1
|
Liu X, Sun X, Guo C, Huang ZF, Chen YR, Feng FM, Wu LJ, Chen WX. Untargeted urine metabolomics and machine learning provide potential metabolic signatures in children with autism spectrum disorder. Front Psychiatry 2024; 15:1261617. [PMID: 38445087 PMCID: PMC10912307 DOI: 10.3389/fpsyt.2024.1261617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/19/2024] [Indexed: 03/07/2024] Open
Abstract
Background Complementary to traditional biostatistics, the integration of untargeted urine metabolomic profiling with Machine Learning (ML) has the potential to unveil metabolic profiles crucial for understanding diseases. However, the application of this approach in autism remains underexplored. Our objective was to delve into the metabolic profiles of autism utilizing a comprehensive untargeted metabolomics platform coupled with ML. Methods Untargeted metabolomics quantification (UHPLC/Q-TOF-MS) was performed for urine analysis. Feature selection was conducted using Lasso regression, and logistic regression, support vector machine, random forest, and extreme gradient boosting were utilized for significance stratification. Pathway enrichment analysis was performed to identify metabolic pathways associated with autism. Results A total of 52 autistic children and 40 typically developing children were enrolled. Lasso regression identified ninety-two urinary metabolites that significantly differed between the two groups. Distinct metabolites, such as prostaglandin E2, phosphonic acid, lysine, threonine, and phenylalanine, were revealed to be associated with autism through the application of four different ML methods (p<0.05). The alterations observed in the phosphatidylinositol and inositol phosphate metabolism pathways were linked to the pathophysiology of autism (p<0.05). Conclusion Significant urinary metabolites, including prostaglandin E2, phosphonic acid, lysine, threonine, and phenylalanine, exhibit associations with autism. Additionally, the involvement of the phosphatidylinositol and inositol phosphate pathways suggests their potential role in the pathophysiology of autism.
Collapse
Affiliation(s)
- Xian Liu
- Department of Children’s and Adolescent Health, College of Public Health, Harbin Medical University, Harbin, China
- Division of Birth Cohort Study, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Xin Sun
- Clinical Research and Innovation Center, Xinhua Hospital Affiliated with Shanghai Jiao Tong University, Shanghai, China
| | - Cheng Guo
- The Assessment and Intervention Center for Autistic Children, Guangzhou Women and Children’s Medical Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
- Department of Neurology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Zhi-Fang Huang
- The Assessment and Intervention Center for Autistic Children, Guangzhou Women and Children’s Medical Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
- Department of Neurology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Yi-Ru Chen
- The Assessment and Intervention Center for Autistic Children, Guangzhou Women and Children’s Medical Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
- Department of Neurology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Fang-Mei Feng
- The Assessment and Intervention Center for Autistic Children, Guangzhou Women and Children’s Medical Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
- Department of Neurology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Li-Jie Wu
- Department of Children’s and Adolescent Health, College of Public Health, Harbin Medical University, Harbin, China
| | - Wen-Xiong Chen
- The Assessment and Intervention Center for Autistic Children, Guangzhou Women and Children’s Medical Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
- Department of Neurology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| |
Collapse
|
2
|
Kurz M, Ulrich M, Bittner A, Scharf MM, Shao J, Wallenstein I, Lemoine H, Wettschureck N, Kolb P, Bünemann M. EP4 Receptor Conformation Sensor Suited for Ligand Screening and Imaging of Extracellular Prostaglandins. Mol Pharmacol 2023; 104:80-91. [PMID: 37442628 DOI: 10.1124/molpharm.122.000648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/11/2023] [Accepted: 06/01/2023] [Indexed: 07/15/2023] Open
Abstract
Prostaglandins are important lipid mediators with a wide range of functions in the human body. They act mainly via plasma membrane localized prostaglandin receptors, which belong to the G-protein coupled receptor class. Due to their localized formation and short lifetime, it is important to be able to measure the distribution and abundance of prostaglandins in time and/or space. In this study, we present a Foerster resonance energy transfer (FRET)-based conformation sensor of the human prostaglandin E receptor subtype 4 (EP4 receptor), which was capable of detecting prostaglandin E2 (PGE2)-induced receptor activation in the low nanomolar range with a good signal-to-noise ratio. The sensor retained the typical selectivity for PGE2 among arachidonic acid products. Human embryonic kidney cells stably expressing the sensor did not produce detectable amounts of prostaglandins making them suitable for a coculture approach allowing us, over time, to detect prostaglandin formation in Madin-Darby canine kidney cells and primary mouse macrophages. Furthermore, the EP4 receptor sensor proved to be suited to detect experimentally generated PGE2 gradients by means of FRET-microscopy, indicating the potential to measure gradients of PGE2 within tissues. In addition to FRET-based imaging of prostanoid release, the sensor allowed not only for determination of PGE2 concentrations, but also proved to be capable of measuring ligand binding kinetics. The good signal-to-noise ratio at a commercial plate reader and the ability to directly determine ligand efficacy shows the obvious potential of this sensor interest for screening and characterization of novel ligands of the pharmacologically important human EP4 receptor. SIGNIFICANCE STATEMENT: The authors present a biosensor based on the prostaglandin E receptor subtype 4, which is well suited to measure extracellular prostaglandin E2 (PGE2) concentration with high temporal and spatial resolution. It can be used for the imaging of PGE2 levels and gradients by means of Foerster resonance energy transfer microscopy, and for determining PGE2 release of primary cells as well as for screening purposes in a plate reader setting.
Collapse
Affiliation(s)
- Michael Kurz
- Institutes for Pharmacology and Clinical Pharmacy (M.K., M.U., A.B., I.W., M.B.) and Pharmaceutical Chemistry (M.M.S., P.K.), Faculty of Pharmacy, Philipps-University Marburg, Marburg, Germany; Department of Pharmacology (J.S., N.W.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Department of Laser Medicine, Heinrich Heine University, Düsseldorf, Germany (H.L.); and LWL-Laboratory (H.L.), Düsseldorf, Germany
| | - Michaela Ulrich
- Institutes for Pharmacology and Clinical Pharmacy (M.K., M.U., A.B., I.W., M.B.) and Pharmaceutical Chemistry (M.M.S., P.K.), Faculty of Pharmacy, Philipps-University Marburg, Marburg, Germany; Department of Pharmacology (J.S., N.W.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Department of Laser Medicine, Heinrich Heine University, Düsseldorf, Germany (H.L.); and LWL-Laboratory (H.L.), Düsseldorf, Germany
| | - Alwina Bittner
- Institutes for Pharmacology and Clinical Pharmacy (M.K., M.U., A.B., I.W., M.B.) and Pharmaceutical Chemistry (M.M.S., P.K.), Faculty of Pharmacy, Philipps-University Marburg, Marburg, Germany; Department of Pharmacology (J.S., N.W.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Department of Laser Medicine, Heinrich Heine University, Düsseldorf, Germany (H.L.); and LWL-Laboratory (H.L.), Düsseldorf, Germany
| | - Magdalena Martina Scharf
- Institutes for Pharmacology and Clinical Pharmacy (M.K., M.U., A.B., I.W., M.B.) and Pharmaceutical Chemistry (M.M.S., P.K.), Faculty of Pharmacy, Philipps-University Marburg, Marburg, Germany; Department of Pharmacology (J.S., N.W.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Department of Laser Medicine, Heinrich Heine University, Düsseldorf, Germany (H.L.); and LWL-Laboratory (H.L.), Düsseldorf, Germany
| | - Jingchen Shao
- Institutes for Pharmacology and Clinical Pharmacy (M.K., M.U., A.B., I.W., M.B.) and Pharmaceutical Chemistry (M.M.S., P.K.), Faculty of Pharmacy, Philipps-University Marburg, Marburg, Germany; Department of Pharmacology (J.S., N.W.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Department of Laser Medicine, Heinrich Heine University, Düsseldorf, Germany (H.L.); and LWL-Laboratory (H.L.), Düsseldorf, Germany
| | - Imke Wallenstein
- Institutes for Pharmacology and Clinical Pharmacy (M.K., M.U., A.B., I.W., M.B.) and Pharmaceutical Chemistry (M.M.S., P.K.), Faculty of Pharmacy, Philipps-University Marburg, Marburg, Germany; Department of Pharmacology (J.S., N.W.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Department of Laser Medicine, Heinrich Heine University, Düsseldorf, Germany (H.L.); and LWL-Laboratory (H.L.), Düsseldorf, Germany
| | - Horst Lemoine
- Institutes for Pharmacology and Clinical Pharmacy (M.K., M.U., A.B., I.W., M.B.) and Pharmaceutical Chemistry (M.M.S., P.K.), Faculty of Pharmacy, Philipps-University Marburg, Marburg, Germany; Department of Pharmacology (J.S., N.W.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Department of Laser Medicine, Heinrich Heine University, Düsseldorf, Germany (H.L.); and LWL-Laboratory (H.L.), Düsseldorf, Germany
| | - Nina Wettschureck
- Institutes for Pharmacology and Clinical Pharmacy (M.K., M.U., A.B., I.W., M.B.) and Pharmaceutical Chemistry (M.M.S., P.K.), Faculty of Pharmacy, Philipps-University Marburg, Marburg, Germany; Department of Pharmacology (J.S., N.W.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Department of Laser Medicine, Heinrich Heine University, Düsseldorf, Germany (H.L.); and LWL-Laboratory (H.L.), Düsseldorf, Germany
| | - Peter Kolb
- Institutes for Pharmacology and Clinical Pharmacy (M.K., M.U., A.B., I.W., M.B.) and Pharmaceutical Chemistry (M.M.S., P.K.), Faculty of Pharmacy, Philipps-University Marburg, Marburg, Germany; Department of Pharmacology (J.S., N.W.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Department of Laser Medicine, Heinrich Heine University, Düsseldorf, Germany (H.L.); and LWL-Laboratory (H.L.), Düsseldorf, Germany
| | - Moritz Bünemann
- Institutes for Pharmacology and Clinical Pharmacy (M.K., M.U., A.B., I.W., M.B.) and Pharmaceutical Chemistry (M.M.S., P.K.), Faculty of Pharmacy, Philipps-University Marburg, Marburg, Germany; Department of Pharmacology (J.S., N.W.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Department of Laser Medicine, Heinrich Heine University, Düsseldorf, Germany (H.L.); and LWL-Laboratory (H.L.), Düsseldorf, Germany
| |
Collapse
|
3
|
Kolousek A, Pak-Harvey E, Liu-Lam O, White M, Smith P, Henning F, Koval M, Levy JM. The Effects of Endogenous Cannabinoids on the Mammalian Respiratory System: A Scoping Review of Cyclooxygenase-Dependent Pathways. Cannabis Cannabinoid Res 2023; 8:434-444. [PMID: 37074668 PMCID: PMC10249741 DOI: 10.1089/can.2022.0277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
Introduction: The endogenous cannabinoid (endocannabinoid) system is an emerging target for the treatment of chronic inflammatory disease with the potential to advance treatment for many respiratory illnesses. The varied effects of endocannabinoids across tissue types makes it imperative that we explore their physiologic impact within unique tissue targets. The aim of this scoping review is to explore the impact of endocannabinoid activity on eicosanoid production as a measure of human airway inflammation. Methods: A scoping literature review was conducted according to PRISMA-ScR (Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews) guidelines. Search strategies using MeSH terms related to cannabinoids, eicosanoids, cyclooxygenase (COX), and the respiratory system were used to query Medline, Embase, Cochrane, CINAHL, Web of Science, and Biosis Previews in December 2021. Only studies that investigated the relationship between endocannabinoids and the eicosanoid system in mammalian respiratory tissue after 1992 were included. Results: Sixteen studies were incorporated in the final qualitative review. Endocannabinoid activation increases COX-2 expression, potentially through ceramide-dependent or p38 and p42/44 Mitogen-Activated Protein Kinase pathways and is associated with a concentration-dependent increase in prostaglandin (PG)E2. Inhibitors of endocannabinoid hydrolysis found either an increase or no change in levels of PGE2 and PGD2 and decreased levels of leukotriene (LT)B4, PGI2, and thromboxane A2 (TXA2). Endocannabinoids increase bronchial epithelial cell permeability and have vasorelaxant effects in human pulmonary arteries and cause contraction of bronchi and decreased gas trapping in guinea pigs. Inhibitors of endocannabinoid hydrolysis were found to have anti-inflammatory effects on pulmonary tissue and are primarily mediated by COX-2 and activation of eicosanoid receptors. Direct agonism of endocannabinoid receptors appears to play a minor role. Conclusion: The endocannabinoid system has diverse effects on the mammalian airway. While endocannabinoid-derived PGs can have anti-inflammatory effects, endocannabinoids also produce proinflammatory conditions, such as increased epithelial permeability and bronchial contraction. These conflicting findings suggest that endocannabinoids produce a variety of effects depending on their local metabolism and receptor agonism. Elucidation of the complex interplay between the endocannabinoid and eicosanoid pathways is key to leveraging the endocannabinoid system as a potential therapeutic target for human airway disease.
Collapse
Affiliation(s)
| | | | - Oliver Liu-Lam
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mia White
- Emory Libraries, Emory University, Atlanta, Georgia, USA
| | - Prestina Smith
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Joshua M. Levy
- Department of Otolaryngology—Head & Neck Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Peiris HN, Vaswani K, Holland O, Koh YQ, Almughlliq FB, Reed S, Mitchell MD. Altered productions of prostaglandins and prostamides by human amnion in response to infectious and inflammatory stimuli identified by mutliplex mass spectrometry. Prostaglandins Leukot Essent Fatty Acids 2020; 154:102059. [PMID: 32014738 DOI: 10.1016/j.plefa.2020.102059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/28/2019] [Accepted: 01/21/2020] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Prostaglandins are critical for the onset and progression of labor in mammals, and are formed by the metabolism of arachidonic acid. The products of arachidonic acid, 2-arachidonoylglycerol (2-AG), and anandamide (AEA) have a similar lipid back bone but differing polar head groups, meaning that identification of these products by immunoassay can be difficult. MATERIALS AND METHODS In the current study, we present the use of mass spectrometry as multiplex method of identifying the specific end products of arachidonic and anandamide metabolism by human derived amnion explants treated with either an infectious agent (LPS) or inflammatory mediator (IL-1β or TNF-α). RESULTS Human amnion tissue explants treated with LPS, IL-1β, or TNF-α increased production of prostaglandin E2 (PGE2; p < 0.05) but decreased PGFM. Overall, PGE2 production was greater compared to the other prostaglandins and prostamides irrespective of treatment. CONCLUSIONS The findings of the current study are in keeping with the literature which describes amnion tissues as predominantly producing PGE2. The use of mass spectrometry for the differential identification of prostaglandins, prostamides, and other eicosanoids may help better elucidate mechanisms of preterm labor, and lead to new targets for the prediction of risk for preterm labor and/or birth.
Collapse
Affiliation(s)
- Hassendrini N Peiris
- School of Biomedical Science, Institute of Health and Biomedical Innovation - Centre for Children's Health Research, Faculty of Health, Queensland University of Technology, 62 Graham Street, South Brisbane, QLD 4101, Australia.
| | - Kanchan Vaswani
- School of Biomedical Science, Institute of Health and Biomedical Innovation - Centre for Children's Health Research, Faculty of Health, Queensland University of Technology, 62 Graham Street, South Brisbane, QLD 4101, Australia
| | - Olivia Holland
- School of Biomedical Science, Institute of Health and Biomedical Innovation - Centre for Children's Health Research, Faculty of Health, Queensland University of Technology, 62 Graham Street, South Brisbane, QLD 4101, Australia
| | - Yong Qin Koh
- School of Biomedical Science, Institute of Health and Biomedical Innovation - Centre for Children's Health Research, Faculty of Health, Queensland University of Technology, 62 Graham Street, South Brisbane, QLD 4101, Australia
| | - Fatema B Almughlliq
- University of Queensland Centre for Clinical Research, Building 71/918, Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia
| | - Sarah Reed
- University of Queensland Centre for Clinical Research, Building 71/918, Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia
| | - Murray D Mitchell
- School of Biomedical Science, Institute of Health and Biomedical Innovation - Centre for Children's Health Research, Faculty of Health, Queensland University of Technology, 62 Graham Street, South Brisbane, QLD 4101, Australia.
| |
Collapse
|
5
|
Buisseret B, Alhouayek M, Guillemot-Legris O, Muccioli GG. Endocannabinoid and Prostanoid Crosstalk in Pain. Trends Mol Med 2019; 25:882-896. [PMID: 31160168 DOI: 10.1016/j.molmed.2019.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/18/2019] [Accepted: 04/22/2019] [Indexed: 12/31/2022]
Abstract
Interfering with endocannabinoid (eCB) metabolism to increase their levels is a proven anti-nociception strategy. However, because the eCB and prostanoid systems are intertwined, interfering with eCB metabolism will affect the prostanoid system and inversely. Key to this connection is the production of the cyclooxygenase (COX) substrate arachidonic acid upon eCB hydrolysis as well as the ability of COX to metabolize the eCBs anandamide (AEA) and 2-arachidonoylglycerol (2-AG) into prostaglandin-ethanolamides (PG-EA) and prostaglandin-glycerol esters (PG-G), respectively. Recent studies shed light on the role of PG-Gs and PG-EAs in nociception and inflammation. Here, we discuss the role of these complex systems in nociception and new opportunities to alleviate pain by interacting with them.
Collapse
Affiliation(s)
- Baptiste Buisseret
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Bruxelles, Belgium
| | - Mireille Alhouayek
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Bruxelles, Belgium
| | - Owein Guillemot-Legris
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Bruxelles, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Bruxelles, Belgium.
| |
Collapse
|
6
|
Bukiya AN. Physiology of the Endocannabinoid System During Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1162:13-37. [PMID: 31332732 DOI: 10.1007/978-3-030-21737-2_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The endocannabinoid (eCB) system comprises endogenously produced cannabinoids (CBs), enzymes of their production and degradation, and CB-sensing receptors and transporters. The eCB system plays a critical role in virtually all stages of animal development. Studies on eCB system components and their physiological role have gained increasing attention with the rising legalization and medical use of marijuana products. The latter represent exogenous interventions that target the eCB system. This chapter summarizes knowledge in the field of CB contribution to gametogenesis, fertilization, embryo implantation, fetal development, birth, and adolescence-equivalent periods of ontogenesis. The material is complemented by the overview of data from our laboratory documenting the functional presence of the eCB system within cerebral arteries of baboons at different stages of development.
Collapse
Affiliation(s)
- Anna N Bukiya
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
7
|
Rojas A, Chen D, Ganesh T, Varvel NH, Dingledine R. The COX-2/prostanoid signaling cascades in seizure disorders. Expert Opin Ther Targets 2018; 23:1-13. [PMID: 30484341 DOI: 10.1080/14728222.2019.1554056] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction:A robust neuroinflammatory response is a prevalent feature of multiple neurological disorders, including epilepsy and acute status epilepticus. One component of this neuroinflammatory reaction is the induction of cyclooxygenase-2 (COX-2), synthesis of several prostaglandins and endocannabinoid metabolites, and subsequent activation of prostaglandin and related receptors. Neuroinflammation mediated by COX-2 and its downstream effectors has received considerable attention as a potential target class to ameliorate the deleterious consequences of neurological injury. Areas covered: Here we describe the roles of COX-2 as a major inflammatory mediator. In addition, we discuss the receptors for prostanoids PGE2, prostaglandin D2, and PGF2α as potential therapeutic targets for inflammation-driven diseases. The consequences of prostanoid receptor activation after seizure activity are discussed with an emphasis on the utilization of small molecules to modulate prostanoid receptor activity. Expert opinion: Limited clinical trial experience is supportive but not definitive for a role of the COX signaling cascade in epileptogenesis. The cardiotoxicity associated with chronic coxib use, and the expectation that COX-2 inhibition will influence the levels of endocannabinoids, leukotrienes, and lipoxins as well as the prostaglandins and their endocannabinoid metabolite analogs, is shifting attention toward downstream synthases and receptors that mediate inflammation in the brain.
Collapse
Affiliation(s)
- Asheebo Rojas
- a Department of Pharmacology , Emory University School of Medicine , Atlanta , GA , USA
| | - Di Chen
- a Department of Pharmacology , Emory University School of Medicine , Atlanta , GA , USA
| | - Thota Ganesh
- a Department of Pharmacology , Emory University School of Medicine , Atlanta , GA , USA
| | - Nicholas H Varvel
- a Department of Pharmacology , Emory University School of Medicine , Atlanta , GA , USA
| | - Raymond Dingledine
- a Department of Pharmacology , Emory University School of Medicine , Atlanta , GA , USA
| |
Collapse
|
8
|
Gallelli CA, Calcagnini S, Romano A, Koczwara JB, de Ceglia M, Dante D, Villani R, Giudetti AM, Cassano T, Gaetani S. Modulation of the Oxidative Stress and Lipid Peroxidation by Endocannabinoids and Their Lipid Analogues. Antioxidants (Basel) 2018; 7:E93. [PMID: 30021985 PMCID: PMC6070960 DOI: 10.3390/antiox7070093] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 02/06/2023] Open
Abstract
Growing evidence supports the pivotal role played by oxidative stress in tissue injury development, thus resulting in several pathologies including cardiovascular, renal, neuropsychiatric, and neurodegenerative disorders, all characterized by an altered oxidative status. Reactive oxygen and nitrogen species and lipid peroxidation-derived reactive aldehydes including acrolein, malondialdehyde, and 4-hydroxy-2-nonenal, among others, are the main responsible for cellular and tissue damages occurring in redox-dependent processes. In this scenario, a link between the endocannabinoid system (ECS) and redox homeostasis impairment appears to be crucial. Anandamide and 2-arachidonoylglycerol, the best characterized endocannabinoids, are able to modulate the activity of several antioxidant enzymes through targeting the cannabinoid receptors type 1 and 2 as well as additional receptors such as the transient receptor potential vanilloid 1, the peroxisome proliferator-activated receptor alpha, and the orphan G protein-coupled receptors 18 and 55. Moreover, the endocannabinoids lipid analogues N-acylethanolamines showed to protect cell damage and death from reactive aldehydes-induced oxidative stress by restoring the intracellular oxidants-antioxidants balance. In this review, we will provide a better understanding of the main mechanisms triggered by the cross-talk between the oxidative stress and the ECS, focusing also on the enzymatic and non-enzymatic antioxidants as scavengers of reactive aldehydes and their toxic bioactive adducts.
Collapse
Affiliation(s)
- Cristina Anna Gallelli
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Silvio Calcagnini
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Adele Romano
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Justyna Barbara Koczwara
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Marialuisa de Ceglia
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Donatella Dante
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Rosanna Villani
- C.U.R.E. University Centre for Liver Disease Research and Treatment, Department of Medical and Surgical Sciences, Institute of Internal Medicine, University of Foggia, 71122 Foggia, Italy.
| | - Anna Maria Giudetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia, Via Luigi Pinto, c/o Ospedali Riuniti, 71122 Foggia, Italy.
| | - Silvana Gaetani
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
9
|
Alhouayek M, Buisseret B, Paquot A, Guillemot-Legris O, Muccioli GG. The endogenous bioactive lipid prostaglandin D
2
‐glycerol ester reduces murine colitis
via
DP1 and PPARγ receptors. FASEB J 2018; 32:5000-5011. [DOI: 10.1096/fj.201701205r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Mireille Alhouayek
- Bioanalysis and Pharmacology of Bioactive Lipids Research GroupLouvain Drug Research InstituteUniversité Catholique de LouvainBrusselsBelgium
| | - Baptiste Buisseret
- Bioanalysis and Pharmacology of Bioactive Lipids Research GroupLouvain Drug Research InstituteUniversité Catholique de LouvainBrusselsBelgium
| | - Adrien Paquot
- Bioanalysis and Pharmacology of Bioactive Lipids Research GroupLouvain Drug Research InstituteUniversité Catholique de LouvainBrusselsBelgium
| | - Owein Guillemot-Legris
- Bioanalysis and Pharmacology of Bioactive Lipids Research GroupLouvain Drug Research InstituteUniversité Catholique de LouvainBrusselsBelgium
| | - Giulio G. Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research GroupLouvain Drug Research InstituteUniversité Catholique de LouvainBrusselsBelgium
| |
Collapse
|
10
|
Alhouayek M, Bottemanne P, Makriyannis A, Muccioli GG. N -acylethanolamine-hydrolyzing acid amidase and fatty acid amide hydrolase inhibition differentially affect N -acylethanolamine levels and macrophage activation. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:474-484. [DOI: 10.1016/j.bbalip.2017.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/20/2016] [Accepted: 01/04/2017] [Indexed: 11/16/2022]
|
11
|
Scarpelli R, Sasso O, Piomelli D. A Double Whammy: Targeting Both Fatty Acid Amide Hydrolase (FAAH) and Cyclooxygenase (COX) To Treat Pain and Inflammation. ChemMedChem 2016; 11:1242-51. [PMID: 26486424 PMCID: PMC4840092 DOI: 10.1002/cmdc.201500395] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Indexed: 11/10/2022]
Abstract
Pain states that arise from non-resolving inflammation, such as inflammatory bowel disease or arthritis, pose an unusually difficult challenge for therapy because of the complexity and heterogeneity of their underlying mechanisms. It has been suggested that key nodes linking interactive pathogenic pathways of non-resolving inflammation might offer novel targets for the treatment of inflammatory pain. Nonsteroidal anti-inflammatory drugs (NSAIDs), which inhibit the cyclooxygenase (COX)-mediated production of pain- and inflammation-inducing prostanoids, are a common first-line treatment for this condition, but their use is limited by mechanism-based side effects. The endogenous levels of anandamide, an endocannabinoid mediator with analgesic and tissue-protective functions, are regulated by fatty acid amide hydrolase (FAAH). This review outlines the pharmacological and chemical rationale for the simultaneous inhibition of COX and FAAH activities with designed multitarget agents. Preclinical studies indicate that such agents may combine superior anti-inflammatory efficacy with reduced toxicity.
Collapse
Affiliation(s)
- Rita Scarpelli
- Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy
| | - Oscar Sasso
- Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy
| | - Daniele Piomelli
- Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy.
- Departments of Anatomy and Neurobiology, Pharmacology and Biological Chemistry, University of California, Irvine, CA, 92697-4625, USA.
| |
Collapse
|
12
|
Fetal Alcohol Spectrum Disorder: Potential Role of Endocannabinoids Signaling. Brain Sci 2015; 5:456-93. [PMID: 26529026 PMCID: PMC4701023 DOI: 10.3390/brainsci5040456] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/19/2015] [Accepted: 10/19/2015] [Indexed: 12/15/2022] Open
Abstract
One of the unique features of prenatal alcohol exposure in humans is impaired cognitive and behavioral function resulting from damage to the central nervous system (CNS), which leads to a spectrum of impairments referred to as fetal alcohol spectrum disorder (FASD). Human FASD phenotypes can be reproduced in the rodent CNS following prenatal ethanol exposure. Several mechanisms are expected to contribute to the detrimental effects of prenatal alcohol exposure on the developing fetus, particularly in the developing CNS. These mechanisms may act simultaneously or consecutively and differ among a variety of cell types at specific developmental stages in particular brain regions. Studies have identified numerous potential mechanisms through which alcohol can act on the fetus. Among these mechanisms are increased oxidative stress, mitochondrial damage, interference with the activity of growth factors, glia cells, cell adhesion molecules, gene expression during CNS development and impaired function of signaling molecules involved in neuronal communication and circuit formation. These alcohol-induced deficits result in long-lasting abnormalities in neuronal plasticity and learning and memory and can explain many of the neurobehavioral abnormalities found in FASD. In this review, the author discusses the mechanisms that are associated with FASD and provides a current status on the endocannabinoid system in the development of FASD.
Collapse
|
13
|
Turcotte C, Chouinard F, Lefebvre JS, Flamand N. Regulation of inflammation by cannabinoids, the endocannabinoids 2-arachidonoyl-glycerol and arachidonoyl-ethanolamide, and their metabolites. J Leukoc Biol 2015; 97:1049-70. [PMID: 25877930 DOI: 10.1189/jlb.3ru0115-021r] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/28/2015] [Indexed: 12/26/2022] Open
Abstract
2-Arachidonoyl-glycerol (2-AG) and arachidonyl-ethanolamide (AEA) are endocannabinoids that have been implicated in many physiologic disorders, including obesity, metabolic syndromes, hepatic diseases, pain, neurologic disorders, and inflammation. Their immunomodulatory effects are numerous and are not always mediated by cannabinoid receptors, reflecting the presence of an arachidonic acid (AA) molecule in their structure, the latter being the precursor of numerous bioactive lipids that are pro- or anti-inflammatory. 2-AG and AEA can thus serve as a source of AA but can also be metabolized by most eicosanoid biosynthetic enzymes, yielding additional lipids. In this regard, enhancing endocannabinoid levels by using endocannabinoid hydrolysis inhibitors is likely to augment the levels of these lipids that could regulate inflammatory cell functions. This review summarizes the metabolic pathways involved in the biosynthesis and metabolism of AEA and 2-AG, as well as the biologic effects of the 2-AG and AEA lipidomes in the regulation of inflammation.
Collapse
Affiliation(s)
- Caroline Turcotte
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Département de Médecine, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - François Chouinard
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Département de Médecine, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - Julie S Lefebvre
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Département de Médecine, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - Nicolas Flamand
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Département de Médecine, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| |
Collapse
|
14
|
Finnegan DF, Shelnut EL, Nikas SP, Chiang N, Serhan CN, Makriyannis A. Novel tail and head group prostamide probes. Bioorg Med Chem Lett 2015; 25:1228-31. [PMID: 25701254 PMCID: PMC4405029 DOI: 10.1016/j.bmcl.2015.01.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 01/22/2015] [Accepted: 01/26/2015] [Indexed: 10/24/2022]
Abstract
We report the design and synthesis of novel prostaglandin-ethanolamide (PGE2-EA) analogs containing head and tail group modifications to aid in the characterization of a putative prostamide receptor(s). Our synthetic approach utilizes Horner-Wadsworth-Emmons and Wittig reactions to construct the head and the tail moieties of the key PGE2 precursor, which leads to the final products through a peptide coupling, Swern oxidation and HF/pyridine assisted desilylation. The synthesized analogs were shown not to interact significantly with endocannabinoid proteins and recombinant EP1, EP3 and EP4 receptors and suggest a yet to be identified prostamide receptor as their site(s) of action.
Collapse
Affiliation(s)
- David F Finnegan
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, 360 Huntington Ave, 116 Mugar Hall, Boston, MA 02115, USA
| | - Erin L Shelnut
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, 360 Huntington Ave, 116 Mugar Hall, Boston, MA 02115, USA
| | - Spyros P Nikas
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, 360 Huntington Ave, 116 Mugar Hall, Boston, MA 02115, USA
| | - Nan Chiang
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, 77 Avenue Louis Pasteur (HIM 829), Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, 77 Avenue Louis Pasteur (HIM 829), Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, 360 Huntington Ave, 116 Mugar Hall, Boston, MA 02115, USA; King Abdulaziz University, Jeddah 22254, Saudi Arabia
| |
Collapse
|
15
|
Shelnut EL, Nikas SP, Finnegan DF, Chiang N, Serhan CN, Makriyannis A. Design and synthesis of novel prostaglandin E 2 ethanolamide and glycerol ester probes for the putative prostamide receptor(s). Tetrahedron Lett 2015; 56:1411-1415. [PMID: 25960577 DOI: 10.1016/j.tetlet.2015.01.164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Novel prostaglandin-ethanolamide (PGE2-EA) and glycerol ester (2-PGE2-G) analogs were designed and synthesized to aid in the characterization of a putative prostamide receptor. Our design incorporates the electrophilic isothiocyanato and the photoactivatable azido groups at the terminal tail position of the prototype. Stereoselective Wittig and Horner-Wadsworth-Emmons reactions install the head and the tail moieties of the PGE2 skeleton. The synthesis is completed using Mitsunobu azidation and peptide coupling as the key steps. A chemoenzymatic synthesis for the 2-PGE2-G is described for first time.
Collapse
Affiliation(s)
- Erin L Shelnut
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, 360 Huntington Ave, 116 Mugar Hall, Boston, MA 02115, USA
| | - Spyros P Nikas
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, 360 Huntington Ave, 116 Mugar Hall, Boston, MA 02115, USA
| | - David F Finnegan
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, 360 Huntington Ave, 116 Mugar Hall, Boston, MA 02115, USA
| | - Nan Chiang
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, 77 Avenue Louis Pasteur (HIM 829), Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, 77 Avenue Louis Pasteur (HIM 829), Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, 360 Huntington Ave, 116 Mugar Hall, Boston, MA 02115, USA ; King Abdulaziz University, Jeddah 22254, Saudi Arabia
| |
Collapse
|
16
|
Grim TW, Ghosh S, Hsu KL, Cravatt BF, Kinsey SG, Lichtman AH. Combined inhibition of FAAH and COX produces enhanced anti-allodynic effects in mouse neuropathic and inflammatory pain models. Pharmacol Biochem Behav 2014; 124:405-11. [PMID: 25058512 PMCID: PMC4206939 DOI: 10.1016/j.pbb.2014.07.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 07/09/2014] [Accepted: 07/11/2014] [Indexed: 12/31/2022]
Abstract
UNLABELLED Common pharmacological treatments of neuropathic and chronic inflammatory pain conditions generally lack efficacy and/or are associated with significant untoward side effects. However, recent preclinical data indicate that combined inhibition of cyclooxygenase (COX) and fatty acid amide hydrolase (FAAH), the primary catabolic enzyme of the endocannabinoid N-arachidonoylethanolamine (anandamide; AEA), produces enhanced antinociceptive effects in a variety of murine models of pain. Accordingly, the primary objective of the present study was to investigate the consequences of co-administration of the COX inhibitor diclofenac and the highly selective FAAH inhibitor PF-3845 in models of neuropathic pain (i.e., chronic constrictive injury of the sciatic nerve (CCI)) and inflammatory pain induced by an intraplantar injection of carrageenan. Here, we report that combined administration of subthreshold doses of these drugs produced enhanced antinociceptive effects in CCI and carrageenan pain models, the latter of which was demonstrated to require both CB1 and CB2 receptors. The combined administration of subthreshold doses of these drugs also increased AEA levels and decreased prostaglandin levels in whole brain. Together, these data add to the growing research that dual blockade of FAAH and COX represents a potential therapeutic strategy for the treatment of neuropathic and inflammatory pain states. PERSPECTIVE Tandem inhibition of FAAH and COX attenuates inflammatory and neuropathic pain states, which may avoid potentially harmful side effects of other therapeutic options, such as NSAIDs or opioids.
Collapse
Affiliation(s)
- Travis W Grim
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA.
| | - Sudeshna Ghosh
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Ku-Lung Hsu
- Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Benjamin F Cravatt
- Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Steven G Kinsey
- Department of Psychology, West Virginia University, Morgantown, WV 26506, USA
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| |
Collapse
|
17
|
Hermanson DJ, Gamble-George JC, Marnett LJ, Patel S. Substrate-selective COX-2 inhibition as a novel strategy for therapeutic endocannabinoid augmentation. Trends Pharmacol Sci 2014; 35:358-67. [PMID: 24845457 PMCID: PMC4074568 DOI: 10.1016/j.tips.2014.04.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/17/2014] [Accepted: 04/22/2014] [Indexed: 12/20/2022]
Abstract
Pharmacologic augmentation of endogenous cannabinoid (eCB) signaling is an emerging therapeutic approach for the treatment of a broad range of pathophysiological conditions. Thus far, pharmacological approaches have focused on inhibition of the canonical eCB inactivation pathways - fatty acid amide hydrolase (FAAH) for anandamide and monoacylglycerol lipase (MAGL) for 2-arachidonoylglycerol. We review here the experimental evidence that cyclooxygenase-2 (COX-2)-mediated eCB oxygenation represents a third mechanism for terminating eCB action at cannabinoid receptors. We describe the development, molecular mechanisms, and in vivo validation of 'substrate-selective' COX-2 inhibitors (SSCIs) that prevent eCB inactivation by COX-2 without affecting prostaglandin (PG) generation from arachidonic acid (AA). Lastly, we review recent data on the potential therapeutic applications of SSCIs with a focus on neuropsychiatric disorders.
Collapse
Affiliation(s)
- Daniel J Hermanson
- A.B. Hancock Jr Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology Center in Molecular Toxicology and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Joyonna C Gamble-George
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Lawrence J Marnett
- A.B. Hancock Jr Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology Center in Molecular Toxicology and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | - Sachin Patel
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
18
|
Alhouayek M, Muccioli GG. COX-2-derived endocannabinoid metabolites as novel inflammatory mediators. Trends Pharmacol Sci 2014; 35:284-92. [PMID: 24684963 DOI: 10.1016/j.tips.2014.03.001] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 02/27/2014] [Accepted: 03/03/2014] [Indexed: 11/24/2022]
Abstract
Cyclooxygenase-2 (COX-2) is an enzyme that plays a key role in inflammatory processes. Classically, this enzyme is upregulated in inflammatory situations and is responsible for the generation of prostaglandins (PGs) from arachidonic acid (AA). One lesser-known property of COX-2 is its ability to metabolize the endocannabinoids, N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG). Endocannabinoid metabolism by COX-2 is not merely a means to terminate their actions. On the contrary, it generates PG analogs, namely PG-glycerol esters (PG-G) for 2-AG and PG-ethanolamides (PG-EA or prostamides) for AEA. Although the formation of these COX-2-derived metabolites of the endocannabinoids has been known for a while, their biological effects remain to be fully elucidated. Recently, several studies have focused on the role of these PG-G or PG-EA in vivo. In this review we take a closer look at the literature concerning these novel bioactive lipids and their role in inflammation.
Collapse
Affiliation(s)
- Mireille Alhouayek
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Avenue Emmanuel Mounier 72 (B1.72.01), 1200 Bruxelles, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Avenue Emmanuel Mounier 72 (B1.72.01), 1200 Bruxelles, Belgium.
| |
Collapse
|
19
|
Chan HW, McKirdy NC, Peiris HN, Rice GE, Mitchell MD. The role of endocannabinoids in pregnancy. Reproduction 2013; 146:R101-9. [PMID: 23744614 DOI: 10.1530/rep-12-0508] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Endocannabinoids are a family of lipid signalling molecules. As with prostaglandins (PGs), endocannabinoids are derived from polyunsaturated fatty acids and affect cell function via receptor-mediated mechanisms. They also bind to PG receptors, although at a lower affinity. The endocannabinoid network is regulated in pregnancy from embryo development to labour onset. Even small changes in endocannabinoid exposure can retard embryo development and affect implantation success. There is now compelling evidence that aberrant expression of factors involved in the endocannabinoid pathway in the placenta and circulating lymphocytes results in spontaneous miscarriage and poor pregnancy outcomes. It is likely that competition between endocannabinoids, PGs and other similar lipids ultimately determines how phospholipid/fatty acid substrates are metabolised and, thus, the balance between the uterotonic and tocolytic activities. We, therefore, hypothesise that endocannabinoid profiles may be used as a biomarker to predict and/or identify spontaneous labour onset.
Collapse
Affiliation(s)
- Hsiu-Wen Chan
- Royal Brisbane and Women's Hospital Campus, University of Queensland Centre for Clinical Research, The University of Queensland, Building 71/918, Herston, Queensland 4029, Australia
| | | | | | | | | |
Collapse
|
20
|
Woodward DF, Wang JW, Poloso NJ. Recent progress in prostaglandin F2α ethanolamide (prostamide F2α) research and therapeutics. Pharmacol Rev 2013; 65:1135-47. [PMID: 23893067 DOI: 10.1124/pr.112.007088] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Prostamide (prostaglandin ethanolamide) research emerged from two distinct lines of research: 1) the unique pharmacology of the antiglaucoma drug bimatoprost and 2) the discovery that endocannabinoid anandamide was converted by COX-2 to a series of electrochemically neutral prostaglandin (PG) ethanolamides. Bimatoprost pharmacology was found to be virtually identical to that of prostamide F2α. The earliest studies relied on comparison of agonist potencies compared with PGF2α and synthetic prostaglandin F2α (FP) receptor agonists. The subsequent discovery of selective and potent prostamide receptor antagonists (AGN 211334-6, as shown in Fig. 3) was critical for distinguishing between prostamide and FP receptor-mediated effects. The prostamide F2α receptor was then modeled by cotransfecting the wild-type FP receptor with an mRNA splicing variant (altFP4).Bimatoprost is now used therapeutically for treating both glaucoma and eyelash hypotrichosis. Bimatoprost also stimulates hair growth in isolated human scalp hair follicles. A strong effect is also seen in mouse pelage hair, where bimatoprost essentially halves the onset of hair regrowth and the time to achieve full hair regrowth in shaved mice. Beyond glaucoma and hair growth, bimatoprost has potential for reducing fat deposition. Studies to date suggest that preadipocytes are the cellular target for bimatoprost. The discovery of the enzyme prostamide/PGF synthase was invaluable in elucidating the anatomic distribution of prostamide F2α. High expression in the central nervous system provided the impetus for later studies that described prostamide F2α as a nociceptive mediator in the spinal cord. At the translational level, bimatoprost has already provided therapeutics in two distinct areas and the use of both prostamide agonists and antagonists may provide other useful medicaments.
Collapse
Affiliation(s)
- D F Woodward
- Department of Biological Sciences, Allergan Inc, Irvine, California 92623-9534, USA.
| | | | | |
Collapse
|
21
|
Endogenous cannabinoids revisited: A biochemistry perspective. Prostaglandins Other Lipid Mediat 2013; 102-103:13-30. [DOI: 10.1016/j.prostaglandins.2013.02.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 02/20/2013] [Accepted: 02/21/2013] [Indexed: 12/13/2022]
|
22
|
Characterisation of the prostaglandin E2-ethanolamide suppression of tumour necrosis factor-α production in human monocytic cells. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1098-107. [PMID: 23542062 DOI: 10.1016/j.bbalip.2013.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 03/11/2013] [Accepted: 03/18/2013] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND PURPOSE Prostaglandin ethanolamides or prostamides are naturally occurring neutral lipid derivatives of prostaglandins that have been shown to be synthesised in vivo following COX-facilitated oxygenation of arachidonoyl ethanolamine (anandamide). Although the actions of prostaglandins have been extensively studied, little is known about the physiological or pathophysiological effects of prostamides. Since prostaglandin E2 has potent immunosuppressive/immunomodulating actions, the aim of the present study was to determine whether the derivative, prostaglandin E2 ethanolamide (PGE2-EA), could modulate the production of the pro-inflammatory cytokine tumour necrosis factor-α in human blood and human monocytic cells and indicate whether this action involved the same receptor systems/signals as PGE2. EXPERIMENTAL APPROACH Whole human blood, monocytes isolated from the blood or the human monocytic cell line THP-1 was incubated with LPS and the level of TNF-α produced was measured by ELISA assay. The actions of PGE2-EA were assessed on the LPS-induced TNF-α release. In addition, in order to ascertain the receptors involved, the levels of cyclic AMP in cells were measured in monocytes and THP-1 cells in response to PGE2-EA and directly compared to those of PGE2. The effect of PGE2-EA on the binding of radiolabelled PGE2 to cells was also measured. Cells were incubated with radiolabelled arachidonic acid and ethanolamine to estimate the production of PGE2-EA. KEY RESULTS PGE2-EA potently suppressed TNF-α production in blood, monocytes and the cell line THP-1 in a concentration-dependent manner. This occurred via cyclic AMP pathways as indicated by agents which interfere with these pathways and also direct ligand binding experiments. It was also shown that the cells were able to endogenously produce PGE2-EA. CONCLUSIONS AND IMPLICATIONS This study reports that PGE2-EA can downregulate the production of TNF-α by human mononuclear cells in response to an immune stimulus, i.e. LPS-activated TLR4, and that this appears to occur via a cAMP-dependent mechanism that most likely involves binding to the EP2 receptor.
Collapse
|
23
|
Zogopoulos P, Vasileiou I, Patsouris E, Theocharis S. The neuroprotective role of endocannabinoids against chemical-induced injury and other adverse effects. J Appl Toxicol 2013; 33:246-64. [DOI: 10.1002/jat.2828] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 08/31/2012] [Accepted: 09/01/2012] [Indexed: 12/21/2022]
Affiliation(s)
- Panagiotis Zogopoulos
- 1st Department of Pathology, Medical School; National and Kapodistrian University of Athens; Athens; Greece
| | - Ioanna Vasileiou
- 1st Department of Pathology, Medical School; National and Kapodistrian University of Athens; Athens; Greece
| | - Efstratios Patsouris
- 1st Department of Pathology, Medical School; National and Kapodistrian University of Athens; Athens; Greece
| | - Stamatios Theocharis
- 1st Department of Pathology, Medical School; National and Kapodistrian University of Athens; Athens; Greece
| |
Collapse
|
24
|
Zogopoulos P, Vasileiou I, Patsouris E, Theocharis SE. The role of endocannabinoids in pain modulation. Fundam Clin Pharmacol 2013; 27:64-80. [PMID: 23278562 DOI: 10.1111/fcp.12008] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 09/03/2012] [Accepted: 09/21/2012] [Indexed: 12/16/2022]
Abstract
The endocannabinoid system (ES) is comprised of cannabinoid (CB) receptors, their endogenous ligands (endocannabinoids), and proteins responsible for their metabolism. Endocannabinoids serve as retrograde signaling messengers in GABAergic and glutamatergic synapses, as well as modulators of postsynaptic transmission, that interact with other neurotransmitters. Physiological stimuli and pathological conditions lead to differential increases in brain endocannabinoids that regulate distinct biological functions. Furthermore, endocannabinoids modulate neuronal, glial, and endothelial cell function and exert neuromodulatory, anti-excitotoxic, anti-inflammatory, and vasodilatory effects. Analgesia is one of the principal therapeutic targets of cannabinoids. Cannabinoid analgesia is based on the suppression of spinal and thalamic nociceptive neurons, but peripheral sites of action have also been identified. The chronic pain that occasionally follows peripheral nerve injury differs fundamentally from inflammatory pain and is an area of considerable unmet therapeutic need. Over the last years, considerable progress has been made in understanding the role of the ES in the modulation of pain. Endocannabinoids have been shown to behave as analgesics in models of both acute nociception and clinical pain such as inflammation and painful neuropathy. The framework for such analgesic effects exists in the CB receptors, which are found in areas of the nervous system important for pain processing and in immune cells that regulate the neuro-immune interactions that mediate the inflammatory hyperalgesia. The purpose of this review is to present the available research and clinical data, up to date, regarding the ES and its role in pain modulation, as well as its possible therapeutic perspectives.
Collapse
Affiliation(s)
- Panagiotis Zogopoulos
- First Department of Pathology, Medical School, University of Athens, Goudi, Athens, Greece
| | | | | | | |
Collapse
|
25
|
Brown I, Cascio MG, Rotondo D, Pertwee RG, Heys SD, Wahle KW. Cannabinoids and omega-3/6 endocannabinoids as cell death and anticancer modulators. Prog Lipid Res 2013; 52:80-109. [DOI: 10.1016/j.plipres.2012.10.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 10/05/2012] [Indexed: 01/18/2023]
|
26
|
Davidson J, Rotondo D, Rizzo MT, Leaver HA. Therapeutic implications of disorders of cell death signalling: membranes, micro-environment, and eicosanoid and docosanoid metabolism. Br J Pharmacol 2012; 166:1193-210. [PMID: 22364602 DOI: 10.1111/j.1476-5381.2012.01900.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Disruptions of cell death signalling occur in pathological processes, such as cancer and degenerative disease. Increased knowledge of cell death signalling has opened new areas of therapeutic research, and identifying key mediators of cell death has become increasingly important. Early triggering events in cell death may provide potential therapeutic targets, whereas agents affecting later signals may be more palliative in nature. A group of primary mediators are derivatives of the highly unsaturated fatty acids (HUFAs), particularly oxygenated metabolites such as prostaglandins. HUFAs, esterified in cell membranes, act as critical signalling molecules in many pathological processes. Currently, agents affecting HUFA metabolism are widely prescribed in diseases involving disordered cell death signalling. However, partly due to rapid metabolism, their role in cell death signalling pathways is poorly characterized. Recently, HUFA-derived mediators, the resolvins/protectins and endocannabinoids, have added opportunities to target selective signals and pathways. This review will focus on the control of cell death by HUFA, eicosanoid (C20 fatty acid metabolites) and docosanoid (C22 metabolites), HUFA-derived lipid mediators, signalling elements in the micro-environment and their potential therapeutic applications. Further therapeutic approaches will involve cell and molecular biology, the multiple hit theory of disease progression and analysis of system plasticity. Advances in the cell biology of eicosanoid and docosanoid metabolism, together with structure/function analysis of HUFA-derived mediators, will be useful in developing therapeutic agents in pathologies characterized by alterations in cell death signalling.
Collapse
Affiliation(s)
- J Davidson
- SIPBS, Strathclyde University, Glasgow, UK
| | | | | | | |
Collapse
|
27
|
Ritter JK, Li C, Xia M, Poklis JL, Lichtman AH, Abdullah RA, Dewey WL, Li PL. Production and actions of the anandamide metabolite prostamide E2 in the renal medulla. J Pharmacol Exp Ther 2012; 342:770-9. [PMID: 22685343 DOI: 10.1124/jpet.112.196451] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Medullipin has been proposed to be an antihypertensive lipid hormone released from the renal medulla in response to increased arterial pressure and renal medullary blood flow. Because anandamide (AEA) possesses characteristics of this purported hormone, the present study tested the hypothesis that AEA or one of its metabolites represents medullipin. AEA was demonstrated to be enriched in the kidney medulla compared with cortex. Western blotting and enzymatic analyses of renal cortical and medullary microsomes revealed opposite patterns of enrichment of two AEA-metabolizing enzymes, with fatty acid amide hydrolase higher in the renal cortex and cyclooxygenase-2 (COX-2) higher in the renal medulla. In COX-2 reactions with renal medullary microsomes, prostamide E2, the ethanolamide of prostaglandin E₂, was the major product detected. Intramedullarily infused AEA dose-dependently increased urine volume and sodium and potassium excretion (15-60 nmol/kg/min) but had little effect on mean arterial pressure (MAP). The renal excretory effects of AEA were blocked by intravenous infusion of celecoxib (0.1 μg/kg/min), a selective COX-2 inhibitor, suggesting the involvement of a prostamide intermediate. Plasma kinetic analysis revealed longer elimination half-lives for AEA and prostamide E2 compared with prostaglandin E₂. Intravenous prostamide E2 reduced MAP and increased renal blood flow (RBF), actions opposite to those of angiotensin II. Coinfusion of prostamide E2 inhibited angiotensin II effects on MAP and RBF. These results suggest that AEA and/or its prostamide metabolites in the renal medulla may represent medullipin and function as a regulator of body fluid and MAP.
Collapse
Affiliation(s)
- Joseph K Ritter
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 1217 E. Marshall St., Medical Sciences Bldg., Room 531, Richmond, VA 23298-0613, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Rouzer CA, Marnett LJ. Endocannabinoid oxygenation by cyclooxygenases, lipoxygenases, and cytochromes P450: cross-talk between the eicosanoid and endocannabinoid signaling pathways. Chem Rev 2011; 111:5899-921. [PMID: 21923193 PMCID: PMC3191732 DOI: 10.1021/cr2002799] [Citation(s) in RCA: 228] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Indexed: 12/12/2022]
Affiliation(s)
- Carol A Rouzer
- A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Department of Biochemistry, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt Ingram Comprehensive Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | |
Collapse
|
29
|
Chouinard F, Lefebvre JS, Navarro P, Bouchard L, Ferland C, Lalancette-Hébert M, Marsolais D, Laviolette M, Flamand N. The endocannabinoid 2-arachidonoyl-glycerol activates human neutrophils: critical role of its hydrolysis and de novo leukotriene B4 biosynthesis. THE JOURNAL OF IMMUNOLOGY 2011; 186:3188-96. [PMID: 21278347 DOI: 10.4049/jimmunol.1002853] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Although endocannabinoids are important players in nociception and obesity, their roles as immunomodulators remain elusive. The main endocannabinoids described to date, namely 2-arachidonoyl-glycerol (2-AG) and arachidonyl-ethanolamide (AEA), induce an intriguing profile of pro- and anti-inflammatory effects. This could relate to cell-specific cannabinoid receptor expression and/or the action of endocannabinoid-derived metabolites. Importantly, 2-AG and AEA comprise a molecule of arachidonic acid (AA) in their structure and are hydrolyzed rapidly. We postulated the following: 1) the released AA from endocannabinoid hydrolysis would be metabolized into eicosanoids; and 2) these eicosanoids would mediate some of the effects of endocannabinoids. To confirm these hypotheses, experiments were performed in which freshly isolated human neutrophils were treated with endocannabinoids. Unlike AEA, 2-AG stimulated myeloperoxidase release, kinase activation, and calcium mobilization by neutrophils. Although 2-AG did not induce the migration of neutrophils, it induced the release of a migrating activity for neutrophils. 2-AG also rapidly (1 min) induced a robust biosynthesis of leukotrienes, similar to that observed with AA. The effects of 2-AG were not mimicked nor prevented by cannabinoid receptor agonists or antagonists, respectively. Finally, the blockade of either 2-AG hydrolysis, leukotriene (LT) B(4) biosynthesis, or LTB(4) receptor 1 activation prevented all the effects of 2-AG on neutrophil functions. In conclusion, we demonstrated that 2-AG potently activates human neutrophils. This is the consequence of 2-AG hydrolysis, de novo LTB(4) biosynthesis, and an autocrine activation loop involving LTB(4) receptor 1.
Collapse
Affiliation(s)
- François Chouinard
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec City, Québec G1V 4G5, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Cannabinoids are the active chemical components of Cannabis sativa (marijuana). The medical use of cannabis goes back over 5,000 years. Cannabinoids produce a very wide array of central and peripheral effects, some of which may have beneficial clinical applications. The discovery of cannabinoid receptors has spawned great interest within the pharmaceutical industry with the hopes of capitalizing on the beneficial effects of cannabis without the unwanted psychotropic effects on the central and peripheral nervous system. This chapter presents an overview of the pharmacology of cannabinoids and their derivatives. It reviews the current literature on central and peripheral cannabinoid receptors as related to effects on the lower urinary tract and the role of these receptors in normal and abnormal urinary tract function. An objective evaluation of the published results of clinical trials of cannabis extracts for the treatment of bladder dysfunction resulting from multiple sclerosis is also presented. It is clear that cannabinoid receptors are present in the lower urinary tract as well as spinal and higher centers involved in lower urinary tract control. Systemic cannabinoids have effects on the lower urinary tract that may be able to become clinically useful; however, a much greater understanding of the mechanisms of cannabinoid receptors in control of the human lower urinary tract is necessary to facilitate development of novel cannabinoid drugs for treatment of pelvic disorders.
Collapse
|
31
|
Abstract
Starting from an historical overview of lasting Cannabis use over the centuries, we will focus on a description of the cannabinergic system, with a comprehensive analysis of chemical and pharmacological properties of endogenous and synthetic cannabimimetic analogues. The metabolic pathways and the signal transduction mechanisms, activated by cannabinoid receptors stimulation, will also be discussed. In particular, we will point out the action of cannabinoids and endocannabinoids on the different neuronal networks involved in reproductive axis, and locally, on male and female reproductive tracts, by emphasizing the pivotal role played by this system in the control of fertility.
Collapse
|
32
|
Bimatoprost effects on aqueous humor dynamics in monkeys. J Ophthalmol 2010; 2010:926192. [PMID: 20508775 PMCID: PMC2874926 DOI: 10.1155/2010/926192] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 12/02/2009] [Accepted: 02/28/2010] [Indexed: 11/18/2022] Open
Abstract
The effects of bimatoprost on aqueous humor dynamics were quantified in monkey eyes. Uveoscleral outflow was measured by the anterior chamber perfusion method, using FITC-dextran. Total outflow facility was determined by the two-level constant pressure method. Aqueous flow was measured with a scanning ocular fluorophotometer. Uveoscleral outflow was 0.96 +/- 0.19 muL min(-1) in vehicle-treated eyes and 1.37 +/- 0.27 muL min(-1) (n = 6; P < .05) in eyes that received bimatoprost 0.01% b.i.d. x 5 days. Bimatoprost had no effect on total outflow facility, which was 0.42 +/- 0.05 muL min(-1) at baseline and 0.42 +/- 0.04 muL min(-1) after bimatoprost treatment. Bimatoprost had no significant effect on aqueous humor flow. This study demonstrates that bimatoprost increases uveoscleral outflow but not total outflow facility or aqueous humor flow, indicating that it lowers intraocular pressure in ocular normotensive monkeys by a mechanism that exclusively involves uveoscleral outflow.
Collapse
|
33
|
Tauchi M, Fuchs T, Kellenberger A, Woodward D, Paus R, Lütjen-Drecoll E. Characterization of an in vivo
model for the study of eyelash biology and trichomegaly: mouse eyelash morphology, development, growth cycle, and anagen prolongation by bimatoprost. Br J Dermatol 2010; 162:1186-97. [DOI: 10.1111/j.1365-2133.2010.09685.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
34
|
Jones RL, Giembycz MA, Woodward DF. Prostanoid receptor antagonists: development strategies and therapeutic applications. Br J Pharmacol 2009; 158:104-45. [PMID: 19624532 PMCID: PMC2795261 DOI: 10.1111/j.1476-5381.2009.00317.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2009] [Accepted: 04/07/2009] [Indexed: 01/17/2023] Open
Abstract
Identification of the primary products of cyclo-oxygenase (COX)/prostaglandin synthase(s), which occurred between 1958 and 1976, was followed by a classification system for prostanoid receptors (DP, EP(1), EP(2) ...) based mainly on the pharmacological actions of natural and synthetic agonists and a few antagonists. The design of potent selective antagonists was rapid for certain prostanoid receptors (EP(1), TP), slow for others (FP, IP) and has yet to be achieved in certain cases (EP(2)). While some antagonists are structurally related to the natural agonist, most recent compounds are 'non-prostanoid' (often acyl-sulphonamides) and have emerged from high-throughput screening of compound libraries, made possible by the development of (functional) assays involving single recombinant prostanoid receptors. Selective antagonists have been crucial to defining the roles of PGD(2) (acting on DP(1) and DP(2) receptors) and PGE(2) (on EP(1) and EP(4) receptors) in various inflammatory conditions; there are clear opportunities for therapeutic intervention. The vast endeavour on TP (thromboxane) antagonists is considered in relation to their limited pharmaceutical success in the cardiovascular area. Correspondingly, the clinical utility of IP (prostacyclin) antagonists is assessed in relation to the cloud hanging over the long-term safety of selective COX-2 inhibitors. Aspirin apart, COX inhibitors broadly suppress all prostanoid pathways, while high selectivity has been a major goal in receptor antagonist development; more targeted therapy may require an intermediate position with defined antagonist selectivity profiles. This review is intended to provide overviews of each antagonist class (including prostamide antagonists), covering major development strategies and current and potential clinical usage.
Collapse
Affiliation(s)
- R L Jones
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK.
| | | | | |
Collapse
|
35
|
Basavarajappa BS, Nixon RA, Arancio O. Endocannabinoid system: emerging role from neurodevelopment to neurodegeneration. Mini Rev Med Chem 2009; 9:448-62. [PMID: 19356123 DOI: 10.2174/138955709787847921] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The endocannabinoid system, including endogenous ligands ('endocannabinoids' ECs), their receptors, synthesizing and degrading enzymes, as well as transporter molecules, has been detected from the earliest stages of embryonic development and throughout pre- and postnatal development. ECs are bioactive lipids, which comprise amides, esters and ethers of long chain polyunsaturated fatty acids. Anandamide (N-arachidonoylethanolamine; AEA) and 2-arachidonoylglycerol (2-AG) are the best studied ECs, and act as agonists of cannabinoid receptors. Thus, AEA and 2-AG mimic several pharmacological effects of the exogenous cannabinoid delta9-tetrahydrocannabinol (Delta(9)-THC), the psychoactive principle of cannabis sativa preparations like hashish and marijuana. Recently, however, several lines of evidence have suggested that the EC system may play an important role in early neuronal development as well as a widespread role in neurodegeneration disorders. Many of the effects of cannabinoids and ECs are mediated by two G protein-coupled receptors (GPCRs), CB1 and CB2, although additional receptors may be implicated. Both CB1 and CB2 couple primarily to inhibitory G proteins and are subject to the same pharmacological influences as other GPCRs. This new system is briefly presented in this review, in order to put in a better perspective the role of the EC pathway from neurodevelopment to neurodegenerative disorders, like Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. In addition, the potential exploitation of antagonists of CB1 receptors, or of inhibitors of EC metabolism, as next-generation therapeutics is discussed.
Collapse
Affiliation(s)
- Balapal S Basavarajappa
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, Orangeburg, NY 10962, USA.
| | | | | |
Collapse
|
36
|
Selg E, Andersson M, Låstbom L, Ryrfeldt Å, Dahlén SE. Two different mechanisms for modulation of bronchoconstriction in guinea-pigs by cyclooxygenase metabolites. Prostaglandins Other Lipid Mediat 2009; 88:101-10. [DOI: 10.1016/j.prostaglandins.2008.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 11/21/2008] [Accepted: 11/26/2008] [Indexed: 11/25/2022]
|
37
|
Márquez L, Abanades S, Andreu M. [Endocannabinoid system and bowel inflammation]. Med Clin (Barc) 2009; 131:513-7. [PMID: 19007582 DOI: 10.1157/13127285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The endocannabinoid system is an important regulatory system of multiple functions of the body in all vertebrates. There are 2 specific receptors, CB1 and CB2, through which the cannabinoids exert their effect. CB1-receptors mainly express themselves in myenteric plexuses and submucosal epithelium of the gastrointestinal tract, suggesting their implication in the inhibition of the peristalsis and gastrointestinal contraction. CB2-receptors are expressed in the tissue and immune cells, such as T and B-lymphocytes, monocytes and polymorphonuclear neutrophils, exerting an immunomodulator effect. The role of the endocannabinoid system is not completely known, but there is enough evidence that confirms an important role in the decrease of inflammation through the reduction of the release of pro-inflammatory cytokines. Therefore, it may exert a protective role in many of the points where the homeostasis breaks in inflammatory bowel disease. Research about the mechanisms and effects of the endocannabinoid system in the gastrointestinal tract will allow advancing in the therapy of this illness.
Collapse
Affiliation(s)
- Lucía Márquez
- Servei d'Aparell Digestiu, Hospital del Mar, Universidad Autónoma de Barcelona, Barcelona, Spain
| | | | | |
Collapse
|
38
|
Bisogno T, Piscitelli F, Di Marzo V. Lipidomic methodologies applicable to the study of endocannabinoids and related compounds: Endocannabinoidomics. EUR J LIPID SCI TECH 2009. [DOI: 10.1002/ejlt.200800233] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
39
|
Correa FG, Mestre L, Docagne F, Borrell J, Guaza C. The endocannabinoid anandamide from immunomodulation to neuroprotection. Implications for multiple sclerosis. VITAMINS AND HORMONES 2009; 81:207-30. [PMID: 19647114 DOI: 10.1016/s0083-6729(09)81009-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Over the last decade, the endocannabinoid system (ECS) has emerged as a potential target for multiple sclerosis (MS) management. A growing amount of evidence suggests that cannabinoids may be neuroprotective during CNS inflammation. Advances in the understanding of the physiology and pharmacology of the ECS have potentiated the interest of several components of this system as useful biological targets for disease management. Alterations of the ECS have been recently implicated in a number of neuroinflammatory and neurodegenerative conditions, so that the pharmacological modulation of cannabinoid (CB) receptors and/or of the enzymes controlling synthesis, transport, and degradation of these lipid mediators is considered an option to treat several neurological diseases. This chapter focuses on our current understanding of the function of anandamide (AEA), its biological and therapeutic implications, as well as a description of its effects on neuroimmune modulation.
Collapse
Affiliation(s)
- Fernando G Correa
- Functional and Systems Neurobiology Department, Cajal Institute, CSIC, Avda Doctor Arce, Madrid, Spain
| | | | | | | | | |
Collapse
|
40
|
The pharmacology and therapeutic relevance of endocannabinoid derived cyclo-oxygenase (COX)-2 products. Pharmacol Ther 2008; 120:71-80. [PMID: 18700152 DOI: 10.1016/j.pharmthera.2008.08.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 08/01/2008] [Indexed: 11/22/2022]
Abstract
The discovery of anandamide and 2-arachidonyl glycerol (2-AG) as naturally occurring mammalian endocannabinoids has had important and wide-reaching therapeutic implications. This, to a large extent, ensues from the complexity of endocannabinoid biology. One facet of endocannabinoid biology now receiving increased attention is the cyclo-oxygenase-2 (COX-2) derived oxidation products. Anandamide and 2-AG are oxidized to a range of PG-ethanolamides and PG-glyceryl esters that closely approaches that of the prostaglandins (PGs) formed from arachidonic acid. The pharmacology of these electrochemically neutral PG-ethanolamides (prostamides) and PG-glyceryl esters appears to be unique. No meaningful interaction with natural or recombinant prostanoid receptors is apparent. Nevertheless, in certain cells and tissues, prostamides and PG-glyceryl esters exert potent effects. The recent discovery of selective antagonists for the putative prostamide receptor has been a major advance in further establishing prostamide pharmacology as an entity distinct from prostanoid receptors. Since discovery of the prototype prostamide antagonist (AGN 204396), rapid progress has been made. The latest prostamide antagonists (AGN 211334-6) are 100 times more potent than the prototype and are, therefore, sufficiently active to be used in living animal studies. These compounds will allow a full evaluation of the role of prostamides in health and disease. To date, the only therapeutic application for prostamides is in glaucoma. The prostamide analog, bimatoprost, being the most effective ocular hypotensive drug currently available. Interestingly, PGE(2)-glyceryl ester and its chemically stable analog PGE(2)-serinolamide also lower intraocular pressure in dogs. Nevertheless, the therapeutic future of PGE(2)-glyceryl ester is more likely to reside in inflammation.
Collapse
|
41
|
Liang Y, Woodward DF, Guzman VM, Li C, Scott DF, Wang JW, Wheeler LA, Garst ME, Landsverk K, Sachs G, Krauss AHP, Cornell C, Martos J, Pettit S, Fliri H. Identification and pharmacological characterization of the prostaglandin FP receptor and FP receptor variant complexes. Br J Pharmacol 2008; 154:1079-93. [PMID: 18587449 PMCID: PMC2440084 DOI: 10.1038/bjp.2008.142] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background and purpose: A prostamide analogue, bimatoprost, has been shown to be effective in reducing intraocular pressure, but its precise mechanism of action remains unclear. Hence, to elucidate the molecular mechanisms of this effect of bimatoprost, we focused on pharmacologically characterizing prostaglandin FP receptor (FP) and FP receptor variant (altFP) complexes. Experimental approach: FP receptor mRNA variants were identified by reverse transcription-polymerase chain reaction. The FP-altFP4 heterodimers were established in HEK293/EBNA cells co-expressing FP and altFP4 receptor variants. A fluorometric imaging plate reader was used to study Ca2+ mobilization. Upregulation of cysteine-rich angiogenic protein 61 (Cyr61) mRNA was measured by Northern blot analysis, and phosphorylation of myosin light chain (MLC) by western analysis. Key results: Six splicing variants of FP receptor mRNA were identified in human ocular tissues. Immunoprecipitation confirmed that the FP receptor is dimerized with altFP4 receptors in HEK293/EBNA cells co-expressing FP and altFP4 receptors. In the studies of the kinetic profile for Ca2+ mobilization, prostaglandin F2α (PGF2α) elicited a rapid increase in intracellular Ca2+ followed by a steady state phase. In contrast, bimatoprost elicited an immediate increase in intracellular Ca2+ followed by a second phase. The prostamide antagonist, AGN211335, selectively and dose-dependently inhibited the bimatoprost-initiated second phase of Ca2+ mobilization, Cyr61 mRNA upregulation and MLC phosphorylation, but did not block the action of PGF2α. Conclusion and implications: Bimatoprost lacks effects on the FP receptor but may interact with the FP-altFP receptor heterodimer to induce alterations in second messenger signalling. Hence, FP-altFP complexes may represent the underlying basis of bimatoprost pharmacology.
Collapse
Affiliation(s)
- Y Liang
- Departments of Biological and Chemical Sciences, Allergan Inc., Irvine, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Anandamide inhibits IL-12p40 production by acting on the promoter repressor element GA-12: possible involvement of the COX-2 metabolite prostamide E(2). Biochem J 2008; 409:761-70. [PMID: 17961121 DOI: 10.1042/bj20071329] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The eCB [endoCB (cannabinoid)] system is being considered as a novel therapeutic target for immune disorders. Cytokines of the IL-12 (interleukin-12) family have essential functions in cell-mediated immunity. In the present study, we have addressed the mechanisms of action of the eCB AEA (anandamide) on the regulation of IL-12p40 in activated microglia/macrophages. We demonstrated that AEA can inhibit the expression of p35, p19 and p40 subunits, which form the biologically-active cytokines IL-12 and IL-23 in microglia stimulated with LPS (lipopolysaccharide)/IFNgamma (interferon gamma). Additionally, we have provided evidence that AEA reduces the transcriptional activity of the IL-12p40 gene in LPS- and IFNgamma-co-activated cells, and this is independent of CB or vanilloid receptor activation. Site-directed mutageneis of the different elements of the p40 promoter showed that AEA regulates IL-12p40 expression by acting on the repressor site GA-12 (GATA sequence in IL-12 promoter). Prostamide E(2) (prostaglandin E(2) ethanolamide), a product considered to be a putative metabolite of AEA by COX-2 (cyclo-oxygenase 2) oxygenation, was also able to inhibit the activity of the IL-12p40 promoter by acting at the repressor site. The effects of AEA and prostamide E(2) on p40 transcription were partially reversed by an antagonist of EP(2) (prostanoid receptor-type 2), suggesting the possibility that prostamide E(2) may contribute to the effects of AEA on IL-12p40 gene regulation. Accordingly, the inhibition of COX-2 by NS-398 partially reversed the inhibitory effects of AEA on IL-12 p40. Overall, our findings provide new mechanistic insights into the activities of AEA in immune-related disorders, which may be relevant for the clinical management of such diseases.
Collapse
|
43
|
Fowler CJ. The contribution of cyclooxygenase-2 to endocannabinoid metabolism and action. Br J Pharmacol 2007; 152:594-601. [PMID: 17618306 PMCID: PMC2190012 DOI: 10.1038/sj.bjp.0707379] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 06/13/2007] [Accepted: 06/14/2007] [Indexed: 11/09/2022] Open
Abstract
The development of sensitive analytical methods for measurement of endocannabinoids, their metabolites, and related lipids, has underlined the complexity of the endocannabinoid system. A case can be made for an 'endocannabinoid soup' (akin to the inflammatory soup) whereby the net effect of a pathological state and/or a pharmacological intervention on this system is the result not only of changes in endocannabinoid levels but also of their metabolites and related compounds that affect their function. With respect to the metabolism of anandamide and 2-arachidonoylglycerol, the main hydrolytic enzymes involved are fatty acid amide hydrolase and monoacylglycerol lipase. However, other pathways can come into play when these are blocked. Cyclooxygenase-2 derived metabolites of anandamide and 2-arachidonoylglycerol have a number of properties, including effects upon cell viability, contraction of the cat iris sphincter (an effect mediated by a novel receptor), mobilization of calcium and modulation of synaptic transmission. Nonsteroidal anti-inflammatory agents, whose primary mode of action is the inhibition of cyclooxygenase, can also interact with the endocannabinoid system both in vitro and in vivo. Other enzymes, such as the lipoxygenase and cytochrome P450 oxidative enzymes, can also metabolize endocannabinoids and produce biologically active compounds. It is concluded that sensitive analytical methods, which allow for measurement of endocannabinoids and related lipids, should provide vital information as to the importance of these alternative metabolic pathways when the primary hydrolytic endocannabinoid metabolizing enzymes are inhibited.
Collapse
Affiliation(s)
- C J Fowler
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden.
| |
Collapse
|
44
|
Morgese MG, Cassano T, Cuomo V, Giuffrida A. Anti-dyskinetic effects of cannabinoids in a rat model of Parkinson's disease: role of CB(1) and TRPV1 receptors. Exp Neurol 2007; 208:110-9. [PMID: 17900568 PMCID: PMC2128772 DOI: 10.1016/j.expneurol.2007.07.021] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 07/23/2007] [Accepted: 07/30/2007] [Indexed: 11/17/2022]
Abstract
Levodopa is the most commonly prescribed drug for Parkinson's disease (PD). Although levodopa improves PD symptoms in the initial stages of the disease, its long-term use is limited by the development of side effects, including abnormal involuntary movements (dyskinesias) and psychiatric complications. The endocannabinoid system is emerging as an important modulator of basal ganglia functions and its pharmacologic manipulation represents a promising therapy to alleviate levodopa-induced dyskinesias. Rats with 6-OHDA lesions that are chronically treated with levodopa develop increasingly severe axial, limb, locomotor and oro-facial abnormal involuntary movements (AIMs). Administration of the cannabinoid agonist WIN 55,212-2 attenuated levodopa-induced axial, limb and oral AIMs dose-dependently via a CB(1)-mediated mechanism, whereas it had no effect on locomotive AIMs. By contrast, systemic administration of URB597, a potent FAAH inhibitor, did not affect AIMs scoring despite its ability to increase anandamide concentration throughout the basal ganglia. Unlike WIN, anandamide can also bind and activate transient receptor potential vanilloid type-1 (TRPV1) receptors, which have been implicated in the modulation of dopamine transmission in the basal ganglia. Interestingly, URB597 significantly decreased all AIMs subtypes only if co-administered with the TRPV1 antagonist capsazepine. Our data indicate that pharmacological blockade of TRPV1 receptors unmasks the anti-dyskinetic effects of FAAH inhibitors and that CB(1) and TRPV1 receptors play opposite roles in levodopa-induced dyskinesias.
Collapse
MESH Headings
- Amidohydrolases/antagonists & inhibitors
- Animals
- Antiparkinson Agents/adverse effects
- Antiparkinson Agents/pharmacology
- Arachidonic Acids/metabolism
- Basal Ganglia/metabolism
- Benzamides/therapeutic use
- Benzoxazines/therapeutic use
- Cannabinoids/agonists
- Capsaicin/analogs & derivatives
- Capsaicin/therapeutic use
- Carbamates/therapeutic use
- Drug Therapy, Combination
- Dyskinesia, Drug-Induced/metabolism
- Dyskinesia, Drug-Induced/physiopathology
- Endocannabinoids
- Levodopa/adverse effects
- Levodopa/therapeutic use
- Male
- Morpholines/therapeutic use
- Naphthalenes/therapeutic use
- Oxidopamine
- Parkinson Disease, Secondary/chemically induced
- Parkinson Disease, Secondary/drug therapy
- Polyunsaturated Alkamides/metabolism
- Rats
- Rats, Wistar
- Receptor, Cannabinoid, CB1/drug effects
- Receptor, Cannabinoid, CB1/metabolism
- TRPV Cation Channels/antagonists & inhibitors
- TRPV Cation Channels/metabolism
Collapse
Affiliation(s)
- Maria Grazia Morgese
- Department of Biomedical Sciences, University of Foggia, Viale Luigi Pinto 1, 71100 Foggia, Italy
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229
| | - Tommaso Cassano
- Department of Biomedical Sciences, University of Foggia, Viale Luigi Pinto 1, 71100 Foggia, Italy
| | - Vincenzo Cuomo
- Department of Human Physiology and Pharmacology, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Andrea Giuffrida
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229
| |
Collapse
|
45
|
Cavalié A, Philipp SE, Meves H. ONO-54918-07, a stable prostacyclin analogue, mimics the effect of prostaglandin PGE1 on NG108-15 cells. Naunyn Schmiedebergs Arch Pharmacol 2007; 376:165-73. [PMID: 17952410 DOI: 10.1007/s00210-007-0186-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Accepted: 08/21/2007] [Indexed: 11/30/2022]
Abstract
The aim of this study was to explore the effect of 0NO-54918-07, a stable prostacyclin analogue, on the current-voltage (IV) curve and the intracellular Ca2+ concentration [Ca2+]i of NG108-15 neuroblastoma x glioma hybrid cells. The IV curve was measured with ramp pulses from -70 to 0 mV, and [Ca2+]i was determined with Fura 2. Bath application of 0.2 muM ONO-54918-07 reversibly increased the holding current at -70 mV by -81.1 +/- 14.8 pA (mean +/- SEM, n = 35) and the slope of the IV curve between -70 and -50 mV by the factor 2.24 +/- 0.24. The effect of 0.2 microM prostaglandin PGE1 was similar (DeltaI (hold) = -96.1 +/- 29.9 pA, g/g (control) = 2.72 +/- 0.44, n = 9). ONO-54918-07 concentrations of 0.04, 2 and 6 microM were also effective. From the dose-response curve, the concentration for the half maximal effect was obtained as 0.054 microM. When cells did not respond to ONO-54918-07, an effect could sometimes be elicited by a ramp pulse or by a second ONO-54918-07 application 30-50 min after the first. The effect of ONO-54918-07 was not affected by pre-treatment with the EP1 antagonists ONO-8713 or SC-51089. However, a 14-40 min pre-treatment with 1 microM RO3244794, a selective prostacyclin receptor (IP) antagonist, abolished the effect of 0.2 microM PGE1. The effect of 0.2 microM ONO-54918-07 vanished completely in the presence of 5 microM RO32446794. ONO-54918-07 and PGE1 produced a slow increase in [Ca2+]i that lasted at least 6 min. Delta[Ca2+]i induced by both substances reached approximately 12% of the peak Delta[Ca2+]i induced by application of bradykinin. In only a few cells, PGE1 produced a brief, transient rise of [Ca2+]i. Using reverse transcriptase polymerase chain reaction, a prominent expression of the IP was detected in NG108-15 cells. It is concluded that ONO-54918-07 mimics the effect of PGE1, supporting the notion that the PGE1 effect on NG108-15 cells is mediated by IP receptors.
Collapse
Affiliation(s)
- Adolfo Cavalié
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg-Saar, Germany
| | | | | |
Collapse
|
46
|
Woodward DF, Liang Y, Krauss AHP. Prostamides (prostaglandin-ethanolamides) and their pharmacology. Br J Pharmacol 2007; 153:410-9. [PMID: 17721551 PMCID: PMC2241799 DOI: 10.1038/sj.bjp.0707434] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The prostamides are part of a large and continually expanding series of pharmacologically unique neutral lipids. They are COX-2 derived oxidation products of the endocannabinoid/endovanniloid anandamide. Prostamide pharmacology is unique and, as in the case of the endocannabinoids anandamide and 2-arachidonylglycerol, bears little resemblance to that of the corresponding free acids. By virtue of its close relationship to the anti-glaucoma drug bimatoprost, prostamide F(2alpha) has received the greatest research attention. Prostamide F(2alpha) and bimatoprost effects appear independent of prostanoid FP receptor activation, according to a litany of agonist studies. Studies involving freshly isolated and separate feline iridial smooth muscle cells revealed that bimatoprost and FP receptor agonists stimulated different cells, without exception. This suggests the existence of receptors that preferentially recognize prostamide F(2alpha). The recent discovery of prostamide antagonists has provided further support for prostamide receptors as discrete entities. The prototypical prostamide antagonists, AGN 204396 and 7, blocked the effects of prostamide F(2alpha) and bimatoprost but not those of PGF(2alpha) and FP receptor agonists in the feline iris. Second generation more potent prostamide antagonists, such as AGN 211334, should allow the role of prostamides in health and disease to be elucidated. From the therapeutics standpoint, the prostamide F(2alpha) analogue bimatoprost is the most efficacious ocular hypotensive agent currently available for the treatment of glaucoma.
Collapse
Affiliation(s)
- D F Woodward
- Department of Biological Sciences, Allergan Inc., Irvine, CA 92612, USA.
| | | | | |
Collapse
|
47
|
Herradón E, Martín MI, López-Miranda V. Characterization of the vasorelaxant mechanisms of the endocannabinoid anandamide in rat aorta. Br J Pharmacol 2007; 152:699-708. [PMID: 17704831 PMCID: PMC2190007 DOI: 10.1038/sj.bjp.0707404] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND AND PURPOSE Studies in isolated preparations of vascular tissue (mainly resistance vessels) provide evidence that anandamide exerts vasorelaxation. The aim of the present work was to further characterize the mechanisms involved in the vascular response induced by anandamide in a conduit vessel, rat aorta. EXPERIMENTAL APPROACH Isometric tension changes in response to a cumulative concentration-response curve of anandamide (1 nM-100 micro M) were recorded in aortic rings from male Wistar rats. The involvement of a number of factors in this relaxation was investigated including endothelium-derived vasorelaxant products, cannabinoid and vanilloid receptors (transient potential vanilloid receptor-1 (TRPV1)), release of calcitonin gene-related peptide (CGRP), anandamide metabolism and the membrane transporter for anandamide. KEY RESULTS Anandamide caused a significant concentration-dependent vasorelaxation in rat aorta. This vasorelaxation was significantly inhibited by Pertussis toxin, by a non-CB1/non-CB2 cannabinoid receptor antagonist, by endothelial denudation, by inhibition of nitric oxide synthesis or inhibition of prostanoid synthesis via cyclooxygenase-2 (COX-2), by blockade of prostaglandin receptors EP4 and by a fatty acid amino hydrolase inhibitor. Antagonists for CB1, CB2, TRPV1 or CGRP receptors, an inhibitor of the release of endothelium-derived hyperpolarizing factor, and an inhibitor of anandamide transport did not modify the vascular response to anandamide. CONCLUSIONS AND IMPLICATIONS Our results demonstrate, for the first time, the involvement of the non-CB1/non-CB2 cannabinoid receptor and an anandamide-arachidonic acid-COX-2 derived metabolite (which acts on EP4 receptors) in the endothelial vasorelaxation caused by anandamide in rat aorta.
Collapse
MESH Headings
- Animals
- Aorta, Abdominal/drug effects
- Aorta, Abdominal/physiology
- Apamin/pharmacology
- Arachidonic Acids/pharmacology
- Benzamides/pharmacology
- Calcitonin Gene-Related Peptide/pharmacology
- Camphanes/pharmacology
- Cannabinoid Receptor Modulators/pharmacology
- Capsaicin/analogs & derivatives
- Capsaicin/pharmacology
- Carbamates/pharmacology
- Charybdotoxin/pharmacology
- Dose-Response Relationship, Drug
- Endocannabinoids
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiology
- In Vitro Techniques
- Indomethacin/pharmacology
- Isoindoles/pharmacology
- Male
- NG-Nitroarginine Methyl Ester/pharmacology
- Nitric Oxide/antagonists & inhibitors
- Nitric Oxide/biosynthesis
- Peptide Fragments/pharmacology
- Piperidines/pharmacology
- Polyunsaturated Alkamides/pharmacology
- Pyrazoles/administration & dosage
- Pyrazoles/pharmacology
- Rats
- Rats, Wistar
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Rimonabant
- Sulfonamides/pharmacology
- Vasodilation/drug effects
- Vasodilation/physiology
Collapse
Affiliation(s)
- E Herradón
- Área de Farmacología, Dpto. Ciencias de la Salud III, Facultad Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón Madrid, Spain
| | - M I Martín
- Área de Farmacología, Dpto. Ciencias de la Salud III, Facultad Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón Madrid, Spain
| | - V López-Miranda
- Área de Farmacología, Dpto. Ciencias de la Salud III, Facultad Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón Madrid, Spain
- Author for correspondence:
| |
Collapse
|
48
|
Saitoh C, Kitada C, Uchida W, Chancellor MB, de Groat WC, Yoshimura N. The differential contractile responses to capsaicin and anandamide in muscle strips isolated from the rat urinary bladder. Eur J Pharmacol 2007; 570:182-7. [PMID: 17586490 PMCID: PMC2042539 DOI: 10.1016/j.ejphar.2007.05.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 05/08/2007] [Accepted: 05/16/2007] [Indexed: 12/29/2022]
Abstract
The contractile responses to capsaicin and anandamide, exogenous and endogenous agonists for transient receptor potential vanilloid receptor 1 (TRPV1), respectively, were investigated in muscle strips isolated from the rat urinary bladder. Capsaicin and anandamide produced concentration-dependent contractions of the muscle strips. The contractile response induced by capsaicin disappeared within approximately 20 min. In contrast, anandamide produced contractile responses lasting at least for 30 min. Capsaicin produced additive contractile responses in anandamide-treated muscle strips. The contractile response to anandamide was attenuated, but not abolished in strips desensitized by capsaicin. The response to capsaicin was abolished in the presence of a TRPV1 antagonist, N-(4-tertiarybutylphenyl)-4-(3-chlorphyridin-2-yl)tetrahydropyrazine-1(2H)-carbox-amide (BCTC), but not altered in the presence of either tetrodotoxin, atropine or indomethacin. In the presence of SR140333, a tachykinin NK(1) receptor antagonist or SR48968, an NK(2) receptor antagonist, the response to capsaicin was attenuated. The response to anandamide was partially attenuated in the presence of ONO8130, a prostanoid EP(1) receptor antagonist, URB597, a fatty-acid amide hydrolase inhibitor, BCTC, SR140333 or SR48968, and almost completely abolished by indomethacin. Neither tetrodotoxin, atropine, a cannabinoid CB(1) receptor antagonist, AM251, nor a cannabinoid CB(2) receptor antagonist, AM630, had any effect on the response to anandamide. These results indicate that capsaicin produces muscle contractions by stimulating the TRPV1 receptor, followed by release of neuropeptides that can activate tachykinin NK(1) and/or NK(2) receptors in the bladder and that the contractile response to anandamide is mediated at least in part by activation of prostanoid EP(1) receptors due to production of prostaglandins in addition to TRPV1 receptor activation.
Collapse
MESH Headings
- Animals
- Arachidonic Acids/pharmacology
- Cannabinoid Receptor Modulators/pharmacology
- Capsaicin/pharmacology
- Endocannabinoids
- In Vitro Techniques
- Male
- Muscle Contraction/drug effects
- Muscle, Smooth/drug effects
- Muscle, Smooth/physiology
- Polyunsaturated Alkamides/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptors, Prostaglandin E/agonists
- Receptors, Prostaglandin E, EP1 Subtype
- TRPV Cation Channels/agonists
- TRPV Cation Channels/antagonists & inhibitors
- Urinary Bladder/drug effects
- Urinary Bladder/physiology
Collapse
Affiliation(s)
- Chikashi Saitoh
- Pharmacology Laboratories, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki, 305–8585 Japan
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Chika Kitada
- Pharmacology Laboratories, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki, 305–8585 Japan
| | - Wataru Uchida
- Pharmacology Laboratories, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki, 305–8585 Japan
| | - Michael B. Chancellor
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - William C. de Groat
- Department of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
- Department of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
49
|
Khaspekov LG, Bobrov MY. The endocannabinoid system and its protective role in ischemic and cytotoxic injuries of brain neurons. NEUROCHEM J+ 2007. [DOI: 10.1134/s1819712407020018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Thors L, Alajakku K, Fowler CJ. The 'specific' tyrosine kinase inhibitor genistein inhibits the enzymic hydrolysis of anandamide: implications for anandamide uptake. Br J Pharmacol 2007; 150:951-60. [PMID: 17325653 PMCID: PMC2013877 DOI: 10.1038/sj.bjp.0707172] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE The cellular uptake of anandamide is reduced by inhibitors of fatty acid amide hydrolase (FAAH) and by agents disrupting endocytotic mechanisms. However, it is not clear if these events occur over the same time frame and if they occur to the same extent in different cells. We have therefore investigated the effects of such compounds in three cell lines of different origins using different assay incubation times and temperatures. EXPERIMENTAL APPROACH FAAH activity and cellular uptake of anandamide was measured using anandamide, radio-labelled either in the ethanolamine or arachidonoyl part of the molecule. KEY RESULTS The FAAH inhibitor URB597 inhibited the uptake of anandamide into C6 glioma, RBL2H3 basophilic leukaemia cells and P19 embryonic carcinoma cells at incubation time 4 min. However, a time-dependent and temperature-sensitive residual uptake remained after URB597 treatment. The combination of progesterone and nystatin reduced the uptake, but also decreased the amount of anandamide retained by the wells. Genistein inhibited anandamide uptake in a manner that was not additive to that of URB597. However, genistein was a potent competitive inhibitor of FAAH (K(i) value 8 microM). CONCLUSIONS AND IMPLICATIONS The reduction of anandamide uptake by genistein can be explained by its ability to inhibit FAAH with a potency which overlaps that for inhibition of tyrosine kinase. The FAAH- resistant but time-dependent uptake of anandamide is seen in all three cell lines studied and is thus presumably a generally occurring process.
Collapse
Affiliation(s)
- L Thors
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden.
| | | | | |
Collapse
|