1
|
Šarac I, Debeljak-Martačić J, Takić M, Stevanović V, Milešević J, Zeković M, Popović T, Jovanović J, Vidović NK. Associations of fatty acids composition and estimated desaturase activities in erythrocyte phospholipids with biochemical and clinical indicators of cardiometabolic risk in non-diabetic Serbian women: the role of level of adiposity. Front Nutr 2023; 10:1065578. [PMID: 37545582 PMCID: PMC10397414 DOI: 10.3389/fnut.2023.1065578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 06/26/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction Fatty acids (FAs) composition and desaturase activities can be altered in different metabolic conditions, but the adiposity-independent associations with clinical and biochemical indicators of cardiometabolic risk are still unclear. This study aimed to analyze the associations of FAs composition and estimated desaturase activities with anthropometric, clinical, and biochemical cardiometabolic risk indicators in non-diabetic Serbian women, and to investigate if these associations were independent of the level of adiposity and other confounders. Methods In 76 non-diabetic, otherwise healthy Serbian women, aged 24-68 years, with or without metabolic syndrome or obesity (BMI=23.6±5.6 kg/m2), FA composition in erythrocyte phospholipids was measured by gas-liquid chromatography. Desaturase activities were estimated from product/precursor FAs ratios (D9D:16:1n-7/16:0; D6D:20:3n-6/18:2n-6; D5D:20:4n-6/20:3n-6). Correlations were made with anthropometric, biochemical (serum glucose, triacylglycerols, LDL-C, HDL-C, ALT, AST, and their ratios) and clinical (blood pressure) indicators of cardiometabolic risk. Linear regression models were performed to test the independence of these associations. Results Estimated desaturase activities and certain FAs were associated with anthropometric, clinical and biochemical indicators of cardiometabolic risk: D9D, D6D, 16:1n-7 and 20:3n-6 were directly associated, while D5D and 18:0 were inversely associated. However, the associations with clinical and biochemical indicators were not independent of the associations with the level of adiposity, since they were lost after controlling for anthropometric indices. After controlling for multiple confounders (age, postmenopausal status, education, smoking, physical activity, dietary macronutrient intakes, use of supplements, alcohol consumption), the level of adiposity was the most significant predictor of desaturase activities and aforementioned FAs levels, and mediated their association with biochemical/clinical indicators. Vice versa, desaturase activities predicted the level of adiposity, but not other components of cardiometabolic risk (if the level of adiposity was accounted). While the associations of anthropometric indices with 16:1n-7, 20:3n-6, 18:0 and D9D and D6D activities were linear, the associations with D5D activity were the inverse U-shaped. The only adiposity-independent association of FAs profiles with the indicators of cardiometabolic risk was a positive association of 20:5n-3 with ALT/AST ratio, which requires further exploration. Discussion Additional studies are needed to explore the mechanisms of the observed associations.
Collapse
Affiliation(s)
- Ivana Šarac
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jasmina Debeljak-Martačić
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Marija Takić
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Vuk Stevanović
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jelena Milešević
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milica Zeković
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tamara Popović
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jovica Jovanović
- Department of Occupational Health, Faculty of Medicine, University of Niš, Niš, Serbia
| | - Nevena Kardum Vidović
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
2
|
Caiati C, Stanca A, Lepera ME. Free Radicals and Obesity-Related Chronic Inflammation Contrasted by Antioxidants: A New Perspective in Coronary Artery Disease. Metabolites 2023; 13:712. [PMID: 37367870 DOI: 10.3390/metabo13060712] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
We are surrounded by factors called free radicals (FR), which attach to the molecules our body is made of, first among them the endothelium. Even though FR are to a certain extent a normal factor, nowadays we face an escalating increase in these biologically aggressive molecules. The escalating formation of FR is linked to the increased usage of man-made chemicals for personal care (toothpaste, shampoo, bubble bath, etc.), domestic laundry and dish-washer detergents, and also an ever wider usage of drugs (both prescription and over the counter), especially if they are to be used long-term (years). In addition, tobacco smoking, processed foods, pesticides, various chronic infectious microbes, nutritional deficiencies, lack of sun exposure, and, finally, with a markedly increasing impact, electromagnetic pollution (a terribly destructive factor), can increase the risk of cancer, as well as endothelial dysfunction, owing to the increased production of FR that they cause. All these factors create endothelial damage, but the organism may be able to repair such damage thanks to the intervention of the immune system supported by antioxidants. However, one other factor can perpetuate the state of inflammation, namely obesity and metabolic syndrome with associated hyperinsulinemia. In this review, the role of FR, with a special emphasis on their origin, and of antioxidants, is explored from the perspective of their role in causing atherosclerosis, in particular at the coronary level.
Collapse
Affiliation(s)
- Carlo Caiati
- Unit of Cardiovascular Diseases, Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Alessandro Stanca
- Unit of Cardiovascular Diseases, Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Mario Erminio Lepera
- Unit of Cardiovascular Diseases, Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
3
|
Mustonen AM, Nieminen P. Dihomo- γ-Linolenic Acid (20:3n-6)-Metabolism, Derivatives, and Potential Significance in Chronic Inflammation. Int J Mol Sci 2023; 24:2116. [PMID: 36768438 PMCID: PMC9916522 DOI: 10.3390/ijms24032116] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Dihomo-γ-linolenic acid (DGLA) has emerged as a significant molecule differentiating healthy and inflamed tissues. Its position at a pivotal point of metabolic pathways leading to anti-inflammatory derivatives or via arachidonic acid (ARA) to pro-inflammatory lipid mediators makes this n-6 polyunsaturated fatty acid (PUFA) an intriguing research subject. The balance of ARA to DGLA is probably a critical factor affecting inflammatory processes in the body. The aim of this narrative review was to examine the potential roles of DGLA and related n-6 PUFAs in inflammatory conditions, such as obesity-associated disorders, rheumatoid arthritis, atopic dermatitis, asthma, cancers, and diseases of the gastrointestinal tract. DGLA can be produced by cultured fungi or be obtained via endogenous conversion from γ-linolenic acid (GLA)-rich vegetable oils. Several disease states are characterized by abnormally low DGLA levels in the body, while others can feature elevated levels. A defect in the activity of ∆6-desaturase and/or ∆5-desaturase may be one factor in the initiation and progression of these conditions. The potential of GLA and DGLA administrations as curative or ameliorating therapies in inflammatory conditions and malignancies appears modest at best. Manipulations with ∆6- and ∆5-desaturase inhibitors or combinations of long-chain PUFA supplements with n-3 PUFAs could provide a way to modify the body's DGLA and ARA production and the concentrations of their pro- and anti-inflammatory mediators. However, clinical data remain scarce and further well-designed studies should be actively promoted.
Collapse
Affiliation(s)
- Anne-Mari Mustonen
- Department of Environmental and Biological Sciences, Faculty of Science, Forestry and Technology, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
- Faculty of Health Sciences, Institute of Biomedicine, School of Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Petteri Nieminen
- Faculty of Health Sciences, Institute of Biomedicine, School of Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
4
|
Shakya S, Gromovsky AD, Hale JS, Knudsen AM, Prager B, Wallace LC, Penalva LOF, Brown HA, Kristensen BW, Rich JN, Lathia JD, Brown JM, Hubert CG. Altered lipid metabolism marks glioblastoma stem and non-stem cells in separate tumor niches. Acta Neuropathol Commun 2021; 9:101. [PMID: 34059134 PMCID: PMC8166002 DOI: 10.1186/s40478-021-01205-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/19/2021] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma (GBM) displays marked cellular and metabolic heterogeneity that varies among cellular microenvironments within a tumor. Metabolic targeting has long been advocated as a therapy against many tumors including GBM, but how lipid metabolism is altered to suit different microenvironmental conditions and whether cancer stem cells (CSCs) have altered lipid metabolism are outstanding questions in the field. We interrogated gene expression in separate microenvironments of GBM organoid models that mimic the transition between nutrient-rich and nutrient-poor pseudopalisading/perinecrotic tumor zones using spatial-capture RNA-sequencing. We revealed a striking difference in lipid processing gene expression and total lipid content between diverse cell populations from the same patient, with lipid enrichment in hypoxic organoid cores and also in perinecrotic and pseudopalisading regions of primary patient tumors. This was accompanied by regionally restricted upregulation of hypoxia-inducible lipid droplet-associated (HILPDA) gene expression in organoid cores and pseudopalisading regions of clinical GBM specimens, but not lower-grade brain tumors. CSCs have low lipid droplet accumulation compared to non-CSCs in organoid models and xenograft tumors, and prospectively sorted lipid-low GBM cells are functionally enriched for stem cell activity. Targeted lipidomic analysis of multiple patient-derived models revealed a significant shift in lipid metabolism between GBM CSCs and non-CSCs, suggesting that lipid levels may not be simply a product of the microenvironment but also may be a reflection of cellular state. CSCs had decreased levels of major classes of neutral lipids compared to non-CSCs, but had significantly increased polyunsaturated fatty acid production due to high fatty acid desaturase (FADS1/2) expression which was essential to maintain CSC viability and self-renewal. Our data demonstrate spatially and hierarchically distinct lipid metabolism phenotypes occur clinically in the majority of patients, can be recapitulated in laboratory models, and may represent therapeutic targets for GBM.
Collapse
Affiliation(s)
- Sajina Shakya
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH ND2-4044195 USA
| | - Anthony D. Gromovsky
- Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH USA
| | - James S. Hale
- Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH USA
| | - Arnon M. Knudsen
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Briana Prager
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH USA
- Medical Scientist Training Program, Case Western Reserve School of Medicine, Cleveland, OH USA
| | - Lisa C. Wallace
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH ND2-4044195 USA
| | - Luiz O. F. Penalva
- Children’s Cancer Research Institute, University of Texas Health Sciences Center San Antonio, San Antonio, TX USA
| | - H. Alex Brown
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Bjarne W. Kristensen
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jeremy N. Rich
- Department of Medicine, University of Pittsburgh, Pittsburg, PA USA
| | - Justin D. Lathia
- Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH USA
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH USA
| | - J. Mark Brown
- Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH USA
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH USA
| | - Christopher G. Hubert
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH ND2-4044195 USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH USA
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH USA
| |
Collapse
|
5
|
Deep frying cooking oils promote the high risk of metastases in the breast-A critical review. Food Chem Toxicol 2020; 144:111648. [PMID: 32745572 DOI: 10.1016/j.fct.2020.111648] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022]
Abstract
Deep-frying is the most common food preparation method, manifestations of color, taste, flavor, and fried consistency. The beneficial role of vegetable oils become deteriorate when repeatedly treated with higher temperature and air. Repeatedly heated cooking oils (RCO) produce various byproducts, containing polycyclic aromatic hydrocarbons (PAHs) and aldehydes, well-known to be a carcinogenic, mutagenic, and tumorigenic properties. RCO is nowadays one of the often consumed media for cooking and frying, which intake can cause various unhealthy adverse effects including various cancer in the multiple organs. Hence, the present comprehensive study targets to provide the intake of RCO elevate the risks of human breast cancer. The data on RCO and its impacts were obtained via various electronic findings and library databases. Notable studies have confirmed that the effects of RCO have been attributed to their unfavorable effects, and underlying molecular mechanisms can also strongly promoting tumorigenic effects in the mammary organ.
Collapse
|