1
|
Zahrai A, Vahid-Ansari F, Daigle M, Albert PR. Fluoxetine-induced recovery of serotonin and norepinephrine projections in a mouse model of post-stroke depression. Transl Psychiatry 2020; 10:334. [PMID: 32999279 PMCID: PMC7527452 DOI: 10.1038/s41398-020-01008-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 08/21/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic treatment with fluoxetine (FLX) is required for its antidepressant effects, but the role of serotonin (5-HT) axonal plasticity in FLX action is unknown. To address this, we examined mice with a stroke in the left medial prefrontal cortex (mPFC) resulting in persistent anxiety-like and depression-like behaviors and memory deficits as a model of post-stroke depression. Chronic treatment with FLX (but not exercise) completely reversed the behavioral phenotype and partially reversed changes in FosB-labeled cells in the mPFC, nucleus accumbens, septum, hippocampus, basolateral amygdala (BLA), and dorsal raphe. In these regions, 5-HT or norepinephrine (NE) innervation was quantified by staining for 5-HT or NE transporters, respectively. 5-HT synapses and synaptic triads were identified as synaptophysin-stained sites on 5-HT axons located proximal to gephyrin-stained or PSD95-stained spines. A week after stroke, 5-HT innervation was greatly reduced at the stroke site (left cingulate gyrus (CG) of the mPFC) and the left BLA. Chronically, 5-HT and NE innervation was reduced at the left CG, nucleus accumbens, and BLA, with no changes in other regions. In these areas, pre-synaptic and post-synaptic 5-HT synapses and triads to inhibitory (gephyrin+) sites were reduced, while 5-HT contacts at excitatory (PSD95+) sites were reduced in the CG and prelimbic mPFC. Chronic FLX, but not exercise, reversed these reductions in 5-HT innervation but incompletely restored NE projections. Changes in 5-HT innervation were verified using YFP staining in mice expressing YFP-tagged channelrhodopsin in 5-HT neurons. Thus, FLX-induced 5-HT axonal neuroplasticity of forebrain projections may help mediate recovery from brain injury.
Collapse
Affiliation(s)
- Amin Zahrai
- grid.412687.e0000 0000 9606 5108Ottawa Hospital Research Institute (Neuroscience), UOttawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON K1H-8M5 Canada
| | - Faranak Vahid-Ansari
- grid.412687.e0000 0000 9606 5108Ottawa Hospital Research Institute (Neuroscience), UOttawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON K1H-8M5 Canada
| | - Mireille Daigle
- grid.412687.e0000 0000 9606 5108Ottawa Hospital Research Institute (Neuroscience), UOttawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON K1H-8M5 Canada
| | - Paul R. Albert
- grid.412687.e0000 0000 9606 5108Ottawa Hospital Research Institute (Neuroscience), UOttawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON K1H-8M5 Canada
| |
Collapse
|
2
|
Otlivanchik O, Le Foll C, Levin BE. Perifornical hypothalamic orexin and serotonin modulate the counterregulatory response to hypoglycemic and glucoprivic stimuli. Diabetes 2015; 64:226-35. [PMID: 25114294 PMCID: PMC4274798 DOI: 10.2337/db14-0671] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Previous reports suggested an important role for serotonin (5-hydroxytryptamine [5-HT]) in enhancing the counterregulatory response (CRR) to hypoglycemia. To elucidate the sites of action mediating this effect, we initially found that insulin-induced hypoglycemia stimulates 5-HT release in widespread forebrain regions, including the perifornical hypothalamus (PFH; 30%), ventromedial hypothalamus (34%), paraventricular hypothalamus (34%), paraventricular thalamic nucleus (64%), and cerebral cortex (63%). Of these, we focused on the PFH because of its known modulation of diverse neurohumoral and behavioral responses. In awake, behaving rats, bilateral PFH glucoprivation with 5-thioglucose stimulated adrenal medullary epinephrine (Epi) release (3,153%) and feeding (400%), while clamping PFH glucose at postprandial brain levels blunted the Epi response to hypoglycemia by 30%. The PFH contained both glucose-excited (GE) and glucose-inhibited (GI) neurons; GE neurons were primarily excited, while GI neurons were equally excited or inhibited by 5-HT at hypoglycemic glucose levels in vitro. Also, 5-HT stimulated lactate production by cultured hypothalamic astrocytes. Depleting PFH 5-HT blunted the Epi (but not feeding) response to focal PFH (69%) and systemic glucoprivation (39%), while increasing PFH 5-HT levels amplified the Epi response to hypoglycemia by 32%. Finally, the orexin 1 receptor antagonist SB334867A attenuated both the Epi (65%) and feeding (47%) responses to focal PFH glucoprivation. Thus we have identified the PFH as a glucoregulatory region where both 5-HT and orexin modulate the CRR and feeding responses to glucoprivation.
Collapse
Affiliation(s)
- Oleg Otlivanchik
- Graduate School of Biomedical Sciences, Rutgers, Newark, NJ Department of Neurology and Neurosciences, New Jersey Medical School, Rutgers, Newark, NJ
| | - Christelle Le Foll
- Department of Neurology and Neurosciences, New Jersey Medical School, Rutgers, Newark, NJ
| | - Barry E Levin
- Department of Neurology and Neurosciences, New Jersey Medical School, Rutgers, Newark, NJ Neurology Service, Veterans Affairs Medical Center, East Orange, NJ
| |
Collapse
|
3
|
Lau T, Schloss P. Differential regulation of serotonin transporter cell surface expression. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/wmts.10] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
4
|
Norrholm SD, Horton DB, Dwoskin LP. The promiscuity of the dopamine transporter: implications for the kinetic analysis of [3H]serotonin uptake in rat hippocampal and striatal synaptosomes. Neuropharmacology 2007; 53:982-9. [PMID: 18022203 DOI: 10.1016/j.neuropharm.2007.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 08/23/2007] [Accepted: 10/01/2007] [Indexed: 11/29/2022]
Abstract
Evidence indicates that monoaminergic neurotransmitter transporters are promiscuous, transporting substrates other than their cognate neurotransmitters. For example, serotonin is transported by the dopamine transporter (DAT) under conditions in which serotonin transporter (SERT) activity is eliminated (e.g., pharmacological inhibition). We performed a kinetic analysis of [(3)H]serotonin uptake in rat striatal synaptosomes (expressing DAT and SERT) and hippocampal synaptosomes (expressing SERT, but not DAT). Nonspecific [(3)H]serotonin uptake was defined as the amount of uptake remaining in the presence of fluoxetine (10microM) or paroxetine (0.05microM). In hippocampal synaptosomes, K(m) and V(max) values for [(3)H]serotonin uptake did not differ whether fluoxetine or paroxetine was used to define nonspecific uptake. However, in striatal synaptosomes, both K(m) and V(max) values for [(3)H]serotonin uptake were greater when fluoxetine, rather than paroxetine, was used to define nonspecific uptake. These data suggest that, at the concentrations employed, fluoxetine inhibits serotonin uptake at both DAT and SERT, whereas paroxetine only inhibits serotonin uptake at SERT. Thus, when DAT is inhibited by GBR 12909, kinetic parameters for serotonin uptake via SERT in striatum are not different from those obtained in hippocampus. These findings have important implications regarding the analysis of monoaminergic reuptake in brain regions exhibiting heterogeneous transporter expression.
Collapse
Affiliation(s)
- Seth D Norrholm
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536-0082, USA.
| | | | | |
Collapse
|
5
|
Ludwig V, Schwarting RKW. Neurochemical and behavioral consequences of striatal injection of 5,7-dihydroxytryptamine. J Neurosci Methods 2007; 162:108-18. [PMID: 17287026 DOI: 10.1016/j.jneumeth.2006.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 12/20/2006] [Accepted: 12/21/2006] [Indexed: 10/23/2022]
Abstract
It is known that central serotonin (5HT) is involved in anxiety, but the behavioral results of many studies have been inconsistent. A prevalent research approach is to destroy 5HT neurotoxically. Such lesions were mostly generated by injecting 5,7-dihydroxytryptamine into ventricles or raphé nuclei, leading to rather global losses of 5HT in the brain. However, there is evidence for differential effects of 5HT in different brain structures regarding anxiety. Therefore, we decided to study the effects of injecting 5,7-dihydroxytryptamine into the forebrain. We chose the ventral striatum as the site of injection, since there is evidence that 5HT may be involved in anxiety there. We administered the neurotoxin bilaterally in adult rats, and analyzed neurochemical and behavioral consequences in three experiments. The first one showed that the toxin dose-dependently (10-50 microg) depleted 5HT in the ventral striatum, neostriatum, frontal cortex, and amygdala. Besides 5HT, dopamine was also partly depleted there. This dopaminergic lesion was prevented in a second experiment, where rats were pre-treated systemically with the dopamine reuptake inhibitor nomifensine. In the final experiment, the functional consequences of such 5HT lesions were tested, which yielded moderate anxiogenic effects in the elevated plus maze and in the open field. Also, there were lesion effects on aversively motivated ultrasonic vocalization during an active avoidance test. In contrast, active avoidance performance itself and general activity in the open field were not affected. Lesion effects became discernible there when challenging rats with MDMA. The psycho-stimulatory effectiveness of this drug, which acts largely via the availability of 5HT in the brain, was reduced to degrees that depended on the size of 5HT lesion. These results are discussed with respect to factors such as severity of lesion, anatomical specificity, and the role of 5HT in anxiety.
Collapse
Affiliation(s)
- Verena Ludwig
- Experimental and Physiological Psychology, Philipps-University of Marburg, Gutenbergstrasse 18, 35037 Marburg, Germany.
| | | |
Collapse
|
6
|
Sekine Y, Suzuki K, Ramachandran PV, Blackburn TP, Ashby CR. Acute and repeated administration of fluoxetine, citalopram, and paroxetine significantly alters the activity of midbrain dopamine neurons in rats: An in vivo electrophysiological study. Synapse 2006; 61:72-7. [PMID: 17117425 DOI: 10.1002/syn.20349] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We examined the effect of the administration of the selective serotonin reuptake inhibitors (SSRIs) fluoxetine, citalopram, and paroxetine on the activity of spontaneously active dopamine (DA) neurons in the substantia nigra pars compacta (SNC) and ventral tegmental area (VTA) in anesthetized adult male Sprague-Dawley rats. This was accomplished using the technique of in vivo extracellular recording. A single injection of 2.5 mg/kg (i.p.) of fluoxetine significantly increased the number of spontaneously active SNC and VTA DA neurons. In contrast, a single injection of either 1 mg/kg (i.p.) of paroxetine or 5 mg/kg of fluoxetine significantly increased the number of spontaneously active VTA DA neurons. The repeated administration (one injection per day for 21 days) of all of the SSRIs produced a significant increase in the number of spontaneously active VTA DA neurons. Overall, our results indicate that the systemic administration of SSRI alters the activity of midbrain DA neurons with differential effects on VTA compared with SNC DA neurons.
Collapse
Affiliation(s)
- Yoshimoto Sekine
- Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | | | | | | | | |
Collapse
|
7
|
Abstract
Midbrain dopaminergic (DA) neurones sustain important physiological functions such as control of motricity, signalling of the error in prediction of rewards and modulation of emotions and cognition. Moreover, their degeneration leads to Parkinson's disease and they may be dysfunctional in other pathological states, such as schizophrenia and drug abuse. A subset of DA neurones has been known for many years to contain releasable peptides such as neurotensin and cholecystokinin. However, recent experimental evidence indicates that the phenotype of DA neurones may be much more diverse, since it is suggested that, under certain conditions, they may also release glutamate, cannabinoids and even serotonin.
Collapse
Affiliation(s)
- Vincent Seutin
- Research Center for Cellular and Molecular Neurobiology, University of Liège, B-4000 Liège, Belgium.
| |
Collapse
|
8
|
Dal Bo G, Trudeau LE. [Serotonin in dopamine neurons? An interesting hypothesis about the mechanism of action of antidepressants with a feeling of << déjà-vu >>...]. Med Sci (Paris) 2005; 21:589-90. [PMID: 15985199 DOI: 10.1051/medsci/2005216-7589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
9
|
Heinz A, Jones DW, Zajicek K, Gorey JG, Juckel G, Higley JD, Weinberger DR. Depletion and restoration of endogenous monoamines affects β-CIT binding to serotonin but not dopamine transporters in non-human primates. FOCUS ON EXTRAPYRAMIDAL DYSFUNCTION 2004:29-38. [PMID: 15354387 DOI: 10.1007/978-3-7091-0579-5_4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The radioligand [123I]beta-CIT binds to dopamine transporters in striatum and to serotonin transporters in brainstem. Endogenous dopamine or serotonin may compete with radioligand binding at monoamine transporters. We used alpha-methyl-p-tyrosine (AMPT) to block dopamine production and measured [123I]beta-CIT binding before and after endogenous dopamine was restored by IV administration of the dopamine precursor L-dihydroxyphenylalanine (L-DOPA) in rhesus monkeys. P-chlorophenylalanine (pCPA) was used to inhibit serotonin production, and [123I]beta-CIT binding was assessed before and after IV administration of the serotonin precursor 5-hydroxy-L-tryptophan (L-5-HTP) restored endogenous serotonin. Pretreatment with benserazide blocked peripheral decarboxylization in both paradigms. Serotonin restoration measurably displaced [123I]beta-CIT binding to brainstem serotonin transporters but not to striatal dopamine transporters. Restoration of dopamine apparently did not affect [123I] beta-CIT binding to striatal dopamine transporters. However, dopamine restoration reduced radioligand binding to brainstem serotonin transporters, most likely due to dopamine release from serotonin neurons following L-DOPA administration. The higher striatal density of dopamine transporters relative to dopamine concentrations may explain why [123I] beta-CIT displacement by endogenous dopamine was not observed. This study indicates that [123I]beta-CIT binding in brainstem (raphe area) is affected by endogenous serotonin release in vivo and that L-DOPA treatment may cause serotonin neurons in the brainstem to corelease dopamine.
Collapse
Affiliation(s)
- A Heinz
- Department of Psychiatry, Charité University Medicine Berlin, Campus Charité Mitte, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
10
|
Reyes-Haro D, García-Alcocer G, Miledi R, García-Colunga J. Uptake of serotonin by adult rat corpus callosum is partially reduced by common antidepressants. J Neurosci Res 2003; 74:97-102. [PMID: 13130511 DOI: 10.1002/jnr.10724] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The corpus callosum (CC) is the main white matter tract involved in interhemispheric brain communication. We establish that uptake of [3H]5-hydroxytryptamine (5-HT) in CC is partially inhibited by some antidepressants. Slices of the adult rat CC had a high-affinity uptake of 5-HT. About 80% of this uptake was Na+ dependent, with a Michaelis-Menten constant, Km, of 420 +/- 80 nM and a rate of 5-HT uptake, Vmax, of 9.5 +/- 0.8 pmol/mg protein/min. The 5-HT uptake was reduced approximately 60% at pH 5 compared with that at pH 7. Fluoxetine (Prozac) inhibited only 43% of 5-HT uptake in a concentration-dependent manner, with an affinity constant, Ki, of 44.7 +/- 10.0 nM. We also studied the effects of other monoamine uptake inhibitors, all at 10 microM, and found that zimelidine, imipramine, and clomipramine inhibited 5-HT uptake in the CC by approximately 30-40%. The fluoxetine-insensitive 5-HT uptake was not altered by high concentrations of dopamine plus norepinephrine. The present data show that Na(+)-dependent 5-HT uptake occurs in the CC and optic nerve and that this uptake is partially sensitive to antidepressants and probably mediated by the serotonin transporter, which may be relevant during depression.
Collapse
Affiliation(s)
- Daniel Reyes-Haro
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Juriquilla, Querétaro, México
| | | | | | | |
Collapse
|
11
|
Riddle EL, Rau KS, Topham MK, Hanson GR, Fleckenstein AE. Ceramide-induced alterations in dopamine transporter function. Eur J Pharmacol 2003; 458:31-6. [PMID: 12498904 DOI: 10.1016/s0014-2999(02)02727-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The purpose of this study was to determine the effects of ceramide on dopamine and serotonin (5-HT, 5-hydroxytryptamine) transporters. Exposure of rat striatal synaptosomes to C2-ceramide caused a reversible, concentration-dependent decrease in plasmalemmal dopamine uptake. In contrast, ceramide exposure increased striatal 5-HT synaptosomal uptake. This increase did not appear to be due to an increased uptake by the 5-HT transporter. Rather, the increase appeared to result from an increase in 5-HT transport through the dopamine transporter, an assertion evidenced by findings that this increase: (1) does not occur in hippocampal synaptosomes (i.e., a preparation largely devoid of dopamine transporters), (2) occurs in striatal synaptosomes prepared from para-chloroamphetamine-treated rats (i.e., a preparation lacking 5-HT transporters), (3) is attenuated by pretreatment with methylphenidate (i.e., a relatively selective dopamine reuptake inhibitor) and (4) is inhibited by exposure to exogenous dopamine (i.e., which presumably competes for uptake with 5-HT). Taken together, these results reveal that ceramide is a novel modulator of monoamine transporter function, and may alter the affinity of dopamine transporters for its primary substrate.
Collapse
Affiliation(s)
- Evan L Riddle
- Department of Pharmacology and Toxicology, University of Utah, Room 201, 30 South 2000 East, Salt Lake City, UT 84112, USA
| | | | | | | | | |
Collapse
|