1
|
Nadei OV, Agalakova NI. AMPA and NMDA Receptors in Hippocampus of Rats with Fluoride-Induced Cognitive Decline. Int J Mol Sci 2024; 25:11796. [PMID: 39519348 PMCID: PMC11546234 DOI: 10.3390/ijms252111796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
This experimental study was performed to evaluate the alterations in the expression of a few subunits composing glutamate AMPA (a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) and NMDA (N-methyl-D-aspartate) receptors in the hippocampal cells of Wistar rats in response to long-term fluoride (F-) exposure. The animals were given water with background 0.4 (control), 5, 20, and 50 ppm F- (as NaF) for 12 months. The cognitive capacities of rats were examined by novel object recognition (NOR), Y-maze test, and Morris water maze tests. RT-qPCR and Western blotting techniques were used to evaluate the expression of different AMPA and NMDA subunits at transcriptional and translational levels, respectively. Long-term F- poisoning disturbed the formation of hippocampus-dependent working spatial and long-term non-spatial memory. The expression of Gria1, Gria2, and Gria3 genes encoding different subunits of AMPA receptors were comparable in hippocampi of control and F--exposed animals, although the levels of both Grin2a and Grin2b mRNA increased. Long-term F- intake enhanced the ratio of phospho-GluA1/total-GluA1 proteins in subcellular fraction enriched with cytosolic proteins, while decreased content of GluA2 but elevated level of GluA3 were observed in subcellular fraction enriched with membrane proteins. Such changes were accompanied by increased phosphorylation of GluN2A and GluN2B subunits, higher ratios of GluN2A/GluN1 and GluN2B/GluN1 proteins in the cytosol, and GluN2A/GluN2B ratio in membranes. These changes indicate the predominance of Ca2+-permeable AMPARs in membranes and a shift between different NMDARs subunits in hippocampal cells of F--exposed rats, which is typical for neurodegeneration and can at least partially underly the observed disturbances in cognitive capacities of animals.
Collapse
Affiliation(s)
| | - Natalia Ivanovna Agalakova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Avenue, Saint-Petersburg 194223, Russia;
| |
Collapse
|
2
|
Casaril AM, Gaffney CM, Shepherd AJ. Animal models of neuropathic pain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 179:339-401. [PMID: 39580217 DOI: 10.1016/bs.irn.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Animal models continue to be crucial to developing our understanding of the molecular, cellular, and neurophysiological mechanisms that lead to neuropathic pain. The overwhelming majority of animal studies use rodent models, ranging from surgical and trauma-induced models to those induced by metabolic diseases, genetic mutations, viruses, neurotoxic drugs, and cancer. We discuss the clinical relevance of the available models and the pain behavior tests commonly used as outcome measures. Finally, we summarize the refinements that have been proposed to improve the ability of animal model studies to predict clinical efficacy.
Collapse
Affiliation(s)
- Angela M Casaril
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Caitlyn M Gaffney
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Andrew J Shepherd
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
3
|
Palazzo E, Marabese I, Ricciardi F, Guida F, Luongo L, Maione S. The influence of glutamate receptors on insulin release and diabetic neuropathy. Pharmacol Ther 2024; 263:108724. [PMID: 39299577 DOI: 10.1016/j.pharmthera.2024.108724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Diabetes causes macrovascular and microvascular complications such as peripheral neuropathy. Glutamate regulates insulin secretion in pancreatic β-cells, and its increased activity in the central nervous system is associated with peripheral neuropathy in animal models of diabetes. One strategy to modulate glutamatergic activity consists in the pharmacological manipulation of metabotropic glutamate receptors (mGluRs), which, compared to the ionotropic receptors, allow for a fine-tuning of neurotransmission that is compatible with therapeutic interventions. mGluRs are a family of eight G-protein coupled receptors classified into three groups (I-III) based on sequence homology, transduction mechanisms, and pharmacology. Activation of group II and III or inhibition of group I represents a strategy to counteract the glutamatergic hyperactivity associated with diabetic neuropathy. In this review article, we will discuss the role of glutamate receptors in the release of insulin and the development/treatment of diabetic neuropathy, with particular emphasis on their manipulation to prevent the glutamatergic hyperactivity associated with diabetic neuropathy.
Collapse
Affiliation(s)
- Enza Palazzo
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", via Costantinopoli 16, 80138 Naples, Italy.
| | - Ida Marabese
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", via Costantinopoli 16, 80138 Naples, Italy
| | - Federica Ricciardi
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", via Costantinopoli 16, 80138 Naples, Italy
| | - Francesca Guida
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", via Costantinopoli 16, 80138 Naples, Italy
| | - Livio Luongo
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", via Costantinopoli 16, 80138 Naples, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", via Costantinopoli 16, 80138 Naples, Italy
| |
Collapse
|
4
|
Asiri YI, Moni SS, Ramar M, Chidambaram K. Advancing Pain Understanding and Drug Discovery: Insights from Preclinical Models and Recent Research Findings. Pharmaceuticals (Basel) 2024; 17:1439. [PMID: 39598351 PMCID: PMC11597627 DOI: 10.3390/ph17111439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Despite major advancements in our understanding of its fundamental causes, pain-both acute and chronic-remains a serious health concern. Various preclinical investigations utilizing diverse animal, cellular, and alternative models are required and frequently demanded by regulatory approval bodies to bridge the gap between the lab and the clinic. Investigating naturally occurring painful disorders can speed up medication development at the preclinical and clinical levels by illuminating molecular pathways. A wide range of animal models related to pain have been developed to elucidate pathophysiological mechanisms and aid in identifying novel targets for treatment. Pain sometimes drugs fail clinically, causing high translational costs due to poor selection and the use of preclinical tools and reporting. To improve the study of pain in a clinical context, researchers have been creating innovative models over the past few decades that better represent pathological pain conditions. In this paper, we provide a summary of traditional animal models, including rodents, cellular models, human volunteers, and alternative models, as well as the specific characteristics of pain diseases they model. However, a more rigorous approach to preclinical research and cutting-edge analgesic technologies may be necessary to successfully create novel analgesics. The research highlights from this review emphasize new opportunities to develop research that includes animals and non-animals using proven methods pertinent to comprehending and treating human suffering. This review highlights the value of using a variety of modern pain models in animals before human trials. These models can help us understand the different mechanisms behind various pain types. This will ultimately lead to the development of more effective pain medications.
Collapse
Affiliation(s)
- Yahya I. Asiri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia;
| | - Sivakumar S. Moni
- Health Research Centre, Jazan University, Jazan 45142, Saudi Arabia;
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohankumar Ramar
- Department of Pharmaceutical Sciences, UConn School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA;
| | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia;
| |
Collapse
|
5
|
Huang 黄玉莹 Y, Shao 邵建英 JY, Chen 陈红 H, Zhou 周京京 JJ, Chen 陈少瑞 SR, Pan 潘惠麟 HL. Calcineurin and CK2 Reciprocally Regulate Synaptic AMPA Receptor Phenotypes via α2δ-1 in Spinal Excitatory Neurons. J Neurosci 2024; 44:e0392242024. [PMID: 38886057 PMCID: PMC11255431 DOI: 10.1523/jneurosci.0392-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/08/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
Calcineurin inhibitors, such as cyclosporine and tacrolimus (FK506), are commonly used immunosuppressants for preserving transplanted organs and tissues. However, these drugs can cause severe and persistent pain. GluA2-lacking, calcium-permeable AMPA receptors (CP-AMPARs) are implicated in various neurological disorders, including neuropathic pain. It is unclear whether and how constitutive calcineurin, a Ca2+/calmodulin protein phosphatase, controls synaptic CP-AMPARs. In this study, we found that blocking CP-AMPARs with IEM-1460 markedly reduced the amplitude of AMPAR-EPSCs in excitatory neurons expressing vesicular glutamate transporter-2 (VGluT2), but not in inhibitory neurons expressing vesicular GABA transporter, in the spinal cord of FK506-treated male and female mice. FK506 treatment also caused an inward rectification in the current-voltage relationship of AMPAR-EPSCs specifically in VGluT2 neurons. Intrathecal injection of IEM-1460 rapidly alleviated pain hypersensitivity in FK506-treated mice. Furthermore, FK506 treatment substantially increased physical interaction of α2δ-1 with GluA1 and GluA2 in the spinal cord and reduced GluA1/GluA2 heteromers in endoplasmic reticulum-enriched fractions of spinal cords. Correspondingly, inhibiting α2δ-1 with pregabalin, Cacna2d1 genetic knock-out, or disrupting α2δ-1-AMPAR interactions with an α2δ-1 C terminus peptide reversed inward rectification of AMPAR-EPSCs in spinal VGluT2 neurons caused by FK506 treatment. In addition, CK2 inhibition reversed FK506 treatment-induced pain hypersensitivity, α2δ-1 interactions with GluA1 and GluA2, and inward rectification of AMPAR-EPSCs in spinal VGluT2 neurons. Thus, the increased prevalence of synaptic CP-AMPARs in spinal excitatory neurons plays a major role in calcineurin inhibitor-induced pain hypersensitivity. Calcineurin and CK2 antagonistically regulate postsynaptic CP-AMPARs through α2δ-1-mediated GluA1/GluA2 heteromeric assembly in the spinal dorsal horn.
Collapse
Affiliation(s)
- Yuying Huang 黄玉莹
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Jian-Ying Shao 邵建英
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hong Chen 陈红
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Jing-Jing Zhou 周京京
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Shao-Rui Chen 陈少瑞
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hui-Lin Pan 潘惠麟
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
6
|
Carrillo E, Montaño Romero A, Gonzalez CU, Turcu AL, Chen SR, Chen H, Pan HL, Vázquez S, Twomey EC, Jayaraman V. Memantine Inhibits Calcium-Permeable AMPA Receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601784. [PMID: 39005433 PMCID: PMC11245036 DOI: 10.1101/2024.07.02.601784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Memantine is an US Food and Drug Administration (FDA) approved drug that selectively inhibits NMDA-subtype ionotropic glutamate receptors (NMDARs) for treatment of dementia and Alzheimer's. NMDARs enable calcium influx into neurons and are critical for normal brain function. However, increasing evidence shows that calcium influx in neurological diseases is augmented by calcium-permeable AMPA-subtype ionotropic glutamate receptors (AMPARs). Here, we demonstrate that these calcium-permeable AMPARs (CP-AMPARs) are inhibited by memantine. Electrophysiology unveils that memantine inhibition of CP-AMPARs is dependent on their calcium permeability and the presence of their neuronal auxiliary subunit transmembrane AMPAR regulatory proteins (TARPs). Through cryo-electron microscopy we elucidate that memantine blocks CP-AMPAR ion channels in a unique mechanism of action from NMDARs. Furthermore, we demonstrate that memantine reverses a gain of function AMPAR mutation found in a patient with a neurodevelopmental disorder and inhibits CP-AMPARs in nerve injury. Our findings alter the paradigm for the memantine mechanism of action and provide a blueprint for therapeutic approaches targeting CP-AMPARs.
Collapse
Affiliation(s)
- Elisa Carrillo
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Alejandra Montaño Romero
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Cuauhtemoc U. Gonzalez
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Andreea L. Turcu
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l’Alimentació i Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
| | | | - Hong Chen
- MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hui-Lin Pan
- MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Santiago Vázquez
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l’Alimentació i Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - Edward C. Twomey
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- The Beckman Center for Cryo-EM at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA, 70170, USA
| | - Vasanthi Jayaraman
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| |
Collapse
|
7
|
Zhou JJ, Shao JY, Chen SR, Chen H, Pan HL. Calcineurin regulates synaptic Ca 2+-permeable AMPA receptors in hypothalamic presympathetic neurons via α2δ-1-mediated GluA1/GluA2 assembly. J Physiol 2024; 602:2179-2197. [PMID: 38630836 PMCID: PMC11096015 DOI: 10.1113/jp286081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/25/2024] [Indexed: 04/19/2024] Open
Abstract
Hypertension is a major adverse effect of calcineurin inhibitors, such as tacrolimus (FK506) and cyclosporine, used clinically as immunosuppressants. Calcineurin inhibitor-induced hypertension (CIH) is linked to augmented sympathetic output from the hypothalamic paraventricular nucleus (PVN). GluA2-lacking, Ca2+-permeable AMPA receptors (CP-AMPARs) are a key feature of glutamatergic synaptic plasticity, yet their role in CIH remains elusive. Here, we found that systemic administration of FK506 in rats significantly increased serine phosphorylation of GluA1 and GluA2 in PVN synaptosomes. Strikingly, FK506 treatment reduced GluA1/GluA2 heteromers in both synaptosomes and endoplasmic reticulum-enriched fractions from the PVN. Blocking CP-AMPARs with IEM-1460 induced a larger reduction of AMPAR-mediated excitatory postsynaptic current (AMPAR-EPSC) amplitudes in retrogradely labelled, spinally projecting PVN neurons in FK506-treated rats than in vehicle-treated rats. Furthermore, FK506 treatment shifted the current-voltage relationship of AMPAR-EPSCs from linear to inward rectification in labelled PVN neurons. FK506 treatment profoundly enhanced physical interactions of α2δ-1 with GluA1 and GluA2 in the PVN. Inhibiting α2δ-1 with gabapentin, α2δ-1 genetic knockout, or disrupting α2δ-1-AMPAR interactions with an α2δ-1 C terminus peptide restored GluA1/GluA2 heteromers in the PVN and diminished inward rectification of AMPAR-EPSCs in labelled PVN neurons induced by FK506 treatment. Additionally, microinjection of IEM-1460 or α2δ-1 C terminus peptide into the PVN reduced renal sympathetic nerve discharges and arterial blood pressure elevated in FK506-treated rats but not in vehicle-treated rats. Thus, calcineurin in the hypothalamus constitutively regulates AMPAR subunit composition and phenotypes by controlling GluA1/GluA2 interactions with α2δ-1. Synaptic CP-AMPARs in PVN presympathetic neurons contribute to augmented sympathetic outflow in CIH. KEY POINTS: Systemic treatment with the calcineurin inhibitor increases serine phosphorylation of synaptic GluA1 and GluA2 in the PVN. Calcineurin inhibition enhances the prevalence of postsynaptic Ca2+-permeable AMPARs in PVN presympathetic neurons. Calcineurin inhibition potentiates α2δ-1 interactions with GluA1 and GluA2, disrupting intracellular assembly of GluA1/GluA2 heterotetramers in the PVN. Blocking Ca2+-permeable AMPARs or α2δ-1-AMPAR interactions in the PVN attenuates sympathetic outflow augmented by the calcineurin inhibitor.
Collapse
Affiliation(s)
- Jing-Jing Zhou
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jian-Ying Shao
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
8
|
Liang Z, Li L, Bai L, Gao Y, Qiao Y, Wang X, Yv L, Xu JT. Spinal nerve transection-induced upregulation of SAP97 via promoting membrane trafficking of GluA1-containing AMPA receptors in the dorsal horn contributes to the pathogenesis of neuropathic pain. Neurobiol Dis 2024; 194:106471. [PMID: 38461868 DOI: 10.1016/j.nbd.2024.106471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024] Open
Abstract
Emerging evidence has implicated an important role of synapse-associated protein-97 (SAP97)-regulated GluA1-containing AMPARs membrane trafficking in cocaine restate and in contextual episodic memory of schizophrenia. Herein, we investigated the role of SAP97 in neuropathic pain following lumbar 5 spinal nerve transection (SNT) in rats. Our results showed that SNT led to upregulation of SAP97, enhanced the interaction between SAP97 and GluA1, and increased GluA1-containing AMPARs membrane trafficking in the dorsal horn. Microinjection of AAV-EGFP-SAP97 shRNA in lumbar 5 spinal dorsal horn inhibited SAP97 production, decreased SAP97-GluA1 interaction, reduced the membrane trafficking of GluA1-containing AMPARs, and partially attenuated neuropathic pain following SNT. Intrathecal injections of SAP97 siRNA or NASPM, an antagonist of GluA1-containing AMPARs, also partially reversed neuropathic pain on day 7, but not on day 14, after SNT. Spinal overexpression of SAP97 by AAV-EGFP-SAP97 enhanced SAP97-GluA1 interaction, increased the membrane insertion of GluA1-containing AMPARs, and induced abnormal pain in naïve rats. In addition, treatment with SAP97 siRNA or NASPM i.t. injection alleviated SNT-induced allodynia and hyperalgesia and exhibited a longer effect in female rats. Together, our results indicate that the SNT-induced upregulation of SAP97 via promoting GluA1-containing AMPARs membrane trafficking in the dorsal horn contributes to the pathogenesis of neuropathic pain. Targeting spinal SAP97 might be a promising therapeutic strategy to treatment of chronic pain.
Collapse
Affiliation(s)
- Zongyi Liang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Liren Li
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Liying Bai
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China; Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital, Zhengzhou University, 1 Jianshe East Road, Zhengzhou 450052, China
| | - Yan Gao
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Yiming Qiao
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Xueli Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Lili Yv
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Ji-Tian Xu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China; Neuroscience Research Institute, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China.
| |
Collapse
|
9
|
Varadi G. Mechanism of Analgesia by Gabapentinoid Drugs: Involvement of Modulation of Synaptogenesis and Trafficking of Glutamate-Gated Ion Channels. J Pharmacol Exp Ther 2024; 388:121-133. [PMID: 37918854 DOI: 10.1124/jpet.123.001669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
Gabapentinoids have clinically been used for treating epilepsy, neuropathic pain, and several other neurologic disorders for >30 years; however, the definitive molecular mechanism responsible for their therapeutic actions remained uncertain. The conventional pharmacological observation regarding their efficacy in chronic pain modulation is the weakening of glutamate release at presynaptic terminals in the spinal cord. While the α2/δ-1 subunit of voltage-gated calcium channels (VGCCs) has been identified as the primary drug receptor for gabapentinoids, the lack of consistent effect of this drug class on VGCC function is indicative of a minor role in regulating this ion channel's activity. The current review targets the efficacy and mechanism of gabapentinoids in treating chronic pain. The discovery of interaction of α2/δ-1 with thrombospondins established this protein as a major synaptogenic neuronal receptor for thrombospondins. Other findings identified α2/δ-1 as a powerful regulator of N-methyl-D-aspartate receptor (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) by potentiating the synaptic expression, a putative pathophysiological mechanism of neuropathic pain. Further, the interdependent interactions between thrombospondin and α2/δ-1 contribute to chronic pain states, while gabapentinoid ligands efficaciously reverse such pain conditions. Gabapentin normalizes and even blocks NMDAR and AMPAR synaptic targeting and activity elicited by nerve injury. SIGNIFICANCE STATEMENT: Gabapentinoid drugs are used to treat various neurological conditions including chronic pain. In chronic pain states, gene expression of cacnα2/δ-1 and thrombospondins are upregulated and promote aberrant excitatory synaptogenesis. The complex trait of protein associations that involve interdependent interactions between α2/δ-1 and thrombospondins, further, association of N-methyl-D-aspartate receptor and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor with the C-tail of α2/δ-1, constitutes a macromolecular signaling complex that forms the crucial elements for the pharmacological mode of action of gabapentinoids.
Collapse
|
10
|
Huang Y, Chen H, Chen SR, Pan HL. Duloxetine and Amitriptyline Reduce Neuropathic Pain by Inhibiting Primary Sensory Input to Spinal Dorsal Horn Neurons via α1- and α2-Adrenergic Receptors. ACS Chem Neurosci 2023; 14:1261-1277. [PMID: 36930958 DOI: 10.1021/acschemneuro.2c00780] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
Antidepressants, such as duloxetine and amitriptyline, are effective for treating patients with chronic neuropathic pain. Inhibiting norepinephrine and serotonin transporters at presynaptic terminals raises extracellular concentrations of norepinephrine. The α1- and α2-adrenergic receptor agonists inhibit glutamatergic input from primary afferent nerves to the spinal dorsal horn. However, the contribution of spinal α1- and α2-adrenergic receptors to the analgesic effect of antidepressants and associated synaptic plasticity remains uncertain. In this study, we showed that systemic administration of duloxetine or amitriptyline acutely reduced tactile allodynia and mechanical and thermal hyperalgesia caused by spinal nerve ligation in rats. In contrast, duloxetine or amitriptyline had no effect on nociception in sham rats. Blocking α1-adrenergic receptors with WB-4101 or α2-adrenergic receptors with yohimbine at the spinal level diminished the analgesic effect of systemically administered duloxetine and amitriptyline. Furthermore, intrathecal injection of duloxetine or amitriptyline similarly attenuated pain hypersensitivity in nerve-injured rats; the analgesic effect was abolished by intrathecal pretreatment with both WB-4101 and yohimbine. In addition, whole-cell patch-clamp recordings in spinal cord slices showed that duloxetine or amitriptyline rapidly inhibited dorsal root-evoked excitatory postsynaptic currents in dorsal horn neurons in nerve-injured rats but had no such effect in sham rats. The inhibitory effect of duloxetine and amitriptyline was abolished by the WB-4101 and yohimbine combination. Therefore, antidepressants attenuate neuropathic pain predominantly by inhibiting primary afferent input to the spinal cord via activating both α1- and α2-adrenergic receptors. This information helps the design of new strategies to improve the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Yuying Huang
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| |
Collapse
|
11
|
Huang Y, Chen SR, Pan HL. Calcineurin Regulates Synaptic Plasticity and Nociceptive Transmission at the Spinal Cord Level. Neuroscientist 2022; 28:628-638. [PMID: 34791930 DOI: 10.1177/10738584211046888] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Calcineurin, the predominant Ca2+/calmodulin-dependent serine/threonine protein phosphatase (also known as protein phosphatase 2B), is highly expressed in immune T cells and the nervous system, including the dorsal root ganglion and spinal cord. It controls synaptic transmission and plasticity by maintaining the appropriate phosphorylation status of many ion channels present at presynaptic and postsynaptic sites. As such, normal calcineurin activity in neurons and synapses is mainly involved in negative feedback regulation in response to increased neuronal activity and intracellular Ca2+ levels. Calcineurin inhibitors (e.g., cyclosporine and tacrolimus) are widely used as immunosuppressants in tissue and organ transplantation recipients and for treating autoimmune diseases but can cause severe pain in some patients. Furthermore, diminished calcineurin activity at the spinal cord level may play a major role in the transition from acute to chronic neuropathic pain after nerve injury. Restoring calcineurin activity at the spinal cord level produces long-lasting pain relief in animal models of neuropathic pain. In this article, we provide an overview of recent studies on the critical roles of calcineurin in regulating glutamate NMDA and AMPA receptors, voltage-gated Ca2+ channels, potassium channels, and transient receptor potential channels expressed in the spinal dorsal horn and primary sensory neurons.
Collapse
Affiliation(s)
- Yuying Huang
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
12
|
PRG-1 prevents neonatal stimuli-induced persistent hyperalgesia and memory dysfunction via NSF/Glu/GluR2 signaling. iScience 2022; 25:104989. [PMID: 36093041 PMCID: PMC9460187 DOI: 10.1016/j.isci.2022.104989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/02/2022] [Accepted: 08/17/2022] [Indexed: 11/23/2022] Open
Abstract
Neonatal repetitive noxious stimuli (RNS) has been shown to cause long-term harmful effects on nociceptive processing, learning, and memory which persist until adulthood. Plasticity-related gene 1 (PRG-1) regulates synaptic plasticity and functional reorganization in the brain during neuronal development. In this study, neonatal RNS rats were established by repetitive needle pricks to neonatal rats on all four feet to model repetitive pain exposure in infants. Neonatal RNS caused thermal hyperalgesia, mechanical allodynia, learning, and memory impairments which manifested in young rats and persisted until adulthood. Hippocampal PRG-1/N-ethylmaleimide sensitive fusion protein (NSF) interaction was determined to be responsible for the RNS-induced impairment via enhanced extracellular glutamate release and AMPAR GluR2 trafficking deficiency in a cell-autonomous manner. These pathways likely act synergistically to cause changes in dendritic spine density. Our findings suggest that PRG-1 prevents the RNS-induced hyperalgesia, learning, and memory impairment by regulating synaptic plasticity via NSF/Glu/GluR2 signaling. Neonatal RNS induced hyperalgesia, learning, and memory impairment until adulthood. PRG-1 attenuated RNS-induced impairments by dendritic spine regulation. PRG-1 prevents RNS-induced impairments via NSF/Glu/GluR2 signaling.
Collapse
|
13
|
Search for Selective Glua1 Ampa Receptor Antagonists in a Series of Dicationic Compounds. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02635-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Zhou JJ, Shao JY, Chen SR, Chen H, Pan HL. α2δ-1 Protein Promotes Synaptic Expression of Ca 2+ Permeable-AMPA Receptors by Inhibiting GluA1/GluA2 Heteromeric Assembly in the Hypothalamus in Hypertension. J Neurochem 2022; 161:40-52. [PMID: 35038178 DOI: 10.1111/jnc.15573] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/29/2021] [Accepted: 01/11/2022] [Indexed: 11/30/2022]
Abstract
Glutamate AMPA receptors (AMPARs) lacking GluA2 subunit are calcium permeable (CP-AMPARs), which are increased in the hypothalamic paraventricular nucleus (PVN) and maintain sympathetic outflow in hypertension. Here, we determined the role of α2δ-1, an NMDA receptor-interacting protein, in regulating synaptic CP-AMPARs in the hypothalamus in spontaneously hypertensive rats (SHR). Co-immunoprecipitation showed that levels of GluA1/GluA2, but not GluA2/GluA3, protein complexes in hypothalamic synaptosomes were reduced in SHR compared with Wistar-Kyoto rats (WKY). The level of GluA1/GluA2 heteromers in endoplasmic reticulum-enriched fractions of the hypothalamus was significantly lower in SHR than in WKY, which was restored by inhibiting α2δ-1 with gabapentin. Gabapentin also switched AMPAR-mediated excitatory postsynaptic currents (AMPAR-EPSCs) from inward rectifying to linear and attenuated the inhibitory effect of IEM-1460, a selective CP-AMPAR blocker, on AMPAR-EPSCs in spinally projecting PVN neurons in SHR. Furthermore, co-immunoprecipitation revealed that α2δ-1 directly interacted with GluA1 and GluA2 in the hypothalamus of rats and humans. Levels of α2δ-1/GluA1 and α2δ-1/GluA2 protein complexes in the hypothalamus were significantly greater in SHR than in WKY. Disrupting the α2δ-1-AMPAR interaction with an α2δ-1 C terminus peptide normalized GluA1/GluA2 heteromers in the endoplasmic reticulum of the hypothalamus diminished in SHR. In addition, α2δ-1 C terminus peptide diminished inward rectification of AMPAR-EPSCs and the inhibitory effect of IEM-1460 on AMPAR-EPSCs of PVN neurons in SHR. Thus, α2δ-1 augments synaptic CP-AMPARs by inhibiting GluA1/GluA2 heteromeric assembly in the hypothalamus in hypertension. These findings extend our understanding of the molecular basis of sustained sympathetic outflow in neurogenic hypertension.
Collapse
Affiliation(s)
- Jing-Jing Zhou
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jian-Ying Shao
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
15
|
Kimura Y, Hayashi Y, Hitomi S, Ikutame D, Urata K, Shibuta I, Sakai A, Ni J, Iwata K, Tonogi M, Shinoda M. IL-33 induces orofacial neuropathic pain through Fyn-dependent phosphorylation of GluN2B in the trigeminal spinal subnucleus caudalis. Brain Behav Immun 2022; 99:266-280. [PMID: 34715301 DOI: 10.1016/j.bbi.2021.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Orofacial neuropathic pain can cause considerable disruptions in patients' daily lives, especially because of a lack of effective medications as its underlying causative mechanisms are not fully understood. Here, we found neuron-specific expression of the interleukin (IL)-33 receptor in the trigeminal spinal subnucleus caudalis (Vc), distinct from the spinal dorsal horn. Reduction in head withdrawal threshold in response to von Frey filament stimulation of the whisker pad skin was inversely correlated with the upregulation of IL-33 in the Vc after infraorbital nerve injury (IONI). Neutralization of IL-33 in the Vc alleviated mechanical allodynia in the whisker pad skin after IONI; conversely, intracisternal administration of IL-33 elicited mechanical allodynia in the whisker pad skin, which was relieved by GluN2B antagonism. Moreover, IL-33 triggered the potentiation of GluN2B-containing N-methyl-D-aspartate receptor-mediated synaptic currents and phosphorylation of synaptosomal GluN2B in the Vc, whereas IONI-induced GluN2B phosphorylation was inhibited by neutralization of IL-33 in the Vc. IL-33-induced GluN2B phosphorylation was mediated by phosphorylation of Fyn kinase, and inhibition of the Fyn kinase pathway prevented the development of IL-33-induced mechanical allodynia. Our findings provide insights into a new mechanism by which IL-33 directly regulates synaptic transmission and suggest that IL-33 signaling could be a candidate target for therapeutic interventions for orofacial neuropathic pain.
Collapse
Affiliation(s)
- Yuki Kimura
- Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry, Tokyo, Japan
| | - Yoshinori Hayashi
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan.
| | - Suzuro Hitomi
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Daisuke Ikutame
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - Kentaro Urata
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - Ikuko Shibuta
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Atsushi Sakai
- Department of Pharmacology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Morio Tonogi
- Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry, Tokyo, Japan
| | - Masamichi Shinoda
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
16
|
Li L, Chen SR, Zhou MH, Wang L, Li DP, Chen H, Lee G, Jayaraman V, Pan HL. α2δ-1 switches the phenotype of synaptic AMPA receptors by physically disrupting heteromeric subunit assembly. Cell Rep 2021; 36:109396. [PMID: 34289359 PMCID: PMC8353586 DOI: 10.1016/j.celrep.2021.109396] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/19/2021] [Accepted: 06/22/2021] [Indexed: 11/22/2022] Open
Abstract
Many neurological disorders show an increased prevalence of GluA2-lacking, Ca2+-permeable AMPA receptors (CP-AMPARs), which dramatically alters synaptic function. However, the molecular mechanism underlying this distinct synaptic plasticity remains enigmatic. Here, we show that nerve injury potentiates postsynaptic, but not presynaptic, CP-AMPARs in the spinal dorsal horn via α2δ-1. Overexpressing α2δ-1, previously regarded as a Ca2+ channel subunit, augments CP-AMPAR levels at the cell surface and synapse. Mechanistically, α2δ-1 physically interacts with both GluA1 and GluA2 via its C terminus, inhibits the GluA1/GluA2 heteromeric assembly, and increases GluA2 retention in the endoplasmic reticulum. Consequently, α2δ-1 diminishes the availability and synaptic expression of GluA1/GluA2 heterotetramers in the spinal cord in neuropathic pain. Inhibiting α2δ-1 with gabapentin or disrupting the α2δ-1-AMPAR complex fully restores the intracellular assembly and synaptic dominance of heteromeric GluA1/GluA2 receptors. Thus, α2δ-1 is a pivotal AMPAR-interacting protein that controls the subunit composition and Ca2+ permeability of postsynaptic AMPARs.
Collapse
Affiliation(s)
- Lingyong Li
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Meng-Hua Zhou
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Li Wang
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - De-Pei Li
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Garam Lee
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Vasanthi Jayaraman
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
17
|
Notartomaso S, Scarselli P, Mascio G, Liberatore F, Mazzon E, Mammana S, Gugliandolo A, Cruccu G, Bruno V, Nicoletti F, Battaglia G. N-Acetylcysteine causes analgesia in a mouse model of painful diabetic neuropathy. Mol Pain 2021; 16:1744806920904292. [PMID: 32009537 PMCID: PMC6997966 DOI: 10.1177/1744806920904292] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
N-Acetylcysteine, one of the most prescribed antioxidant drugs, enhances pain
threshold in rodents and humans by activating mGlu2 metabotropic glutamate
receptors. Here, we assessed the analgesic activity of N-acetylcysteine in the
streptozotocin model of painful diabetic neuropathy and examined the effect of
N-acetylcysteine on proteins that are involved in mechanisms of nociceptive
sensitization. Mice with blood glucose levels ≥250 mg/dl in response to a single
intraperitoneal (i.p.) injection of streptozotocin (200 mg/kg) were used for the
assessment of mechanical pain thresholds. Systemic treatment with
N-acetylcysteine (100 mg/kg, i.p., either single injection or daily injections
for seven days) caused analgesia in diabetic mice. N-acetylcysteine-induced
analgesia was abrogated by the Sxc− inhibitors, sulfasalazine (8 mg/kg, i.p.), erastin (30 mg/kg,
i.p.), and sorafenib (10 mg/kg, i.p.), or by the mGlu2/3 receptor antagonist,
LY341495 (1 mg/kg, i.p.). Repeated administrations of N-acetylcysteine in
diabetic mice reduced ERK1/2 phosphorylation in the dorsal region of the lumbar
spinal cord. The analgesic activity of N-acetylcysteine was occluded by the MEK
inhibitor, PD0325901 (25 mg/kg, i.p.), the TRPV1 channel blocker, capsazepine
(40 mg/kg, i.p.), or by a cocktail of NMDA and mGlu5 metabotropic glutamate
receptor antagonists (memantine, 25 mg/kg, plus MTEP, 5 mg/kg,
both i.p.). These findings offer the first demonstration that N-acetylcysteine
relieves pain associated with diabetic neuropathy and holds promise for the use
of N-acetylcysteine as an add-on drug in diabetic patients.
Collapse
Affiliation(s)
| | - Pamela Scarselli
- IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| | - Giada Mascio
- IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| | | | | | - Santa Mammana
- IRCCS Centro Neurolesi "Bonino-Pulejo", Messina, Italy
| | | | - Giorgio Cruccu
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Valeria Bruno
- IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy.,Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Ferdinando Nicoletti
- IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy.,Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Giuseppe Battaglia
- IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy.,Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| |
Collapse
|
18
|
Bagaméry F, Varga K, Kecsmár K, Vincze I, Szökő É, Tábi T. The Impact of Differentiation on Cytotoxicity and Insulin Sensitivity in Streptozotocin Treated SH-SY5Y Cells. Neurochem Res 2021; 46:1350-1358. [PMID: 33616807 PMCID: PMC8084777 DOI: 10.1007/s11064-021-03269-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 11/29/2022]
Abstract
Recently neuronal insulin resistance was suggested playing a role in Alzheimer’s disease. Streptozotocin (STZ) is commonly used to induce impairment in insulin metabolism. In our previous work on undifferentiated SH-SY5Y cells the compound exerted cytotoxicity without altering insulin sensitivity. Nevertheless, differentiation of the cells to a more mature neuron-like phenotype may considerably affect the significance of insulin signaling and its sensitivity to STZ. We aimed at studying the influence of STZ treatment on insulin signaling in SH-SY5Y cells differentiated by retinoic acid (RA). Cytotoxicity of STZ or low serum (LS) condition and protective effect of insulin were compared in RA differentiated SH-SY5Y cells. The effect of insulin and an incretin analogue, exendin-4 on insulin signaling was also examined by assessing glycogen synthase kinase-3 (GSK-3) phosphorylation. STZ was found less cytotoxic in the differentiated cells compared to our previous results in undifferentiated SH-SY5Y cells. The cytoprotective concentration of insulin was similar in the STZ and LS groups. However, the right-shifted concentration–response curve of insulin induced GSK-3 phosphorylation in STZ-treated differentiated cells is suggestive of the development of insulin resistance that was further confirmed by the insulin potentiating effect of exendin-4. Differentiation reduced the sensitivity of SH-SY5Y cells for the non-specific cytotoxicity of STZ and enhanced the relative significance of development of insulin resistance. The differentiated cells thus serve as a better model for studying the role of insulin signaling in neuronal survival. However, direct cytotoxicity of STZ also contributes to the cell death.
Collapse
Affiliation(s)
- Fruzsina Bagaméry
- Department of Pharmacodynamics, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Kamilla Varga
- Department of Pharmacodynamics, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Kitti Kecsmár
- Department of Pharmacodynamics, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - István Vincze
- Department of Pharmacodynamics, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Éva Szökő
- Department of Pharmacodynamics, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Tamás Tábi
- Department of Pharmacodynamics, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary.
| |
Collapse
|
19
|
Xiao-Die X, Xiao-Hong W, Cheng-Feng H, Zhong-Yu Y, Jian-Tao W, Hou-Guang Z, Jing-Chun G. Increased NRSF/REST in anterior cingulate cortex contributes to diabetes-related neuropathic pain. Biochem Biophys Res Commun 2020; 527:785-790. [PMID: 32423826 DOI: 10.1016/j.bbrc.2020.04.106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023]
Abstract
Diabetic neuropathic pain is one of the most common complications of diabetes. Mechanisms underlying the central modulation are still unclear. Here, we investigated the role of the neuron-restricted silencing factor (NRSF/REST) in diabetic-related neuropathic pain. Mechanical allodynia and thermal hyperalgesia were assessed to evaluate painful behaviors. Our results found that in the anterior cingulate cortex (ACC) of db/db mice, NRSF/REST levels increased significantly. Reduction of NRSF/REST improved the painful sensation. Meanwhile, in vitro study found that high glucose and high palmitic acid treatment induced elevation of NRSF/REST and its cofactors (mSin3A, CoREST and HDAC1), whereas downregulation of GluR2 and NMDAR2B. Knockdown of NRSF/REST could attenuate the LDH release and partially reversed the expression changes of HDAC1 and NMDAR2B. Our results suggested that the elevation of NRSF/REST in the ACC area of db/db mice is one of the key mediators of diabetic neuropathic pain.
Collapse
Affiliation(s)
- Xu Xiao-Die
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Translational Neuroscience Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Wen Xiao-Hong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Translational Neuroscience Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - He Cheng-Feng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Translational Neuroscience Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Yu Zhong-Yu
- Department of Geriatric Neurology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Wang Jian-Tao
- Department of Geriatric Neurology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Zhou Hou-Guang
- Department of Geriatric Neurology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Guo Jing-Chun
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Translational Neuroscience Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, China.
| |
Collapse
|