1
|
Wu Y, Xu D, He Y, Yan Z, Liu R, Liu Z, He C, Liu X, Yu Y, Yang X, Pan W. Dimethyl itaconate ameliorates the deficits of goal-directed behavior in Toxoplasma gondii infected mice. PLoS Negl Trop Dis 2023; 17:e0011350. [PMID: 37256871 DOI: 10.1371/journal.pntd.0011350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/02/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND The neurotrophic parasite Toxoplasma gondii (T. gondii) has been implicated as a risk factor for neurodegenerative diseases. However, there is only limited information concerning its underlying mechanism and therapeutic strategy. Here, we investigated the effects of T. gondii chronic infection on the goal-directed cognitive behavior in mice. Moreover, we evaluated the preventive and therapeutic effect of dimethyl itaconate on the behavior deficits induced by the parasite. METHODS The infection model was established by orally infecting the cysts of T. gondii. Dimethyl itaconate was intraperitoneally administered before or after the infection. Y-maze and temporal order memory (TOM) tests were used to evaluate the prefrontal cortex-dependent behavior performance. Golgi staining, transmission electron microscopy, indirect immunofluorescence, western blot, and RNA sequencing were utilized to determine the pathological changes in the prefrontal cortex of mice. RESULTS We showed that T. gondii infection impaired the prefrontal cortex-dependent goal-directed behavior. The infection significantly downregulated the expression of the genes associated with synaptic transmission, plasticity, and cognitive behavior in the prefrontal cortex of mice. On the contrary, the infection robustly upregulated the expression of activation makers of microglia and astrocytes. In addition, the metabolic phenotype of the prefrontal cortex post infection was characterized by the enhancement of glycolysis and fatty acid oxidation, the blockage of the Krebs cycle, and the disorder of aconitate decarboxylase 1 (ACOD1)-itaconate axis. Notably, the administration of dimethyl itaconate significantly prevented and treated the cognitive impairment induced by T. gondii, which was evidenced by the improvement of behavioral deficits, synaptic ultrastructure lesion and neuroinflammation. CONCLUSION The present study demonstrates that T. gondii infection induces the deficits of the goal-directed behavior, which is associated with neuroinflammation, the impairment of synaptic ultrastructure, and the metabolic shifts in the prefrontal cortex of mice. Moreover, we report that dimethyl itaconate has the potential to prevent and treat the behavior deficits.
Collapse
Affiliation(s)
- Yongshuai Wu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, China
- National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, China
| | - Daxiang Xu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Yan He
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, China
- National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, China
| | - Ziyi Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, China
- National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, China
| | - Rundong Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, China
- National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, China
| | - Zhuanzhuan Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, China
| | - Cheng He
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, China
| | - Xiaomei Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, China
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, China
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, China
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, China
| |
Collapse
|
2
|
Whole-brain modeling explains the context-dependent effects of cholinergic neuromodulation. Neuroimage 2023; 265:119782. [PMID: 36464098 DOI: 10.1016/j.neuroimage.2022.119782] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/08/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022] Open
Abstract
Integration and segregation are two fundamental principles of brain organization. The brain manages the transitions and balance between different functional segregated or integrated states through neuromodulatory systems. Recently, computational and experimental studies suggest a pro-segregation effect of cholinergic neuromodulation. Here, we studied the effects of the cholinergic system on brain functional connectivity using both empirical fMRI data and computational modeling. First, we analyzed the effects of nicotine on functional connectivity and network topology in healthy subjects during resting-state conditions and during an attentional task. Then, we employed a whole-brain neural mass model interconnected using a human connectome to simulate the effects of nicotine and investigate causal mechanisms for these changes. The drug effect was modeled decreasing both the global coupling and local feedback inhibition parameters, consistent with the known cellular effects of acetylcholine. We found that nicotine incremented functional segregation in both empirical and simulated data, and the effects are context-dependent: observed during the task, but not in the resting state. In-task performance correlates with functional segregation, establishing a link between functional network topology and behavior. Furthermore, we found in the empirical data that the regional density of the nicotinic acetylcholine α4β2 correlates with the decrease in functional nodal strength by nicotine during the task. Our results confirm that cholinergic neuromodulation promotes functional segregation in a context-dependent fashion, and suggest that this segregation is suited for simple visual-attentional tasks.
Collapse
|
3
|
Nishikawa M, Ohara N, Naito Y, Saito Y, Amma C, Tatematsu K, Baoyindugurong J, Miyazawa D, Hashimoto Y, Okuyama H. Rapeseed (canola) oil aggravates metabolic syndrome-like conditions in male but not in female stroke-prone spontaneously hypertensive rats (SHRSP). Toxicol Rep 2022; 9:256-268. [PMID: 35242585 PMCID: PMC8866840 DOI: 10.1016/j.toxrep.2022.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/30/2021] [Accepted: 01/25/2022] [Indexed: 11/18/2022] Open
Abstract
Canola oil shortens life of male SHRSP. Testis is the target of canola oil toxicity. Inhibition of negative regulation by testosterone of aldosterone production may be a trigger of canola oil toxicity. Facilitation of hypertension by aldosterone may lead to life-shortening. Increased plasma lipids by canola oil have no relevance to life-shortening.
This study was conducted to investigate whether or not there are sex differences in canola oil (CAN)-induced adverse events in the rat and to understand the involvement and the role of testosterone in those events, including life-shortening. Stroke-prone spontaneously hypertensive rats (SHRSP) of both sexes were fed a diet containing 10 wt/wt% soybean oil (SOY, control) or CAN as the sole dietary fat. The survival of the males fed the CAN diet was significantly shorter than that of those fed the SOY diet. In contrast, the survival of the females was not affected by CAN. The males fed the CAN diet showed elevated blood pressure, thrombopenia and insulin-tolerance, which are major symptoms of metabolic syndrome, whereas such changes by the CAN diet were not found in the females. Plasma testosterone was significantly lower in animals of both sexes fed the CAN diet than in those fed the SOY diet, but interestingly, the lowered testosterone was accompanied by a marked increase in plasma aldosterone only in the males. These results demonstrate significant sex differences in CAN-toxicity and suggest that those sex differences may be attributable to the increased aldosterone level, which triggers aggravation of the genetic diseases specific to SHRSP, that is, metabolic syndrome-like conditions, but only in the males. The present results also suggest that testosterone may negatively regulate aldosterone production in the physiology of the males, and the inhibition of that negative regulation caused by the CAN diet is one of the possible causes of the adverse events.
Collapse
Affiliation(s)
- Mai Nishikawa
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya, Aichi 463-8521, Japan
| | - Naoki Ohara
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya, Aichi 463-8521, Japan
- Corresponding author.
| | - Yukiko Naito
- School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Yoshiaki Saito
- Hatano Research Institute, Food and Drug Safety Center, 729-5 Ochiai, Hadano, Kanagawa 257-8523, Japan
| | - Chihiro Amma
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya, Aichi 463-8521, Japan
| | - Kenjiro Tatematsu
- Gifu Pharmaceutical University, 5-6-1 Mitabora, Gifu, Gifu 502-8585, Japan
| | - Jinhua Baoyindugurong
- Inner Mongolia Agricultural University, College of Food Science and Engineering, Zhaowuda Rd. 306, Hohhot, Inner Mongolia 010018, PR China
| | - Daisuke Miyazawa
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya, Aichi 463-8521, Japan
| | - Yoko Hashimoto
- School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Harumi Okuyama
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya, Aichi 463-8521, Japan
| |
Collapse
|
4
|
Regan SL, Williams MT, Vorhees CV. Review of rodent models of attention deficit hyperactivity disorder. Neurosci Biobehav Rev 2022; 132:621-637. [PMID: 34848247 PMCID: PMC8816876 DOI: 10.1016/j.neubiorev.2021.11.041] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a polygenic neurodevelopmental disorder that affects 8-12 % of children and >4 % of adults. Environmental factors are believed to interact with genetic predispositions to increase susceptibility to ADHD. No existing rodent model captures all aspects of ADHD, but several show promise. The main genetic models are the spontaneous hypertensive rat, dopamine transporter knock-out (KO) mice, dopamine receptor subtype KO mice, Snap-25 KO mice, guanylyl cyclase-c KO mice, and latrophilin-3 KO mice and rats. Environmental factors thought to contribute to ADHD include ethanol, nicotine, PCBs, lead (Pb), ionizing irradiation, 6-hydroxydopamine, neonatal hypoxia, some pesticides, and organic pollutants. Model validation criteria are outlined, and current genetic models evaluated against these criteria. Future research should explore induced multiple gene KOs given that ADHD is polygenic and epigenetic contributions. Furthermore, genetic models should be combined with environmental agents to test for interactions.
Collapse
Affiliation(s)
- Samantha L. Regan
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45229
| | - Michael T. Williams
- Department of Pediatrics, University of Cincinnati College of Medicine, and Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Charles V. Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine, and Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229,Corresponding author: Charles V. Vorhees, Ph.D., Div. of Neurology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA:
| |
Collapse
|
5
|
Leffa DT, Panzenhagen AC, Salvi AA, Bau CHD, Pires GN, Torres ILS, Rohde LA, Rovaris DL, Grevet EH. Systematic review and meta-analysis of the behavioral effects of methylphenidate in the spontaneously hypertensive rat model of attention-deficit/hyperactivity disorder. Neurosci Biobehav Rev 2019; 100:166-179. [PMID: 30826386 DOI: 10.1016/j.neubiorev.2019.02.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 12/19/2022]
Abstract
The spontaneously hypertensive rats (SHR) are the most widely used model for ADHD. While face and construct validity are consolidated, questions remain about the predictive validity of the SHR model. We aim at summarizing the evidence for the predictive validity of SHR by evaluating its ability to respond to methylphenidate (MPH), the most well documented treatment for ADHD. A systematic review was carried out to identify studies evaluating MPH effects on SHR behavior. Studies (n=36) were grouped into locomotion, attention, impulsivity or memory, and a meta-analysis was performed. Meta-regression, sensitivity, heterogeneity, and publication bias analyses were also conducted. MPH increased attentional and mnemonic performances in the SHR model and decreased impulsivity in a dose-dependent manner. However, MPH did not reduce hyperactivity in low and medium doses, while increased locomotor activity in high doses. Thus, since the paradoxical effect of stimulant in reducing hyperactivity was not observed in the SHR model, our study does not fully support the predictive validity of SHR, questioning their validity as an animal model for ADHD.
Collapse
Affiliation(s)
- Douglas T Leffa
- Post-Graduate Program in Medicine: Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Laboratory of Pain Pharmacology and Neuromodulation: Pre-clinical studies - Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alana C Panzenhagen
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; ADHD Outpatient Program, Hospital de Clínicas de Porto Alegre, Brazil
| | - Artur A Salvi
- Laboratory of Pain Pharmacology and Neuromodulation: Pre-clinical studies - Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Claiton H D Bau
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; ADHD Outpatient Program, Hospital de Clínicas de Porto Alegre, Brazil; Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Gabriel N Pires
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil; Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Iraci L S Torres
- Laboratory of Pain Pharmacology and Neuromodulation: Pre-clinical studies - Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Animal Experimentation Unit - GPPG - Hospital de Clínicas de Porto Alegre - Porto, Alegre, Brazil
| | - Luis A Rohde
- ADHD Outpatient Program, Hospital de Clínicas de Porto Alegre, Brazil; Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; National Institute of Developmental Psychiatry for Children and Adolescents, Brazil
| | - Diego L Rovaris
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; ADHD Outpatient Program, Hospital de Clínicas de Porto Alegre, Brazil; Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Eugenio H Grevet
- ADHD Outpatient Program, Hospital de Clínicas de Porto Alegre, Brazil; Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
6
|
Lai TKY, Su P, Zhang H, Liu F. Development of a peptide targeting dopamine transporter to improve ADHD-like deficits. Mol Brain 2018; 11:66. [PMID: 30413217 PMCID: PMC6234781 DOI: 10.1186/s13041-018-0409-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 10/22/2018] [Indexed: 11/29/2022] Open
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a neurocognitive disorder characterized by hyperactivity, inattention, working memory deficits and impulsivity. Its worldwide prevalence is estimated to be 3–5% in children and adolescents. The mainstay treatment for ADHD is stimulant medications (e.g. methylphenidate), which increase synaptic dopamine by directly blocking dopamine transporter (DAT). Although these pharmacological agents are effective, they are often associated with various side effects including risks for future substance use disorders in ADHD patients. Here, we investigated an interaction between DAT and dopamine D2 receptor (D2R) as a novel target to develop potential therapeutics for the treatment of ADHD by using an interfering peptide (TAT-DATNT) to dissociate this protein complex. We found that TAT-DATNT promotes locomotor behavior in Sprague-Dawley rats. Furthermore, using in vivo microdialysis and high-performance liquid chromatography, we found that the disruption of D2R-DAT elevates extracellular dopamine level. More importantly, the interfering peptide, TAT-DATNT, attenuates hyperactivity and improves spontaneous alternation behavior in spontaneously hypertensive rats (SHR) ------ a common animal model of ADHD. This work presents a different means (i.e. other than direct blockade by a DAT inhibitor) to regulate the activity of DAT and dopaminergic neurotransmission, and a potential target site for future development of ADHD treatments.
Collapse
Affiliation(s)
- Terence K Y Lai
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Ping Su
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada
| | - Hailong Zhang
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada
| | - Fang Liu
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada. .,Department of Physiology, University of Toronto, Toronto, ON, Canada. .,Department of Psychiatry, University of Toronto, Toronto, ON, Canada. .,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
7
|
Martín A, Domercq M, Matute C. Inflammation in stroke: the role of cholinergic, purinergic and glutamatergic signaling. Ther Adv Neurol Disord 2018; 11:1756286418774267. [PMID: 29774059 PMCID: PMC5949933 DOI: 10.1177/1756286418774267] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 03/26/2018] [Indexed: 12/27/2022] Open
Abstract
The inflammatory response is a major factor in stroke pathophysiology and contributes to secondary neuronal damage in both acute and chronic stages of the ischemic injury. Recent work in experimental cerebral ischemia has demonstrated the involvement of neurotransmitter signaling in the modulation of neuroinflammation. The present review discusses recent findings on the therapeutic potential and diagnostic perspectives of cholinergic, purinergic and glutamatergic receptors and transporters in experimental stroke. It provides evidence of the role of neurotransmission signaling as a promising inflammatory biomarker in stroke. Finally, recent molecular imaging studies using positron emission tomography of cholinergic receptors and glutamatergic transporters are outlined along with their potential as novel anti-inflammatory therapy to reduce the outcome of cerebral ischemia.
Collapse
Affiliation(s)
- Abraham Martín
- Experimental Molecular Imaging, Molecular Imaging Unit, CIC biomaGUNE, Pº Miramon 182, San Sebastian, Spain
| | - María Domercq
- Department of Neurosciences, University of the Basque Country, Barrio Sarriena s/n, Leioa, Spain Achucarro Basque Center for Neuroscience-UPV/EHU, Zamudio, Spain Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Carlos Matute
- Department of Neurosciences, University of the Basque Country, Barrio Sarriena s/n, Leioa, Spain Achucarro Basque Center for Neuroscience-UPV/EHU, Zamudio, Spain Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| |
Collapse
|
8
|
Lee HM, Kim Y. Drug Repurposing Is a New Opportunity for Developing Drugs against Neuropsychiatric Disorders. SCHIZOPHRENIA RESEARCH AND TREATMENT 2016; 2016:6378137. [PMID: 27073698 PMCID: PMC4814692 DOI: 10.1155/2016/6378137] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/24/2016] [Indexed: 01/03/2023]
Abstract
Better the drugs you know than the drugs you do not know. Drug repurposing is a promising, fast, and cost effective method that can overcome traditional de novo drug discovery and development challenges of targeting neuropsychiatric and other disorders. Drug discovery and development targeting neuropsychiatric disorders are complicated because of the limitations in understanding pathophysiological phenomena. In addition, traditional de novo drug discovery and development are risky, expensive, and time-consuming processes. One alternative approach, drug repurposing, has emerged taking advantage of off-target effects of the existing drugs. In order to identify new opportunities for the existing drugs, it is essential for us to understand the mechanisms of action of drugs, both biologically and pharmacologically. By doing this, drug repurposing would be a more effective method to develop drugs against neuropsychiatric and other disorders. Here, we review the difficulties in drug discovery and development in neuropsychiatric disorders and the extent and perspectives of drug repurposing.
Collapse
Affiliation(s)
- Hyeong-Min Lee
- Department of Cell Biology & Physiology, School of Medicine, University of North Carolina, 115 Mason Farm Road, Chapel Hill, NC 27599, USA
| | - Yuna Kim
- Department of Pediatrics, School of Medicine, Duke University, 905 S. LaSalle Street, Durham, NC 27710, USA
| |
Collapse
|
9
|
Thompson BL, Levitt P. Complete or partial reduction of the Met receptor tyrosine kinase in distinct circuits differentially impacts mouse behavior. J Neurodev Disord 2015; 7:35. [PMID: 26523156 PMCID: PMC4628780 DOI: 10.1186/s11689-015-9131-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/20/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Our laboratory discovered that the gene encoding the receptor tyrosine kinase, MET, contributes to autism risk. Expression of MET is reduced in human postmortem temporal lobe in autism and Rett Syndrome. Subsequent studies revealed a role for MET in human and mouse functional and structural cortical connectivity. To further understand the contribution of Met to brain development and its impact on behavior, we generated two conditional mouse lines in which Met is deleted from select populations of central nervous system neurons. Mice were then tested to determine the consequences of disrupting Met expression. METHODS Mating of Emx1 (cre) and Met (fx/fx) mice eliminates receptor signaling from all cells arising from the dorsal pallium. Met (fx/fx) and Nestin (cre) crosses result in receptor signaling elimination from all neural cells. Behavioral tests were performed to assess cognitive, emotional, and social impairments that are observed in multiple neurodevelopmental disorders and that are in part subserved by circuits that express Met. RESULTS Met (fx/fx) /Emx1 (cre) null mice displayed significant hypoactivity in the activity chamber and in the T-maze despite superior performance on the rotarod. Additionally, these animals showed a deficit in spontaneous alternation. Surprisingly, Met (fx/fx; fx/+) /Nestin (cre) null and heterozygous mice exhibited deficits in contextual fear conditioning, and Met (fx/+) /Nestin (cre) heterozygous mice spent less time in the closed arms of the elevated plus maze. CONCLUSIONS These data suggest a complex contribution of Met in the development of circuits mediating social, emotional, and cognitive behavior. The impact of disrupting developmental Met expression is dependent upon circuit-specific deletion patterns and levels of receptor activity.
Collapse
Affiliation(s)
- Barbara L Thompson
- Chan Division of Occupational Science and Occupational Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089 USA ; Institute for the Developing Mind, Children's Hospital of Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027 USA ; Department of Pediatrics, Children's Hospital of Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027 USA
| | - Pat Levitt
- Institute for the Developing Mind, Children's Hospital of Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027 USA ; Department of Pediatrics, Children's Hospital of Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027 USA
| |
Collapse
|
10
|
Philpot RM. Potential Use of Nicotinic Receptor Agonists for the Treatment of Chemotherapy-Induced Cognitive Deficits. Neurochem Res 2015; 40:2018-31. [DOI: 10.1007/s11064-015-1528-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 01/09/2015] [Accepted: 01/28/2015] [Indexed: 10/24/2022]
|
11
|
A randomized, double-blind, placebo-controlled crossover study of α4β 2* nicotinic acetylcholine receptor agonist AZD1446 (TC-6683) in adults with attention-deficit/hyperactivity disorder. Psychopharmacology (Berl) 2014; 231:1251-65. [PMID: 23640072 PMCID: PMC3838503 DOI: 10.1007/s00213-013-3116-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 04/04/2013] [Indexed: 10/26/2022]
Abstract
RATIONALE Stimulation of nicotinic cholinergic systems has been shown to alleviate ADHD symptoms and to improve cognitive performance. AZD1446 is a selective α4β2* nicotinic acetylcholine receptor agonist with potential effect on the symptoms of ADHD. OBJECTIVES The purpose of this study is to evaluate the efficacy, safety, and pharmacokinetics of AZD1446 in adults with ADHD treated for 2 weeks. METHOD This was a randomized, double-blind, placebo-controlled crossover trial. Participants were 79 adults with ADHD, grouped according to their use of nicotine-containing products. Nicotine non-users received placebo and two of three AZD1446 treatment regimens (80 mg tid, 80 mg qd, 10 mg tid). Nicotine users received placebo, AZD1446 80 mg tid and 80 mg qd. Efficacy measures included the Conners' Adult ADHD Rating Scale and cognitive measures of immediate and delayed verbal episodic memory, learning, attention, working memory, executive functioning, and spatial problem solving (CogState computerized test battery). RESULTS There was no significant effect of AZD1446 on any of the clinical scores irrespective of dose, schedule, or concomitant use of nicotine products. A statistically significant improvement was seen on the Groton Maze Learning Task, a measure of executive functioning, in nicotine non-users after treatment with AZD1446 80 mg qd. CONCLUSIONS AZD1446 was well tolerated, but did not significantly improve ADHD symptoms after 2 weeks of treatment compared to placebo. While the present study does not support the therapeutic utility of AZD1446 in ADHD, its potential pro-cognitive effects remain to be explored in other neuropsychiatric disorders.
Collapse
|
12
|
Nirogi R, Goura V, Abraham R, Jayarajan P. α4β2* neuronal nicotinic receptor ligands (agonist, partial agonist and positive allosteric modulators) as therapeutic prospects for pain. Eur J Pharmacol 2013; 712:22-9. [PMID: 23660369 DOI: 10.1016/j.ejphar.2013.04.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 04/15/2013] [Accepted: 04/18/2013] [Indexed: 01/31/2023]
Abstract
α4β2* neuronal nicotinic acetylcholine receptor are ligand-gated ion channels and widely expressed throughout the central and peripheral nervous system. α4β2* neuronal nicotinic acetylcholine receptor play crucial role in pain signaling via modulation of multiple neurotransmitters like acetylcholine, dopamine, γ-amino butyric acid (GABA) and norepinephrine. Both spinal and supraspinal pathways are involved in the mechanisms by which α4β2* neuronal nicotinic acetylcholine receptor ligands modulate the neuropathic and inflammatory pain. Selective α4β2* neuronal nicotinic acetylcholine receptor ligands are being developed for the treatment of neuropathic and inflammatory pain as they show considerable efficacy in a wide range of preclinical pain models. Agonists/partial agonists of α4β2* neuronal nicotinic acetylcholine receptor show efficacy in animal models of pain and their anti-nociceptive properties are blocked by nicotinic antagonists. Positive allosteric modulators are being developed with the aim to increase the potency or therapeutic window of agonists/partial agonists. Accumulating evidences suggest that anti-nociceptive effects of nicotinic acetylcholine receptor ligands may not be mediated solely by α4β2* neuronal nicotinic acetylcholine receptor. We have also reviewed the stage of clinical development of various α4β2* neuronal nicotinic acetylcholine receptor ligands.
Collapse
Affiliation(s)
- Ramakrishna Nirogi
- In-Vivo Pharmacology, Discovery Research, Suven Life Sciences Ltd., Serene Chambers, Road No. 5, Avenue-7, Banjara Hills, Hyderabad 500034, India.
| | | | | | | |
Collapse
|
13
|
Behavioural effects of monoamine reuptake inhibitors on symptomatic domains in an animal model of attention-deficit/hyperactivity disorder. Pharmacol Biochem Behav 2013; 105:89-97. [DOI: 10.1016/j.pbb.2013.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 12/07/2012] [Accepted: 01/12/2013] [Indexed: 11/23/2022]
|
14
|
Hijioka M, Matsushita H, Ishibashi H, Hisatsune A, Isohama Y, Katsuki H. α7 Nicotinic acetylcholine receptor agonist attenuates neuropathological changes associated with intracerebral hemorrhage in mice. Neuroscience 2012; 222:10-9. [DOI: 10.1016/j.neuroscience.2012.07.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/26/2012] [Accepted: 07/11/2012] [Indexed: 10/28/2022]
|
15
|
Ohno Y, Okano M, Masui A, Imaki J, Egawa M, Yoshihara C, Tatara A, Mizuguchi Y, Sasa M, Shimizu S. Region-specific elevation of D1 receptor-mediated neurotransmission in the nucleus accumbens of SHR, a rat model of attention deficit/hyperactivity disorder. Neuropharmacology 2012; 63:547-54. [DOI: 10.1016/j.neuropharm.2012.04.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 04/21/2012] [Accepted: 04/28/2012] [Indexed: 11/16/2022]
|
16
|
Nicotinic α5 subunits drive developmental changes in the activation and morphology of prefrontal cortex layer VI neurons. Biol Psychiatry 2012; 71:120-8. [PMID: 22030359 PMCID: PMC3788582 DOI: 10.1016/j.biopsych.2011.09.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 08/25/2011] [Accepted: 09/13/2011] [Indexed: 01/02/2023]
Abstract
BACKGROUND Nicotinic signaling in prefrontal layer VI pyramidal neurons is important to the function of mature attention systems. The normal incorporation of α5 subunits into α4β2* nicotinic acetylcholine receptors augments nicotinic signaling in these neurons and is required for normal attention performance in adult mice. However, the role of α5 subunits in the development of the prefrontal cortex is not known. METHODS We sought to answer this question by examining nicotinic currents and neuronal morphology in layer VI neurons of medial prefrontal cortex of wild-type and α5 subunit knockout (α5(-/-)) mice during postnatal development and in adulthood. RESULTS In wild-type but not in α5(-/-) mice, there is a developmental peak in nicotinic acetylcholine currents in the third postnatal week. At this juvenile time period, the majority of neurons in all mice have long apical dendrites extending into cortical layer I. Yet, by early adulthood, wild-type but not α5(-/-) mice show a pronounced shift toward shorter apical dendrites. This cellular difference occurs in the absence of genotype differences in overall cortical morphology. CONCLUSIONS Normal developmental changes in nicotinic signaling and dendritic morphology in prefrontal cortex depend on α5-comprising nicotinic acetylcholine receptors. It appears that these receptors mediate a specific developmental retraction of apical dendrites in layer VI neurons. This finding provides novel insight into the cellular mechanisms underlying the known attention deficits in α5(-/-) mice and potentially also into the pathophysiology of developmental neuropsychiatric disorders such as attention-deficit disorder and autism.
Collapse
|
17
|
Wigestrand MB, Mineur YS, Heath CJ, Fonnum F, Picciotto MR, Walaas SI. Decreased α4β2 nicotinic receptor number in the absence of mRNA changes suggests post-transcriptional regulation in the spontaneously hypertensive rat model of ADHD. J Neurochem 2011; 119:240-50. [PMID: 21824140 DOI: 10.1111/j.1471-4159.2011.07415.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The spontaneously hypertensive rat (SHR) is widely used as a model of attention-deficit/hyperactivity disorder (ADHD). Deficits in central nicotinic receptors (nAChRs) have been previously observed in SHRs, which is interesting since epidemiological studies have identified an association between smoking and ADHD symptoms in humans. Here, we examine whether nAChR deficits in SHRs compared with Wistar Kyoto rat (WKY) controls are nAChR subtype-specific and whether these deficits correlate with changes at the level of mRNA transcription in specific brain regions. Levels of binding sites (B(max) ) and dissociation constants (K(d)) for nAChRs were determined from saturation curves of high-affinity [³H]epibatidine- and [³H] Methyllycaconitine (MLA) binding to membranes from cortex, striatum, hippocampus and cerebellum. In additional brain regions, nAChRs were examined by autoradiography with [¹²⁵I]A-85380 and [¹²⁵I]α-bungarotoxin. Levels of mRNA encoding nAChR subunits were measured using quantitative real-time PCR (qPCR). We showed that the number of α4β2 nAChR binding sites is lower globally in the SHR brain compared with WKY in the absence of significant differences in mRNA levels, with the exception of lower α4 mRNA in cerebellum of SHR compared with WKY. Furthermore, nAChR deficits were subtype- specific because no strain difference was found in α7 nAChR binding or α7 mRNA levels. Our results suggest that the lower α4β2 nAChR number in SHR compared with WKY may be a consequence of dysfunctional post-transcriptional regulation of nAChRs.
Collapse
Affiliation(s)
- Mattis B Wigestrand
- Department of Biochemistry, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
18
|
Andreasen JT, Henningsen K, Bate S, Christiansen S, Wiborg O. Nicotine reverses anhedonic-like response and cognitive impairment in the rat chronic mild stress model of depression: comparison with sertraline. J Psychopharmacol 2011; 25:1134-41. [PMID: 21169388 DOI: 10.1177/0269881110391831] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Smoking rates among depressed individuals are higher than is observed in the background population, and nicotine alleviates depressive symptoms. In rodents, nicotine shows antidepressant-like effects in the forced swim and learned helplessness paradigms. Clinical depression is associated with both anhedonia and cognitive impairments. In rats, chronic mild stress (CMS) decreases voluntary sucrose intake, reflecting an anhedonic-like state, and impairs performance in the spontaneous alternation behaviour (SAB) test, suggesting impaired cognitive function. Here, we examine the effect of chronic treatment of nicotine (0.4 mg/kg/day) and sertraline (5 mg/kg/day) on CMS-induced anhedonic-like behaviour and impairment in the SAB test. Nicotine and sertraline administered individually or in combination show significant and equally efficacious reversal of the CMS-induced decrease in sucrose intake, implying there is no additive or synergistic effect of the nicotine + sertraline combination. In the SAB test, nicotine, but not sertraline or nicotine + sertraline, reversed the CMS-induced impairment. The present results show that the effect of nicotine on a CMS-induced anhedonic-like state in rats is similar to that of a standard antidepressant drug. Moreover, the data suggest that nicotine alleviates CMS-induced cognitive disturbance. A treatment strategy involving the targeting of nicotinic acetylcholine receptors may prove beneficial for emotional and cognitive disturbances associated with depression.
Collapse
Affiliation(s)
- Jesper T Andreasen
- Centre for Psychiatric Research, Aarhus University Hospital, Aarhus, Denmark.
| | | | | | | | | |
Collapse
|
19
|
Russell VA. Overview of animal models of attention deficit hyperactivity disorder (ADHD). ACTA ACUST UNITED AC 2011; Chapter 9:Unit9.35. [PMID: 21207367 DOI: 10.1002/0471142301.ns0935s54] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a heterogeneous, highly heritable, behavioral disorder that affects ∼5% to 10% of children worldwide. Although animal models cannot truly reflect human psychiatric disorders, they can provide insight into the disorder that cannot be obtained from human studies because of the limitations of available techniques. Genetic models include the spontaneously hypertensive rat (SHR), the Naples High Excitability (NHE) rat, poor performers in the 5-choice serial reaction time (5-CSRT) task, the dopamine transporter (DAT) knock-out mouse, the SNAP-25 deficient mutant coloboma mouse, mice expressing a human mutant thyroid hormone receptor, a nicotinic receptor knock-out mouse, and a tachykinin-1 (NK1) receptor knock-out mouse. Chemically induced models of ADHD include prenatal or early postnatal exposure to ethanol, nicotine, polychlorinated biphenyls, or 6-hydroxydopamine (6-OHDA). Environmentally induced models have also been suggested; these include neonatal anoxia and rat pups reared in social isolation. The major insight provided by animal models was the consistency of findings regarding the involvement of dopaminergic, noradrenergic, and sometimes also serotonergic systems, as well as more fundamental defects in neurotransmission.
Collapse
Affiliation(s)
- Vivienne Ann Russell
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| |
Collapse
|
20
|
Tamaddonfard E, Hamzeh-Gooshchi N. Effects of subcutaneous and intracerebroventricular injection of physostigmine on the acute corneal nociception in rats. Pharmacol Rep 2011; 62:858-63. [PMID: 21098868 DOI: 10.1016/s1734-1140(10)70345-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 01/13/2010] [Indexed: 10/25/2022]
Abstract
The present study investigated the effects of subcutaneous (sc) and intracerebroventricular (icv) injections of physostigmine (a cholinesterase inhibitor), atropine (an antagonist of muscarinic cholinergic receptors) and hexamethonium (an antagonist of nicotinic cholinergic receptors) on the acute corneal nociception in rats. Local application of 5 M NaCl solution on the corneal surface of the eye produced a significant nociceptive behavior, characterized by eye wiping. The number of eye wipes was counted during the first 30 s. The sc (0.25, 0.5 and 1 mg/kg) and icv (1.25, 2.5, 5 and 10 μg) injections of physostigmine significantly (p < 0.05) decreased the number of eye wipes. Atropine and hexamethonium at (2 mg/kg, sc and 20 μg, icv) had no effects when used alone, however, atropine, but not hexamethonium prevented the antinociception induced by physostigmine (sc and icv). The results of this study indicate that the central muscarinic, but not nicotinic receptors might be involved in the antinociceptive effect of physostigmine in the acute corneal model of pain in rats.
Collapse
Affiliation(s)
- Esmaeal Tamaddonfard
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia 57153-1177, Iran.
| | | |
Collapse
|
21
|
Jacobsen JPR, Redrobe JP, Hansen HH, Petersen S, Bond CT, Adelman JP, Mikkelsen JD, Mirza NR. Selective cognitive deficits and reduced hippocampal brain-derived neurotrophic factor mRNA expression in small-conductance calcium-activated K+ channel deficient mice. Neuroscience 2009; 163:73-81. [PMID: 19482064 DOI: 10.1016/j.neuroscience.2009.05.062] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 05/13/2009] [Accepted: 05/26/2009] [Indexed: 10/20/2022]
Abstract
Small-conductance calcium-activated K(+) channels 1-3 (SK1-3) are important for neuronal firing regulation and are considered putative CNS drug targets. For instance non-selective SK blockers improve performance in animal models of cognition. The SK subtype(s) involved herein awaits identification and the question is difficult to address pharmacologically due to the lack of subtype-selective SK-channel modulators. In this study, we used doxycycline-induced conditional SK3-deficient (T/T) mice to address the cognitive consequences of selective SK3 deficiency. In T/T mice SK3 protein is near-eliminated from the brain following doxycycline treatment. We tested T/T and wild type (WT) littermate mice in five distinct learning and memory paradigms. In Y-maze spontaneous alternations and five-trial inhibitory avoidance the performance of T/T mice was markedly inferior to WT mice. In contrast, T/T and WT mice performed equally well in passive avoidance, object recognition and the Morris water maze. Thus, some aspects of working/short-term memory are disrupted in T/T mice. Using in situ hybridization, we further found the cognitive deficits in T/T mice to be paralleled by reduced brain-derived neurotrophic factor (BDNF) mRNA expression in the dentate gyrus and CA3 of the hippocampus. BDNF mRNA levels in the frontal cortex were not affected. BDNF has been crucially implicated in many cognitive processes. Hence, the biological substrate for the cognitive impairments in T/T mice could conceivably entail reduced trophic support of the hippocampus.
Collapse
Affiliation(s)
- J P R Jacobsen
- Department of In Vivo Pharmacology, Neurosearch A/S, Ballerup, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kim HJ, Park SH, Kim KM, Ryu JH, Cheong JH, Shin CY. Ever Increasing Number of the Animal Model Systems for Attention Deficit/Hyperactivity Disorder: Attention, Please. Biomol Ther (Seoul) 2008. [DOI: 10.4062/biomolther.2008.16.4.312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
23
|
Khan AA, Mao XO, Banwait S, Jin K, Greenberg DA. Neuroglobin attenuates beta-amyloid neurotoxicity in vitro and transgenic Alzheimer phenotype in vivo. Proc Natl Acad Sci U S A 2007; 104:19114-9. [PMID: 18025470 PMCID: PMC2141917 DOI: 10.1073/pnas.0706167104] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Indexed: 11/18/2022] Open
Abstract
Neuroglobin (Ngb), a vertebrate globin expressed primarily in neurons, is induced by and protects against neuronal hypoxia and cerebral ischemia. To investigate the spectrum and mechanism of Ngb's neuroprotective action, we studied the effect of transgenic overexpression of Ngb on NMDA and beta-amyloid (Abeta) toxicity in murine cortical neuron cultures in vitro and on the phenotype of Alzheimer's disease (AD) transgenic (APP(Sw,Ind)) mice. Compared with cortical neuron cultures from wild-type mice, cultures from Ngb-overexpressing transgenic (Ngb-Tg mice) were resistant to the toxic effects of NMDA and Abeta(25-35), as measured by polarization of cell membrane lipid rafts, mitochondrial aggregation, lactate dehydrogenase release, and nuclear fragmentation. In addition, compared with APP(Sw,Ind) mice, double-transgenic (Ngb-Tg x APP(Sw,Ind)) mice showed reductions in thioflavin-S-stained extracellular Abeta deposits, decreased levels of Abeta(1-40) and Abeta(1-42), and improved behavioral performance in a Y-maze test of spontaneous alternations. These findings suggest that the spectrum of Ngb's neuroprotective action extends beyond hypoxic-ischemic insults. Ngb may protect neurons from NMDA and Abeta toxicity by inhibiting the formation of a death-signaling membrane complex, and interventions that increase Ngb expression could have therapeutic application in AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Adil A Khan
- Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, CA 94945, USA.
| | | | | | | | | |
Collapse
|
24
|
Reprint of “Neurobiology of animal models of attention-deficit hyperactivity disorder”. J Neurosci Methods 2007; 166:I-XIV. [DOI: 10.1016/j.jneumeth.2006.12.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2006] [Revised: 12/04/2006] [Accepted: 12/14/2006] [Indexed: 11/22/2022]
|
25
|
Kalamida D, Poulas K, Avramopoulou V, Fostieri E, Lagoumintzis G, Lazaridis K, Sideri A, Zouridakis M, Tzartos SJ. Muscle and neuronal nicotinic acetylcholine receptors. FEBS J 2007; 274:3799-845. [PMID: 17651090 DOI: 10.1111/j.1742-4658.2007.05935.x] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are integral membrane proteins and prototypic members of the ligand-gated ion-channel superfamily, which has precursors in the prokaryotic world. They are formed by the assembly of five transmembrane subunits, selected from a pool of 17 homologous polypeptides (alpha1-10, beta1-4, gamma, delta, and epsilon). There are many nAChR subtypes, each consisting of a specific combination of subunits, which mediate diverse physiological functions. They are widely expressed in the central nervous system, while, in the periphery, they mediate synaptic transmission at the neuromuscular junction and ganglia. nAChRs are also found in non-neuronal/nonmuscle cells (keratinocytes, epithelia, macrophages, etc.). Extensive research has determined the specific function of several nAChR subtypes. nAChRs are now important therapeutic targets for various diseases, including myasthenia gravis, Alzheimer's and Parkinson's diseases, and schizophrenia, as well as for the cessation of smoking. However, knowledge is still incomplete, largely because of a lack of high-resolution X-ray structures for these molecules. Nevertheless, electron microscopy studies on 2D crystals of nAChR from fish electric organs and the determination of the high-resolution X-ray structure of the acetylcholine binding protein (AChBP) from snails, a homolog of the extracellular domain of the nAChR, have been major steps forward and the data obtained have important implications for the design of subtype-specific drugs. Here, we review some of the latest advances in our understanding of nAChRs and their involvement in physiology and pathology.
Collapse
Affiliation(s)
- Dimitra Kalamida
- Department of Pharmacy, University of Patras, Rio Patras, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Russell VA. Neurobiology of animal models of attention-deficit hyperactivity disorder. J Neurosci Methods 2007; 161:185-98. [PMID: 17275916 DOI: 10.1016/j.jneumeth.2006.12.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2006] [Revised: 12/04/2006] [Accepted: 12/14/2006] [Indexed: 10/23/2022]
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a heterogeneous, highly heritable, disorder resulting from complex gene-gene and gene-environment interactions. The defining symptoms of hyperactivity, impulsivity and impaired sustained attention are not unique to ADHD. It is therefore not surprising that animals with distinctly different neural defects model the behavioural characteristics of the disorder. Consistent with ADHD being a developmental disorder, animal models are either genetic (spontaneously hypertensive rats (SHR), dopamine transporter (DAT) knock-out mice, SNAP-25 mutant mice, mice expressing a mutant thyroid receptor) or have suffered an insult to the central nervous system during the early stages of development (anoxia, 6-hydroxydopamine). It appears that neural transmission is impaired by either direct disruption of dopaminergic transmission or a more general impairment of neurotransmission that gives rise to compensatory changes in monoaminergic systems that are not sufficient to completely normalize neural function. In general, results obtained with animal studies suggest that dopamine neurons are functionally impaired. However, evidence obtained from some animal models suggests that the noradrenergic and serotonergic neurotransmitter systems may be the target of drugs that ameliorate ADHD symptoms.
Collapse
Affiliation(s)
- Vivienne Ann Russell
- Department of Human Biology, University of Cape Town, Anzio Road, Observatory 7925, South Africa.
| |
Collapse
|
27
|
Mill J. Rodent models: utility for candidate gene studies in human attention-deficit hyperactivity disorder (ADHD). J Neurosci Methods 2007; 166:294-305. [PMID: 17234273 DOI: 10.1016/j.jneumeth.2006.11.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 11/30/2006] [Accepted: 11/30/2006] [Indexed: 11/18/2022]
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a common neurobehavioral disorder defined by symptoms of developmentally inappropriate inattention, impulsivity and hyperactivity. Behavioral genetic studies provide overwhelming evidence for a significant genetic role in the pathogenesis of the disorder. Rodent models have proven extremely useful in helping understand more about the genetic basis of ADHD in humans. A number of well-characterized rodent models have been proposed, consisting of inbred strains, selected lines, genetic knockouts, and transgenic animals, which have been used to inform candidate gene studies in ADHD. In addition to providing information about the dysregulation of known candidate genes, rodents are excellent tools for the identification of novel ADHD candidate genes. While not yet widely used to identify genes for ADHD-like behaviors in rodents, quantitative trait loci (QTL) mapping approaches using recombinant inbred strains, heterogeneous stock mice, and chemically mutated animals have the potential to revolutionize our understanding of the genetic basis of ADHD.
Collapse
Affiliation(s)
- Jonathan Mill
- Centre for Addiction and Mental Health, Toronto, Canada.
| |
Collapse
|
28
|
Abstract
UNLABELLED Attention-deficit/hyperactivity disorder (ADHD) is a multifactorial and heterogeneous disorder, highly prevalent in children and characterized by three main components: inattention, lack of inhibitory control and hyperactivity. Epidemiological evidence reveals that ADHD is associated with nicotine exposure, mostly, with prenatal cigarette smoking. Mice deleted for the beta2-subunit gene of the neuronal nicotinic receptor are proposed as a simple and reliable animal model for ADHD. CONCLUSION Nicotinic agonists targeting the alpha4beta2 nicotinic receptors alleviate ADHD symptoms and may possibly contribute to an efficient therapy of ADHD children.
Collapse
Affiliation(s)
- Sylvie Granon
- URA CNRS Récepteur et Cognition, Institut Pasteur, Paris, France.
| | | |
Collapse
|
29
|
Thompson BL, Levitt P, Stanwood GD. Prenatal cocaine exposure specifically alters spontaneous alternation behavior. Behav Brain Res 2005; 164:107-16. [PMID: 16054247 DOI: 10.1016/j.bbr.2005.06.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Revised: 06/03/2005] [Accepted: 06/06/2005] [Indexed: 11/19/2022]
Abstract
Our laboratory has previously characterized a rabbit model of gestational cocaine exposure in which permanent alterations in neuronal morphology, cell signaling and psychostimulant-induced behavior are observed. The cellular and molecular neuroadaptations produced by prenatal cocaine occur in brain regions involved in executive function and attention, such as the anterior cingulate and medial prefrontal cortices. Therefore, in the present study, we have measured the effects of prenatal cocaine exposure on specific behavioral tasks in adult offspring whose mothers were treated with cocaine (3mg/kg, twice a day, E16-E25). We assessed non-spatial, short-term memory in a two-object recognition task and found no deficits in memory or exploratory behaviors in cocaine-exposed offspring in this paradigm. We also evaluated a different memory task with a more robust attentional component, using spontaneous alternation in a Y maze. In this task, young adult rabbits exposed to cocaine prenatally exhibited a significant deficit in performance. Deficits in spontaneous alternation can be induced by a wide variety of behavioral and cognitive dysfunctions, but taken together with previous findings in this and other animal models, we hypothesize that prenatal exposure to cocaine alters highly specific aspects of cognitive and emotional development.
Collapse
Affiliation(s)
- Barbara L Thompson
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-8548, USA
| | | | | |
Collapse
|
30
|
Gotti C, Clementi F. Neuronal nicotinic receptors: from structure to pathology. Prog Neurobiol 2005; 74:363-96. [PMID: 15649582 DOI: 10.1016/j.pneurobio.2004.09.006] [Citation(s) in RCA: 714] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Accepted: 09/29/2004] [Indexed: 02/07/2023]
Abstract
Neuronal nicotinic receptors (NAChRs) form a heterogeneous family of ion channels that are differently expressed in many regions of the central nervous system (CNS) and peripheral nervous system. These different receptor subtypes, which have characteristic pharmacological and biophysical properties, have a pentameric structure consisting of the homomeric or heteromeric combination of 12 different subunits (alpha2-alpha10, beta2-beta4). By responding to the endogenous neurotransmitter acetylcholine, NAChRs contribute to a wide range of brain activities and influence a number of physiological functions. Furthermore, it is becoming evident that the perturbation of cholinergic nicotinic neurotransmission can lead to various diseases involving nAChR dysfunction during development, adulthood and ageing. In recent years, it has been discovered that NAChRs are present in a number of non-neuronal cells where they play a significant functional role and are the pathogenetic targets in several diseases. NAChRs are also the target of natural ligands and toxins including nicotine (Nic), the most widespread drug of abuse. This review will attempt to survey the major achievements reached in the study of the structure and function of NAChRs by examining their regional and cellular localisation and the molecular basis of their functional diversity mainly in pharmacological and biochemical terms. The recent availability of mice with the genetic ablation of single or double nicotinic subunits or point mutations have shed light on the role of nAChRs in major physiological functions, and we will here discuss recent data relating to their behavioural phenotypes. Finally, the role of NAChRs in disease will be considered in some details.
Collapse
Affiliation(s)
- C Gotti
- CNR, Institute of Neuroscience, Cellular and Molecular Pharmacology Section, Department of Medical Pharmacology and Center of Excellence on Neurodegenerative Diseases, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy
| | | |
Collapse
|
31
|
Hohnadel EJ, Hernandez CM, Gearhart DA, Terry AV. Effect of repeated nicotine exposure on high-affinity nicotinic acetylcholine receptor density in spontaneously hypertensive rats. Neurosci Lett 2005; 382:158-63. [PMID: 15911141 DOI: 10.1016/j.neulet.2005.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 02/22/2005] [Accepted: 03/04/2005] [Indexed: 11/26/2022]
Abstract
Spontaneously hypertensive rats (SHRs) are often used as a model of attention deficit hyperactivity disorder (ADHD) and to investigate the effects of hypertension on cognitive function. Further, they appear to have reduced numbers of central nicotinic acetylcholine receptors (nAChRs) and, therefore, may be useful to model certain aspects of Alzheimer's disease (AD) and other forms of dementia given that a decrease in nAChRs is thought to contribute to cognitive decline in these disorders. In the present study, based on reports that chronic nicotine exposure increases nAChRs in several mammalian models, we tested the hypothesis that repeated exposures to a relatively low dose of the alkaloid would ameliorate the receptor deficits in SHR. Thus, young-adult SHRs and age-matched Wistar-Kyoto (WKY) control rats were treated with either saline or nicotine twice a day for 14 days (total daily dose = 0.7 mg/kg nicotine base) and then sacrificed. Quantitative receptor autoradiography with [125I]-IPH, an epibatidine analog, revealed: (1) that high-affinity nAChRs were higher in saline-treated WKY (control) rats compared to saline-treated SHRs in 18 of the 19 brain region measured, although statistically different only in the mediodorsal thalamic nuclei, (2) that nicotine significantly increased nAChR binding in WKY rats in six brain areas including cortical regions and the anterior thalamic nucleus, (3) that there were no cases where nicotine significantly increased nAChR binding in SHRs. These results indicate that subjects deficient in nAChRs may be less sensitive to nAChR upregulation with nicotine than normal subjects and require higher doses or longer periods of exposure.
Collapse
Affiliation(s)
- Elizabeth J Hohnadel
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy (Augusta Campus), Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | |
Collapse
|
32
|
Beane M, Marrocco RT. Norepinephrine and acetylcholine mediation of the components of reflexive attention: implications for attention deficit disorders. Prog Neurobiol 2005; 74:167-81. [PMID: 15556286 DOI: 10.1016/j.pneurobio.2004.09.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Accepted: 09/10/2004] [Indexed: 11/28/2022]
Abstract
Attention deficit hyperactivity disorders (ADHD) create major learning barriers for children and significant social and legal handicaps for adults worldwide. Important advances in the genetic basis of the disease have been made, but reliable, biological, diagnostic markers remain elusive. This review takes the position that future progress in treating the core symptom of attention deficits requires a clearer understanding of the neuroscience of attention in normal individuals. Two important achievements in this direction have been the development of tasks that identify activity in the orienting, alerting and conflict networks, and the identification of neurotransmitters that mediate these components. The proven ability of these tasks to identify and characterize response components of "normal" attention argues that they could be used advantageously with patient populations. The categorization of neurotransmitter abnormalities in those with ADHD could clarify whether attention deficits occur within or across attention networks. To realize these goals, we evaluate laboratory studies of attention in humans and animals that address the underlying neurotransmitter systems, primarily norepinephrine and acetylcholine. We propose that key facts about deficits in reflexive and voluntary attention may be understood by a model that includes deficits in brain norepinephrine release and its effects on cholinergic activity in the parietal cortex.
Collapse
Affiliation(s)
- M Beane
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | | |
Collapse
|
33
|
Jesmin S, Togashi H, Mowa CN, Ueno KI, Yamaguchi T, Shibayama A, Miyauchi T, Sakuma I, Yoshioka M. Characterization of regional cerebral blood flow and expression of angiogenic growth factors in the frontal cortex of juvenile male SHRSP and SHR. Brain Res 2004; 1030:172-82. [PMID: 15571667 DOI: 10.1016/j.brainres.2004.10.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2004] [Indexed: 11/22/2022]
Abstract
Attention-deficit/hyperactivity disorder (AD/HD) is a common pediatric behavioral disorder associated with male preponderance and reduction of regional cerebral blood flow (rCBF). However, lack of an appropriate animal model exhibiting appropriate AD/HD symptoms stands in the way of studying mechanism(s) underlying reduced rCBF and male preponderance. Our group has been investigating the suitability of juvenile male stroke-prone spontaneously hypertensive rats (SHRSP), a substrain of the commonly used AD/HD animal model SHR, as a model for AD/HD because, unlike SHR, SHRSP displays cognitive impairment and male preponderance. Our more recent studies revealed alterations in the synthesis of sex steroid hormones and angiogenic factors in the frontal cortex of male SHRSP compared to the genetic control WKY. Based on these observations, the present study utilizes laser-Doppler flowmetry, histochemistry, enzyme immunoassay, immunoblotting, and real-time PCR to characterize and compare the patterns of regional cerebral blood flow and synthesis of angiogenic molecules [basic fibroblast growth factor; nitric oxide synthase isoforms (endothelial, neuronal and inducible); vascular endothelial growth factor (VEGF) and its signaling molecules (VEGF receptors, phosphorylated Akt, endothelial nitric oxide synthase eNOS] between male SHRSP and SHR. Overall, consistent with our previous data showing alteration in VEGF/Akt/NO signaling, there was a marked reduction in the profile of rCBF (35%) and angiogenic factors of SHRSP, compared to age-matched genetic control Wistar-Kyoto rats (WKY) and SHR. We conclude that, unlike SHR, the profiles of rCBF and angiogenic factors in SHRSP are altered in juvenile male. Thus, SHRSP appears to be a more suitable animal model for studying changes in rCBF in AD/HD.
Collapse
Affiliation(s)
- Subrina Jesmin
- Departments of Cardiovascular Medicine and Neuropharmacology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Edwards KR, Hershey L, Wray L, Bednarczyk EM, Lichter D, Farlow M, Johnson S. Efficacy and safety of galantamine in patients with dementia with Lewy bodies: a 12-week interim analysis. Dement Geriatr Cogn Disord 2004; 17 Suppl 1:40-8. [PMID: 14676468 DOI: 10.1159/000074681] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Observations on the neurochemistry of dementia with Lewy bodies (DLB) have suggested that cholinesterase inhibitors (ChEIs) might be beneficial in treating some clinical symptoms of DLB. A 24-week, multicenter open-label study was designed to assess the safety and efficacy of the ChEI galantamine in patients with DLB, and an interim analysis of results was performed at 12 weeks. Efficacy analyses were performed on data from 25 patients. Scores on the Neuropsychiatric Inventory (NPI-12) improved (decreased) by 7.52 points over the 12 weeks (marginally significant, p = 0.061). NPI-12 scores decreased by half in 12 of the 25 patients. Highly significant improvement was observed in scores on the NPI-4 subscale (delusions, hallucinations, apathy, and depression: p = 0.003). Scores on the Clinician's Global Impression of Change (CGIC) improved by 0.95 points (significant, p = 0.02). Improvements also were found in secondary efficacy variables, including cognitive, functional, activities of daily living, sleep and confusion assessments. Motor scores, as measured by the UPDRS motor subscale, showed mild improvement, which demonstrates that galantamine has no adverse effect on parkinsonian symptoms. Adverse events generally were transient and of mild-to-moderate intensity. Two of the 25 patients discontinued galantamine because of nausea and anorexia. One serious adverse event was recorded, but it was judged to be unrelated to the study medication.
Collapse
Affiliation(s)
- Keith R Edwards
- Alzheimer's Diagnostic and Treatment Center, Neurological Research Center, Bennington, Vt. 05201, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Kaufer DI. Pharmacologic treatment expectations in the management of dementia with Lewy bodies. Dement Geriatr Cogn Disord 2004; 17 Suppl 1:32-9. [PMID: 14676467 DOI: 10.1159/000074680] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Recently recognized as an entity separate from Alzheimer's disease (AD) and Parkinson's disease with dementia, dementia with Lewy bodies (DLB) is a frequent cause of dementia. It is characterized by progressive cognitive decline and attention deficits, but in contrast to AD, the cognitive changes typically fluctuate over time. Patients with DLB often experience Parkinson-like spontaneous motor features as well as recurrent visual hallucinations. Another frequent finding in DLB is rapid eye movement (REM) sleep disorder. Ideally, each of the major symptom domains associated with DLB (behavioral, motor, and cognitive) would be treated, but drug interactions in these patients are a serious concern. In addition, many patients with DLB are hypersensitive to neuroleptics, which can induce severe extrapyramidal and other symptoms--sometimes ending in death. Compared with conventional neuroleptics, the newer atypical antipsychotic agents may be associated with lower rates of extrapyramidal side effects. Cholinergic deficits in DLB are even more severe than in AD, whereas the extent of cerebral atrophy and neuronal damage may be less. These observations and emerging clinical data support the treatment of DLB with acetylcholinesterase inhibitors. Encouraging results have been obtained from studies of DLB patients treated with rivastigmine, donepezil, and galantamine, but large-scale, controlled trials are needed to confirm the efficacy and safety of acetylcholinesterase inhibitors in patients with DLB.
Collapse
Affiliation(s)
- Daniel I Kaufer
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
36
|
Buckley MJ, Surowy C, Meyer M, Curzon P. Mechanism of action of A-85380 in an animal model of depression. Prog Neuropsychopharmacol Biol Psychiatry 2004; 28:723-30. [PMID: 15276699 DOI: 10.1016/j.pnpbp.2004.05.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/10/2004] [Indexed: 02/03/2023]
Abstract
A role for neuronal nicotinic receptor (NNR) activation in animal models of depression has been established. In order to determine the mechanism by which NNR ligands exert their antidepressant effects, experiments using different NNR receptor antagonists in both the mouse and the rat forced swim test (RFST) were performed. In the mouse forced swim test (MFST), A-85380 (0.62 micromol/kg = 0.14 mg/kg, i.p.), an NNR agonist, increased swim distance when administered 15 min prior to test. This effect was blocked by pre-treatment with mecamylamine (1.5 micromol/kg = 0.3 mg/kg, i.p.), suggesting that an NNR mechanism is involved. Further, chlorisondamine at a non-central nervous system (CNS) penetrating dose (1.6 micromol/kg = 1 mg/kg, i.p.) did not antagonize A-85380 in this model, thus implicating central rather than peripheral nicotinic receptors. Dihydro-beta-erythroidine (DHbetaE, 0.3 micromol/kg = 0.1 mg/kg, i.p.) pre-treatment also blocked this effect, indicating that the alpha4beta2 receptor subtype may be involved in A-85380-induced antidepressant effects. Finally, methiothepin (0.33 micromol/kg = 0.14 mg/kg, i.p.) pre-treatment antagonized this effect, suggesting serotonergic involvement. In the rat modified forced swim test, sub-acute administration of A-85380 (0.62 micromol/kg, i.p.) increased swimming behavior and decreased immobility. Climbing behavior was unaffected. In contrast, desipramine treatment (33 micromol/kg = 10 mg/kg, i.p.) resulted in an increase in climbing behavior with no effect on swimming. This behavioral profile has been shown to be more typical of serotonergic rather than noradrenergic antidepressants, suggesting that A-85380 exerts its effects via NNR activation of serotonergic systems.
Collapse
Affiliation(s)
- Michael J Buckley
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, R4N5, Building AP9A, Abbott Park, IL 60064, USA.
| | | | | | | |
Collapse
|
37
|
Woodruff-Pak DS. Mecamylamine reversal by nicotine and by a partial alpha7 nicotinic acetylcholine receptor agonist (GTS-21) in rabbits tested with delay eyeblink classical conditioning. Behav Brain Res 2003; 143:159-67. [PMID: 12900042 DOI: 10.1016/s0166-4328(03)00039-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The aim of this experiment was to investigate the effects of nicotinic acetylcholine receptor (nAChR) agonism and antagonism on learning. Eyeblink classical conditioning (750ms delay procedure) was tested for 15 daily sessions in a total of 82 young rabbits: 58 rabbits were tested in the paired procedure when the conditioned stimulus (CS) was always followed by the unconditioned stimulus (US), and 24 rabbits were tested in the explicitly unpaired procedure in which CS and US presentations were independent. We used the nAChR agonists nicotine and GTS-21 (a selective alpha7 nAChR partial agonist that antagonizes alpha4beta2 nAChRs) and the relatively nonselective nAChR antagonist, mecamylamine. Groups of young rabbits were injected with 0.5mg/kg mecamylamine alone and in combination with two doses of nicotine or GTS-21 and compared to vehicle-treated rabbits. Explicitly unpaired control groups received vehicle, mecamylamine plus the highest nicotine dose, or mecamylamine plus the highest GTS-21 dose. Both GTS-21 and nicotine reversed the deleterious effect of mecamylamine on the acquisition of conditioned responses. Combinations of GTS-21 or nicotine and mecamylamine did not cause sensitization or habituation in the unpaired condition. Reversal of mecamylamine-induced learning deficits by nicotine and GTS-21 suggests that nAChR agonists may have efficacy in ameliorating deficits caused by the loss of some types of nAChRs in diseases such as AD.
Collapse
Affiliation(s)
- Diana S Woodruff-Pak
- Research and Technology Development, Albert Einstein Healthcare Network, Korman Suite 100, 5501 Old York Road, Philadelphia, PA 19141, USA.
| |
Collapse
|
38
|
Palomo T, Beninger RJ, Kostrzewa RM, Archer T. Brain sites of movement disorder: genetic and environmental agents in neurodevelopmental perturbations. Neurotox Res 2003; 5:1-26. [PMID: 12832221 DOI: 10.1007/bf03033369] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In assessing and assimilating the neurodevelopmental basis of the so-called movement disorders it is probably useful to establish certain concepts that will modulate both the variation and selection of affliction, mechanisms-processes and diversity of disease states. Both genetic, developmental and degenerative aberrations are to be encompassed within such an approach, as well as all deviations from the necessary components of behaviour that are generally understood to incorporate "normal" functioning. In the present treatise, both conditions of hyperactivity/hypoactivity, akinesia and bradykinesia together with a constellation of other symptoms and syndromes are considered in conjunction with the neuropharmacological and brain morphological alterations that may or may not accompany them, e.g. following neonatal denervation. As a case in point, the neuroanatomical and neurochemical points of interaction in Attention Deficit and Hyperactivity disorder (ADHD) are examined with reference to both the perinatal metallic and organic environment and genetic backgrounds. The role of apoptosis, as opposed to necrosis, in cell death during brain development necessitates careful considerations of the current explosion of evidence for brain nerve growth factors, neurotrophins and cytokines, and the processes regulating their appearance, release and fate. Some of these processes may possess putative inherited characteristics, like alpha-synuclein, others may to greater or lesser extents be endogenous or semi-endogenous (in food), like the tetrahydroisoquinolines, others exogenous until inhaled or injested through environmental accident, like heavy metals, e.g. mercury. Another central concept of neurodevelopment is cellular plasticity, thereby underlining the essential involvement of glutamate systems and N-methyl-D-aspartate receptor configurations. Finally, an essential assimilation of brain development in disease must delineate the relative merits of inherited as opposed to environmental risks not only for the commonly-regarded movement disorders, like Parkinson's disease, Huntington's disease and epilepsy, but also for afflictions bearing strong elements of psychosocial tragedy, like ADHD, autism and Savantism.
Collapse
Affiliation(s)
- T Palomo
- Servicio de Psiquiatria, Hospital 12 de Octobre, Ctra. Andalucia Km. 5,400, 28041 Madrid, Spain.
| | | | | | | |
Collapse
|