González-Mira
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| |
Collapse
|
3
|
Schultz D, Kempen PJ, Primdahl S, Pereverzina M, Uhrenfeldt AH, Alba EMD, Andreasen J, Pedersen HD, Cleveland C, Duncombe T, Ahnfelt-Ro Nne J, Kirk RK, Pfander IB, Sticker D, Water JJ, Buckley ST, Andresen TL, Urquhart AJ. Gastrointestinal Device-Mediated Delivery of mRNA-Lipid Nanoparticles Achieves Distinct Expression and Biodistribution in Mice and Pigs. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67192-67202. [PMID: 39621822 DOI: 10.1021/acsami.4c11819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Recent investigations into autonomous ingestible microjet devices have demonstrated the feasibility of delivering many drug modalities directly into the gastrointestinal (GI) wall via the oral route. However, the expression and biodistribution of mRNA after such injections remain unexplored. mRNA-lipid nanoparticles (mRNA-LNPs) are promising therapeutics for treating or vaccinating against many diseases and pathogens. Today, mRNA-LNPs are given as injections, necessitating trained medical personnel and resulting in reduced patient compliance. Here, we elucidate the expression and biodistribution of mRNA-LNPs after injection into the gastric and intestinal walls of mice and minipigs. We see a controlled release of mRNA from the stomach and intestine with mRNA in both plasma and lymph nodes, leading to a broad biodistribution profile, which could lead to better immunization after vaccination. Our results substantiate the argument that ingestible microjet devices facilitate a viable route of administration for use as an alternative to injections of mRNA-LNP.
Collapse
Affiliation(s)
- David Schultz
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Paul J Kempen
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby 2800, Denmark
- National Centre for Nano Fabrication and Characterization, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Susanne Primdahl
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Maria Pereverzina
- Global Research Technologies, Novo Nordisk A/S, Målo̷v 2760, Denmark
| | | | - Enrique M D Alba
- Device & Delivery Solutions, Novo Nordisk A/S, Hillero̷d 3400, Denmark
| | - Jan Andreasen
- Device & Delivery Solutions, Novo Nordisk A/S, Hillero̷d 3400, Denmark
| | | | - Cody Cleveland
- Device & Delivery Solutions, Novo Nordisk A/S, Hillero̷d 3400, Denmark
| | - Todd Duncombe
- Global Research Technologies, Novo Nordisk A/S, Målo̷v 2760, Denmark
| | | | - Rikke K Kirk
- Global Drug Discovery, Novo Nordisk A/S, Målo̷v 2760, Denmark
| | | | - Drago Sticker
- Global Research Technologies, Novo Nordisk A/S, Målo̷v 2760, Denmark
| | - Jorrit J Water
- Global Research Technologies, Novo Nordisk A/S, Målo̷v 2760, Denmark
| | - Stephen T Buckley
- Global Research Technologies, Novo Nordisk A/S, Målo̷v 2760, Denmark
| | - Thomas L Andresen
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Andrew J Urquhart
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| |
Collapse
|
4
|
Nawabjan SA, Singh K, G S MI, Au-Yeung RKH, Zhang F, Zhang L, El-Nezami H, Chow BKC. Preclinical toxicity evaluation of the novel anti-hypertensive compound KSD179019. Food Chem Toxicol 2024; 196:115195. [PMID: 39667608 DOI: 10.1016/j.fct.2024.115195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 12/02/2024] [Accepted: 12/07/2024] [Indexed: 12/14/2024]
Abstract
The Secretin receptor (SCTR) presents a promising path for hypertension management, with KSD179019 as identified as a Positive Allosteric Modulator (PAM) of SCTR, demonstrating anti-hypertensive effects in animal models. Our objective was to comprehensively evaluate the potential toxicity of KSD179019 through in vitro and in vivo investigations. Initial in vitro studies showed minimal toxicity in liver and kidney cells and non-mutagenicity in bacterial assays. A 14-day acute toxicity test indicated an LD50 over 5000 mg/kg body weight, suggesting a safe profile, yet necessitating further in vivo analysis before progressing to human trials. Following OECD protocols, we conducted sub-chronic (90 days) and chronic (180 days) toxicity studies in male and female C57 mice at various dosages. These included comprehensive hematological, biochemical, macroscopic, urinalysis, and histopathological examinations. The sub-chronic study reported minimal toxicity except at the highest doses (700 and 1000 mg/kg), while the chronic study suggested a no-observed-adverse-effect-level (NOAEL) at 250 mg/kg with limitations. QSAR analysis supported the non-mutagenic nature of KSD179019. KSD179019 demonstrated a favorable general toxicity profile at a dose of 250 mg/kg in a 180-day chronic testing study. However, further preclinical investigations, including assessments of in vivo mutagenicity, reproductive and developmental toxicity, and carcinogenicity, are required to comprehensively establish its safety profile.
Collapse
Affiliation(s)
| | - Kailash Singh
- School of Biological Science, The University of Hong Kong, Hong Kong SAR, China
| | - Muthu Iswarya G S
- School of Biological Science, The University of Hong Kong, Hong Kong SAR, China
| | - Rex K H Au-Yeung
- Department of Pathology, The University of Hong Kong, Hong Kong SAR, China
| | - Fengwei Zhang
- School of Biological Science, The University of Hong Kong, Hong Kong SAR, China
| | - Li Zhang
- GHM Institute of CNS Regeneration Jinan University, Guangzhou, China
| | - Hani El-Nezami
- School of Biological Science, The University of Hong Kong, Hong Kong SAR, China.
| | - Billy K C Chow
- School of Biological Science, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
5
|
Su Y, Liu L, Lin C, Deng D, Li Y, Huang M, Wang Y, Ling K, Wang H, Chen Q, Huang G. Enhancing cancer therapy: advanced nanovehicle delivery systems for oridonin. Front Pharmacol 2024; 15:1476739. [PMID: 39691396 PMCID: PMC11649421 DOI: 10.3389/fphar.2024.1476739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024] Open
Abstract
Oridonin (ORI), an ent-kaurane diterpenoid derived from Rabdosia rubescens (Hemsl.) H.Hara, serves as the primary bioactive component of this plant. It demonstrates a broad spectrum of therapeutic activities, including moderate to potent anticancer properties, alongside anti-inflammatory, antibacterial, antifibrotic, immunomodulatory, and neuromodulatory effects, thus influencing diverse biological processes. However, its clinical potential is significantly constrained by poor aqueous solubility and limited bioavailability. In alignment with the approach of developing drug candidates from natural compounds, various strategies, such as structural modification and nanocarrier systems, have been employed to address these challenges. This review provides an overview of ORI-based nano-delivery systems, emphasizing their potential to improve the clinical applicability of oridonin in oncology. Although some progress has been made in advancing ORI nano-delivery research, it remains insufficient for clinical implementation, necessitating further investigation.
Collapse
Affiliation(s)
- Yilin Su
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Lisha Liu
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Chongyang Lin
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Dashi Deng
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Yunfei Li
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Mou Huang
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Yu Wang
- Institute of Pain, The Affiliated Hospital of Southwest Jiaotong University, The Chengdu Third People’s Hospital, Chengdu, China
| | - Kangqiu Ling
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Haobing Wang
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Qiyu Chen
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Guixiao Huang
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| |
Collapse
|
6
|
Saghdani N, El Abbouchi A, El Brahmi N, Idir A, Rachedi KO, Berredjem M, Haloui R, Elkhattabi S, Mouse HA, Ben Hadda T, Bousmina M, Zyad A, El Kazzouli S. Design, synthesis, in-vitro, in-silico, DFT and POM studies of a novel family of sulfonamides as potent anti-triple-negative breast cancer agents. Comput Biol Chem 2024; 113:108214. [PMID: 39305691 DOI: 10.1016/j.compbiolchem.2024.108214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 12/15/2024]
Abstract
In this study, a new family of ethacrynic acid-sulfonamides and indazole-sulfonamides was synthesized and tested in vitro against MDA-MB-468 triple-negative breast cancer cells and PBMCs human peripheral blood mononuclear cells, using the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay. The aim of this research is to discover novel compounds with potential therapeutic effects on breast cancer. The antiproliferative activity of these compounds showed a significant dose-dependent activity, with IC50 values ranging between 2.83 and 7.52 µM. The lead compounds 8 and 9 displayed similar IC50 values to paclitaxel with 2.83, 3.84 and 2.72 µM, respectively. This highlights the novelty and potential of these compounds as alternatives to current treatments. The binding properties of 8, 9, and paclitaxel with the active sites of the PARP1(Poly(ADP-ribose) polymérase 1) and EGFR (Epidermal growth factor receptor) proteins were analyzed by molecular docking methods showing, for PARP1 protein, binding affinities of -9.8 Kcal /mol, -10 Kcal /mol, and -9.4 Kcal /mol, respectively. While their binding affinities for EGFR protein are -7.5 Kcal/mol, -7.2 Kcal/mol and -6.9 Kcal/mol, respectively. Moreover, drug-likeness and ADMET (Absorption-distribution-metabolism-excretion-toxicity) analyses demonstrated that both molecules are orally bioavailable and have good pharmacokinetic and non-toxic profiles. DFT (Density functional theory) was also carried out on both compounds 8 and 9 additionally to POM (Petra/Osiris/Molinspiration) studies on all compounds. The outcomes of this study suggest that compounds 8 and 9 are promising candidates for further development as therapeutic agents against triple-negative breast cancer.
Collapse
Affiliation(s)
| | | | | | - Abderrazak Idir
- Agro-Industrial and Medical Biotechnology Laboratory, Team of Experimental Oncology and Natural Substances, Faculty of Sciences and Technology, Sultan Moulay Slimane University, Beni-Mellal, Morocco; Science and Technology Team, Higher School of Education and Training, Chouaîb Doukkali University, El Jadida, Morocco
| | - Khadija Otmane Rachedi
- Laboratory of Applied Organic Chemistry, Synthesis of Biomolecules and Molecular Modelling Group, Faculty of Sciences, Department of Chemistry, Badji-Mokhtar - Annaba University, Box 12, Annaba 23000, Algeria
| | - Malika Berredjem
- Laboratory of Applied Organic Chemistry, Synthesis of Biomolecules and Molecular Modelling Group, Faculty of Sciences, Department of Chemistry, Badji-Mokhtar - Annaba University, Box 12, Annaba 23000, Algeria
| | - Rachid Haloui
- Laboratory of Engineering, Systems and Applications, National School of Applied Sciences, Sidi Mohamed Ben Abdellah-Fez University, BP Box 72, Fez, Morocco
| | - Souad Elkhattabi
- Laboratory of Engineering, Systems and Applications, National School of Applied Sciences, Sidi Mohamed Ben Abdellah-Fez University, BP Box 72, Fez, Morocco
| | - Hassan Ait Mouse
- Agro-Industrial and Medical Biotechnology Laboratory, Team of Experimental Oncology and Natural Substances, Faculty of Sciences and Technology, Sultan Moulay Slimane University, Beni-Mellal, Morocco
| | | | | | - Abdelmajid Zyad
- Agro-Industrial and Medical Biotechnology Laboratory, Team of Experimental Oncology and Natural Substances, Faculty of Sciences and Technology, Sultan Moulay Slimane University, Beni-Mellal, Morocco
| | | |
Collapse
|
7
|
Seo Y, Woo Y, Oh B, Yoo D, Kwon HK, Park C, Cho HY, Kim HS, Lee T. Microfluidic Fabrication of Oleosin-Coated Liposomes as Anticancer Drug Carriers with Enhanced Sustained Drug Release. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5550. [PMID: 39597374 PMCID: PMC11595445 DOI: 10.3390/ma17225550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/20/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024]
Abstract
Microfluid-derived liposomes (M-Lipo) exhibit great potential as drug and functional substance carriers in pharmaceutical and food science. However, the low liposome membrane stability, attributed to the liquid core, limits their application range. Oleosin, a natural surfactant protein, can improve the stability of the lipid nanoparticle membrane against various environmental stresses, such as heat, drying, and pH change; in addition, it can enable sustained drug release. Here, we proposed the fabrication of oleosin-coated M-Lipo (OM-Lipo) through self-assembly on a microfluidic chip and the evaluation of its anticancer drug (carmustine) delivery efficiency. Nanoparticle characterization revealed that the oleosin coating slightly lowered the membrane potential of M-Lipo and greatly improved their dispersibility. Additionally, the in vitro drug release profile showed that the oleosin coating improved the sustained release of the hydrophobic drug from the phospholipid bilayer in body temperature. Our results suggest that OM-Lipo has sufficient potential in various fields, based on its easy production, excellent stability, and biocompatibility.
Collapse
Affiliation(s)
- Yoseph Seo
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea; (Y.S.); (Y.W.); (D.Y.); (H.K.K.); (C.P.)
| | - Yeeun Woo
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea; (Y.S.); (Y.W.); (D.Y.); (H.K.K.); (C.P.)
| | - Byeolnim Oh
- Department of Electronic Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea;
| | - Daehyeon Yoo
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea; (Y.S.); (Y.W.); (D.Y.); (H.K.K.); (C.P.)
| | - Hyeok Ki Kwon
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea; (Y.S.); (Y.W.); (D.Y.); (H.K.K.); (C.P.)
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea; (Y.S.); (Y.W.); (D.Y.); (H.K.K.); (C.P.)
| | - Hyeon-Yeol Cho
- Department of Bio & Fermentation Convergence Technology, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 02707, Republic of Korea;
| | - Hyun Soo Kim
- Department of Electronic Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea;
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea; (Y.S.); (Y.W.); (D.Y.); (H.K.K.); (C.P.)
| |
Collapse
|
8
|
Oluwafemi KA, Jimoh RB, Omoboyowa DA, Olonisakin A, Adeforiti AF, Iqbal N. Investigating the effect of 1, 2-Dibenzoylhydrazine on Staphylococcus aureus using integrated computational approaches. In Silico Pharmacol 2024; 12:102. [PMID: 39524456 PMCID: PMC11549268 DOI: 10.1007/s40203-024-00278-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Staphylococcus aureus, a notorious member of the ESKAPE pathogens, poses significant public health challenges due to its virulence and multidrug-resistant nature, particularly in methicillin-resistant S. aureus (MRSA) strains. With the increasing threat of antibiotic resistance, there is an urgent need to develop novel antibiotic agents. This study therefore aims to explore the antibacterial potential of 1,2-dibenzoylhydrazine (DBH) as a scaffold against S. aureus drug target enzymes, using integrated computational approaches. The study utilized molecular docking, lead optimization, and structure-based virtual screening techniques to evaluate the binding affinities of DBH and its derivatives against various S. aureus enzymes. Prime/MM-GBSA calculations were performed to validate the binding affinities obtained, and molecular dynamics (MD) simulations were conducted to assess the stability of the DBHs-enzyme complexes. Results indicated that, out of twenty enzymes from S. aureus examined against DBH, carotenoid dehydrosqualene synthase was predicted as a suitable target enzyme for DBH, showing a binding affinity of -8.027 kcal/mol. A lead optimization operation of the compound generated 27 DBH derivatives out of which four exhibited enhanced binding affinities compared to both DBH and a standard antibiotic, ofloxacin. The QSAR model predicted that, DBH and molecule_D_1 have higher PIC50 of 4.779 µM compared with the standard drug (ofloxacin = 4.678 µM). MD simulations confirmed the stability of the top-scoring derivatives within the enzyme's binding pocket, with RMSD and RMSF analyses supporting their potential as inhibitors of the enzyme. In conclusion, this study has predicted the effect of DBH derivatives on S. aureus based on their in silico inhibitory capacity against the carotenoid dehydrosqualene synthase from the organism. Future work will seek to experimentally validate these findings against the suggested enzyme. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00278-1.
Collapse
Affiliation(s)
- Kola A. Oluwafemi
- Department of Chemical Sciences, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Rashidat B. Jimoh
- Department of Chemical Sciences, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Damilola A. Omoboyowa
- Phyto-medicine and Computational Biology Laboratory, Adekunle Ajasin University, Akungba-Akoko, Nigeria
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Adebisi Olonisakin
- Department of Chemical Sciences, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Anthony F. Adeforiti
- Department of Chemical Sciences, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Naveed Iqbal
- Department of BioinformaticsInstitute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
9
|
Awad MG, Hanafy NAN, Ali RA, Abd El-Monem DD, El-Shafiey SH, El-Magd MA. Exploring the therapeutic applications of nano-therapy of encapsulated cisplatin and anthocyanin-loaded multiwalled carbon nanotubes coated with chitosan-conjugated folic acid in targeting breast and liver cancers. Int J Biol Macromol 2024; 280:135854. [PMID: 39307483 DOI: 10.1016/j.ijbiomac.2024.135854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/14/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
This study aimed to assess the targeted nano-therapy of encapsulated cisplatin (Cis) and anthocyanin (Ant)-loaded multiwalled carbon nanotubes (CNT) coated with chitosan conjugated folic acid on breast MCF7 and liver HepG2 cancer cells. Zeta potential, UV-spectroscopy, FTIR, TEM, and SEM were used to evaluate CNT, its modified form (CNT Mod), CNT-loaded Cis NPs, CNT-loaded Ant NPs, and CNT- Cis + Ant NPs. All treatments induced apoptosis-dependent cytotoxicity in both cell lines as revealed functionally by the MTT assay, morphologically (DNA degradation) by acridine orange/ethidium bromide (AO/EB) double staining, and molecularly (Bax upregulation and Bcl2 downregulation) by real-time PCR, with best effect for the combined treatment (CNT- Cis + Ant NPs). This combined treatment also significantly reduced inflammation (low TNFα), migration (low MMP9 and high TIMP1), and angiogenesis (low VEGF), while significantly increasing antioxidant status (high Nrf2 and OH-1) in MCF7 and HepG2 cells compared to other treatments. Interestingly, cells treated with CNT Mod exhibited higher cytotoxic, apoptotic, anti-migratory, and anti-angiogenic potentials relative to CNT-treated cells. In conclusion, targeted nano-therapy of encapsulated cisplatin and anthocyanin-loaded carbon nanotubes coated with chitosan conjugated folic acid can efficiently combat breast and liver cancers by sustained release, in addition to its apoptotic, antioxidant, anti-inflammatory, anti-metastatic, and anti-angiogenic effects.
Collapse
Affiliation(s)
- Mai G Awad
- Zoology Department, Faculty of Women for Arts Science and Education, Ain Shams University, 11757 Cairo, Egypt
| | - Nemany A N Hanafy
- Group of Bionanotechnology and Molecular Cell Biology, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
| | - Ramadan A Ali
- Zoology Department, Faculty of Women for Arts Science and Education, Ain Shams University, 11757 Cairo, Egypt
| | - Dalia D Abd El-Monem
- Zoology Department, Faculty of Women for Arts Science and Education, Ain Shams University, 11757 Cairo, Egypt
| | - Sara H El-Shafiey
- Zoology Department, Faculty of Women for Arts Science and Education, Ain Shams University, 11757 Cairo, Egypt
| | - Mohammed A El-Magd
- Department of Anatomy, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| |
Collapse
|
10
|
Lalchandani DS, Chenkual L, Pate S, Kulhari U, Sahu BD, Chella N, Porwal PK. Folic acid-conjugated long circulating co-encapsulated atorvastatin and quercetin solid lipid nanoparticles: pharmacokinetics and biodistribution in rats. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7188-7199. [PMID: 39314175 DOI: 10.1039/d4ay00821a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Background: Solid lipid nanoparticles (SLNs) have emerged as effective carriers for the simultaneous delivery of two drugs. Moreover, the surface modification of SLNs enhances their targetability and minimizes side effects, rendering them a promising and dynamic strategy for addressing various life-threatening diseases. The assessment of pharmacokinetic parameters is a critical aspect of this approach. In the present study, we report the development and validation of an LC-MS/MS-based bioanalytical method for the quantification of Atorvastatin (ATR) and Quercetin (QUER) encapsulated in folic acid-modified SLNs as a drug delivery system to estimate their pharmacokinetics and tissue distribution. Method: FA-SLNs were synthesized by amide linkage formation (carbodiimide reaction) and tested for their haemocompatibility. Further, an LC-MS/MS method was developed on a C18 (3 × 100 mm, 2.7 μm) column using 0.1% v/v formic acid in water and acetonitrile as the mobile phase with a 0.3 mL min-1 flow rate. For detection, analytes were ionized using an electron spray ionization (ESI) source in multiple reaction monitoring (MRM) mode. MRM for the ATR (559.0 → 440.2) m/z and IS (482.1 → 257.8) m/z in positive polarity, and QUER (301.9 → 151.0) m/z in negative polarity were optimized. Results: Pharmacokinetics studies demonstrated an increase in the half-lives of ATR and QUER of about 6.4-fold and 5.7-fold, respectively, from FA-SLN compared to pure drugs. Further, the active targeting facilitated by FA conjugation showed increased mean residence time (MRT) and decreased clearance time, resulting in long circulation time without the enhanced retention of drugs in the tissues of rats. These findings underscore the potential of FA-modified ATR and QUER-loaded SLNs as an advanced drug delivery strategy in improving the therapeutic outcomes.
Collapse
Affiliation(s)
- Dimple S Lalchandani
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Guwahati (NIPER-G), Changsari, Guwahati, Assam 781101, India.
| | - Laltanpuii Chenkual
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Guwahati (NIPER-G), Changsari, Guwahati, Assam 781101, India.
| | - Sonali Pate
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Guwahati (NIPER-G), Changsari, Guwahati, Assam 781101, India.
| | - Uttam Kulhari
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Guwahati (NIPER-G), Changsari, Guwahati, Assam 781101, India
| | - Bidya Dhar Sahu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Guwahati (NIPER-G), Changsari, Guwahati, Assam 781101, India
| | - Naveen Chella
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research-Guwahati (NIPER-G), Changsari, Guwahati, Assam 781101, India.
| | - Pawan Kumar Porwal
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Guwahati (NIPER-G), Changsari, Guwahati, Assam 781101, India.
| |
Collapse
|
11
|
Panda SM, Nandeshwar, Tripathy U. In silico screening and identifying phytoconstituents of Withania somnifera as potent inhibitors of BRCA1 mutants: A therapeutic against breast cancer. Int J Biol Macromol 2024; 282:136977. [PMID: 39490493 DOI: 10.1016/j.ijbiomac.2024.136977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/25/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Breast CAncer gene 1 (BRCA1) is an anti-oncogene that helps the cell repair damaged DNA and preserve genetic material. BRCA1 also acts as a cell growth suppressor and produces tumor suppressor gene (TSG) proteins, i.e., BRCA1 protein. Remarkably, BRCA1 mutations account for 90 % of hereditary breast cancer and a majority of hereditary ovarian cancer. Hence, we have considered three mutants of BRCA1 (R1699W, R1699Q, T1700A) in this study and adopted an in-silico approach to find the best possible phytochemical to inhibit these mutated proteins, enabling early breast cancer diagnosis. Perceiving the importance, many natural molecules from ancient medicinal plants are considered for molecular docking. Our findings suggest that though many molecules bind actively with the receptor's active site, the top three phytoconstituents (27-Deoxy-14-hydroxywithaferin A, Withacoagulin, Somniferanolide) of Withania somnifera, commonly known as Ashwagandha, have high binding affinities and suitable pharmacokinetic properties, making these natural compounds potential drug candidates. Further, molecular dynamics (MD) simulation and the binding free energy calculation show stability and thermodynamically favourable. We can, therefore, draw the conclusion that these lead compounds act as potential inhibitors against BRCA1. However, wet lab experiments and clinical trials are recommended to ascertain its efficacy, hence the development of novel BRCA1 inhibitors.
Collapse
Affiliation(s)
- Smita Manjari Panda
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
| | - Nandeshwar
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
| | - Umakanta Tripathy
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India.
| |
Collapse
|
12
|
Pandey AD, Sharma G, Sharma A, Vrati S, Nair DT. SMCVdb: a database of experimental cellular toxicity information for drug candidate molecules. Database (Oxford) 2024; 2024:baae100. [PMID: 39423320 PMCID: PMC11488516 DOI: 10.1093/database/baae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 08/22/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Many drug discovery exercises fail because small molecules that are effective inhibitors of target proteins exhibit high cellular toxicity. Early and effective assessment of toxicity and pharmacokinetics is essential to accelerate the drug discovery process. Conventional methods for toxicity profiling, including in vitro and in vivo assays, are laborious and resource-intensive. In response, we introduce the Small Molecule Cell Viability Database (SMCVdb), a comprehensive resource containing toxicity data for over 24 000 compounds obtained through high-content imaging (HCI). SMCVdb seamlessly integrates chemical descriptions and molecular weight data, offering researchers a holistic platform for toxicity data aiding compound prioritization and selection based on biological and economic considerations. Data collection for SMCVdb involved a systematic approach combining HCI toxicity profiling with chemical information and quality control measures ensured data accuracy and consistency. The user-friendly web interface of SMCVdb provides multiple search and filter options, allowing users to query the database based on compound name, molecular weight range, or viability percentage. SMCVdb empowers users to access toxicity profiles, molecular weights, compound names, and chemical descriptions, facilitating the exploration of relationships between compound properties and their effects on cell viability. In summary, the database provides experimentally derived cellular toxicity information for over 24 000 drug candidate molecules to academic researchers, and pharmaceutical companies. The SMCVdb will keep growing and will prove to be a pivotal resource to expedite research in drug discovery and compound evaluation. Database URL: http://smcvdb.rcb.ac.in:4321/.
Collapse
Affiliation(s)
- Abhay Deep Pandey
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India
| | - Ghanshyam Sharma
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India
| | - Anshula Sharma
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India
| | - Sudhanshu Vrati
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India
| | - Deepak T Nair
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India
| |
Collapse
|
13
|
Yonk MG, Lim MA, Thompson CM, Tora MS, Lakhina Y, Du Y, Hoang KB, Molinaro AM, Boulis NM, Hassaneen W, Lei K. Improving glioma drug delivery: A multifaceted approach for glioma drug development. Pharmacol Res 2024; 208:107390. [PMID: 39233056 PMCID: PMC11440560 DOI: 10.1016/j.phrs.2024.107390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/16/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Glioma is one of the most common central nervous system (CNS) cancers that can be found within the brain and the spinal cord. One of the pressing issues plaguing the development of therapeutics for glioma originates from the selective and semipermeable CNS membranes: the blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB). It is difficult to bypass these membranes and target the desired cancerous tissue because the purpose of the BBB and BSCB is to filter toxins and foreign material from invading CNS spaces. There are currently four varieties of Food and Drug Administration (FDA)-approved drug treatment for glioma; yet these therapies have limitations including, but not limited to, relatively low transmission through the BBB/BSCB, despite pharmacokinetic characteristics that allow them to cross the barriers. Steps must be taken to improve the development of novel and repurposed glioma treatments through the consideration of pharmacological profiles and innovative drug delivery techniques. This review addresses current FDA-approved glioma treatments' gaps, shortcomings, and challenges. We then outline how incorporating computational BBB/BSCB models and innovative drug delivery mechanisms will help motivate clinical advancements in glioma drug delivery. Ultimately, considering these attributes will improve the process of novel and repurposed drug development in glioma and the efficacy of glioma treatment.
Collapse
Affiliation(s)
- Marybeth G Yonk
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA; College of Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Megan A Lim
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Champaign, IL, USA; Department of Neurosurgery, Carle Foundation Hospital, Urbana, IL, USA
| | - Charee M Thompson
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Champaign, IL, USA; College of Liberal Arts & Sciences, University of Illinois Urbana Champaign, Champaign, IL, USA
| | - Muhibullah S Tora
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yuliya Lakhina
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Kimberly B Hoang
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Annette M Molinaro
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Nicholas M Boulis
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Wael Hassaneen
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Champaign, IL, USA; Department of Neurosurgery, Carle Foundation Hospital, Urbana, IL, USA.
| | - Kecheng Lei
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
14
|
Kang S, Woo Y, Seo Y, Yoo D, Kwon D, Park H, Lee SD, Yoo HY, Lee T. A Descriptive Review on the Potential Use of Diatom Biosilica as a Powerful Functional Biomaterial: A Natural Drug Delivery System. Pharmaceutics 2024; 16:1171. [PMID: 39339207 PMCID: PMC11434644 DOI: 10.3390/pharmaceutics16091171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Although various chemically synthesized materials are essential in medicine, food, and agriculture, they can exert unexpected side effects on the environment and human health by releasing certain toxic chemicals. Therefore, eco-friendly and biocompatible biomaterials based on natural resources are being actively explored. Recently, biosilica derived from diatoms has attracted attention in various biomedical fields, including drug delivery systems (DDS), due to its uniform porous nano-pattern, hierarchical structure, and abundant silanol functional groups. Importantly, the structural characteristics of diatom biosilica improve the solubility of poorly soluble substances and enable sustained release of loaded drugs. Additionally, diatom biosilica predominantly comprises SiO2, has high biocompatibility, and can easily hybridize with other DDS platforms, including hydrogels and cationic DDS, owing to its strong negative charge and abundant silanol groups. This review explores the potential applications of various diatom biosilica-based DDS in various biomedical fields, with a particular focus on hybrid DDS utilizing them.
Collapse
Affiliation(s)
- Sunggu Kang
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| | - Yeeun Woo
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| | - Yoseph Seo
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| | - Daehyeon Yoo
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| | - Daeryul Kwon
- Protist Research Division, Biological Resources Research Department, Nakdonggang National Institute of Biological Resources (NNIBR), 137, Donam 2-gil, Sangju-si 37242, Gyeongsangbuk-do, Republic of Korea
| | - Hyunjun Park
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| | - Sang Deuk Lee
- Protist Research Division, Biological Resources Research Department, Nakdonggang National Institute of Biological Resources (NNIBR), 137, Donam 2-gil, Sangju-si 37242, Gyeongsangbuk-do, Republic of Korea
| | - Hah Young Yoo
- Department of Biotechnology, Sangmyung University, 20, Hongjimun 2-gil, Jongno-gu, Seoul 03016, Republic of Korea
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| |
Collapse
|
15
|
Naik B, Gupta N, Godara P, Srivastava V, Kumar P, Giri R, Prajapati VK, Pandey KC, Prusty D. Structure-based virtual screening approach reveals natural multi-target compounds for the development of antimalarial drugs to combat drug resistance. J Biomol Struct Dyn 2024; 42:7384-7408. [PMID: 37528665 DOI: 10.1080/07391102.2023.2240415] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/17/2023] [Indexed: 08/03/2023]
Abstract
Compared to the previous year, there has been an increase of nearly 2 million malaria cases in 2021. The emergence of drug-resistant strains of Plasmodium falciparum, the most deadly malaria parasite, has led to a decline in the effectiveness of existing antimalarial drugs. To address this problem, the present study aimed to identify natural compounds with the potential to inhibit multiple validated antimalarial drug targets. The natural compounds from the Natural Product Activity and Species Source (NPASS) database were screened against ten validated drug targets of Plasmodium falciparum using a structure-based molecular docking method. Twenty compounds, with targets ranging from three to five, were determined as the top hits. The molecular dynamics simulations of the top six complexes (NPC246162 in complex with PfAdSS, PfGDH, and PfNMT; NPC271270 in complex with PfCK, PfGDH, and PfdUTPase) confirmed their stable binding affinity in the dynamic environment. The Tanimoto coefficient and distance matrix score analysis show the structural divergence of all the hit compounds from known antimalarials, indicating minimum chances of cross-resistance. Thus, we propose further investigating these compounds in biochemical and parasite inhibition studies to reveal the real therapeutic potential. If found successful, these compounds may be a new avenue for future drug discovery efforts to combat existing antimalarial drug resistance.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Biswajit Naik
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Nidhi Gupta
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Priya Godara
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Varshita Srivastava
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, India
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Kailash C Pandey
- Icmr-National Institute of Malaria Research, And Academy of Scientific and Innovative Research (AcSIR-ICMR), India
| | - Dhaneswar Prusty
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
16
|
Nah Y, Kim J, Lee S, Koh WG, Kim WJ. Tailored small molecule for inflammation treatment: Dual scavenger targeting nitric oxide and reactive oxygen species. J Control Release 2024; 374:525-537. [PMID: 39173954 DOI: 10.1016/j.jconrel.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
Inflammation-related diseases are often marked by elevated levels of nitric oxide (NO) and reactive oxygen species (ROS), which play important roles in the modulation of inflammation. However, the development of organic materials effective in managing NO/ROS levels has remained a challenge. This study introduces a novel organic compound, NmeGA, engineered to scavenge both NO and ROS. NmeGA ingeniously integrates N-methyl-1,2,-phenylenediamine (Nme), a NO scavenger, with gallic acid (GA), a ROS scavenger, through an amide bond, endowing it with enhanced scavenging capabilities over its individual component. This compound exhibits reduced toxicity and increased lipophilicity value, underlining its increased biological applicability and highlighting its potential as an inflammation management tool. Through in vitro studies on lipopolysaccharide (LPS)-stimulated RAW 264.7 cells, NmeGA displayed remarkable scavenging efficiency for NO and ROS, coupled with significant anti-inflammatory effects. In an LPS-induced peritonitis model, administration of NmeGA substantially decreased mortality rates, NO and ROS levels, and inflammatory cytokine concentrations. These findings highlight NmeGA's versatility as a therapeutic agent against various inflammatory diseases.
Collapse
Affiliation(s)
- Yunyoung Nah
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, POSTECH, Pohang 37673, South Korea.
| | - Jaekwang Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea.
| | - Seohee Lee
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, POSTECH, Pohang 37673, South Korea.
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Won Jong Kim
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, POSTECH, Pohang 37673, South Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea; OmniaMed Co., Ltd, Pohang 37666, Republic of Korea.
| |
Collapse
|
17
|
de Morais FAP, Balbinot RB, Bakoshi ABK, Lararin-Bidoia D, da Silva Souza Campanholi K, da Silva RC, de França BM, Gonçalves RS, Ueda-Nakamura T, de Oliveira Silva S, Caetano W, Nakamura CV. Hypericin-loaded in modified theranostic liposome nanoplatform: a preliminary in vivo study of targeting and diagnosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03379-y. [PMID: 39180673 DOI: 10.1007/s00210-024-03379-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024]
Abstract
Modified theranostic liposomes were created by combining phospholipid 1,2-dipalmitoyl-sn-3-glycerol-phosphatidylcholine with two previously modified Pluronic® copolymers covalently linked with spermine and folic acid to carry and stabilize the photosensitizer compound hypericin. After physicochemical characterization, the photocytotoxicity was evaluated against different cancer and healthy cells presenting a strong photodynamic effect. The formulation exhibited no photoactivity without illumination and without hypericin. In vivo, pharmacokinetics biodistribution examined the uptake and theranostic potential of this nanoformulation after its intravenous administration in animal models. Fluorescence images revealed the maximum fluorescence between 0.5-4 h post-tail vein injection, making it an appropriate period for photodynamic treatment. The fluorescence of the entire body was monitored for at least 3 days, indicating that the theranostic procedures can be performed within the 0.5-4 h range after administration, after which the intensity decreases, indicating a potent metabolic ability with no significant side effects. The fluorescence images of the main organs consistently showed a signal during the 1st day of its application. After 48 h, only residues of the modified theranostic formulation were detected in the lungs and thyroid. The promising pharmacokinetics observed in our preliminary studies highlight the potential of this system, making it a worthy candidate for further investigation with tumor models.
Collapse
Affiliation(s)
- Flávia Amanda Pedroso de Morais
- Technological Innovation Laboratory in Pharmaceuticals and Cosmetics Development, State University of Maringá, Maringá, PR, 87020-900, Brazil.
| | - Rodolfo Bento Balbinot
- Technological Innovation Laboratory in Pharmaceuticals and Cosmetics Development, State University of Maringá, Maringá, PR, 87020-900, Brazil
| | - Amanda Beatriz Kawano Bakoshi
- Technological Innovation Laboratory in Pharmaceuticals and Cosmetics Development, State University of Maringá, Maringá, PR, 87020-900, Brazil
| | - Danielle Lararin-Bidoia
- Technological Innovation Laboratory in Pharmaceuticals and Cosmetics Development, State University of Maringá, Maringá, PR, 87020-900, Brazil
| | | | | | - Bruna Martins de França
- Department of Chemistry, Federal University of Rio de Janeiro, 149 Athos da Silveira Ramos Ave., Rio de Janeiro, RJ, 21941-909, Brazil
| | - Renato Sonchini Gonçalves
- Laboratory of Chemistry of Natural Products, Department of Chemistry, Center of Exact Sciences and Technology, Federal University of Maranhão, São Luís, MA, 65080-805, Brazil
| | - Tânia Ueda-Nakamura
- Technological Innovation Laboratory in Pharmaceuticals and Cosmetics Development, State University of Maringá, Maringá, PR, 87020-900, Brazil
| | - Sueli de Oliveira Silva
- Technological Innovation Laboratory in Pharmaceuticals and Cosmetics Development, State University of Maringá, Maringá, PR, 87020-900, Brazil
| | - Wilker Caetano
- Department of Chemistry, State University of Maringá, Maringá, PR, 87020-900, Brazil
| | - Celso Vataru Nakamura
- Technological Innovation Laboratory in Pharmaceuticals and Cosmetics Development, State University of Maringá, Maringá, PR, 87020-900, Brazil
| |
Collapse
|
18
|
Kumari P, Arora S, Pan Y, Ahmed I, Kumar S, Parshad B. Tailoring Indocyanine Green J-Aggregates for Imaging, Cancer Phototherapy, and Drug Delivery: A Review. ACS APPLIED BIO MATERIALS 2024; 7:5121-5135. [PMID: 39039943 DOI: 10.1021/acsabm.4c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Indocyanine green J-aggregates (ICG-Jagg) have emerged as a significant subject of interest in biomedical applications due to their unique optical properties, tunable size, and excellent biocompatibility. This comprehensive review aims to provide an in-depth exploration of ICG-Jagg, with a focus on elucidating the diverse facets of their preparation and the factors that influence the preparation process. Additionally, the review discusses their applications in biomedical diagnostics, such as imaging and contrast agents, as well as their utilization in drug delivery and various phototherapeutic interventions.
Collapse
Affiliation(s)
- Pooja Kumari
- Department of Chemistry, Deenbandhu Chhoturam University of Science and Technology, Sonipat 131039, Murthal, India
| | - Smriti Arora
- Institut für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Takustrasse 3, Berlin 14195, Germany
| | - Yuanwei Pan
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Ishtiaq Ahmed
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K
| | - Sumit Kumar
- Department of Chemistry, Deenbandhu Chhoturam University of Science and Technology, Sonipat 131039, Murthal, India
| | - Badri Parshad
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, United States
| |
Collapse
|
19
|
Glassman PM. Development of a predictive algorithm for the efficacy of half-life extension strategies. Int J Pharm 2024; 660:124382. [PMID: 38917959 PMCID: PMC11389361 DOI: 10.1016/j.ijpharm.2024.124382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/18/2024] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
A challenge in development of peptide and protein therapeutics is rapid elimination from the body, necessitating frequent dosing that may lead to toxicities and/or poor patient compliance. To solve this issue, there has been great investment into half-life extension of rapidly eliminated drugs using approaches such as albumin binding, fusion to albumin or Fc, or conjugation to polyethylene glycol. Despite clinical successes of half-life extension products, no clear relationship has been drawn between properties of drugs and the pharmacokinetic parameters of their half-life extended analogues. In this study, non-compartmentally derived pharmacokinetic parameters (half-life, clearance, volume of distribution) were collected for 186 half-life extended drugs and their unmodified parent molecules. Statistical testing and regression analysis was performed to evaluate relationships between pharmacokinetic parameters and a matrix of variables. Multivariate linear regression models were developed for each of the three pharmacokinetic parameters and model predictions were in good agreement with observed data with r2 values for each parameter being: half-life: 0.879, clearance: 0.820, volume of distribution: 0.937. Significant predictors for each parameter included the corresponding pharmacokinetic parameter of the parent drug and descriptors related to molecular weight. This model represents a useful tool for prediction of the potential benefits of half-life extension.
Collapse
Affiliation(s)
- Patrick M Glassman
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, 3307 N. Broad Street, 559B Pharmacy and Allied Health Building, Philadelphia, PA 19140, United States.
| |
Collapse
|
20
|
Losada-Barreiro S, Celik S, Sezgin-Bayindir Z, Bravo-Fernández S, Bravo-Díaz C. Carrier Systems for Advanced Drug Delivery: Improving Drug Solubility/Bioavailability and Administration Routes. Pharmaceutics 2024; 16:852. [PMID: 39065549 PMCID: PMC11279846 DOI: 10.3390/pharmaceutics16070852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
The disadvantages of some conventional drugs, including their low bioavailability, poor targeting efficiency, and important side effects, have led to the rational design of drug delivery systems. In particular, the introduction of drug delivery systems is a potential approach to enhance the uptake of therapeutic agents and deliver them at the right time and in the right amount of concentration at the required site, as well as open new strategies for effective illness treatment. In this review, we provide a basic understanding of drug delivery systems with an emphasis on the use of cyclodextrin-, polymer- and surfactant-based delivery systems. These systems are very attractive because they are biocompatible and biodegradable nanomaterials with multifunctional components. We also provide some details on their design considerations and their use in a variety of medical applications by employing several routes of administration.
Collapse
Affiliation(s)
- Sonia Losada-Barreiro
- Departamento de Química-Física, Facultade de Química, Universidade de Vigo, 36200 Vigo, Pontevedra, Spain;
| | - Sumeyye Celik
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey (Z.S.-B.)
| | - Zerrin Sezgin-Bayindir
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey (Z.S.-B.)
| | - Sofía Bravo-Fernández
- Dentistry Department, Primary Health Unit, Galician Health Service (SERGAS), Calle Mourin s/n, 15330 Ortigueira, A Coruña, Spain;
| | - Carlos Bravo-Díaz
- Departamento de Química-Física, Facultade de Química, Universidade de Vigo, 36200 Vigo, Pontevedra, Spain;
| |
Collapse
|
21
|
Menon AM, Sidhartha NN, Shruti I, Suresh A, Meena R, Dikundwar AG, Chopra D. Synthon Approach in Crystal Engineering to Modulate Physicochemical Properties in Organic Salts of Chlorpropamide. Mol Pharm 2024; 21:2894-2907. [PMID: 38688017 DOI: 10.1021/acs.molpharmaceut.4c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The formulation of drug with improved bioavailability is always challenging and indispensable in the field of pharmaceutics. The control of intermolecular interactions via crystal engineering approach and solid-state molecular recognition results in the formation of active drug molecules with modulated pharmacological benefits. Therefore, with the aim to improve the solubility and dissolution rate of the drug chlorpropamide (CPA), the mechanochemical liquid-assisted grinding (LAG) of the drug with several pharmaceutically accepted excipients was performed. This contributed to the discovery of six novel solid phases, namely salts, salt cocrystals and salt cocrystal hydrate─the salt of CPA with 3, 4-diaminopyridine (DAP); salt and salt cocrystal (SC) polymorph (Z″=3) with 1, 4-diazabicyclo [2.2.2] octane (DABCO); a salt, SC polymorph (Z″=9), and a SC hydrate (Z″=9) with piperazine (PIP). The formation of these salts and salt cocrystals are mainly guided by the strong hydrogen bonds with tunable strength having high electrostatic contribution. This attractive interaction brings the donor and the acceptor atoms close to each other for a facile proton transfer. Furthermore, the conformational constraints on the drug molecules, provided by the excipients via strong and directional hydrogen bonds, are quite impressive as this leads to the identification and characterization of "new conformational isomers" for the CPA molecules. The new crystalline phases exhibit enhanced intrinsic dissolution rate in comparison to that of the pure drug, the magnitude being 7, 131, and 120 folds for CPADAP, CPADABCO_II, and CPAPIP_III, respectively. Furthermore, it is interesting to note that the order of solubility is enhanced by 2.7-, 3-, and 7-fold, respectively, for the abovementioned salts. This also mirrors the trends in the magnitude of the binding energy, the higher magnitude being reflected in the lower solubility. Additionally, the in vivo experiments performed in SD rats results in the enhancement of the magnitude of the pharmacokinetic properties, when compared to the pristine drug. The concentration of the drug in CPADABCO_II and CPAPIP_III formulations exhibits 6- and 4-fold increments, respectively. Indeed, these results corroborate to the trends observed in the structural characterization, intermolecular energy calculations, solubility, and in vitro dissolution assessments.
Collapse
Affiliation(s)
- Anila M Menon
- Department of Chemistry, IISER Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh 462066, India
| | - Nagamalli Naga Sidhartha
- Department of Pharmaceutical Analysis, NIPER Hyderabad, Balanagar, Hyderabad, Telangana 500037, India
| | - Ipsha Shruti
- Department of Chemistry, IISER Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh 462066, India
| | - Ajay Suresh
- Department of Chemistry, IISER Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh 462066, India
| | - Ravindra Meena
- Department of Chemistry, IISER Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh 462066, India
| | - Amol G Dikundwar
- Department of Pharmaceutical Analysis, NIPER Hyderabad, Balanagar, Hyderabad, Telangana 500037, India
| | - Deepak Chopra
- Department of Chemistry, IISER Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
22
|
Amulya E, Bahuguna D, Negi M, Phatale V, Sikder A, Vambhurkar G, Katta CB, Dandekar MP, Madan J, Srivastava S. Lipid engineered nanomaterials: A novel paradigm shift for combating stroke. APPLIED MATERIALS TODAY 2024; 38:102194. [DOI: 10.1016/j.apmt.2024.102194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
23
|
Cocco M, Carnovale C, Clementi E, Barbieri MA, Battini V, Sessa M. Exploring the impact of co-exposure timing on drug-drug interactions in signal detection through spontaneous reporting system databases: a scoping review. Expert Rev Clin Pharmacol 2024; 17:441-453. [PMID: 38619027 DOI: 10.1080/17512433.2024.2343875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/12/2024] [Indexed: 04/16/2024]
Abstract
INTRODUCTION Drug-drug interactions (DDIs) are defined as the pharmacological effects produced by the concomitant administration of two or more drugs. To minimize false positive signals and ensure their validity when analyzing Spontaneous Reporting System (SRS) databases, it has been suggested to incorporate key pharmacological principles, such as temporal plausibility. AREAS COVERED The scoping review of the literature was completed using MEDLINE from inception to March 2023. Included studies had to provide detailed methods for identifying DDIs in SRS databases. Any methodological approach and adverse event were accepted. Descriptive analyzes were excluded as we focused on automatic signal detection methods. The result is an overview of all the available methods for DDI signal detection in SRS databases, with a specific focus on the evaluation of the co-exposure time of the interacting drugs. It is worth noting that only a limited number of studies (n = 3) have attempted to address the issue of overlapping drug administration times. EXPERT OPINION Current guidelines for signal validation focus on factors like the number of reports and temporal association, but they lack guidance on addressing overlapping drug administration times, highlighting a need for further research and method development.
Collapse
Affiliation(s)
- Marianna Cocco
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Carla Carnovale
- Pharmacovigilance & Clinical Research, International Centre for Pesticides and Health Risk Prevention, Department of Biomedical and Clinical Sciences (DIBIC), ASST Fatebenefratelli-Sacco University Hospital, Università Degli Studi di Milano, Milan, Italy
| | - Emilio Clementi
- Pharmacovigilance & Clinical Research, International Centre for Pesticides and Health Risk Prevention, Department of Biomedical and Clinical Sciences (DIBIC), ASST Fatebenefratelli-Sacco University Hospital, Università Degli Studi di Milano, Milan, Italy
- Scientific Institute, IRCCS E. Medea, Bosisio Parini, LC, Italy
| | - Maria Antonietta Barbieri
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Vera Battini
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Maurizio Sessa
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Nica I, Volovat C, Boboc D, Popa O, Ochiuz L, Vasincu D, Ghizdovat V, Agop M, Volovat CC, Lupascu Ursulescu C, Lungulescu CV, Volovat SR. A Holographic-Type Model in the Description of Polymer-Drug Delivery Processes. Pharmaceuticals (Basel) 2024; 17:541. [PMID: 38675501 PMCID: PMC11053585 DOI: 10.3390/ph17040541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
A unitary model of drug release dynamics is proposed, assuming that the polymer-drug system can be assimilated into a multifractal mathematical object. Then, we made a description of drug release dynamics that implies, via Scale Relativity Theory, the functionality of continuous and undifferentiable curves (fractal or multifractal curves), possibly leading to holographic-like behaviors. At such a conjuncture, the Schrödinger and Madelung multifractal scenarios become compatible: in the Schrödinger multifractal scenario, various modes of drug release can be "mimicked" (via period doubling, damped oscillations, modulated and "chaotic" regimes), while the Madelung multifractal scenario involves multifractal diffusion laws (Fickian and non-Fickian diffusions). In conclusion, we propose a unitary model for describing release dynamics in polymer-drug systems. In the model proposed, the polymer-drug dynamics can be described by employing the Scale Relativity Theory in the monofractal case or also in the multifractal one.
Collapse
Affiliation(s)
- Irina Nica
- Department of Odontology-Periodontology, Fixed Prosthesis, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Constantin Volovat
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str, 700115 Iasi, Romania;
| | - Diana Boboc
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str, 700115 Iasi, Romania;
| | - Ovidiu Popa
- Department of Emergency Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Lacramioara Ochiuz
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Decebal Vasincu
- Department of Biophysics, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Vlad Ghizdovat
- Department of Biophysics and Medical Physics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Maricel Agop
- Department of Physics, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania;
- Romanian Scientists Academy, 050094 Bucharest, Romania
| | - Cristian Constantin Volovat
- Department of Radiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.C.V.); (C.L.U.)
| | - Corina Lupascu Ursulescu
- Department of Radiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.C.V.); (C.L.U.)
| | | | - Simona Ruxandra Volovat
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str, 700115 Iasi, Romania;
| |
Collapse
|
25
|
Aminu KS, Uzairu A, Abechi SE, Shallangwa GA, Umar AB. Activity prediction, structure-based drug design, molecular docking, and pharmacokinetic studies of 1,4-dihydropyridines derivatives as α-amylase inhibitors. J Taibah Univ Med Sci 2024; 19:270-286. [PMID: 38234713 PMCID: PMC10793175 DOI: 10.1016/j.jtumed.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/16/2023] [Accepted: 12/13/2023] [Indexed: 01/19/2024] Open
Abstract
Objectives Diabetes places a substantial economic burden on countries worldwide. The costs associated with diabetes management, including healthcare services, medications, monitoring equipment, and productivity losses, are substantial. The International Diabetes Federation has estimated that global healthcare expenditures associated with diabetes and its complications exceed hundreds of billions of dollars annually. Therefore, a critical need exists to develop drugs that are highly effective, affordable, and easily accessible to society. Methods This study explored the structural modification of 1,4-DHP derivatives to identify specific α-amylase inhibitors, with the aim of developing more effective and accessible drugs for diabetes. We evaluated the activity and binding ability of the designed compounds. In addition, we performed drug-likeness and pharmacokinetic studies on the modified compounds. Results Equation (1) had the highest accuracy, on the basis of internal and external assessment parameters, including R2int = 0.852, R2adj = 0.803, Q2cv = 0.731, and R2ext = 0.884. Moreover, the five potent analogs identified through structure-based drug design demonstrated a more favorable interaction than observed for the template or acarbose. Additionally, comprehensive studies on the drug-like properties and pharmacokinetics of the designed compounds supported their oral safety and favorable pharmacokinetic profiles. Conclusions The designed analogs show promise for developing new hypoglycemic agents. Their positive attributes and performance suggest that they may potentially serve as candidates for further research in improving treatments for high blood sugar-associated conditions.
Collapse
Affiliation(s)
- Khalifa S. Aminu
- Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria
- Department of Pure and Industrial Chemistry, Bayero University, Kano, Nigeria
| | - Adamu Uzairu
- Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria
| | | | | | | |
Collapse
|
26
|
Kang D, Bagchi D, Chen IA. Pharmacokinetics and Biodistribution of Phages and their Current Applications in Antimicrobial Therapy. ADVANCED THERAPEUTICS 2024; 7:2300355. [PMID: 38933919 PMCID: PMC11198966 DOI: 10.1002/adtp.202300355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Indexed: 06/28/2024]
Abstract
Antimicrobial resistance remains a critical global health concern, necessitating the investigation of alternative therapeutic approaches. With the diminished efficacy of conventional small molecule drugs due to the emergence of highly resilient bacterial strains, there is growing interest in the potential for alternative therapeutic modalities. As naturally occurring viruses of bacteria, bacteriophage (or phage) are being re-envisioned as a platform to engineer properties that can be tailored to target specific bacterial strains and employ diverse antibacterial mechanisms. However, limited understanding of key pharmacological properties of phage is a major challenge to translating its use from preclinical to clinical settings. Here, we review modern advancements in phage-based antimicrobial therapy and discuss the in vivo pharmacokinetics and biodistribution of phage, addressing critical challenges in their application that must be overcome for successful clinical implementation.
Collapse
Affiliation(s)
- Dayeon Kang
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, 90024 USA
| | - Damayanti Bagchi
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, 90024 USA
| | - Irene A. Chen
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, 90024 USA
| |
Collapse
|
27
|
Babalola KT, Arora M, Ganugula R, Agarwal SK, Mohan C, Kumar MNVR. Leveraging Lymphatic System Targeting in Systemic Lupus Erythematosus for Improved Clinical Outcomes. Pharmacol Rev 2024; 76:228-250. [PMID: 38351070 PMCID: PMC10877736 DOI: 10.1124/pharmrev.123.000938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/21/2023] [Accepted: 12/06/2023] [Indexed: 02/16/2024] Open
Abstract
The role of advanced drug delivery strategies in drug repositioning and minimizing drug attrition rates, when applied early in drug discovery, is poised to increase the translational impact of various therapeutic strategies in disease prevention and treatment. In this context, drug delivery to the lymphatic system is gaining prominence not only to improve the systemic bioavailability of various pharmaceutical drugs but also to target certain specific diseases associated with the lymphatic system. Although the role of the lymphatic system in lupus is known, very little is done to target drugs to yield improved clinical benefits. In this review, we discuss recent advances in drug delivery strategies to treat lupus, the various routes of drug administration leading to improved lymph node bioavailability, and the available technologies applied in other areas that can be adapted to lupus treatment. Moreover, this review also presents some recent findings that demonstrate the promise of lymphatic targeting in a preclinical setting, offering renewed hope for certain pharmaceutical drugs that are limited by efficacy in their conventional dosage forms. These findings underscore the potential and feasibility of such lymphatic drug-targeting approaches to enhance therapeutic efficacy in lupus and minimize off-target effects of the pharmaceutical drugs. SIGNIFICANCE STATEMENT: The World Health Organization estimates that there are currently 5 million humans living with some form of lupus. With limited success in lupus drug discovery, turning to effective delivery strategies with existing drug molecules, as well as those in the early stage of discovery, could lead to better clinical outcomes. After all, effective delivery strategies have been proven to improve treatment outcomes.
Collapse
Affiliation(s)
- K T Babalola
- The Center for Convergent Bioscience and Medicine (CCBM) (K.T.B., M.A., R.G., M.N.V.R.K.), Division of Translational Science and Medicine, College of Community Health Sciences (K.T.B., M.A., R.G., M.N.V.R.K.), Alabama Life Research Institute (K.T.B., M.A., R.G., M.N.V.R.K.), and Department of Biological Sciences (M.A., R.G., M.N.V.R.K.), The University of Alabama, Tuscaloosa, Alabama; Section of Immunology, Allergy and Rheumatology, Department of Medicine, Biology of Inflammation Baylor College of Medicine, One Baylor Plaza, Houston, Texas (S.K.A.); Department of Biomedical Engineering, University of Houston, Houston, Texas (C.M.); Chemical and Biological Engineering, University of Alabama, Tuscaloosa, Alabama (M.N.V.R.K.); and Center for Free Radical Biology (M.N.V.R.K.) and Nephrology Research and Training Center, Division of Nephrology, Department of Medicine (M.N.V.R.K.), University of Alabama at Birmingham, Birmingham, Alabama
| | - M Arora
- The Center for Convergent Bioscience and Medicine (CCBM) (K.T.B., M.A., R.G., M.N.V.R.K.), Division of Translational Science and Medicine, College of Community Health Sciences (K.T.B., M.A., R.G., M.N.V.R.K.), Alabama Life Research Institute (K.T.B., M.A., R.G., M.N.V.R.K.), and Department of Biological Sciences (M.A., R.G., M.N.V.R.K.), The University of Alabama, Tuscaloosa, Alabama; Section of Immunology, Allergy and Rheumatology, Department of Medicine, Biology of Inflammation Baylor College of Medicine, One Baylor Plaza, Houston, Texas (S.K.A.); Department of Biomedical Engineering, University of Houston, Houston, Texas (C.M.); Chemical and Biological Engineering, University of Alabama, Tuscaloosa, Alabama (M.N.V.R.K.); and Center for Free Radical Biology (M.N.V.R.K.) and Nephrology Research and Training Center, Division of Nephrology, Department of Medicine (M.N.V.R.K.), University of Alabama at Birmingham, Birmingham, Alabama
| | - R Ganugula
- The Center for Convergent Bioscience and Medicine (CCBM) (K.T.B., M.A., R.G., M.N.V.R.K.), Division of Translational Science and Medicine, College of Community Health Sciences (K.T.B., M.A., R.G., M.N.V.R.K.), Alabama Life Research Institute (K.T.B., M.A., R.G., M.N.V.R.K.), and Department of Biological Sciences (M.A., R.G., M.N.V.R.K.), The University of Alabama, Tuscaloosa, Alabama; Section of Immunology, Allergy and Rheumatology, Department of Medicine, Biology of Inflammation Baylor College of Medicine, One Baylor Plaza, Houston, Texas (S.K.A.); Department of Biomedical Engineering, University of Houston, Houston, Texas (C.M.); Chemical and Biological Engineering, University of Alabama, Tuscaloosa, Alabama (M.N.V.R.K.); and Center for Free Radical Biology (M.N.V.R.K.) and Nephrology Research and Training Center, Division of Nephrology, Department of Medicine (M.N.V.R.K.), University of Alabama at Birmingham, Birmingham, Alabama
| | - S K Agarwal
- The Center for Convergent Bioscience and Medicine (CCBM) (K.T.B., M.A., R.G., M.N.V.R.K.), Division of Translational Science and Medicine, College of Community Health Sciences (K.T.B., M.A., R.G., M.N.V.R.K.), Alabama Life Research Institute (K.T.B., M.A., R.G., M.N.V.R.K.), and Department of Biological Sciences (M.A., R.G., M.N.V.R.K.), The University of Alabama, Tuscaloosa, Alabama; Section of Immunology, Allergy and Rheumatology, Department of Medicine, Biology of Inflammation Baylor College of Medicine, One Baylor Plaza, Houston, Texas (S.K.A.); Department of Biomedical Engineering, University of Houston, Houston, Texas (C.M.); Chemical and Biological Engineering, University of Alabama, Tuscaloosa, Alabama (M.N.V.R.K.); and Center for Free Radical Biology (M.N.V.R.K.) and Nephrology Research and Training Center, Division of Nephrology, Department of Medicine (M.N.V.R.K.), University of Alabama at Birmingham, Birmingham, Alabama
| | - C Mohan
- The Center for Convergent Bioscience and Medicine (CCBM) (K.T.B., M.A., R.G., M.N.V.R.K.), Division of Translational Science and Medicine, College of Community Health Sciences (K.T.B., M.A., R.G., M.N.V.R.K.), Alabama Life Research Institute (K.T.B., M.A., R.G., M.N.V.R.K.), and Department of Biological Sciences (M.A., R.G., M.N.V.R.K.), The University of Alabama, Tuscaloosa, Alabama; Section of Immunology, Allergy and Rheumatology, Department of Medicine, Biology of Inflammation Baylor College of Medicine, One Baylor Plaza, Houston, Texas (S.K.A.); Department of Biomedical Engineering, University of Houston, Houston, Texas (C.M.); Chemical and Biological Engineering, University of Alabama, Tuscaloosa, Alabama (M.N.V.R.K.); and Center for Free Radical Biology (M.N.V.R.K.) and Nephrology Research and Training Center, Division of Nephrology, Department of Medicine (M.N.V.R.K.), University of Alabama at Birmingham, Birmingham, Alabama
| | - M N V Ravi Kumar
- The Center for Convergent Bioscience and Medicine (CCBM) (K.T.B., M.A., R.G., M.N.V.R.K.), Division of Translational Science and Medicine, College of Community Health Sciences (K.T.B., M.A., R.G., M.N.V.R.K.), Alabama Life Research Institute (K.T.B., M.A., R.G., M.N.V.R.K.), and Department of Biological Sciences (M.A., R.G., M.N.V.R.K.), The University of Alabama, Tuscaloosa, Alabama; Section of Immunology, Allergy and Rheumatology, Department of Medicine, Biology of Inflammation Baylor College of Medicine, One Baylor Plaza, Houston, Texas (S.K.A.); Department of Biomedical Engineering, University of Houston, Houston, Texas (C.M.); Chemical and Biological Engineering, University of Alabama, Tuscaloosa, Alabama (M.N.V.R.K.); and Center for Free Radical Biology (M.N.V.R.K.) and Nephrology Research and Training Center, Division of Nephrology, Department of Medicine (M.N.V.R.K.), University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
28
|
Haloui R, Mkhayar K, Daoui O, El Khattabi K, El Abbouchi A, Chtita S, Elkhattabi S. Design of new small molecules derived from indolin-2-one as potent TRKs inhibitors using a computer-aided drug design approach. J Biomol Struct Dyn 2024:1-18. [PMID: 38217880 DOI: 10.1080/07391102.2024.2302944] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024]
Abstract
Tropomyosin receptor kinase (TRKs) enzymes are responsible for cancers associated with the neurotrophic tyrosine kinase receptor gene fusion and are identified as effective targets for anticancer drug discovery. A series of small-molecule indolin-2-one derivatives showed remarkable biological activity against TRKs enzymatic activity. These small molecules could have an excellent profile for pharmaceutical application in the treatment of cancers caused by TRKs activity. The aim of this study is to modify the structure of these molecules to obtain new molecules with improved TRK inhibitory activity and pharmacokinetic properties favorable to the design of new drugs. Based on these series, we carried out a 3D-QSAR study. As a result, robust and reliable CoMFA and CoMSIA models are developed and applied to the design of 11 new molecules. These new molecules have a biological activity superior to the most active molecule in the starting series. The eleven designed molecules are screened using drug-likeness, ADMET proprieties, molecular docking, and MM-GBSA filters. The results of this screening identified the T1, T3, and T4 molecules as the best candidates for strong inhibition of TRKs enzymatic activity. In addition, molecular dynamics simulations are performed for TRK free and complexed with ligands T1, T3, and T4 to evaluate the stability of ligand-protein complexes over the simulation time. On the other hand, we proposed experimental synthesis routes for these newly designed molecules. Finally, the designed molecules T1, T2, and T3 have great potential to become reliable candidates for the conception of new drug inhibitors of TRKs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rachid Haloui
- Laboratory of Engineering, Systems, and Applications, National School of Applied Sciences, Sidi Mohamed Ben Abdellah-Fez University, Fez, Morocco
| | - Khaoula Mkhayar
- Laboratory of Engineering, Systems, and Applications, National School of Applied Sciences, Sidi Mohamed Ben Abdellah-Fez University, Fez, Morocco
| | - Ossama Daoui
- Laboratory of Engineering, Systems, and Applications, National School of Applied Sciences, Sidi Mohamed Ben Abdellah-Fez University, Fez, Morocco
| | - Kaouakeb El Khattabi
- Department of Fundamental Sciences, Faculty of Medicine Dentistry, Mohammed V University of Rabat, Rabat, Morocco
| | - Abdelmoula El Abbouchi
- Euromed Research Center, Euromed Faculty of Pharmacy, Euromed University of Fes (UEMF), Fez, Morocco
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Souad Elkhattabi
- Laboratory of Engineering, Systems, and Applications, National School of Applied Sciences, Sidi Mohamed Ben Abdellah-Fez University, Fez, Morocco
| |
Collapse
|
29
|
Nagar N, Naidu G, Mishra A, Poluri KM. Protein-Based Nanocarriers and Nanotherapeutics for Infection and Inflammation. J Pharmacol Exp Ther 2024; 388:91-109. [PMID: 37699711 DOI: 10.1124/jpet.123.001673] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 08/04/2023] [Accepted: 08/21/2023] [Indexed: 09/14/2023] Open
Abstract
Infectious and inflammatory diseases are one of the leading causes of death globally. The status quo has become more prominent with the onset of the coronavirus disease 2019 (COVID-19) pandemic. To combat these potential crises, proteins have been proven as highly efficacious drugs, drug targets, and biomarkers. On the other hand, advancements in nanotechnology have aided efficient and sustained drug delivery due to their nano-dimension-acquired advantages. Combining both strategies together, the protein nanoplatforms are equipped with the advantageous intrinsic properties of proteins as well as nanoformulations, eloquently changing the field of nanomedicine. Proteins can act as carriers, therapeutics, diagnostics, and theranostics in their nanoform as fusion proteins or as composites with other organic/inorganic materials. Protein-based nanoplatforms have been extensively explored to target the major infectious and inflammatory diseases of clinical concern. The current review comprehensively deliberated proteins as nanocarriers for drugs and nanotherapeutics for inflammatory and infectious agents, with special emphasis on cancer and viral diseases. A plethora of proteins from diverse organisms have aided in the synthesis of protein-based nanoformulations. The current study specifically presented the proteins of human and pathogenic origin to dwell upon the field of protein nanotechnology, emphasizing their pharmacological advantages. Further, the successful clinical translation and current bottlenecks of the protein-based nanoformulations associated with the infection-inflammation paradigm have also been discussed comprehensively. SIGNIFICANCE STATEMENT: This review discusses the plethora of promising protein-based nanocarriers and nanotherapeutics explored for infectious and inflammatory ailments, with particular emphasis on protein nanoparticles of human and pathogenic origin with reference to the advantages, ADME (absorption, distribution, metabolism, and excretion parameters), and current bottlenecks in development of protein-based nanotherapeutic interventions.
Collapse
Affiliation(s)
- Nupur Nagar
- Department of Biosciences and Bioengineering (N.N., G.N., K.M.P.) and Centre for Nanotechnology (K.M.P.), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India; and Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India (A.M.)
| | - Goutami Naidu
- Department of Biosciences and Bioengineering (N.N., G.N., K.M.P.) and Centre for Nanotechnology (K.M.P.), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India; and Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India (A.M.)
| | - Amit Mishra
- Department of Biosciences and Bioengineering (N.N., G.N., K.M.P.) and Centre for Nanotechnology (K.M.P.), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India; and Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India (A.M.)
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering (N.N., G.N., K.M.P.) and Centre for Nanotechnology (K.M.P.), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India; and Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India (A.M.)
| |
Collapse
|
30
|
Davis MA, Cho E, Teplensky MH. Harnessing biomaterial architecture to drive anticancer innate immunity. J Mater Chem B 2023; 11:10982-11005. [PMID: 37955201 DOI: 10.1039/d3tb01677c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Immunomodulation is a powerful therapeutic approach that harnesses the body's own immune system and reprograms it to treat diseases, such as cancer. Innate immunity is key in mobilizing the rest of the immune system to respond to disease and is thus an attractive target for immunomodulation. Biomaterials have widely been employed as vehicles to deliver immunomodulatory therapeutic cargo to immune cells and raise robust antitumor immunity. However, it is key to consider the design of biomaterial chemical and physical structure, as it has direct impacts on innate immune activation and antigen presentation to stimulate downstream adaptive immunity. Herein, we highlight the widespread importance of structure-driven biomaterial design for the delivery of immunomodulatory cargo to innate immune cells. The incorporation of precise structural elements can be harnessed to improve delivery kinetics, uptake, and the targeting of biomaterials into innate immune cells, and enhance immune activation against cancer through temporal and spatial processing of cargo to overcome the immunosuppressive tumor microenvironment. Structural design of immunomodulatory biomaterials will profoundly improve the efficacy of current cancer immunotherapies by maximizing the impact of the innate immune system and thus has far-reaching translational potential against other diseases.
Collapse
Affiliation(s)
- Meredith A Davis
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, 02215, USA.
| | - Ezra Cho
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, 02215, USA.
| | - Michelle H Teplensky
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, 02215, USA.
- Department of Materials Science and Engineering, Boston University, Boston, Massachusetts, 02215, USA
| |
Collapse
|
31
|
Mermer A, Demirci S. Recent advances in triazoles as tyrosinase inhibitors. Eur J Med Chem 2023; 259:115655. [PMID: 37482020 DOI: 10.1016/j.ejmech.2023.115655] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
The tyrosinase enzyme, which is widely found in microorganisms, animals and plants, has a significant position in melanogenesis, plays an important role in undesirable browning of fruits and vegetables, antibiotic resistance, skin pigment formation, sclerotization of cuticle, neurodegeneration, etc. Therefore, with the wide potential application fields of tyrosinase in food, agriculture, cosmetics and pharmaceutical industries, which has become the target enzyme for the development of therapeutic agents such as antibrowning, anticancer, antibacterial, skin whitening, insecticides, etc., a large number of synthetic tyrosinase inhibitors have been widely reported in recent years. The triazole ring, which has a broad spectrum of biological action, is of increasing interest in the synthesis of new tyrosinase inhibitors. In this review, tyrosinase inhibition effects, structure-activity relationships, enzyme inhibition kinetics and mechanisms of action of 1,2,3- or 1,2,4-triazole derivatives were investigated. The data gathered is anticipated to supply rational guidance and an influential strategy for the development of novel, potent and safe tyrosinase inhibitors for better practical application in the future.
Collapse
Affiliation(s)
- Arif Mermer
- Experimental Medicine Application & Research Center, Validebağ Research Park, University of Health Sciences, İstanbul, Turkiye; Department of Biotechnology, University of Health Sciences, İstanbul, Turkiye.
| | - Serpil Demirci
- Department of Medical Services and Techniques, Vocational High School of Health Services, Giresun University, Giresun, Turkiye
| |
Collapse
|
32
|
Zhao J, Zhang J, Xu Y, Dong J, Dong Q, Zhao G, Shi Y. Nanotechnological approaches for the treatment of placental dysfunction: recent trends and future perspectives. Nanomedicine (Lond) 2023; 18:1961-1978. [PMID: 37990993 DOI: 10.2217/nnm-2023-0194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
The transitory placenta develops during pregnancy and mediates the blood flow between the mother and the developing baby. Placental dysfunction, including but not limited to placenta accreta spectrum, fetal growth restriction, preeclampsia and gestational trophoblastic disease, arises from abnormal placental development and can result in significant adverse maternal and fetal health outcomes. Unfortunately, there is a lack of treatment alternatives for these disorders. Nanocarriers offer versatility, including extended circulation, organ-specific targeting and intracellular transport, finely tuning therapeutic placental interactions. This thorough review explores nanotechnological strategies for addressing placental disorders, encompassing dysfunction insights, potential drug-delivery targets and recent strides in placenta-targeted nanoparticle (NP) therapies, instilling hope for effective placental malfunction treatment.
Collapse
Affiliation(s)
- Jian Zhao
- Delivery Rooms, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, 312000, China
| | - Jungang Zhang
- General Surgery, Cancer Center, Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Yan Xu
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Juan Dong
- Delivery Rooms, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, 312000, China
| | - Qichao Dong
- Delivery Rooms, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, 312000, China
| | - Guoqiang Zhao
- Delivery Rooms, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, 312000, China
| | - Ying Shi
- Center for Reproductive Medicine, Department of Obstetrics, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| |
Collapse
|
33
|
El Hoffy NM, Yacoub AS, Ghoneim AM, Ibrahim M, Ammar HO, Eissa N. Computational Amendment of Parenteral In Situ Forming Particulates' Characteristics: Design of Experiment and PBPK Physiological Modeling. Pharmaceutics 2023; 15:2513. [PMID: 37896273 PMCID: PMC10609842 DOI: 10.3390/pharmaceutics15102513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Lipid and/or polymer-based drug conjugates can potentially minimize side effects by increasing drug accumulation at target sites and thus augment patient compliance. Formulation factors can present a potent influence on the characteristics of the obtained systems. The selection of an appropriate solvent with satisfactory rheological properties, miscibility, and biocompatibility is essential to optimize drug release. This work presents a computational study of the effect of the basic formulation factors on the characteristics of the obtained in situ-forming particulates (IFPs) encapsulating a model drug using a 21.31 full factorial experimental design. The emulsion method was employed for the preparation of lipid and/or polymer-based IFPs. The IFP release profiles and parameters were computed. Additionally, a desirability study was carried out to choose the optimum formulation for further morphological examination, rheological study, and PBPK physiological modeling. Results revealed that the type of particulate forming agent (lipid/polymer) and the incorporation of structure additives like Brij 52 and Eudragit RL can effectively augment the release profile as well as the burst of the drug. The optimized formulation exhibited a pseudoplastic rheological behavior and yielded uniformly spherical-shaped dense particulates with a PS of 573.92 ± 23.5 nm upon injection. Physiological modeling simulation revealed the pioneer pharmacokinetic properties of the optimized formulation compared to the observed data. These results assure the importance of controlling the formulation factors during drug development, the potentiality of the optimized IFPs for the intramuscular delivery of piroxicam, and the reliability of PBPK physiological modeling in predicting the biological performance of new formulations with effective cost management.
Collapse
Affiliation(s)
- Nada M. El Hoffy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, New Cairo 11835, Egypt; (A.S.Y.); (A.M.G.); (H.O.A.)
| | - Ahmed S. Yacoub
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, New Cairo 11835, Egypt; (A.S.Y.); (A.M.G.); (H.O.A.)
- Bone Muscle Research Center, The University of Texas at Arlington, Arlington, TX 76013, USA
| | - Amira M. Ghoneim
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, New Cairo 11835, Egypt; (A.S.Y.); (A.M.G.); (H.O.A.)
| | - Magdy Ibrahim
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Giza 11562, Egypt;
| | - Hussein O. Ammar
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, New Cairo 11835, Egypt; (A.S.Y.); (A.M.G.); (H.O.A.)
| | - Nermin Eissa
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi P.O. Box 59911, United Arab Emirates
| |
Collapse
|
34
|
Gerasimova E, Salimgareeva E, Magasumova D, Ivanova A. Kinetic Potentiometry as a Method for Studying the Interactions of Antioxidants with Peroxyl Radicals. Antioxidants (Basel) 2023; 12:1608. [PMID: 37627605 PMCID: PMC10451547 DOI: 10.3390/antiox12081608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
This work presents a new method using kinetic potentiometry to study the thermodynamic and kinetic parameters of the reactions of antioxidants with peroxyl radicals. The rate constants of the reaction of antioxidants with radicals have been determined, and the groups of "fast" and "slow" antioxidants have been conventionally distinguished. Fast antioxidants include ascorbic, uric, gallic, chlorogenic, caffeic acids, glutathione, L-cysteine, and catechol with constant values from (1.05-9.25) × 103 M·s-1; "slow" antioxidants are α-tocopherol (in aqueous media), ionol, 2,6-ditretbutylphenol, and compounds of the azoloazine series, modified with polyphenolic fragments, with constant values from (4.00-8.50) × 102 M·s-1. It is shown that the value of the rate constant is directly related to the type of kinetic dependence of the potential recorded when an antioxidant is introduced into the solution of the radical initiator. It is shown that the method with the determination of the induction period is difficult in the study of "slow" antioxidants. It has been established that the area above the curve of the kinetic dependence Exp(∆E) is directly related to the amount of inhibited peroxyl radicals and can be used to assess the inhibitory properties of an antioxidant from a thermodynamic point of view. "Fixed time method" and "Initial rate method" were used. Positive correlations between the described method have been established. The utility of the parameter of the area above the curve of the kinetic dependence Exp(∆E) in the study of objects of complex composition is shown.
Collapse
Affiliation(s)
| | | | | | - Alla Ivanova
- Analytical Chemistry Department, Institute of Chemical Engineering, Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russia; (E.G.); (E.S.); (D.M.)
| |
Collapse
|
35
|
Giráldez-Pérez RM, Grueso EM, Carbonero A, Álvarez Márquez J, Gordillo M, Kuliszewska E, Prado-Gotor R. Synergistic Antibacterial Effects of Amoxicillin and Gold Nanoparticles: A Therapeutic Option to Combat Antibiotic Resistance. Antibiotics (Basel) 2023; 12:1275. [PMID: 37627696 PMCID: PMC10451730 DOI: 10.3390/antibiotics12081275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/19/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Compacted Au@16-mph-16/DNA-AMOX (NSi) nanosystems were prepared from amoxicillin (AMOX) and precursor Au@16-mph-16 gold nanoparticles (Ni) using a Deoxyribonucleic acid (DNA) biopolymer as a glue. The synthesized nanocarrier was tested on different bacterial strains of Escherichia coli, Staphylococcus aureus, and Streptococcus pneumoniae to evaluate its effectiveness as an antibiotic as well as its internalization. Synthesis of the nanosystems required previous structural and thermodynamic studies using circular dichroism (CD) and UV-visible techniques to guarantee optimal complex formation and maximal DNA compaction, characteristics which facilitate the correct uptake of the nanocarrier. Two nanocomplexes with different compositions and structures, denoted NS1 and NS2, were prepared, the first involving external Au@16-mph-16 binding and the second partial intercalation. The Ni and NSi nanosystems obtained were characterized via transmission electron microscopy (TEM), zeta potential, and dynamic light scattering (DLS) techniques to measure their charge, aggregation state and hydrodynamic size, and to verify their presence inside the bacteria. From these studies, it was concluded that the zeta potential values for gold nanoparticles, NS1, and NS2 nanosystems were 67.8, -36.7, and -45.1 mV. Moreover, the particle size distribution of the Au@16-mph-16 gold nanoparticles and NS2 nanoformulation was found to be 2.6 nm and 69.0 nm, respectively. However, for NS1 nanoformulation, a bimodal size distribution of 44 nm (95.5%) and 205 nm (4.5%) was found. Minimal inhibitory concentration (MIC) values were determined for the bacteria studied using a microdilution plates assay. The effect on Escherichia coli bacteria was notable, with MIC values of 17 µM for both the NS1 and NS2 nanosystems. The Staphylococcus aureus chart shows a greater inhibition effect of NS2 and NP2 in non-diluted wells, and clearly reveals a great effect on Streptococcus pneumoniae, reaching MIC values of 0.53 µM in more diluted wells. These results are in good agreement with TEM internalization studies of bacteria that reveal significant internalization and damage in Streptococcus pneumoniae. In all the treatments carried out, the antibiotic capacity of gold nanosystems as enhancers of amoxicillin was demonstrated, causing both the precursors and the nanosystems to act very quickly, and thus favoring microbial death with a small amount of antibiotic. Therefore, these gold nanosystems may constitute an effective therapy to combat resistance to antibiotics, in addition to avoiding the secondary effects derived from the administration of high doses of antibiotics.
Collapse
Affiliation(s)
- Rosa M. Giráldez-Pérez
- Department of Cell Biology, Physiology and Immunology, Faculty of Sciences, University of Cordoba, 14014 Cordoba, Spain;
| | - Elia M. Grueso
- Department of Physical Chemistry, Faculty of Chemistry, University of Seville, 41012 Seville, Spain;
| | - Alfonso Carbonero
- Department of Animal Health, Veterinary Faculty, University of Cordoba, 14014 Cordoba, Spain; (A.C.); (M.G.)
| | - Juan Álvarez Márquez
- Department of Cell Biology, Physiology and Immunology, Faculty of Sciences, University of Cordoba, 14014 Cordoba, Spain;
| | - Mirian Gordillo
- Department of Animal Health, Veterinary Faculty, University of Cordoba, 14014 Cordoba, Spain; (A.C.); (M.G.)
| | | | - Rafael Prado-Gotor
- Department of Physical Chemistry, Faculty of Chemistry, University of Seville, 41012 Seville, Spain;
| |
Collapse
|
36
|
Yadav A, Srivastava S, Tyagi S, Krishna N, Katara P. In-silico mining to glean SNPs of pharmaco-clinical importance: an investigation with reference to the Indian populated SNPs. In Silico Pharmacol 2023; 11:17. [PMID: 37484779 PMCID: PMC10356698 DOI: 10.1007/s40203-023-00154-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 07/11/2023] [Indexed: 07/25/2023] Open
Abstract
Drugs pharmacology is defined by pharmacokinetics and pharmacodynamics and both of them are affected by genetic variability. Genetic variability varies from population to population, and sometimes even within the population, it exists. Single nucleotide polymorphisms (SNPs) are one of the major genetic variability factors which are found to be associated with the pharmacokinetics and pharmacodynamics process of a drug and are responsible for variable drug response and clinical phenotypes. Studies of SNPs can help to perform genome-wide association studies for their association with pharmacological and clinical events, at the same time; their information can direct genome-wide association studies for their use as biomarkers. With the aim to mine and characterize Indian populated SNPs of pharmacological and clinical importance. Two hundred six candidate SNPs belonging to 43 genes were retrieved from Indian Genome Variation Database. The distribution pattern of considered SNPs was observed against all five world super-populations (AFR, AMR, EAS, EUR, and SAS). Further, their annotation was done through SNP-nexus by considering Human genome reference builds - hg38, pharmacological and clinical information was supplemented by PharmGKB and ClinVar database. At last, to find out the association between SNPs linkage disequilibrium was observed in terms of r2. Overall, the study reported 53 pharmaco-clinical active SNPs and found 24 SNP-pairs as potential markers, and recommended their clinical and experimental validation. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-023-00154-4.
Collapse
Affiliation(s)
- Anamika Yadav
- Computational Omics Lab, Centre of Bioinformatics, University of Allahabad, Prayagraj, 211002 India
| | - Shivani Srivastava
- Computational Omics Lab, Centre of Bioinformatics, University of Allahabad, Prayagraj, 211002 India
- Centre of Biotechnology, University of Allahabad, Prayagraj, 211002 India
| | - Shivani Tyagi
- Computational Omics Lab, Centre of Bioinformatics, University of Allahabad, Prayagraj, 211002 India
| | - Neelam Krishna
- Computational Omics Lab, Centre of Bioinformatics, University of Allahabad, Prayagraj, 211002 India
| | - Pramod Katara
- Computational Omics Lab, Centre of Bioinformatics, University of Allahabad, Prayagraj, 211002 India
| |
Collapse
|
37
|
Bianchi M, Rossi L, Pierigè F, Biagiotti S, Bregalda A, Tasini F, Magnani M. Preclinical and clinical developments in enzyme-loaded red blood cells: an update. Expert Opin Drug Deliv 2023; 20:921-935. [PMID: 37249524 DOI: 10.1080/17425247.2023.2219890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
INTRODUCTION We have previously described the preclinical developments in enzyme-loaded red blood cells to be used in the treatment of several rare diseases, as well as in chronic conditions. AREA COVERED Since our previous publication we have seen further progress in the previously discussed approaches and, interestingly enough, in additional new studies that further strengthen the idea that red blood cell-based therapeutics may have unique advantages over conventional enzyme replacement therapies in terms of efficacy and safety. Here we highlight these investigations and compare, when possible, the reported results versus the current therapeutic approaches. EXPERT OPINION The continuous increase in the number of new potential applications and the progress from the encapsulation of a single enzyme to the engineering of an entire metabolic pathway open the field to unexpected developments and confirm the role of red blood cells as cellular bioreactors that can be conveniently manipulated to acquire useful therapeutic metabolic abilities. Positioning of these new approaches versus newly approved drugs is essential for the successful transition of this technology from the preclinical to the clinical stage and hopefully to final approval.
Collapse
Affiliation(s)
- Marzia Bianchi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Luigia Rossi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
- EryDel SpA, Bresso, MI, Italy
| | - Francesca Pierigè
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Sara Biagiotti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Alessandro Bregalda
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Filippo Tasini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
- EryDel SpA, Bresso, MI, Italy
| |
Collapse
|
38
|
Manikandan C, Jaiswal AK. Scaffold-based spheroid models of glioblastoma multiforme and its use in drug screening. Biotechnol Bioeng 2023. [PMID: 37366303 DOI: 10.1002/bit.28481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
Among several types of brain cancers, glioblastoma multiforme (GBM) is a terminal and aggressive disease with a median survival of 15 months despite the most intensive surgery and chemotherapy. Preclinical models that accurately reproduce the tumor microenvironment are vital for developing new therapeutic alternatives. Understanding the complicated interactions between cells and their surroundings is essential to comprehend the tumor's microenvironment, however the monolayer cell culture approach falls short. Numerous approaches are used to develop GBM cells into tumor spheroids, while scaffold-based spheroids provides the opportunity to investigate the synergies between cells as well as cells and the matrix. This review summarizes the development of various scaffold-based GBM spheroid models and the prospective for their use as drug testing systems.
Collapse
Affiliation(s)
- Ceera Manikandan
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore, India
| | - Amit Kumar Jaiswal
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
39
|
Tang P, Shen T, Wang H, Zhang R, Zhang X, Li X, Xiao W. Challenges and opportunities for improving the druggability of natural product: Why need drug delivery system? Biomed Pharmacother 2023; 164:114955. [PMID: 37269810 DOI: 10.1016/j.biopha.2023.114955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/14/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023] Open
Abstract
Bioactive natural products (BNPs) are the marrow of medicinal plants, which are the secondary metabolites of organisms and have been the most famous drug discovery database. Bioactive natural products are famous for their enormous number and great safety in medical applications. However, BNPs are troubled by their poor druggability compared with synthesis drugs and are challenged as medicine (only a few BNPs are applied in clinical settings). In order to find a reasonable solution to improving the druggability of BNPs, this review summarizes their bioactive nature based on the enormous pharmacological research and tries to explain the reasons for the poor druggability of BNPs. And then focused on the boosting research on BNPs loaded drug delivery systems, this review further concludes the advantages of drug delivery systems on the druggability improvement of BNPs from the perspective of their bioactive nature, discusses why BNPs need drug delivery systems, and predicts the next direction.
Collapse
Affiliation(s)
- Peng Tang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Tianze Shen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Hairong Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Ruihan Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Xingjie Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Xiaoli Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.
| | - Weilie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.
| |
Collapse
|
40
|
Ezike TC, Okpala US, Onoja UL, Nwike CP, Ezeako EC, Okpara OJ, Okoroafor CC, Eze SC, Kalu OL, Odoh EC, Nwadike UG, Ogbodo JO, Umeh BU, Ossai EC, Nwanguma BC. Advances in drug delivery systems, challenges and future directions. Heliyon 2023; 9:e17488. [PMID: 37416680 PMCID: PMC10320272 DOI: 10.1016/j.heliyon.2023.e17488] [Citation(s) in RCA: 120] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/08/2023] Open
Abstract
Advances in molecular pharmacology and an improved understanding of the mechanism of most diseases have created the need to specifically target the cells involved in the initiation and progression of diseases. This is especially true for most life-threatening diseases requiring therapeutic agents which have numerous side effects, thus requiring accurate tissue targeting to minimize systemic exposure. Recent drug delivery systems (DDS) are formulated using advanced technology to accelerate systemic drug delivery to the specific target site, maximizing therapeutic efficacy and minimizing off-target accumulation in the body. As a result, they play an important role in disease management and treatment. Recent DDS offer greater advantages when compared to conventional drug delivery systems due to their enhanced performance, automation, precision, and efficacy. They are made of nanomaterials or miniaturized devices with multifunctional components that are biocompatible, biodegradable, and have high viscoelasticity with an extended circulating half-life. This review, therefore, provides a comprehensive insight into the history and technological advancement of drug delivery systems. It updates the most recent drug delivery systems, their therapeutic applications, challenges associated with their use, and future directions for improved performance and use.
Collapse
Affiliation(s)
- Tobechukwu Christian Ezike
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Ugochukwu Solomon Okpala
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Ufedo Lovet Onoja
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Chinenye Princess Nwike
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Emmanuel Chimeh Ezeako
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Osinachi Juliet Okpara
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Charles Chinkwere Okoroafor
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Shadrach Chinecherem Eze
- Department of Clinical Pharmacy and Pharmacy Management, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Onyinyechi Loveth Kalu
- Department of Clinical Pharmacy and Pharmacy Management, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | | | - Ugochukwu Gideon Nwadike
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - John Onyebuchi Ogbodo
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
- Department of Science Laboratory Technology, Faculty of Physical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Bravo Udochukwu Umeh
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Emmanuel Chekwube Ossai
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Bennett Chima Nwanguma
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| |
Collapse
|
41
|
Wen P, Ke W, Dirisala A, Toh K, Tanaka M, Li J. Stealth and pseudo-stealth nanocarriers. Adv Drug Deliv Rev 2023; 198:114895. [PMID: 37211278 DOI: 10.1016/j.addr.2023.114895] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
The stealth effect plays a central role on capacitating nanomaterials for drug delivery applications through improving the pharmacokinetics such as blood circulation, biodistribution, and tissue targeting. Here based on a practical analysis of stealth efficiency and a theoretical discussion of relevant factors, we provide an integrated material and biological perspective in terms of engineering stealth nanomaterials. The analysis surprisingly shows that more than 85% of the reported stealth nanomaterials encounter a rapid drop of blood concentration to half of the administered dose within 1 h post administration although a relatively long β-phase is observed. A term, pseudo-stealth effect, is used to delineate this common pharmacokinetics behavior of nanomaterials, that is, dose-dependent nonlinear pharmacokinetics because of saturating or depressing bio-clearance of RES. We further propose structural holism can be a watershed to improve the stealth effect; that is, the whole surface structure and geometry play important roles, rather than solely relying on a single factor such as maximizing repulsion force through polymer-based steric stabilization (e.g., PEGylation) or inhibiting immune attack through a bio-inspired component. Consequently, engineering delicate structural hierarchies to minimize attractive binding sites, that is, minimal charges/dipole and hydrophobic domain, becomes crucial. In parallel, the pragmatic implementation of the pseudo-stealth effect and dynamic modulation of the stealth effect are discussed for future development.
Collapse
Affiliation(s)
- Panyue Wen
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Wendong Ke
- Chemical Macromolecule Division, Asymchem Life Science (Tianjin) Co., Ltd. No. 71, Seventh Avenue, TEDA Tianjin 300457, P.R. China
| | - Anjaneyulu Dirisala
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Kazuko Toh
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Junjie Li
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
42
|
Cesaro A, Lin S, Pardi N, de la Fuente-Nunez C. Advanced delivery systems for peptide antibiotics. Adv Drug Deliv Rev 2023; 196:114733. [PMID: 36804008 PMCID: PMC10771258 DOI: 10.1016/j.addr.2023.114733] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Antimicrobial peptides (AMPs) hold promise as alternatives to traditional antibiotics for preventing and treating multidrug-resistant infections. Although they have potent antimicrobial efficacy, AMPs are mainly limited by their susceptibility to proteases and potential off-site cytotoxicity. Designing the right delivery system for peptides can help to overcome such limitations, thus improving the pharmacokinetic and pharmacodynamic profiles of these drugs. The versatility of peptides and their genetically encodable structure make them suitable for both conventional and nucleoside-based formulations. In this review, we describe the main drug delivery procedures developed so far for peptide antibiotics: lipid nanoparticles, polymeric nanoparticles, hydrogels, functionalized surfaces, and DNA- and RNA-based delivery systems.
Collapse
Affiliation(s)
- Angela Cesaro
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Shuangzhe Lin
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
43
|
Futosi K, Bajza B, Deli D, Erdélyi A, Tusnády S, Mócsai A. Analysis of intracellular tyrosine phosphorylation in circulating neutrophils as a rapid assay for the in vivo effect of oral tyrosine kinase inhibitors. Front Pharmacol 2023; 14:1056154. [PMID: 37089957 PMCID: PMC10117656 DOI: 10.3389/fphar.2023.1056154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/24/2023] [Indexed: 04/08/2023] Open
Abstract
Tyrosine kinases are crucial signaling components of diverse biological processes and are major therapeutic targets in various malignancies and immune-mediated disorders. A critical step of development of novel tyrosine kinase inhibitors is the transition from the confirmation of the in vitro effects of drug candidates to the analysis of their in vivo efficacy. To facilitate this transition, we have developed a rapid in vivo assay for the analysis of the effect of oral tyrosine kinase inhibitors on basal tyrosine phosphorylation of circulating mouse neutrophils. The assay uses a single drop of peripheral blood without sacrificing the mice. Flow cytometry using intracellular staining by fluorescently labeled anti-phosphotyrosine antibodies revealed robust basal tyrosine phosphorylation in resting circulating neutrophils. This signal was abrogated by the use of isotype control antibodies or by pre-saturation of the anti-phosphotyrosine antibodies with soluble phosphotyrosine amino acids or tyrosine-phosphorylated peptides. Basal tyrosine phosphorylation was dramatically reduced in neutrophils of triple knockout mice lacking the Src-family tyrosine kinases Hck, Fgr, and Lyn. Neutrophil tyrosine phosphorylation was also abrogated by oral administration of the Abl/Src-family inhibitor dasatinib, a clinically used anti-leukemic agent. Detailed dose-response and kinetic studies revealed half-maximal reduction of neutrophil tyrosine phosphorylation by 2.9 mg/kg dasatinib, with maximal reduction observed 2 h after inhibitor administration. Taken together, our assay allows highly efficient analysis of the in vivo effect of orally administered tyrosine kinase inhibitors, and may be used as a suitable alternative to other existing approaches.
Collapse
Affiliation(s)
- Krisztina Futosi
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
- ELKH-SE Inflammation Physiology Research Group, Eötvös Loránd Research Network, Budapest, Hungary
- *Correspondence: Krisztina Futosi,
| | - Boglárka Bajza
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Dorottya Deli
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - András Erdélyi
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Simon Tusnády
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Attila Mócsai
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
- ELKH-SE Inflammation Physiology Research Group, Eötvös Loránd Research Network, Budapest, Hungary
| |
Collapse
|
44
|
Islam MS, Mitra S. Synthesis of Microwave Functionalized, Nanostructured Polylactic Co-Glycolic Acid ( nfPLGA) for Incorporation into Hydrophobic Dexamethasone to Enhance Dissolution. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:943. [PMID: 36903820 PMCID: PMC10005067 DOI: 10.3390/nano13050943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
The low solubility and slow dissolution of hydrophobic drugs is a major challenge for the pharmaceutical industry. In this paper, we present the synthesis of surface-functionalized poly(lactic-co-glycolic acid) (PLGA) nanoparticles for incorporation into corticosteroid dexamethasone to improve its in vitro dissolution profile. The PLGA crystals were mixed with a strong acid mixture, and their microwave-assisted reaction led to a high degree of oxidation. The resulting nanostructured, functionalized PLGA (nfPLGA), was quite water-dispersible compared to the original PLGA, which was non-dispersible. SEM-EDS analysis showed 53% surface oxygen concentration in the nfPLGA compared to the original PLGA, which had only 25%. The nfPLGA was incorporated into dexamethasone (DXM) crystals via antisolvent precipitation. Based on SEM, RAMAN, XRD, TGA and DSC measurements, the nfPLGA-incorporated composites retained their original crystal structures and polymorphs. The solubility of DXM after nfPLGA incorporation (DXM-nfPLGA) increased from 6.21 mg/L to as high as 87.1 mg/L and formed a relatively stable suspension with a zeta potential of -44.3 mV. Octanol-water partitioning also showed a similar trend as the logP reduced from 1.96 for pure DXM to 0.24 for DXM-nfPLGA. In vitro dissolution testing showed 14.0 times higher aqueous dissolution of DXM-nfPLGA compared to pure DXM. The time for 50% (T50) and 80% (T80) of gastro medium dissolution decreased significantly for the nfPLGA composites; T50 reduced from 57.0 to 18.0 min and T80 reduced from unachievable to 35.0 min. Overall, the PLGA, which is an FDA-approved, bioabsorbable polymer, can be used to enhance the dissolution of hydrophobic pharmaceuticals and this can lead to higher efficacy and lower required dosage.
Collapse
|
45
|
Molecular Dynamics Simulation and Pharmacoinformatic Integrated Analysis of Bioactive Phytochemicals from Azadirachta indica (Neem) to Treat Diabetes Mellitus. J CHEM-NY 2023. [DOI: 10.1155/2023/4170703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Diabetes mellitus is a chronic hormonal and metabolic disorder in which our body cannot generate necessary insulin or does not act in response to it, accordingly, ensuing in discordantly high blood sugar (glucose) levels. Diabetes mellitus can lead to systemic dysfunction in the multiorgan system, including cardiac dysfunction, severe kidney disease, lowered quality of life, and increased mortality risk from diabetic complications. To uncover possible therapeutic targets to treat diabetes mellitus, the in silico drug design technique is widely used, which connects the ligand molecules with target proteins to construct a protein-ligand network. To identify new therapeutic targets for type 2 diabetes mellitus, Azadirachta indica is subjected to phytochemical screening using in silico molecular docking, pharmacokinetic behavior analysis, and simulation-based molecular dynamic analysis. This study has analyzed around 63 phytochemical compounds, and the initial selection of the compounds was made by analyzing their pharmacokinetic properties by comparing them with Lipinski’s rule of 5. The selected compounds were subjected to molecular docking. The top four ligand compounds were reported along with the control drug nateglinide based on their highest negative molecular binding affinity. The protein-ligand interaction of selected compounds has been analyzed to understand better how compounds interact with the targeted protein structure. The results of the in silico analysis revealed that 7-Deacetyl-7-oxogedunin had the highest negative docking score of −8.9 Kcal/mol and also demonstrated standard stability in a 100 ns molecular dynamic simulation performed with insulin receptor ectodomain. It has been found that these substances may rank among the essential supplementary antidiabetic drugs for treating type 2 diabetes mellitus. It is suggested that more in vivo and in vitro research studies be carried out to support the conclusions drawn from this in silico research strategy.
Collapse
|
46
|
Gulati HK, Kumar N, Sharma A, Jyoti, Khanna A, Sharma S, Salwan R, Bedi PMS. A comprehensive review on Triazole based Conjugates as Acetylcholinesterase Inhibitors: Design Strategies, Synthesis, Biological Activity, Structure Activity Relationships, Molecular Docking Studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
47
|
Kumar N, Oqmhula K, Hongo K, Takagi K, Yusa SI, Rajan R, Matsumura K. Mechanistic insights and importance of hydrophobicity in cationic polymers for cancer therapy. J Mater Chem B 2023; 11:1456-1468. [PMID: 36661268 DOI: 10.1039/d2tb02059a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Development of molecules that can be effectively used for killing cancer cells remains a research topic of interest in drug discovery. However, various limitations of small molecules and nanotechnology-based drug-delivery systems hinder the development of chemotherapeutics. To resolve this issue, this study describes the potential application of polymeric molecules as anticancer drug candidates. We describe the design and synthesis of novel anticancer polymers containing hydrophobic groups. We established the fact that the cationic homopolymer (PAMPTMA) does not show any anticancer activity on its own; however, the insertion of hydrophobic moieties in copolymers (PAMPTMA-r-BuMA, PAMPTMA-r-HexMA, and PAMPTMA-r-OctMA) enhances their anticancer activity with a very low IC50 value (60 μg mL-1 for HepG2 cells). Mechanistic investigations were carried out using LDH leakage assay, cellular uptake, DOSY NMR and molecular dynamics to study the interaction between the polymer and the cell membrane as well as the role of hydrophobicity in enhancing this interaction. The results demonstrated that polymers are attracted by the anionic cancer cell membrane, which then leads to the insertion of hydrophobic groups inside the cell membrane, causing its disruption and ultimate lysis of the cell. This study demonstrates a novel and better approach for the rational design and discovery of new polymeric anticancer agents with improved efficacy.
Collapse
Affiliation(s)
- Nishant Kumar
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
| | - Kenji Oqmhula
- School of Information Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Kenta Hongo
- Research Center for Advanced Computing Infrastructure, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Kengo Takagi
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Shin-Ichi Yusa
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Robin Rajan
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
| | - Kazuaki Matsumura
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
| |
Collapse
|
48
|
Rout D, Sharma S, Agarwala P, Upadhyaya AK, Sharma A, Sasmal DK. Interaction of Ibuprofen with Partially Unfolded Bovine Serum Albumin in the Presence of Ionic Micelles and Oligosaccharides at Different λ ex and pH: A Spectroscopic Analysis. ACS OMEGA 2023; 8:3114-3128. [PMID: 36713709 PMCID: PMC9878652 DOI: 10.1021/acsomega.2c06447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/08/2022] [Indexed: 06/18/2023]
Abstract
The interaction between the plasma protein bovine serum albumin (BSA) and the drug ibuprofen (IBU) has been investigated at three different pH values (7.4, 6.5, and 8.0) in the presence of oligosaccharides and surfactants. The interaction analysis of BSA with oligosaccharides and surfactants has also been studied in the absence of the drug ibuprofen. The results obtained give convenient and efficient access to understand the mechanism of binding of ibuprofen to BSA, and the major forces involved are found to be hydrophobic forces, hydrogen bonding and ionic interactions. In addition to that, the formation of inclusion complexes of ibuprofen with oligosaccharides (β-CD and 2-HP-β-CD) has been observed, which has depicted that due to the hydrophobic nature of ibuprofen, it becomes more soluble in the presence of oligosaccharides, but due to the larger size of the inclusion complexes, these could not be able to access the hydrophobic pocket of BSA where tryptophan-212 (Trp-212) resides. The binding interaction between BSA and ibuprofen is observed in the presence of surfactants (SDS and CTAB), which partially unfold the protein. Non-radiative fluorescence resonance energy transfer (FRET) from Trp and Tyr residues of BSA in the presence of an anionic surfactant SDS to ibuprofen has depicted that there is a possibility of drug binding even in the partially unfolded state of BSA protein. Furthermore, the distance between the protein and the drug has been calculated from the FRET efficiency, which gives a comprehensive overview of ibuprofen binding to BSA even in its partially denatured state. The hydrophobic drug binding to the partially unfolded serum albumin protein (BSA) supports the "necklace and bead structures" model and opens up a new direction of drug loading and delivery system, which will have critical therapeutic applications in the efficient delivery of pharmacologically prominent drugs.
Collapse
|
49
|
Yadav D, Puranik N, Meshram A, Chavda V, Lee PCW, Jin JO. How Advanced are Cancer Immuno-Nanotherapeutics? A Comprehensive Review of the Literature. Int J Nanomedicine 2023; 18:35-48. [PMID: 36636642 PMCID: PMC9830082 DOI: 10.2147/ijn.s388349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
Cancer is a broad term for a group of diseases involving uncontrolled cell growth and proliferation. There is no cure for cancer despite recent significant improvements in screening, treatment, and prevention approaches. Among the available treatments, immunotherapy has been successful in targeting and killing cancer cells by stimulating or enhancing the body's immune system. Antibody-based immunotherapeutic agents that block immune checkpoint proteins expressed by cancer cells have shown promising results. The rapid development of nanotechnology has contributed to improving the effectiveness and reducing the adverse effects of these anti-cancer immunotherapeutic agents. Recently, engineered nanomaterials have been the focus of many state-of-The-art approaches toward effective cancer treatment. In this review, the contribution of various nanomaterials such as polymeric nanoparticles, dendrimers, microspheres, and carbon nanomaterials in improving the efficiency of anti-cancer immunotherapy is discussed as well as nanostructures applied to combination cancer immunotherapy.
Collapse
Affiliation(s)
- Dhananjay Yadav
- Department of Life Science, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Nidhi Puranik
- Biological Sciences Department, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Anju Meshram
- Department of Biotechnology, Kalinga University, Naya Raipur, Chhattisgarh, India
| | - Vishal Chavda
- Department of Pathology, Stanford School of Medicine, Stanford University Medical Center, Stanford, CA, 94305, USA
| | - Peter Chang-Whan Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea,Correspondence: Peter Chang-Whan Lee, Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea, Email
| | - Jun-O Jin
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, 05505, South Korea,Jun-O Jin, Department of Microbiology, University of Ulsan College of Medicine, Seoul, 05505, South Korea, Email
| |
Collapse
|
50
|
Thangaraju P, Velmurugan H, Neelambaran K. Current Status of Pharmacokinetic Research in Children: A Systematic Review of Clinical Trial Records. Curr Rev Clin Exp Pharmacol 2023; 19:78-92. [PMID: 36573054 DOI: 10.2174/2772432818666221223155455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/05/2022] [Accepted: 10/18/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Many medications have different pharmacokinetics in children than in adults. Knowledge about the safety and efficacy of medications in children requires research into the pharmacokinetic profiles of children's medicines. By analysing registered clinical trial records, this study determined how frequently pharmacokinetic data is gathered in paediatric drug trials. METHODS We searched for the pharmacokinetic data from clinical trial records for preterm infants and children up to the age of 16 from January 2011 to April 2022. The records of trials involving one or more drugs in preterm infants and children up to the age of 16 were examined for evidence that pharmacokinetic data would be collected. RESULTS In a total of 1483 records of interventional clinical trials, 136 (9.17%) pharmacokinetic data involved adults. Of those 136 records, 60 (44.1%) records were pharmacokinetics trials involving one or more medicines in children up to the age of 16.20 (33.3%) in America, followed by 19 (31.6%) in Europe. Most trials researched medicines in the field of infection or parasitic diseases 20 (33.3%). 27 (48.2%) and 26 (46.4%) trials investigated medicines that were indicated as essential medicine. CONCLUSION The pharmacokinetic characteristics of children's drugs need to be better understood. The current state of pharmacokinetic research appears to address the knowledge gap in this area adequately. Despite slow progress, paediatric clinical trials have experienced a renaissance as the significance of paediatric trials has gained international attention. The outcome of paediatric trials will have an impact on children's health in the future. In recent years, the need for greater availability and access to safe child-size pharmaceuticals has received a lot of attention.
Collapse
Affiliation(s)
- Pugazhenthan Thangaraju
- Department of Pharmacology, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Hemasri Velmurugan
- Department of Pharmacology, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Krishnapriya Neelambaran
- Department of Pharmacology, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| |
Collapse
|