1
|
Li Y, Uhelski ML, North RY, Farson LB, Bankston CB, Roland GH, Fan DH, Sheffield KN, Jia A, Orlando D, Heles M, Yaksh TL, Miller YI, Kosten TA, Dougherty PM. ApoA-I binding protein (AIBP) regulates transient receptor potential vanilloid 1 (TRPV1) activity in rat dorsal root ganglion neurons by selective disruption of toll-like receptor 4 (TLR4)-lipid rafts. Brain Behav Immun 2025; 123:644-655. [PMID: 39414176 DOI: 10.1016/j.bbi.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/24/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024] Open
Abstract
Toll-like receptor 4 (TLR4) and the transient receptor potential vanilloid subtype 1 (TRPV1) are both upregulated and play key roles in the induction and expression of paclitaxel-related chemotherapy-induced peripheral neuropathy (CIPN). Using Apolipoprotein A-I binding protein, non-specific cholesterol depletion, TLR4 mis-sense rats and a TLR4 inhibitor, we demonstrate that co-localization of TRPV1 with TLR4 to cholesterol-rich lipid membrane rafts in nociceptors is essential for its normal activation as well as for its exaggerated activation that underlies the development and expression of CIPN. The findings suggest that TLR4-lipid rafts may have an essential role in numerous neuroinflammatory and neuropathic pain conditions. This mechanism is also generalized to female rats for the first time.
Collapse
Affiliation(s)
- Yan Li
- The Departments of Anesthesia and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, the United States of America
| | - Megan L Uhelski
- The Departments of Anesthesia and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, the United States of America
| | - Robert Y North
- Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, the United States of America
| | - Luke B Farson
- The University of Texas Health Science Center, Houston, TX 77030, the United States of America
| | - Christopher B Bankston
- The University of Texas Health Science Center, Houston, TX 77030, the United States of America
| | - Gavin H Roland
- The University of Texas Health Science Center, Houston, TX 77030, the United States of America
| | - Dwight H Fan
- The University of Texas Health Science Center, Houston, TX 77030, the United States of America
| | | | - Amy Jia
- Northwestern University, Evanston, IL 60208, the United States of America
| | - Dana Orlando
- The University of Texas Health Science Center, Houston, TX 77030, the United States of America
| | - Mario Heles
- The Departments of Anesthesia and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, the United States of America
| | - Tony L Yaksh
- The Department of Anesthesiology, the University of California San Diego, La Jolla, CA, 92093, the United States of America
| | - Yury I Miller
- Department of Medicine, the University of California San Diego, La Jolla, CA, 92093, the United States of America
| | - Therese A Kosten
- Department of Psychology, Health Building 1, 4349 Martin Luther King Blvd, Houston, TX 77204, the United States of America
| | - Patrick M Dougherty
- The Departments of Anesthesia and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, the United States of America.
| |
Collapse
|
2
|
Wong SL, Shih CL, Cho HY, Wu SN. Effective suppression of I h and I Na caused by capsazepine, known to be a blocker of TRPV1 receptor. Brain Res 2024; 1839:149008. [PMID: 38761846 DOI: 10.1016/j.brainres.2024.149008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
A synthetic inhibitor of capsaicin-induced TRPV1 channel activation is called capsazepine (CPZ). In this study, we aimed to explore the effects of CPZ on hyperpolarization-activated cationic current (Ih) and voltage-gated Na + current (INa) in pituitary tumor (GH3) cells. Through patch-clamp recordings, we found that CPZ concentration-dependently inhibited Ih amplitude and slowed its activation time course. The IC50 and KD values were 3.1 and 3.16 μM, respectively. CPZ also shifted the steady-state activation curve of Ih towards a more hyperpolarized potential. However, there was no change in the gating charge of the curve. A modified Markovian model predicted the CPZ-induced decrease in the voltage-dependent hysteresis of Ih. CPZ suppressed INa in GH3 cells, without altering its activation or inactivation time course. Additionally, exposure to CPZ reduced spontaneous firing. These findings suggest that CPZ's inhibitory effects on Ih and INa are direct and not dependent on vanilloid receptor binding. This could provide light on an unidentified ionic mechanism influencing the membrane excitability of neurons and endocrine or neuroendocrine cells in vivo.
Collapse
Affiliation(s)
- Siew-Lee Wong
- Department of Pediatrics, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 60002, Taiwan
| | - Chia-Lung Shih
- Clinical Research Center, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 60002, Taiwan.
| | - Hsin-Yen Cho
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan; Department of Research and Education, An Nan Hospital, China Medical University, Tainan 709040, Taiwan; School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, 804201 Taiwan.
| |
Collapse
|
3
|
Sharma V, Sharma P, Singh TG. Therapeutic potential of transient receptor potential (TRP) channels in psychiatric disorders. J Neural Transm (Vienna) 2024; 131:1025-1037. [PMID: 39007920 DOI: 10.1007/s00702-024-02803-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024]
Abstract
Psychiatric disorders such as Bipolar disorder, Anxiety, Major depressive disorder, Schizophrenia, Attention-deficit/hyperactivity disorder, as well as neurological disorders such as Migraine, are linked by the evidence of altered calcium homeostasis. The disturbance of intra-cellular calcium homeostasis disrupts the activity of numerous ion channels including transient receptor potential (TRP) channels. TRP channel families comprise non-selective calcium-permeable channels that have been implicated in variety of physiological processes in the brain, as well as in the pathogenesis of psychiatric disorders. Through a comprehensive review of current research and experimentation, this investigation elucidates the role of TRP channels in psychiatric disorders. Furthermore, this review discusses about the exploration of epigenetics and TRP channels in psychiatric disorders.
Collapse
Affiliation(s)
- Veerta Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Prateek Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
4
|
Ashrafuzzaman M, Koeppe RE, Andersen OS. Intrinsic Lipid Curvature and Bilayer Elasticity as Regulators of Channel Function: A Comparative Single-Molecule Study. Int J Mol Sci 2024; 25:2758. [PMID: 38474005 PMCID: PMC10931550 DOI: 10.3390/ijms25052758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Perturbations in bilayer material properties (thickness, lipid intrinsic curvature and elastic moduli) modulate the free energy difference between different membrane protein conformations, thereby leading to changes in the conformational preferences of bilayer-spanning proteins. To further explore the relative importance of curvature and elasticity in determining the changes in bilayer properties that underlie the modulation of channel function, we investigated how the micelle-forming amphiphiles Triton X-100, reduced Triton X-100 and the HII lipid phase promoter capsaicin modulate the function of alamethicin and gramicidin channels. Whether the amphiphile-induced changes in intrinsic curvature were negative or positive, amphiphile addition increased gramicidin channel appearance rates and lifetimes and stabilized the higher conductance states in alamethicin channels. When the intrinsic curvature was modulated by altering phospholipid head group interactions, however, maneuvers that promote a negative-going curvature stabilized the higher conductance states in alamethicin channels but destabilized gramicidin channels. Using gramicidin channels of different lengths to probe for changes in bilayer elasticity, we found that amphiphile adsorption increases bilayer elasticity, whereas altering head group interactions does not. We draw the following conclusions: first, confirming previous studies, both alamethicin and gramicidin channels are modulated by changes in lipid bilayer material properties, the changes occurring in parallel yet differing dependent on the property that is being changed; second, isolated, negative-going changes in curvature stabilize the higher current levels in alamethicin channels and destabilize gramicidin channels; third, increases in bilayer elasticity stabilize the higher current levels in alamethicin channels and stabilize gramicidin channels; and fourth, the energetic consequences of changes in elasticity tend to dominate over changes in curvature.
Collapse
Affiliation(s)
- Mohammad Ashrafuzzaman
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Roger E. Koeppe
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Olaf S. Andersen
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA;
| |
Collapse
|
5
|
Ghovanloo MR, Effraim PR, Tyagi S, Zhao P, Dib-Hajj SD, Waxman SG. Functionally-selective inhibition of threshold sodium currents and excitability in dorsal root ganglion neurons by cannabinol. Commun Biol 2024; 7:120. [PMID: 38263462 PMCID: PMC10805714 DOI: 10.1038/s42003-024-05781-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 01/04/2024] [Indexed: 01/25/2024] Open
Abstract
Cannabinol (CBN), an incompletely understood metabolite for ∆9-tetrahydrocannabinol, has been suggested as an analgesic. CBN interacts with endocannabinoid (CB) receptors, but is also reported to interact with non-CB targets, including various ion channels. We assessed CBN effects on voltage-dependent sodium (Nav) channels expressed heterologously and in native dorsal root ganglion (DRG) neurons. Our results indicate that CBN is a functionally-selective, but structurally-non-selective Nav current inhibitor. CBN's main effect is on slow inactivation. CBN slows recovery from slow-inactivated states, and hyperpolarizes steady-state inactivation, as channels enter deeper and slower inactivated states. Multielectrode array recordings indicate that CBN attenuates DRG neuron excitability. Voltage- and current-clamp analysis of freshly isolated DRG neurons via our automated patch-clamp platform confirmed these findings. The inhibitory effects of CBN on Nav currents and on DRG neuron excitability add a new dimension to its actions and suggest that this cannabinoid may be useful for neuropathic pain.
Collapse
Affiliation(s)
- Mohammad-Reza Ghovanloo
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Philip R Effraim
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, USA
| | - Sidharth Tyagi
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT, USA
| | - Peng Zhao
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Sulayman D Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA.
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA.
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA.
| |
Collapse
|
6
|
Peyear TA, Andersen OS. Screening for bilayer-active and likely cytotoxic molecules reveals bilayer-mediated regulation of cell function. J Gen Physiol 2023; 155:e202213247. [PMID: 36763053 PMCID: PMC9948646 DOI: 10.1085/jgp.202213247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/06/2022] [Accepted: 01/13/2023] [Indexed: 02/11/2023] Open
Abstract
A perennial problem encountered when using small molecules (drugs) to manipulate cell or protein function is to assess whether observed changes in function result from specific interactions with a desired target or from less specific off-target mechanisms. This is important in laboratory research as well as in drug development, where the goal is to identify molecules that are unlikely to be successful therapeutics early in the process, thereby avoiding costly mistakes. We pursued this challenge from the perspective that many bioactive molecules (drugs) are amphiphiles that alter lipid bilayer elastic properties, which may cause indiscriminate changes in membrane protein (and cell) function and, in turn, cytotoxicity. Such drug-induced changes in bilayer properties can be quantified as changes in the monomer↔dimer equilibrium for bilayer-spanning gramicidin channels. Using this approach, we tested whether molecules in the Pathogen Box (a library of 400 drugs and drug-like molecules with confirmed activity against tropical diseases released by Medicines for Malaria Venture to encourage the development of therapies for neglected tropical diseases) are bilayer modifiers. 32% of the molecules in the Pathogen Box were bilayer modifiers, defined as molecules that at 10 µM shifted the monomer↔dimer equilibrium toward the conducting dimers by at least 50%. Correlation analysis of the molecules' reported HepG2 cell cytotoxicity to bilayer-modifying potency, quantified as the shift in the gramicidin monomer↔dimer equilibrium, revealed that molecules producing <25% change in the equilibrium had significantly lower probability of being cytotoxic than molecules producing >50% change. Neither cytotoxicity nor bilayer-modifying potency (quantified as the shift in the gramicidin monomer↔dimer equilibrium) was well predicted by conventional physico-chemical descriptors (hydrophobicity, polar surface area, etc.). We conclude that drug-induced changes in lipid bilayer properties are robust predictors of the likelihood of membrane-mediated off-target effects, including cytotoxicity.
Collapse
Affiliation(s)
- Thasin A. Peyear
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Graduate Program in Physiology, Biophysics and Systems Biology, Weill Cornell Graduate School of Medical Sciences. New York, NY, USA
| | - Olaf S. Andersen
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
7
|
Oz M, Lorke DE, Howarth FC. Transient receptor potential vanilloid 1 (TRPV1)-independent actions of capsaicin on cellular excitability and ion transport. Med Res Rev 2023. [PMID: 36916676 DOI: 10.1002/med.21945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 01/17/2023] [Accepted: 02/26/2023] [Indexed: 03/15/2023]
Abstract
Capsaicin is a naturally occurring alkaloid derived from chili pepper that is responsible for its hot pungent taste. Capsaicin is known to exert multiple pharmacological actions, including analgesia, anticancer, anti-inflammatory, antiobesity, and antioxidant effects. The transient receptor potential vanilloid subfamily member 1 (TRPV1) is the main receptor mediating the majority of the capsaicin effects. However, numerous studies suggest that the TRPV1 receptor is not the only target for capsaicin. An increasing number of studies indicates that capsaicin, at low to mid µM ranges, not only indirectly through TRPV1-mediated Ca2+ increases, but also directly modulates the functions of voltage-gated Na+ , K+ , and Ca2+ channels, as well as ligand-gated ion channels and other ion transporters and enzymes involved in cellular excitability. These TRPV1-independent effects are mediated by alterations of the biophysical properties of the lipid membrane and subsequent modulation of the functional properties of ion channels and by direct binding of capsaicin to the channels. The present study, for the first time, systematically categorizes this diverse range of non-TRPV1 targets and discusses cellular and molecular mechanisms mediating TRPV1-independent effects of capsaicin in excitable, as well as nonexcitable cells.
Collapse
Affiliation(s)
- Murat Oz
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat, Kuwait
| | - Dietrich E Lorke
- Department of Anatomy and Cellular Biology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates.,Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Frank C Howarth
- Department of Physiology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| |
Collapse
|
8
|
Hagmann H, Khayyat NH, Matin M, Oezel C, Chen H, Schauss A, Schell C, Benzing T, Dryer S, Brinkkoetter PT. Capsazepine (CPZ) Inhibits TRPC6 Conductance and Is Protective in Adriamycin-Induced Nephropathy and Diabetic Glomerulopathy. Cells 2023; 12:cells12020271. [PMID: 36672207 PMCID: PMC9856956 DOI: 10.3390/cells12020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/15/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Reactive oxygen species (ROS), which excessively arise in diabetes and systemic inflammatory diseases, modify cellular lipids and cellular lipid composition leading to altered biophysical properties of cellular membranes. The impact of lipid peroxidation on transmembrane signaling routes is not yet well studied. The canonical transient receptor potential channel 6 (TRPC6) is implicated in the pathogenesis of several forms of glomerular diseases. TRPC6 is sensitive to membrane stretch and relies on a distinct lipid environment. This study investigates the effect of oxidative alterations to plasma membrane lipids on TRPC6 activity and the function of the glomerular filter. Knockout of the anti-oxidative, lipid modifying enzyme paraoxonase 2 (PON2) leads to altered biophysical properties of glomerular epithelial cells, which are called podocytes. Cortical stiffness, quantified by atomic force microscopy, was largely increased in PON2-deficient cultured podocytes. PON2 deficiency markedly enhanced TRPC6 channel currents and channel recovery. Treatment with the amphiphilic substance capsazepine in micromolar doses reduced cortical stiffness and abrogated TRPC6 conductance. In in vivo studies, capsazepine reduced the glomerular phenotype in the model of adriamycin-induced nephropathy in PON2 knockout mice and wildtype littermates. In diabetic AKITA mice, the progression of albuminuria and diabetic kidney disease was delayed. In summary, we provide evidence that the modification of membrane characteristics affects TRPC6 signaling. These results could spur future research to investigate modification of the direct lipid environment of TRPC6 as a future therapeutic strategy in glomerular disease.
Collapse
Affiliation(s)
- Henning Hagmann
- Department II of Internal Medicine, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
- Correspondence:
| | | | - Mahsa Matin
- Department II of Internal Medicine, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| | - Cem Oezel
- Department II of Internal Medicine, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| | - He Chen
- Department II of Internal Medicine, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| | - Astrid Schauss
- Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), 50931 Cologne, Germany
| | - Christoph Schell
- Institute of Surgical Pathology, Faculty of Medicine, University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Thomas Benzing
- Department II of Internal Medicine, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), 50931 Cologne, Germany
- Systems Biology of Ageing Cologne (Sybacol), 50931 Cologne, Germany
| | - Stuart Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
- Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houston, Houston, TX 77204, USA
| | - Paul T. Brinkkoetter
- Department II of Internal Medicine, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
9
|
Ghovanloo MR, Dib-Hajj SD, Goodchild SJ, Ruben PC, Waxman SG. Non-psychotropic phytocannabinoid interactions with voltage-gated sodium channels: An update on cannabidiol and cannabigerol. Front Physiol 2022; 13:1066455. [PMID: 36439273 PMCID: PMC9691960 DOI: 10.3389/fphys.2022.1066455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/31/2022] [Indexed: 09/10/2023] Open
Abstract
Phytocannabinoids, found in the plant, Cannabis sativa, are an important class of natural compounds with physiological effects. These compounds can be generally divided into two classes: psychoactive and non-psychoactive. Those which do not impart psychoactivity are assumed to predominantly function via endocannabinoid receptor (CB) -independent pathways and molecular targets, including other receptors and ion channels. Among these targets, the voltage-gated sodium (Nav) channels are particularly interesting due to their well-established role in electrical signalling in the nervous system. The interactions between the main non-psychoactive phytocannabinoid, cannabidiol (CBD), and Nav channels were studied in detail. In addition to CBD, cannabigerol (CBG), is another non-psychoactive molecule implicated as a potential therapeutic for several conditions, including pain via interactions with Nav channels. In this mini review, we provide an update on the interactions of Nav channels with CBD and CBG.
Collapse
Affiliation(s)
| | - Sulayman D. Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
| | - Samuel J. Goodchild
- Department of Cellular and Molecular Biology, Xenon Pharmaceuticals Inc., Burnaby, BC, Canada
| | - Peter C. Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Stephen G. Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
10
|
Oz M, Yang KHS, Mahgoub MO. Effects of cannabinoids on ligand-gated ion channels. Front Physiol 2022; 13:1041833. [PMID: 36338493 PMCID: PMC9627301 DOI: 10.3389/fphys.2022.1041833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
Phytocannabinoids such as Δ9-tetrahydrocannabinol and cannabidiol, endocannabinoids such as N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol, and synthetic cannabinoids such as CP47,497 and JWH-018 constitute major groups of structurally diverse cannabinoids. Along with these cannabinoids, CB1 and CB2 cannabinoid receptors and enzymes involved in synthesis and degradation of endocannabinoids comprise the major components of the cannabinoid system. Although, cannabinoid receptors are known to be involved in anti-convulsant, anti-nociceptive, anti-psychotic, anti-emetic, and anti-oxidant effects of cannabinoids, in recent years, an increasing number of studies suggest that, at pharmacologically relevant concentrations, these compounds interact with several molecular targets including G-protein coupled receptors, ion channels, and enzymes in a cannabinoid-receptor independent manner. In this report, the direct actions of endo-, phyto-, and synthetic cannabinoids on the functional properties of ligand-gated ion channels and the plausible mechanisms mediating these effects were reviewed and discussed.
Collapse
Affiliation(s)
- Murat Oz
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
- *Correspondence: Murat Oz,
| | - Keun-Hang Susan Yang
- Department of Biological Sciences, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA, United States
| | - Mohamed Omer Mahgoub
- Department of Health and Medical Sciences, Khawarizmi International College, Abu Dhabi, UAE
| |
Collapse
|
11
|
Guard SE, Chapnick DA, Poss ZC, Ebmeier CC, Jacobsen J, Nemkov T, Ball KA, Webb KJ, Simpson HL, Coleman S, Bunker E, Ramirez A, Reisz JA, Sievers R, Stowell MHB, D'Alessandro A, Liu X, Old WM. Multiomic Analysis Reveals Disruption of Cholesterol Homeostasis by Cannabidiol in Human Cell Lines. Mol Cell Proteomics 2022; 21:100262. [PMID: 35753663 PMCID: PMC9525918 DOI: 10.1016/j.mcpro.2022.100262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/12/2022] [Accepted: 06/21/2022] [Indexed: 01/18/2023] Open
Abstract
The nonpsychoactive cannabinoid, cannabidiol (CBD), is Food and Dug Administration approved for treatment of two drug-resistant epileptic disorders and is seeing increased use among the general public, yet the mechanisms that underlie its therapeutic effects and side-effect profiles remain unclear. Here, we report a systems-level analysis of CBD action in human cell lines using temporal multiomic profiling. FRET-based biosensor screening revealed that CBD elicits a sharp rise in cytosolic calcium, and activation of AMP-activated protein kinase in human keratinocyte and neuroblastoma cell lines. CBD treatment leads to alterations in the abundance of metabolites, mRNA transcripts, and proteins associated with activation of cholesterol biosynthesis, transport, and storage. We found that CBD rapidly incorporates into cellular membranes, alters cholesterol accessibility, and disrupts cholesterol-dependent membrane properties. Sustained treatment with high concentrations of CBD induces apoptosis in a dose-dependent manner. CBD-induced apoptosis is rescued by inhibition of cholesterol synthesis and potentiated by compounds that disrupt cholesterol trafficking and storage. Our data point to a pharmacological interaction of CBD with cholesterol homeostasis pathways, with potential implications in its therapeutic use.
Collapse
Affiliation(s)
- Steven E Guard
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Douglas A Chapnick
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, USA
| | - Zachary C Poss
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Christopher C Ebmeier
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Jeremy Jacobsen
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
| | - Kerri A Ball
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Kristofor J Webb
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Helen L Simpson
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Stephen Coleman
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Eric Bunker
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, USA
| | - Adrian Ramirez
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
| | - Robert Sievers
- Department of Chemistry and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado, USA
| | - Michael H B Stowell
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
| | - Xuedong Liu
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, USA
| | - William M Old
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA.
| |
Collapse
|
12
|
Isaev D, Yang KHS, Shabbir W, Howarth FC, Oz M. Capsaicin Inhibits Multiple Voltage-Gated Ion Channels in Rabbit Ventricular Cardiomyocytes in TRPV1-Independent Manner. Pharmaceuticals (Basel) 2022; 15:ph15101187. [PMID: 36297299 PMCID: PMC9611941 DOI: 10.3390/ph15101187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Capsaicin is a naturally occurring alkaloid derived from chili pepper which is responsible for its hot, pungent taste. It exerts multiple pharmacological actions, including pain-relieving, anti-cancer, anti-inflammatory, anti-obesity, and antioxidant effects. Previous studies have shown that capsaicin significantly affects the contractility and automaticity of the heart and alters cardiovascular functions. In this study, the effects of capsaicin were investigated on voltage-gated ion currents in rabbit ventricular myocytes. Capsaicin inhibited rapidly activated (IKr) and slowly activated (IKs) K+ currents and transient outward (Ito) K+ current with IC50 values of 3.4 µM,14.7 µM, and 9.6 µM, respectively. In addition, capsaicin, at higher concentrations, suppressed voltage-gated Na+ and Ca2+ currents and inward rectifier IK1 current with IC50 values of 42.7 µM, 34.9 µM, and 38.8 µM, respectively. Capsaicin inhibitions of INa, IL-Ca, IKr, IKs, Ito, and IK1 were not reversed in the presence of capsazepine (3 µM), a TRPV1 antagonist. The inhibitory effects of capsaicin on these currents developed gradually, reaching steady-state levels within 3 to 6 min, and the recoveries were usually incomplete during washout. In concentration-inhibition curves, apparent Hill coefficients higher than unity suggested multiple interaction sites of capsaicin on these channels. Collectively, these findings indicate that capsaicin affects cardiac electrophysiology by acting on a diverse range of ion channels and suggest that caution should be exercised when capsaicin is administered to carriers of cardiac channelopathies or to individuals with arrhythmia-prone conditions, such as ischemic heart diseases.
Collapse
Affiliation(s)
- Dmytro Isaev
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, 01024 Kiev, Ukraine
| | - Keun-Hang Susan Yang
- Department of Biological Sciences, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA 92866, USA
| | - Waheed Shabbir
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, 01024 Kiev, Ukraine
| | - Frank Christopher Howarth
- Department of Physiology, College of Medicine and Health Sciences, UAE University, Abu Dhabi 15551, United Arab Emirates
| | - Murat Oz
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait
- Correspondence: ; Tel.: +965-99758003
| |
Collapse
|
13
|
Ghovanloo MR, Goodchild SJ, Ruben PC. Cannabidiol increases gramicidin current in human embryonic kidney cells: An observational study. PLoS One 2022; 17:e0271801. [PMID: 35913948 PMCID: PMC9342711 DOI: 10.1371/journal.pone.0271801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/07/2022] [Indexed: 02/02/2023] Open
Abstract
Gramicidin is a monomeric protein that is thought to non-selectively conduct cationic currents and water. Linear gramicidin is considered an antibiotic. This function is considered to be mediated by the formation of pores within the lipid membrane, thereby killing bacterial cells. The main non-psychoactive active constituent of the cannabis plant, cannabidiol (CBD), has recently gained interest, and is proposed to possess various potential therapeutic properties, including being an antibiotic. We previously determined that CBD’s activity on ion channels could be, in part, mediated by altering membrane biophysical properties, including elasticity. In this study, our goal was to determine the empirical effects of CBD on gramicidin currents in human embryonic kidney (HEK) cells, seeking to infer potential direct compound-protein interactions. Our results indicate that gramicidin, when applied to the extracellular HEK cell membrane, followed by CBD perfusion, increases the gramicidin current.
Collapse
Affiliation(s)
- Mohammad-Reza Ghovanloo
- Department of Cellular and Molecular Biology, Xenon Pharmaceuticals, Burnaby, BC, Canada
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Samuel J. Goodchild
- Department of Cellular and Molecular Biology, Xenon Pharmaceuticals, Burnaby, BC, Canada
| | - Peter C. Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- * E-mail:
| |
Collapse
|
14
|
Ayariga JA, Abugri DA, Amrutha B, Villafane R. Capsaicin Potently Blocks Salmonella typhimurium Invasion of Vero Cells. Antibiotics (Basel) 2022; 11:antibiotics11050666. [PMID: 35625310 PMCID: PMC9137802 DOI: 10.3390/antibiotics11050666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/05/2023] Open
Abstract
Salmonella typhimurium (S. typhimurium) is one of the major food and waterborne bacteria that causes several health outbreaks in the world. Although there are few antibiotics against this bacterium, some of these drugs are challenged with resistance and toxicity. To mitigate this challenge, our group explored the ethnomedicinal/herbalism knowledge about a certain spice used in Northern Ghana in West Africa against bacterial and viral infection. This plant is Capsicum chinense (C. chinense). The plant is one of the commonest food spices consumed across the world. The seed of the plant contains both capsaicin and dihydrocapsaicin. Apart from capsaicin and dihydrocapsaicin, other major capsaicinoids in C. chinense include nordihydrocapsaicin, homodihydrocapsaicin, and homocapsaicin. In this pilot work, we investigated the antibacterial activity of pure capsaicin and capsaicin extract obtained from C. chinense against S. typhimurium in vitro. Capsaicin extract showed potent inhibition of S. typhimurium growth at concentrations as low as 100 ng/mL, whereas pure capsaicin comparatively showed poorer inhibition of bacteria growth at such a concentration. Interestingly, both capsaicin extract and pure capsaicin were found to potently block a S. typhimurium invasion of the Vero cell in vitro. Taken together, we believed that capsaicin might work synergistically with dihydrocapsaicin or the other capsaicinoids to inhibit S. typhimurium growth, whereas individually, capsaicin or dihydrocapsaicin could potently block the bacteria entry and invasion of Vero cells.
Collapse
Affiliation(s)
- Joseph A. Ayariga
- The Biomedical Engineering Program, College of Science, Technology, Engineering and Mathematics (C-STEM), Alabama State University, Montgomery, AL 36104, USA
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics (C-STEM), Alabama State University, Montgomery, AL 36104, USA;
- Correspondence: (J.A.A.); (D.A.A.)
| | - Daniel A. Abugri
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics (C-STEM), Alabama State University, Montgomery, AL 36104, USA;
- Microbiology PhD Program, College of Science, Technology, Engineering and Mathematics (C-STEM), Alabama State University, Montgomery, AL 36104, USA
- Laboratory of Ethnomedicine, Parasitology, and Drug Discovery, College of Science, Technology, Engineering and Mathematics (C-STEM), Alabama State University, Montgomery, AL 36104, USA
- Correspondence: (J.A.A.); (D.A.A.)
| | - Balagopal Amrutha
- Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
| | - Robert Villafane
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics (C-STEM), Alabama State University, Montgomery, AL 36104, USA;
- Microbiology PhD Program, College of Science, Technology, Engineering and Mathematics (C-STEM), Alabama State University, Montgomery, AL 36104, USA
| |
Collapse
|
15
|
Castillo SR, Rickeard BW, DiPasquale M, Nguyen MHL, Lewis-Laurent A, Doktorova M, Kav B, Miettinen MS, Nagao M, Kelley EG, Marquardt D. Probing the Link between Pancratistatin and Mitochondrial Apoptosis through Changes in the Membrane Dynamics on the Nanoscale. Mol Pharm 2022; 19:1839-1852. [PMID: 35559658 DOI: 10.1021/acs.molpharmaceut.1c00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pancratistatin (PST) is a natural antiviral alkaloid that has demonstrated specificity toward cancerous cells and explicitly targets the mitochondria. PST initiates apoptosis while leaving healthy, noncancerous cells unscathed. However, the manner by which PST induces apoptosis remains elusive and impedes the advancement of PST as a natural anticancer therapeutic agent. Herein, we use neutron spin-echo (NSE) spectroscopy, molecular dynamics (MD) simulations, and supporting small angle scattering techniques to study PST's effect on membrane dynamics using biologically representative model membranes. Our data suggests that PST stiffens the inner mitochondrial membrane (IMM) by being preferentially associated with cardiolipin, which would lead to the relocation and release of cytochrome c. Second, PST has an ordering effect on the lipids and disrupts their distribution within the IMM, which would interfere with the maintenance and functionality of the active forms of proteins in the electron transport chain. These previously unreported findings implicate PST's effect on mitochondrial apoptosis.
Collapse
Affiliation(s)
- Stuart R Castillo
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Brett W Rickeard
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Mitchell DiPasquale
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Michael H L Nguyen
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Aislyn Lewis-Laurent
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Milka Doktorova
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22903, United States
| | - Batuhan Kav
- Max-Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany.,Institute of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Julich, Julich 52428, Germany
| | | | - Michihiro Nagao
- National Institute of Standards and Technology, Center for Neutron Research, Gaithersburg, Maryland 20899, United States.,Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States.,Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States
| | - Elizabeth G Kelley
- National Institute of Standards and Technology, Center for Neutron Research, Gaithersburg, Maryland 20899, United States
| | - Drew Marquardt
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada.,Department of Physics, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|
16
|
Cowan LM, Strege PR, Rusinova R, Andersen OS, Farrugia G, Beyder A. Capsaicin as an amphipathic modulator of Na V1.5 mechanosensitivity. Channels (Austin) 2022; 16:9-26. [PMID: 35412435 PMCID: PMC9009938 DOI: 10.1080/19336950.2022.2026015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
SCN5A-encoded NaV1.5 is a voltage-gated Na+ channel that drives the electrical excitability of cardiac myocytes and contributes to slow waves of the human gastrointestinal smooth muscle cells. NaV1.5 is mechanosensitive: mechanical force modulates several facets of NaV1.5’s voltage-gated function, and some NaV1.5 channelopathies are associated with abnormal NaV1.5 mechanosensitivity (MS). A class of membrane-active drugs, known as amphiphiles, therapeutically target NaV1.5’s voltage-gated function and produce off-target effects including alteration of MS. Amphiphiles may provide a novel option for therapeutic modulation of NaV1.5’s mechanosensitive operation. To more selectively target NaV1.5 MS, we searched for a membrane-partitioning amphipathic agent that would inhibit MS with minimal closed-state inhibition of voltage-gated currents. Among the amphiphiles tested, we selected capsaicin for further study. We used two methods to assess the effects of capsaicin on NaV1.5 MS: (1) membrane suction in cell-attached macroscopic patches and (2) fluid shear stress on whole cells. We tested the effect of capsaicin on NaV1.5 MS by examining macro-patch and whole-cell Na+ current parameters with and without force. Capsaicin abolished the pressure- and shear-mediated peak current increase and acceleration; and the mechanosensitive shifts in the voltage-dependence of activation (shear) and inactivation (pressure and shear). Exploring the recovery from inactivation and use-dependent entry into inactivation, we found divergent stimulus-dependent effects that could potentiate or mitigate the effect of capsaicin, suggesting that mechanical stimuli may differentially modulate NaV1.5 MS. We conclude that selective modulation of NaV1.5 MS makes capsaicin a promising candidate for therapeutic interventions targeting MS.
Collapse
Affiliation(s)
- Luke M Cowan
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, MN, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Mn, USA
| | - Peter R Strege
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, MN, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Mn, USA
| | - Radda Rusinova
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
| | - Olaf S Andersen
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
| | - Gianrico Farrugia
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, MN, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Mn, USA
| | - Arthur Beyder
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, MN, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Mn, USA
| |
Collapse
|
17
|
Membrane Interactivity of Capsaicin Antagonized by Capsazepine. Int J Mol Sci 2022; 23:ijms23073971. [PMID: 35409329 PMCID: PMC8999564 DOI: 10.3390/ijms23073971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022] Open
Abstract
Although the pharmacological activity of capsaicin has been explained by its specific binding to transient receptor potential vanilloid type 1, the amphiphilic structure of capsaicin may enable it to act on lipid bilayers. From a mechanistic point of view, we investigated whether capsaicin and its antagonist capsazepine interact with biomimetic membranes, and how capsazepine influences the membrane effect of capsaicin. Liposomal phospholipid membranes and neuro-mimetic membranes were prepared with 1,2-dipalmitoylphosphatidylcholine and with 1-palmitoyl-2-oleoylphosphatidylcholine and sphingomyelin plus cholesterol, respectively. These membrane preparations were subjected to reactions with capsaicin and capsazepine at 0.5–250 μM, followed by measuring fluorescence polarization to determine the membrane interactivity to modify the fluidity of membranes. Both compounds acted on 1,2-dipalmitoylphosphatidylcholine bilayers and changed membrane fluidity. Capsaicin concentration-dependently interacted with neuro-mimetic membranes to increase their fluidity at low micromolar concentrations, whereas capsazepine inversely decreased the membrane fluidity. When used in combination, capsazepine inhibited the effect of capsaicin on neuro-mimetic membranes. In addition to the direct action on transmembrane ion channels, capsaicin and capsazepine share membrane interactivity, but capsazepine is likely to competitively antagonize capsaicin’s interaction with neuro-mimetic membranes at pharmacokinetically-relevant concentrations. The structure-specific membrane interactivity may be partly responsible for the analgesic effect of capsaicin.
Collapse
|
18
|
Maer AM, Rusinova R, Providence LL, Ingólfsson HI, Collingwood SA, Lundbæk JA, Andersen OS. Regulation of Gramicidin Channel Function Solely by Changes in Lipid Intrinsic Curvature. Front Physiol 2022; 13:836789. [PMID: 35350699 PMCID: PMC8957996 DOI: 10.3389/fphys.2022.836789] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Membrane protein function is regulated by the lipid bilayer composition. In many cases the changes in function correlate with changes in the lipid intrinsic curvature (c 0), and c 0 is considered a determinant of protein function. Yet, water-soluble amphiphiles that cause either negative or positive changes in curvature have similar effects on membrane protein function, showing that changes in lipid bilayer properties other than c 0 are important-and may be dominant. To further investigate the mechanisms underlying the bilayer regulation of protein function, we examined how maneuvers that alter phospholipid head groups effective "size"-and thereby c 0-alter gramicidin (gA) channel function. Using dioleoylphospholipids and planar bilayers, we varied the head groups' physical volume and the electrostatic repulsion among head groups (and thus their effective size). When 1,2-dioleyol-sn-glycero-3-phosphocholine (DOPC), was replaced by 1,2-dioleyol-sn-glycero-3-phosphoethanolamine (DOPE) with a smaller head group (causing a more negative c 0), the channel lifetime (τ) is decreased. When the pH of the solution bathing a 1,2-dioleyol-sn-glycero-3-phosphoserine (DOPS) bilayer is decreased from 7 to 3 (causing decreased head group repulsion and a more negative c 0), τ is decreased. When some DOPS head groups are replaced by zwitterionic head groups, τ is similarly decreased. These effects do not depend on the sign of the change in surface charge. In DOPE:DOPC (3:1) bilayers, pH changes from 5→9 to 5→0 (both increasing head group electrostatic repulsion, thereby causing a less negative c 0) both increase τ. Nor do the effects depend on the use of planar, hydrocarbon-containing bilayers, as similar changes were observed in hydrocarbon-free lipid vesicles. Altering the interactions among phospholipid head groups may alter also other bilayer properties such as thickness or elastic moduli. Such changes could be excluded using capacitance measurements and single channel measurements on gA channels of different lengths. We conclude that changes gA channel function caused by changes in head group effective size can be predicted from the expected changes in c 0.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Olaf S. Andersen
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
19
|
Kayal C, Tamayo-Elizalde M, Adam C, Ye H, Jerusalem A. Voltage-Driven Alterations to Neuron Viscoelasticity. Bioelectricity 2022; 4:31-38. [PMID: 39372227 PMCID: PMC11450331 DOI: 10.1089/bioe.2021.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background The consideration of neurons as coupled mechanical-electrophysiological systems is supported by a growing body of experimental evidence, including observations that cell membranes mechanically deform during the propagation of an action potential. However, the short-term (seconds to minutes) influence of membrane voltage on the mechanical properties of a neuron at the single-cell level remains unknown. Materials and Methods Here, we use microscale dynamic mechanical analysis to demonstrate that changes in membrane potential induce changes in the mechanical properties of individual neurons. We simultaneously measured the membrane potential and mechanical properties of individual neurons through a multiphysics single-cell setup. Membrane voltage of a single neuron was measured through whole-cell patch clamp. The mechanical properties of the same neuron were measured through a nanoindenter, which applied a dynamic indentation to the neuron at different frequencies. Results Neuronal storage and loss moduli were lower for positive voltages than negative voltages. Conclusion The observed effects of membrane voltage on neuron mechanics could be due to piezoelectric or flexoelectric effects and altered ion distributions under the applied voltage. Such effects could change cell mechanics by changing the intermolecular interactions between ions and the various biomolecules within the membrane and cytoskeleton.
Collapse
Affiliation(s)
- Celine Kayal
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Miren Tamayo-Elizalde
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Casey Adam
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Hua Ye
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Antoine Jerusalem
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
20
|
Endothelial Cell Plasma Membrane Biomechanics Mediates Effects of Pro-Inflammatory Factors on Endothelial Mechanosensors: Vicious Circle Formation in Atherogenic Inflammation. MEMBRANES 2022; 12:membranes12020205. [PMID: 35207126 PMCID: PMC8877251 DOI: 10.3390/membranes12020205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 02/01/2023]
Abstract
Chronic low-grade vascular inflammation and endothelial dysfunction significantly contribute to the pathogenesis of cardiovascular diseases. In endothelial cells (ECs), anti-inflammatory or pro-inflammatory signaling can be induced by different patterns of the fluid shear stress (SS) exerted by blood flow on ECs. Laminar blood flow with high magnitude is anti-inflammatory, while disturbed flow and laminar flow with low magnitude is pro-inflammatory. Endothelial mechanosensors are the key upstream signaling proteins in SS-induced pro- and anti-inflammatory responses. Being transmembrane proteins, mechanosensors, not only experience fluid SS but also become regulated by the biomechanical properties of the lipid bilayer and the cytoskeleton. We review the apparent effects of pro-inflammatory factors (hypoxia, oxidative stress, hypercholesterolemia, and cytokines) on the biomechanics of the lipid bilayer and the cytoskeleton. An analysis of the available data suggests that the formation of a vicious circle may occur, in which pro-inflammatory cytokines enhance and attenuate SS-induced pro-inflammatory and anti-inflammatory signaling, respectively.
Collapse
|
21
|
Isaev D, Shabbir W, Dinc EY, Lorke DE, Petroianu G, Oz M. Cannabidiol Inhibits Multiple Ion Channels in Rabbit Ventricular Cardiomyocytes. Front Pharmacol 2022; 13:821758. [PMID: 35185573 PMCID: PMC8850628 DOI: 10.3389/fphar.2022.821758] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Cannabidiol (CBD), a major non-psychotropic cannabinoid found in the Cannabis plant, has been shown to exert anti-nociceptive, anti-psychotic, and anti-convulsant effects and to also influence the cardiovascular system. In this study, the effects of CBD on major ion currents were investigated using the patch-clamp technique in rabbit ventricular myocytes. CBD inhibited voltage-gated Na+ and Ca2+ channels with IC50 values of 5.4 and 4.8 µM, respectively. In addition, CBD, at lower concentrations, suppressed ion currents mediated by rapidly and slowly activated delayed rectifier K+ channels with IC50 of 2.4 and 2.1 µM, respectively. CBD, up to 10 μM, did not have any significant effect on inward rectifier IK1 and transient outward Ito currents. The effects of CBD on these currents developed gradually, reaching steady-state levels within 5–8 min, and recoveries were usually slow and partial. Hill coefficients higher than unity in concentration-inhibition curves suggested multiple CBD binding sites on these channels. These findings indicate that CBD affects cardiac electrophysiology by acting on a diverse range of ion channels and suggest that caution should be exercised when CBD is administered to carriers of cardiac channelopathies or to individuals using drugs known to affect the rhythm or the contractility of the heart.
Collapse
Affiliation(s)
- Dmytro Isaev
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, Kiev, Ukraine
| | - Waheed Shabbir
- Department of Medicine, Division of Nephrology and Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, United States
| | - Ege Y. Dinc
- Department of Neurology, Diskapi Training and Research Hospital, Ankara, Turkey
| | - Dietrich E Lorke
- Department of Anatomy and Cellular Biology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Georg Petroianu
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Murat Oz
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat, Kuwait
- *Correspondence: Murat Oz,
| |
Collapse
|
22
|
Abookleesh FL, Al-Anzi BS, Ullah A. Potential Antiviral Action of Alkaloids. Molecules 2022; 27:903. [PMID: 35164173 PMCID: PMC8839337 DOI: 10.3390/molecules27030903] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/30/2022] Open
Abstract
Viral infections and outbreaks have become a major concern and are one of the main causes of morbidity and mortality worldwide. The development of successful antiviral therapeutics and vaccines remains a daunting challenge. The discovery of novel antiviral agents is a public health emergency, and extraordinary efforts are underway globally to identify safe and effective treatments for different viral diseases. Alkaloids are natural phytochemicals known for their biological activities, many of which have been intensively studied for their broad-spectrum of antiviral activities against different DNA and RNA viruses. The purpose of this review was to summarize the evidence supporting the efficacy of the antiviral activity of plant alkaloids at half-maximum effective concentration (EC50) or half-maximum inhibitory concentration (IC50) below 10 μM and describe the molecular sites most often targeted by natural alkaloids acting against different virus families. This review highlights that considering the devastating effects of virus pandemics on humans, plants, and animals, the development of high efficiency and low-toxicity antiviral drugs targeting these viruses need to be developed. Furthermore, it summarizes the current research status of alkaloids as the source of antiviral drug development, their structural characteristics, and antiviral targets. Overall, the influence of alkaloids at the molecular level suggests a high degree of specificity which means they could serve as potent and safe antiviral agents waiting for evaluation and exploitation.
Collapse
Affiliation(s)
- Frage L. Abookleesh
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Bader S. Al-Anzi
- Department of Environment Technologies and Management, Kuwait University, P.O. Box 5969, Kuwait City 13060, Kuwait;
| | - Aman Ullah
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| |
Collapse
|
23
|
Lipid Specific Membrane Interaction of Aptamers and Cytotoxicity. MEMBRANES 2021; 12:membranes12010037. [PMID: 35054563 PMCID: PMC8780203 DOI: 10.3390/membranes12010037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/21/2021] [Accepted: 12/25/2021] [Indexed: 11/17/2022]
Abstract
We aim to discover diagnostic tools to detect phosphatidylserine (PS) externalization on apoptotic cell surface using PS binding aptamers, AAAGAC and TAAAGA, and hence to understand chemotherapy drug efficacy when inducing apoptosis into cancer cells. The entropic fragment-based approach designed aptamers have been investigated to inspect three aspects: lipid specificity in aptamers' membrane binding and bilayer physical properties-induced regulation of binding mechanisms, the apoptosis-induced cancer cell surface binding of aptamers, and the aptamer-induced cytotoxicity. The liposome binding assays show preferred membrane binding of aptamers due to presence of PS in predominantly phosphatidylcholine-contained liposomes. Two membrane stiffness reducing amphiphiles triton X-100 and capsaicin were found to enhance membrane's aptamer adsorption suggesting that bilayer physical properties influence membrane's adsorption of drugs. Microscopic images of fluorescence-tagged aptamer treated LoVo cells show strong fluorescence intensity only if apoptosis is induced. Aptamers find enhanced PS molecules to bind with on the surface of apoptotic over nonapoptotic cells. In cytotoxicity experiments, TAAAGA (over poor PS binding aptamer CAGAAAAAAAC) was found cytotoxic towards RBL cells due to perhaps binding with nonapoptotic externalized PS randomly and thus slowly breaching plasma membrane integrity. In these three experimental investigations, we found aptamers to act on membranes at comparable concentrations and specifically with PS binding manner. Earlier, we reported the origins of actions through molecular mechanism studies-aptamers interact with lipids using mainly charge-based interactions. Lipids and aptamers hold distinguishable charge properties, and hence, lipid-aptamer association follows distinguishable energetics due to electrostatic and van der Waals interactions. We discover that our PS binding aptamers, due to lipid-specific interactions, appear as diagnostic tools capable of detecting drug-induced apoptosis in cancer cells.
Collapse
|
24
|
Mechanisms underlying drug-mediated regulation of membrane protein function. Proc Natl Acad Sci U S A 2021; 118:2113229118. [PMID: 34753824 DOI: 10.1073/pnas.2113229118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2021] [Indexed: 11/18/2022] Open
Abstract
The hydrophobic coupling between membrane proteins and their host lipid bilayer provides a mechanism by which bilayer-modifying drugs may alter protein function. Drug regulation of membrane protein function thus may be mediated by both direct interactions with the protein and drug-induced alterations of bilayer properties, in which the latter will alter the energetics of protein conformational changes. To tease apart these mechanisms, we examine how the prototypical, proton-gated bacterial potassium channel KcsA is regulated by bilayer-modifying drugs using a fluorescence-based approach to quantify changes in both KcsA function and lipid bilayer properties (using gramicidin channels as probes). All tested drugs inhibited KcsA activity, and the changes in the different gating steps varied with bilayer thickness, suggesting a coupling to the bilayer. Examining the correlations between changes in KcsA gating steps and bilayer properties reveals that drug-induced regulation of membrane protein function indeed involves bilayer-mediated mechanisms. Both direct, either specific or nonspecific, binding and bilayer-mediated mechanisms therefore are likely to be important whenever there is overlap between the concentration ranges at which a drug alters membrane protein function and bilayer properties. Because changes in bilayer properties will impact many diverse membrane proteins, they may cause indiscriminate changes in protein function.
Collapse
|
25
|
Nian B, Xu YJ, Liu Y. Molecular dynamics simulation for mechanism revelation of the safety and nutrition of lipids and derivatives in food: State of the art. Food Res Int 2021; 145:110399. [PMID: 34112402 DOI: 10.1016/j.foodres.2021.110399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/26/2021] [Accepted: 05/06/2021] [Indexed: 11/29/2022]
Abstract
Molecular dynamics (MD) simulation has proved to be a powerful tool in the study of proteins, nucleic acids, lipids, and carbohydrates et al. in fields of health, nutrition, and food science. In particular, MD simulation has been employed in the investigation of various lipid systems such as triglycerides, phospholipid membranes, etc. Due to the continuous updating of computing resources and the development of new MD simulation methods and force field parameters, the simulation's time and size scale of lipids system has increased by several orders of magnitude. However, MD simulation cannot be used for systems invovle chemical reactions. These greatly limit its further application in the field of lipid research. This paper reviews the progress and development of MD simulation, especially for the application of MD simulation in different lipid systems. In this paper, MD simulation and its general workflow was briefly introduced firstly. Subsequently, the application of MD simulation in various lipid systems was reviewed in-depth. Finally, the limitation and future prospects of MD simulation in lipid research were also discussed. This review provided new insights into the investigation of MD simulation, and a novel thought for lipid study. We believe that MD simulation will exhibit more and more great advantages in the investigation of lipids in the future due to the development of novlel methods.
Collapse
Affiliation(s)
- Binbin Nian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
26
|
Ashrafuzzaman M. Amphiphiles capsaicin and triton X-100 regulate the chemotherapy drug colchicine's membrane adsorption and ion pore formation potency. Saudi J Biol Sci 2021; 28:3100-3109. [PMID: 34025185 PMCID: PMC8117037 DOI: 10.1016/j.sjbs.2021.02.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/07/2021] [Accepted: 02/15/2021] [Indexed: 02/02/2023] Open
Abstract
Chemotherapy drugs (CDs), e.g. colchicine derivative thiocolchicoside (TCC) and taxol, have been found to physically bind with lipid bilayer membrane and induce ion pores. Amphiphiles capsaicin (Cpsn) and triton X-100 (TX100) are known to regulate lipid bilayer physical properties by altering bilayer elasticity and lipid monolayer curvature. Both CDs and amphiphiles are predicted to physically accommodate alongside lipids in membrane to exert their membrane effects. The effects of their binary accommodation in the lipid membrane are yet to be known. Firstly, we have performed experimental studies to inspect whether membrane adsorption of CDs (colchicine or TCC) gets regulated due to any membrane effects of Cpsn or TX100. We find that the aqueous phase presence of these amphiphiles, known to reduce the membrane stiffness, works towards enhancing the membrane adsorption of CDs. Our recently patented technology 'direct detection method' helps address the membrane adsorption mechanisms. Secondly, in electrophysiology records, we measured the amphiphile effects on the potency of ion channel induction due to CDs. We find that amphiphiles increase the CD induced channel induction potency. Specifically, the membrane conductance, apparently due to the ion channel induction by the TCC, increases substantially due to the Cpsn or TX100 induced alterations of the bilayer physical properties. Thus we may conclude that the binary presence of CDs and amphiphiles in lipid membrane may influence considerably in CD's membrane adsorption, as well as the membrane effects, such as ion pore formation.
Collapse
Affiliation(s)
- Md. Ashrafuzzaman
- Biochemistry Department, Science College, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
27
|
Ghovanloo MR, Choudhury K, Bandaru TS, Fouda MA, Rayani K, Rusinova R, Phaterpekar T, Nelkenbrecher K, Watkins AR, Poburko D, Thewalt J, Andersen OS, Delemotte L, Goodchild SJ, Ruben PC. Cannabidiol inhibits the skeletal muscle Nav1.4 by blocking its pore and by altering membrane elasticity. J Gen Physiol 2021; 153:211970. [PMID: 33836525 PMCID: PMC8042605 DOI: 10.1085/jgp.202012701] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/13/2020] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Cannabidiol (CBD) is the primary nonpsychotropic phytocannabinoid found in Cannabis sativa, which has been proposed to be therapeutic against many conditions, including muscle spasms. Among its putative targets are voltage-gated sodium channels (Navs), which have been implicated in many conditions. We investigated the effects of CBD on Nav1.4, the skeletal muscle Nav subtype. We explored direct effects, involving physical block of the Nav pore, as well as indirect effects, involving modulation of membrane elasticity that contributes to Nav inhibition. MD simulations revealed CBD's localization inside the membrane and effects on bilayer properties. Nuclear magnetic resonance (NMR) confirmed these results, showing CBD localizing below membrane headgroups. To determine the functional implications of these findings, we used a gramicidin-based fluorescence assay to show that CBD alters membrane elasticity or thickness, which could alter Nav function through bilayer-mediated regulation. Site-directed mutagenesis in the vicinity of the Nav1.4 pore revealed that removing the local anesthetic binding site with F1586A reduces the block of INa by CBD. Altering the fenestrations in the bilayer-spanning domain with Nav1.4-WWWW blocked CBD access from the membrane into the Nav1.4 pore (as judged by MD). The stabilization of inactivation, however, persisted in WWWW, which we ascribe to CBD-induced changes in membrane elasticity. To investigate the potential therapeutic value of CBD against Nav1.4 channelopathies, we used a pathogenic Nav1.4 variant, P1158S, which causes myotonia and periodic paralysis. CBD reduces excitability in both wild-type and the P1158S variant. Our in vitro and in silico results suggest that CBD may have therapeutic value against Nav1.4 hyperexcitability.
Collapse
Affiliation(s)
- Mohammad-Reza Ghovanloo
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.,Department of Cellular and Molecular Biology, Xenon Pharmaceuticals, Burnaby, BC, Canada.,Science for Life Laboratory, Department of Physics, Royal Institute of Technology, Solna, Sweden
| | - Koushik Choudhury
- Science for Life Laboratory, Department of Physics, Royal Institute of Technology, Solna, Sweden
| | - Tagore S Bandaru
- Science for Life Laboratory, Department of Physics, Royal Institute of Technology, Solna, Sweden
| | - Mohamed A Fouda
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.,Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt
| | - Kaveh Rayani
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Radda Rusinova
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY
| | - Tejas Phaterpekar
- Department of Molecular Biology and Biochemistry/Physics, Simon Fraser University, Burnaby, BC, Canada
| | - Karen Nelkenbrecher
- Department of Cellular and Molecular Biology, Xenon Pharmaceuticals, Burnaby, BC, Canada
| | - Abeline R Watkins
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Damon Poburko
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Jenifer Thewalt
- Department of Molecular Biology and Biochemistry/Physics, Simon Fraser University, Burnaby, BC, Canada
| | - Olaf S Andersen
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY
| | - Lucie Delemotte
- Science for Life Laboratory, Department of Physics, Royal Institute of Technology, Solna, Sweden
| | - Samuel J Goodchild
- Department of Cellular and Molecular Biology, Xenon Pharmaceuticals, Burnaby, BC, Canada
| | - Peter C Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
28
|
Ashrafuzzaman M. The Antimicrobial Peptide Gramicidin S Enhances Membrane Adsorption and Ion Pore Formation Potency of Chemotherapy Drugs in Lipid Bilayers. MEMBRANES 2021; 11:247. [PMID: 33808204 PMCID: PMC8067072 DOI: 10.3390/membranes11040247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/06/2021] [Accepted: 02/17/2021] [Indexed: 01/25/2023]
Abstract
We recently published two novel findings where we found the chemotherapy drugs (CDs) thiocolchicoside (TCC) and taxol to induce toroidal type ion pores and the antimicrobial peptide gramicidin S (GS) to induce transient defects in model membranes. Both CD pores and GS defects were induced under the influence of an applied transmembrane potential (≈100 mV), which was inspected using the electrophysiology record of membrane currents (ERMCs). In this article, I address the regulation of the membrane adsorption and pore formation of CDs due to GS-induced possible alterations of lipid bilayer physical properties. In ERMCs, low micromolar (≥1 μM) GS concentrations in the aqueous phase were found to cause an induction of defects in lipid bilayers, but nanomolar (nM) concentration GS did nothing. For the binary presence of CDs and GS in the membrane-bathing aqueous phase, the TCC pore formation potency is found to increase considerably due to nM concentration GS in buffer. This novel result resembles our recently reported finding that due to the binary aqueous presence of two AMPs (gramicidin A or alamethicin and GS), the pore or defect-forming potency of either AMP increases considerably. To reveal the underlying molecular mechanisms, the influence of GS (0-400 nM) on the quantitative liposome (membrane) adsorption of CD molecules, colchicine and TCC, was tested. I used the recently patented direct detection method, which helps detect the membrane active agents directly at the membrane in the mole fraction relative to its concentrations in aqueous phase. We find that GS, at concentrations known to do nothing to the lipid bilayer electrical barrier properties in ERMCs, increases the membrane adsorption (membrane uptake) of CDs considerably. This phenomenological finding along with the GS effects on CD-induced membrane conductance increase helps predict an important conclusion. The binary presence of AMPs alongside CDs in the lipid membrane vicinity may work toward enhancing the physical adsorption and pore formation potency of CDs in lipid bilayers. This may help understand why CDs cause considerable cytotoxicity.
Collapse
Affiliation(s)
- Md Ashrafuzzaman
- Biochemistry Department, Science College, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
29
|
Single cell electrophysiological alterations under dynamic loading at ultrasonic frequencies. BRAIN MULTIPHYSICS 2021. [DOI: 10.1016/j.brain.2021.100031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
30
|
Foreman-Ortiz IU, Liang D, Laudadio ED, Calderin JD, Wu M, Keshri P, Zhang X, Schwartz MP, Hamers RJ, Rotello VM, Murphy CJ, Cui Q, Pedersen JA. Anionic nanoparticle-induced perturbation to phospholipid membranes affects ion channel function. Proc Natl Acad Sci U S A 2020; 117:27854-27861. [PMID: 33106430 PMCID: PMC7668003 DOI: 10.1073/pnas.2004736117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding the mechanisms of nanoparticle interaction with cell membranes is essential for designing materials for applications such as bioimaging and drug delivery, as well as for assessing engineered nanomaterial safety. Much attention has focused on nanoparticles that bind strongly to biological membranes or induce membrane damage, leading to adverse impacts on cells. More subtle effects on membrane function mediated via changes in biophysical properties of the phospholipid bilayer have received little study. Here, we combine electrophysiology measurements, infrared spectroscopy, and molecular dynamics simulations to obtain insight into a mode of nanoparticle-mediated modulation of membrane protein function that was previously only hinted at in prior work. Electrophysiology measurements on gramicidin A (gA) ion channels embedded in planar suspended lipid bilayers demonstrate that anionic gold nanoparticles (AuNPs) reduce channel activity and extend channel lifetimes without disrupting membrane integrity, in a manner consistent with changes in membrane mechanical properties. Vibrational spectroscopy indicates that AuNP interaction with the bilayer does not perturb the conformation of membrane-embedded gA. Molecular dynamics simulations reinforce the experimental findings, showing that anionic AuNPs do not directly interact with embedded gA channels but perturb the local properties of lipid bilayers. Our results are most consistent with a mechanism in which anionic AuNPs disrupt ion channel function in an indirect manner by altering the mechanical properties of the surrounding bilayer. Alteration of membrane mechanical properties represents a potentially important mechanism by which nanoparticles induce biological effects, as the function of many embedded membrane proteins depends on phospholipid bilayer biophysical properties.
Collapse
Affiliation(s)
| | - Dongyue Liang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
- Department of Chemistry, Boston University, Boston, MA 02215
| | | | - Jorge D Calderin
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Meng Wu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Puspam Keshri
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003
| | - Xianzhi Zhang
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003
| | - Michael P Schwartz
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Robert J Hamers
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003
| | - Catherine J Murphy
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Qiang Cui
- Department of Chemistry, Boston University, Boston, MA 02215
- Department of Physics, Boston University, Boston, MA 02215
- Department of Biomedical Engineering, Boston University, Boston, MA 02215
| | - Joel A Pedersen
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706;
- Department of Soil Science, University of Wisconsin-Madison, Madison, WI 53706
- Department of Civil & Environmental Engineering, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
31
|
Nebrisi EE, Prytkova T, Lorke DE, Howarth L, Alzaabi AH, Yang KHS, Howarth FC, Oz M. Capsaicin Is a Negative Allosteric Modulator of the 5-HT 3 Receptor. Front Pharmacol 2020; 11:1274. [PMID: 32982728 PMCID: PMC7490547 DOI: 10.3389/fphar.2020.01274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/31/2020] [Indexed: 01/16/2023] Open
Abstract
In this study, effects of capsaicin, an active ingredient of the capsicum plant, were investigated on human 5-hydroxytryptamine type 3 (5-HT3) receptors. Capsaicin reversibly inhibited serotonin (5-HT)-induced currents recorded by two-electrode voltage clamp method in Xenopus oocytes. The inhibition was time- and concentration-dependent with an IC50 = 62 μM. The effect of capsaicin was not altered in the presence of capsazepine, and by intracellular BAPTA injections or trans-membrane potential changes. In radio-ligand binding studies, capsaicin did not change the specific binding of the 5-HT3 antagonist [3H]GR65630, indicating that it is a noncompetitive inhibitor of 5-HT3 receptor. In HEK-293 cells, capsaicin inhibited 5-HT3 receptor induced aequorin luminescence with an IC50 of 54 µM and inhibition was not reversed by increasing concentrations of 5-HT. In conclusion, the results indicate that capsaicin acts as a negative allosteric modulator of human 5-HT3 receptors.
Collapse
Affiliation(s)
- Eslam El Nebrisi
- Department of Pharmacology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates.,Department of Pharmacology, Dubai Medical College, Dubai Medical University, Dubai, United Arab Emirates
| | | | - Dietrich Ernst Lorke
- Department of Anatomy and Cellular Biology, Khalifa University, Abu Dhabi, United Arab Emirates.,Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Luke Howarth
- Department of Pharmacology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Asma Hassan Alzaabi
- Department of Pharmacology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Keun-Hang Susan Yang
- Department of Biological Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA, United States
| | - Frank C Howarth
- Department of Physiology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Murat Oz
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat, Kuwait
| |
Collapse
|
32
|
Efimova SS, Ostroumova OS. The Disordering Effect of Plant Metabolites on Model Lipid Membranes of Various Thickness. ACTA ACUST UNITED AC 2020. [DOI: 10.1134/s1990519x2005003x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
DiPasquale M, Gbadamosi O, Nguyen MHL, Castillo SR, Rickeard BW, Kelley EG, Nagao M, Marquardt D. A Mechanical Mechanism for Vitamin E Acetate in E-cigarette/Vaping-Associated Lung Injury. Chem Res Toxicol 2020; 33:2432-2440. [PMID: 32842741 DOI: 10.1021/acs.chemrestox.0c00212] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The outbreak of electronic-cigarette/vaping-associated lung injury (EVALI) has made thousands ill. This lung injury has been attributed to a physical interaction between toxicants from the vaping solution and the pulmonary surfactant. In particular, studies have implicated vitamin E acetate as a potential instigator of EVALI. Pulmonary surfactant is vital to proper respiration through the mechanical processes of adsorption and interface stability to achieve and maintain low surface tension at the air-liquid interface. Using neutron spin echo spectroscopy, we investigate the impact of vitamin E acetate on the mechanical properties of two lipid-only pulmonary surfactant mimics: pure 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and a more comprehensive lipid mixture. It was found that increasing vitamin E acetate concentration nonlinearly increased membrane fluidity and area compressibility to a plateau. Softer membranes would promote adsorption to the air-liquid interface during inspiration as well as collapse from the interface during expiration. These findings indicate the potential for the failure of the pulmonary surfactant upon expiration, attributed to monolayer collapse. This collapse could contribute to the observed EVALI signs and symptoms, including shortness of breath and pneumonitis.
Collapse
Affiliation(s)
| | | | | | | | | | - Elizabeth G Kelley
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Michihiro Nagao
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States.,Center for Exploration of Energy and Matter, Department of Physics, Indiana University, Bloomington, Indiana 47408, United States.,Department of Physics and AstronomyUniversity of DelawareNewarkDelaware19716United States
| | | |
Collapse
|
34
|
Efimova SS, Zakharova AA, Ostroumova OS. Alkaloids Modulate the Functioning of Ion Channels Produced by Antimicrobial Agents via an Influence on the Lipid Host. Front Cell Dev Biol 2020; 8:537. [PMID: 32695785 PMCID: PMC7339123 DOI: 10.3389/fcell.2020.00537] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/08/2020] [Indexed: 12/22/2022] Open
Abstract
It is widely recognized that an alteration in membrane physical properties induced by the adsorption of various drugs and biologically active compounds might greatly affect the functioning of peptides and proteins embedded in the membrane, in particular various ion channels. This study aimed to obtain deep insight into the diversity of the molecular mechanisms of membrane action of one of the most numerous and extremely important class of phytochemicals, the alkaloids. Protoalkaloids (derivatives of β-phenylethylamine, benzylamines, and colchicines), heterocyclic alkaloids (derivatives of purine, quinolysidine, piperidine, pyridine, quinoline, and isoquinoline), and steroid alkaloids were tested. We evaluated the effects of 22 compounds on lipid packing by investigating the thermotropic behavior of membrane lipids and the leakage of a fluorescent marker from unilamellar lipid vesicles. The alteration in the transmembrane distribution of the electrical potential was estimated by measuring the alkaloid induced changes in the boundary potential of planar lipid bilayers. We found that benzylamines, the chili pepper active components, capsaicin and dihydrocapsaicin, strongly affect not only the elastic properties of the lipid host, but also its electrostatics by dramatic decrease in membrane dipole potential. We concluded that the increase in the conductance and lifetime of gramicidin A channels induced by benzylamines was related to alteration in membrane dipole potential not to decrease in membrane stiffness. A sharp decrease in the lifetime of single ion pores induced by the antifungal lipopeptide syringomycin E, after addition of benzylamines and black pepper alkaloid piperine, was also mainly due to the reduction in dipole potential. At the same time, we showed that the disordering of membrane lipids in the presence of benzylamines and piperine plays a decisive role in the regulation of the conductance induced by the antifungal polyene macrolide antibiotic nystatin, while the inhibition of steady-state transmembrane current produced by the antimicrobial peptide cecropin A was attributed to both the dipole potential drop and membrane lipid disordering in the presence of pepper alkaloids. These data might lead to a better understanding of the biological activity of alkaloids, especially their action on voltage-gated and mechanosensitive ion channels in cell membranes.
Collapse
Affiliation(s)
- Svetlana S Efimova
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Anastasiia A Zakharova
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Olga S Ostroumova
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
35
|
Grimm MOW, Blümel T, Lauer AA, Janitschke D, Stahlmann C, Mett J, Haupenthal VJ, Miederer AM, Niemeyer BA, Grimm HS, Hartmann T. The impact of capsaicinoids on APP processing in Alzheimer's disease in SH-SY5Y cells. Sci Rep 2020; 10:9164. [PMID: 32514053 PMCID: PMC7280252 DOI: 10.1038/s41598-020-66009-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/11/2020] [Indexed: 11/08/2022] Open
Abstract
The vanilloid capsaicin is a widely consumed spice, known for its burning and "hot" sensation through activation of TRPV1 ion-channels, but also known to decrease oxidative stress, inflammation and influence tau-pathology. Beside these positive effects, little is known about its effects on amyloid-precursor-protein (APP) processing leading to amyloid-β (Aβ), the major component of senile plaques. Treatment of neuroblastoma cells with capsaicinoids (24 hours, 10 µM) resulted in enhanced Aβ-production and reduced Aβ-degradation, leading to increased Aβ-levels. In detailed analysis of the amyloidogenic-pathway, both BACE1 gene-expression as well as protein-levels were found to be elevated, leading to increased β-secretase-activity. Additionally, γ-secretase gene-expression as well as activity was enhanced, accompanied by a shift of presenilin from non-raft to raft membrane-domains where amyloidogenic processing takes place. Furthermore, impaired Aβ-degradation in presence of capsaicinoids is dependent on the insulin-degrading-enzyme, one of the major Aβ-degrading-enzymes. Regarding Aβ-homeostasis, no differences were found between the major capsaicinoids, capsaicin and dihydrocapsaicin, and a mixture of naturally derived capsaicinoids; effects on Ca2+-homeostasis were ruled out. Our results show that in respect to Alzheimer's disease, besides the known positive effects of capsaicinoids, pro-amyloidogenic properties also exist, enhancing Aβ-levels, likely restricting the potential use of capsaicinoids as therapeutic substances in Alzheimer's disease.
Collapse
Affiliation(s)
- Marcus O W Grimm
- Experimental Neurology, Saarland University, Homburg, Saar, Germany.
- Neurodegeneration and Neurobiology, Saarland University, Homburg, Saar, Germany.
| | - Tamara Blümel
- Experimental Neurology, Saarland University, Homburg, Saar, Germany
| | - Anna A Lauer
- Experimental Neurology, Saarland University, Homburg, Saar, Germany
| | | | | | - Janine Mett
- Experimental Neurology, Saarland University, Homburg, Saar, Germany
- Biosciences Zoology/Physiology-Neurobiology, Faculty NT - Natural Science and Technology, Saarland University, Saarbrücken, Germany
| | | | | | - Barbara A Niemeyer
- Molecular Biophysics, CIPMM, Saarland University, Homburg, Saar, Germany
| | - Heike S Grimm
- Experimental Neurology, Saarland University, Homburg, Saar, Germany
| | - Tobias Hartmann
- Experimental Neurology, Saarland University, Homburg, Saar, Germany
- Neurodegeneration and Neurobiology, Saarland University, Homburg, Saar, Germany
- Deutsches Institut für DemenzPrävention (DIDP), Saarland University, Homburg, Saar, Germany
| |
Collapse
|
36
|
Rostovtseva TK, Queralt-Martín M, Rosencrans WM, Bezrukov SM. Targeting the Multiple Physiologic Roles of VDAC With Steroids and Hydrophobic Drugs. Front Physiol 2020; 11:446. [PMID: 32457654 PMCID: PMC7221028 DOI: 10.3389/fphys.2020.00446] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
There is accumulating evidence that endogenous steroids and non-polar drugs are involved in the regulation of mitochondrial physiology. Many of these hydrophobic compounds interact with the Voltage Dependent Anion Channel (VDAC). This major metabolite channel in the mitochondrial outer membrane (MOM) regulates the exchange of ions and water-soluble metabolites, such as ATP and ADP, across the MOM, thus governing mitochondrial respiration. Proteomics and biochemical approaches together with molecular dynamics simulations have identified an impressively large number of non-polar compounds, including endogenous, able to bind to VDAC. These findings have sparked speculation that both natural steroids and synthetic hydrophobic drugs regulate mitochondrial physiology by directly affecting VDAC ion channel properties and modulating its metabolite permeability. Here we evaluate recent studies investigating the effect of identified VDAC-binding natural steroids and non-polar drugs on VDAC channel functioning. We argue that while many compounds are found to bind to the VDAC protein, they do not necessarily affect its channel functions in vitro. However, they may modify other aspects of VDAC physiology such as interaction with its cytosolic partner proteins or complex formation with other mitochondrial membrane proteins, thus altering mitochondrial function.
Collapse
Affiliation(s)
- Tatiana K Rostovtseva
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - María Queralt-Martín
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - William M Rosencrans
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Sergey M Bezrukov
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
37
|
Rickeard BW, Nguyen MHL, DiPasquale M, Yip CG, Baker H, Heberle FA, Zuo X, Kelley EG, Nagao M, Marquardt D. Transverse lipid organization dictates bending fluctuations in model plasma membranes. NANOSCALE 2020; 12:1438-1447. [PMID: 31746906 PMCID: PMC11577542 DOI: 10.1039/c9nr07977g] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Membrane undulations play a vital role in many biological processes, including the regulation of membrane protein activity. The asymmetric lipid composition of most biological membranes complicates theoretical description of these bending fluctuations, yet experimental data that would inform any such a theory is scarce. Here, we used neutron spin-echo (NSE) spectroscopy to measure the bending fluctuations of large unilamellar vesicles (LUV) having an asymmetric transbilayer distribution of high- and low-melting lipids. The asymmetric vesicles were prepared using cyclodextrin-mediated lipid exchange, and were composed of an outer leaflet enriched in egg sphingomyelin (ESM) and an inner leaflet enriched in 1-palmitoyl-2-oleoyl-phosphoethanolamine (POPE), which have main transition temperatures of 37 °C and 25 °C, respectively. The overall membrane bending rigidity was measured at three temperatures: 15 °C, where both lipids are in a gel state; 45 °C, where both lipids are in a fluid state; and 30 °C, where there is gel-fluid co-existence. Remarkably, the dynamics for the fluid asymmetric LUVs (aLUVs) at 30 °C and 45 °C do not follow trends predicted by their symmetric counterparts. At 30 °C, compositional asymmetry suppressed the bending fluctuations, with the asymmetric bilayer exhibiting a larger bending modulus than that of symmetric bilayers corresponding to either the outer or inner leaflet. We conclude that the compositional asymmetry and leaflet coupling influence the internal dissipation within the bilayer and result in membrane properties that cannot be directly predicted from corresponding symmetric bilayers.
Collapse
Affiliation(s)
- Brett W Rickeard
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Fungal Seed Pathogens of Wild Chili Peppers Possess Multiple Mechanisms To Tolerate Capsaicinoids. Appl Environ Microbiol 2020; 86:AEM.01697-19. [PMID: 31732572 DOI: 10.1128/aem.01697-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/16/2019] [Indexed: 11/20/2022] Open
Abstract
The wild chili pepper Capsicum chacoense produces the spicy defense compounds known as capsaicinoids, including capsaicin and dihydrocapsaicin, which are antagonistic to the growth of fungal pathogens. Compared to other microbes, fungi isolated from infected seeds of C. chacoense possess much higher levels of tolerance of these spicy compounds, having their growth slowed but not entirely inhibited. Previous research has shown capsaicinoids inhibit microbes by disrupting ATP production by binding NADH dehydrogenase in the electron transport chain (ETC) and, thus, throttling oxidative phosphorylation (OXPHOS). Capsaicinoids may also disrupt cell membranes. Here, we investigate capsaicinoid tolerance in fungal seed pathogens isolated from C. chacoense We selected 16 fungal isolates from four ascomycete genera (Alternaria, Colletotrichum, Fusarium, and Phomopsis). Using relative growth rate as a readout for tolerance, fungi were challenged with ETC inhibitors to infer whether fungi possess alternative respiratory enzymes and whether effects on the ETC fully explained inhibition by capsaicinoids. In all isolates, we found evidence for at least one alternative NADH dehydrogenase. In many isolates, we also found evidence for an alternative oxidase. These data suggest that wild-plant pathogens may be a rich source of alternative respiratory enzymes. We further demonstrate that these fungal isolates are capable of the breakdown of capsaicinoids. Finally, we determine that the OXPHOS theory may describe a weak primary mechanism by which dihydrocapsaicin, but not capsaicin, slows fungal growth. Our findings suggest that capsaicinoids likely disrupt membranes, in addition to energy poisoning, with implications for microbiology and human health.IMPORTANCE Plants make chemical compounds to protect themselves. For example, chili peppers produce the spicy compound capsaicin to inhibit pathogen damage and animal feeding. In humans, capsaicin binds to a membrane channel protein, creating the sensation of heat, while in microbes, capsaicin limits energy production by binding respiratory enzymes. However, some data suggest that capsaicin also disrupts membranes. Here, we studied fungal pathogens (Alternaria, Colletotrichum, Fusarium, and Phomopsis) isolated from a wild chili pepper, Capsicum chacoense By measuring growth rates in the presence of antibiotics with known respiratory targets, we inferred that wild-plant pathogens might be rich in alternative respiratory enzymes. A zone of clearance around the colonies, as well as liquid chromatography-mass spectrometry data, further indicated that these fungi can break down capsaicin. Finally, the total inhibitory effect of capsaicin was not fully explained by its effect on respiratory enzymes. Our findings lend credence to studies proposing that capsaicin may disrupt cell membranes, with implications for microbiology, as well as human health.
Collapse
|
39
|
Capsaicin-Induced Impairment of Functional Network Dynamics in Mouse Hippocampus via a TrpV1 Receptor-Independent Pathway: Putative Involvement of Na +/K +-ATPase. Mol Neurobiol 2019; 57:1170-1185. [PMID: 31701438 PMCID: PMC7031213 DOI: 10.1007/s12035-019-01779-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/09/2019] [Indexed: 12/19/2022]
Abstract
The vanilloid compound capsaicin (Cp) is best known to bind to and activate the transient receptor potential vanilloid receptor-1 (TrpV1). A growing number of studies use capsaicin as a tool to study the role of TrpV1 in the central nervous system (CNS). Although most of capsaicin’s CNS effects have been reported to be mediated by TrpV1 activation, evidence exists that capsaicin can also trigger functional changes in hippocampal activity independently of TrpV1. Recently, we have reported that capsaicin induces impairment in hippocampal gamma oscillations via a TrpV1-independent pathway. Here, we dissect the underlying mechanisms of capsaicin-induced alterations to functional network dynamics. We found that capsaicin induces a reduction in action potential (AP) firing rate and a subsequent loss of synchronicity in pyramidal cell (PC) spiking activity in hippocampus. Moreover, capsaicin induces alterations in PC spike-timing since increased first-spike latency was observed after capsaicin treatment. First-spike latency can be regulated by the voltage-dependent potassium current D (ID) or Na+/K+-ATPase. Selective inhibition of ID via low 4-AP concentration and Na+/K+-ATPase using its blocker ouabain, we found that capsaicin effects on AP spike timing were completely inhibited by ouabain but not with 4-AP. In conclusion, our study shows that capsaicin in a TrpV1-independent manner and possibly involving Na+/K+-ATPase activity can impair cognition-relevant functional network dynamics such as gamma oscillations and provides important data regarding the use of capsaicin as a tool to study TrpV1 function in the CNS.
Collapse
|
40
|
Efimova SS, Tertychnaya TE, Lavrenov SN, Ostroumova OS. The Mechanisms of Action of Triindolylmethane Derivatives on Lipid Membranes. Acta Naturae 2019; 11:38-45. [PMID: 31720015 PMCID: PMC6826156 DOI: 10.32607/20758251-2019-11-3-38-45] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The effects of new synthetic antibacterial agents – tris(1-pentyl-1H-indol-3-yl)methylium chloride
(LCTA-1975) and (1-(4-(dimethylamino)-2,5-dioxo-2,5-dihydro-1H-pyrrol-3-yl)-1H-indol-3-yl)bis(1-propyl-
1H-indol-3-yl)methylium chloride (LCTA-2701 – on model lipid membranes were studied. The ability of
the tested agents to form ion-conductive transmembrane pores, influence the electrical stability of lipid
bilayers and the phase transition of membrane lipids, and cause the deformation and fusion of lipid vesicles
was investigated. It was established that both compounds exert a strong detergent effect on model membranes.
The results of differential scanning microcalorimetry and measuring of the threshold transmembrane voltage
that caused membrane breakdown before and after adsorption of LCTA-1975 and LCTA-2701 indicated that both
agents cause disordering of membrane lipids. Synergism of the uncoupling action of antibiotics and the
alkaloid capsaicin on model lipid membranes was shown. The threshold concentration of the antibiotic that
caused an increase in the ion permeability of the lipid bilayer depended on the membrane lipid composition.
It was lower by an order of magnitude in the case of negatively charged lipid bilayers than for the uncharged
membranes. This can be explained by the positive charge of the tested agents. At the same time, LCTA-2701 was
characterized by greater efficiency than LCTA-1975. In addition to its detergent action, LCTA-2701 can induce
ion-permeable transmembrane pores: step-like current fluctuations corresponding to the opening and closing of
individual ion channels were observed. The difference in the mechanisms of action might be related to the
structural features of the antibiotic molecules: in the LCTA-1975 molecule, all three substituents at the
nitrogen atoms of the indole rings are identical and represent n-alkyl (pentyl) groups, while LCTA-2701
contains a maleimide group, along with two alkyl substituents (n-propyl). The obtained results might be
relevant to our understanding of the mechanism of action of new antibacterial agents, explaining the
difference in the selectivity of action of the tested agents on the target microorganisms and their
toxicity to human cells. Model lipid membranes should be used in further studies of the trends in
the modification and improvement of the structures of new antibacterial agents.
Collapse
Affiliation(s)
- S. S. Efimova
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg, 194064, Russia
| | - T. E. Tertychnaya
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg, 194064, Russia
| | - S. N. Lavrenov
- Gause Institute of New Antibiotics, Russian Academy of Medical Sciences, Bolshaya Pirogovskaya Str. 11, Moscow, 119021, Russia
| | - O. S. Ostroumova
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg, 194064, Russia
| |
Collapse
|
41
|
Zhao W, Liang P, Liu J, Li H, Liao D, Chen X, Li Q, Zhou C. Capsazepine prolongation of the duration of lidocaine block of sensory transmission in mice may be mediated by modulation of HCN channel currents. PeerJ 2019; 7:e7111. [PMID: 31223538 PMCID: PMC6571133 DOI: 10.7717/peerj.7111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 05/09/2019] [Indexed: 02/05/2023] Open
Abstract
Background and objectives Hyperpolarization-activation cyclic nucleotide-gated (HCN) channels contribute to the effects of lidocaine. Capsazepine (CPZ), a competitive inhibitor of capsaicin of transient receptor potential vanilloid-1 channel, has also been found to inhibit HCN channel currents (I h). This study was designed to investigate whether CPZ could prolong durations of lidocaine in regional anesthesia. Methods Mouse HCN1 and HCN2 channels were expressed in human embryonic kidney 293 (HEK 293) cells. The effect of CPZ on I h was measured by whole-cell patch-clamping recording. Sciatic nerve block model in mice was used for the study in vivo. The mice were randomly divided into seven groups, respectively, receiving lidocaine, CPZ, ZD7288 (HCN channel blocker), CPZ + lidocaine, ZD7288 + lidocaine, ZD7288 + CPZ + lidocaine, forskolin (an activator of adenylyl cyclase) + CPZ + lidocaine. Regional anesthetic durations of lidocaine were determined. Voltage-gated sodium channel currents (I Na) and I h were recorded in dorsal root ganglion neurons of mice. The effects of CPZ on I Na and I h with or without Cyclic adenosine monophosphate (cAMP) were assessed. Isolated mice sciatic nerve was prepared to evaluate the effect of CPZ on the compound action potentials (CAP). Results Capsazepine non-selectively inhibited transfected mHCN1 and mHCN2 channel currents in HEK 293 cells. In sciatic nerve block in vivo, compared to lidocaine alone, adding CPZ extended the durations of lidocaine for noxious sensory block (35.1 ± 3.3 vs. 20.3 ± 1.7 min), tactile sensory block (25.5 ± 4.4 vs. 20.0 ± 3.7 min), thermal sensory block (39.6 ± 6.6 vs. 26.8 ± 5.5 min), and motor function block (28.6 ± 4.1 vs. 20.9 ± 4.2 min). Duration of thermal sensory block was longer in CPZ + lidocaine group than that of ZD7288 + lidocaine group (39.6 ± 6.6 vs. 33.4 ± 4.5 min). Forskolin reversed the prolongation by CPZ on lidocaine durations. CPZ or ZD7288 alone did not produce typical regional anesthetic effects. Increased intracellular concentration of cAMP reversed the inhibition of CPZ on I h. Although CPZ alone inhibited I Na at the concentration more than 30 μM, it did not inhibit the CAP amplitudes in isolated sciatic nerves. CPZ dose-dependently enhanced the inhibitory effect of 1% lidocaine on the CAP amplitudes. Conclusions Capsazepine may prolong durations of lidocaine in peripheral nerve block by modulation of HCN channel currents.
Collapse
Affiliation(s)
- Wenling Zhao
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Peng Liang
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jin Liu
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Huan Li
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Daqing Liao
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qian Li
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Cheng Zhou
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
42
|
Capsaicin inhibits the function of α 7-nicotinic acetylcholine receptors expressed in Xenopus oocytes and rat hippocampal neurons. Eur J Pharmacol 2019; 857:172411. [PMID: 31152699 DOI: 10.1016/j.ejphar.2019.172411] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/16/2019] [Accepted: 05/22/2019] [Indexed: 11/21/2022]
Abstract
Capsaicin is a naturally occurring alkaloid derived from Chili peppers fruits. Using the two-electrode voltage-clamp technique in Xenopus oocyte expression system, actions of capsaicin on the functional properties of α7 subunit of the human nicotinic acetylcholine (α7 nACh) receptor were investigated. Ion currents activated by ACh (100 μM) were reversibly inhibited with an IC50 value of 8.6 μM. Inhibitory actions of capsaicin was independent of membrane potential. Furthermore, Ca2+-dependent Cl- channels expressed endogenously in oocytes were not involved in inhibitory actions of capsaicin. In addition, increasing the ACh concentrations could not reverse the inhibitory effects of capsaicin. Importantly, specific binding of [125I] α-bungarotoxin remained unaltered by capsaicin suggesting that its effect is noncompetitive. Whole cell patch-clamp technique was performed in CA1 stratum radiatum interneurons of rat hippocampal slices. Ion currents induced by choline, a selective-agonist of α7-receptor, were reversibly inhibited by 10 min bath application of capsaicin (10 μM). Collectively, results of our investigation indicate that the function of the α7-nACh receptor expressed in Xenopus oocytes and in hippocampal interneurons are inhibited by capsaicin.
Collapse
|
43
|
Kapoor R, Peyear TA, Koeppe RE, Andersen OS. Antidepressants are modifiers of lipid bilayer properties. J Gen Physiol 2019; 151:342-356. [PMID: 30796095 PMCID: PMC6400527 DOI: 10.1085/jgp.201812263] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/17/2019] [Indexed: 12/28/2022] Open
Abstract
The two major classes of antidepressants, tricyclic antidepressants (TCAs) and selective serotonin reuptake inhibitors (SSRIs), inhibit neurotransmitter reuptake at synapses. They also have off-target effects on proteins other than neurotransmitter transporters, which may contribute to both desired changes in brain function and the development of side effects. Many proteins modulated by antidepressants are bilayer spanning and coupled to the bilayer through hydrophobic interactions such that the conformational changes underlying their function will perturb the surrounding lipid bilayer, with an energetic cost (ΔG def) that varies with changes in bilayer properties. Here, we test whether changes in ΔG def caused by amphiphilic antidepressants partitioning into the bilayer are sufficient to alter membrane protein function. Using gramicidin A (gA) channels to probe whether TCAs and SSRIs alter the bilayer contribution to the free energy difference for the gramicidin monomer⇔dimer equilibrium (representing a well-defined conformational transition), we find that antidepressants alter gA channel activity with varying potency and no stereospecificity but with different effects on bilayer elasticity and intrinsic curvature. Measuring the antidepressant partition coefficients using isothermal titration calorimetry (ITC) or cLogP shows that the bilayer-modifying potency is predicted quite well by the ITC-determined partition coefficients, and channel activity is doubled at an antidepressant/lipid mole ratio of 0.02-0.07. These results suggest a mechanism by which antidepressants could alter the function of diverse membrane proteins by partitioning into cell membranes and thereby altering the bilayer contribution to the energetics of membrane protein conformational changes.
Collapse
Affiliation(s)
- Ruchi Kapoor
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY.,Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY
| | - Thasin A Peyear
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY
| | - Roger E Koeppe
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR
| | - Olaf S Andersen
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY
| |
Collapse
|
44
|
Thakre PP, Bellingham MC. Capsaicin causes robust reduction in glycinergic transmission to rat hypoglossal motor neurons via a TRPV1-independent mechanism. J Neurophysiol 2019; 121:1535-1542. [PMID: 30785813 DOI: 10.1152/jn.00059.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The effect of capsaicin on glycinergic synaptic transmission to juvenile rat hypoglossal motor neurons in acute brainstem slices was evaluated in the presence of TTX. Capsaicin caused a robust decrease in miniature IPSC frequency, amplitude, and half-width, showing that this effect is independent of action potential generation. In the presence of capsazepine, a classic TRPV1 antagonist, capsaicin was still able to reduce spontaneous inhibitory postsynaptic current (IPSC) amplitude and frequency. We further investigated whether the effect of capsaicin on glycinergic transmission to hypoglossal motor neurons is pre- or postsynaptic in nature by recording pairs of evoked IPSCs. Interestingly, capsaicin also reduced evoked IPSC amplitude without affecting paired-pulse ratio, indicating a postsynaptic mechanism of action. Significant reduction was also observed in evoked IPSC half-width, rise time, and decay tau. We also show that capsaicin does not have any effect on either transient (It) or sustained (Is) potassium currents. Finally, we also show that the hyperpolarization-activated cationic current (Ih) also remains unchanged after capsaicin application. NEW & NOTEWORTHY Capsaicin reduces the amplitude of quantal and evoked glycinergic inhibitory neurotransmission to brainstem motor neurons without altering activity-dependent transmitter release. This effect of capsaicin is not due to activation of TRPV1 receptors, as it is not blocked by capsazepine, a TRPV1 receptor antagonist. Capsaicin does not alter voltage-dependent potassium current or the hyperpolarization-activated cationic current in brainstem motor neurons.
Collapse
Affiliation(s)
- Prajwal P Thakre
- Faculty of Medicine, School of Biomedical Sciences, University of Queensland , Brisbane, Queensland , Australia
| | - Mark C Bellingham
- Faculty of Medicine, School of Biomedical Sciences, University of Queensland , Brisbane, Queensland , Australia
| |
Collapse
|
45
|
Sharma N, Phan HTT, Yoda T, Shimokawa N, Vestergaard MC, Takagi M. Effects of Capsaicin on Biomimetic Membranes. Biomimetics (Basel) 2019; 4:biomimetics4010017. [PMID: 31105202 PMCID: PMC6477667 DOI: 10.3390/biomimetics4010017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/03/2019] [Accepted: 02/05/2019] [Indexed: 12/03/2022] Open
Abstract
Capsaicin is a natural compound that produces a warm sensation and is known for its remarkable medicinal properties. Understanding the interaction between capsaicin with lipid membranes is essential to clarify the molecular mechanisms behind its pharmacological and biological effects. In this study, we investigated the effect of capsaicin on thermoresponsiveness, fluidity, and phase separation of liposomal membranes. Liposomal membranes are a bioinspired technology that can be exploited to understand biological mechanisms. We have shown that by increasing thermo-induced membrane excess area, capsaicin promoted membrane fluctuation. The effect of capsaicin on membrane fluidity was dependent on lipid composition. Capsaicin increased fluidity of (1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) membranes, while it rigidified DOPC and cholesterol-based liposomes. In addition, capsaicin tended to decrease phase separation of heterogeneous liposomes, inducing homogeneity. We imagine this lipid re-organization to be associated with the physiological warming sensation upon consumption of capsaicin. Since capsaicin has been reported to have biological properties such as antimicrobial and as antiplatelet, the results will help unravel these biological properties.
Collapse
Affiliation(s)
- Neha Sharma
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
| | - Huong T T Phan
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
| | - Tsuyoshi Yoda
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
| | - Naofumi Shimokawa
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
| | - Mun'delanji C Vestergaard
- Department of Food Science and Biotechnology, Faculty of Agriculture, Kagoshima University, 1-21-24, Korimoto, Kagoshima 890-0065, Japan.
| | - Masahiro Takagi
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
| |
Collapse
|
46
|
Balleza-Tapia H, Crux S, Andrade-Talavera Y, Dolz-Gaiton P, Papadia D, Chen G, Johansson J, Fisahn A. TrpV1 receptor activation rescues neuronal function and network gamma oscillations from Aβ-induced impairment in mouse hippocampus in vitro. eLife 2018; 7:37703. [PMID: 30417826 PMCID: PMC6281315 DOI: 10.7554/elife.37703] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 11/08/2018] [Indexed: 12/24/2022] Open
Abstract
Amyloid-β peptide (Aβ) forms plaques in Alzheimer’s disease (AD) and is responsible for early cognitive deficits in AD patients. Advancing cognitive decline is accompanied by progressive impairment of cognition-relevant EEG patterns such as gamma oscillations. The endocannabinoid anandamide, a TrpV1-receptor agonist, reverses hippocampal damage and memory impairment in rodents and protects neurons from Aβ-induced cytotoxic effects. Here, we investigate a restorative role of TrpV1-receptor activation against Aβ-induced degradation of hippocampal neuron function and gamma oscillations. We found that the TrpV1-receptor agonist capsaicin rescues Aβ-induced degradation of hippocampal gamma oscillations by reversing both the desynchronization of AP firing in CA3 pyramidal cells and the shift in excitatory/inhibitory current balance. This rescue effect is TrpV1-receptor-dependent since it was absent in TrpV1 knockout mice or in the presence of the TrpV1-receptor antagonist capsazepine. Our findings provide novel insight into the network mechanisms underlying cognitive decline in AD and suggest TrpV1 activation as a novel therapeutic target.
Collapse
Affiliation(s)
- Hugo Balleza-Tapia
- Neuronal Oscillations Laboratory, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Neurogeriatrics Division, Karolinska Institutet, Stockholm, Sweden
| | - Sophie Crux
- Neuronal Oscillations Laboratory, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Neurogeriatrics Division, Karolinska Institutet, Stockholm, Sweden.,German Center for Neurodegenerative Diseases, Munich, Germany
| | - Yuniesky Andrade-Talavera
- Neuronal Oscillations Laboratory, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Neurogeriatrics Division, Karolinska Institutet, Stockholm, Sweden
| | - Pablo Dolz-Gaiton
- Neuronal Oscillations Laboratory, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Neurogeriatrics Division, Karolinska Institutet, Stockholm, Sweden
| | - Daniela Papadia
- Neuronal Oscillations Laboratory, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Neurogeriatrics Division, Karolinska Institutet, Stockholm, Sweden
| | - Gefei Chen
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Neurogeriatrics Division, Karolinska Institutet, Stockholm, Sweden
| | - Jan Johansson
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Neurogeriatrics Division, Karolinska Institutet, Stockholm, Sweden
| | - André Fisahn
- Neuronal Oscillations Laboratory, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Neurogeriatrics Division, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
47
|
Ozu M, Galizia L, Acuña C, Amodeo G. Aquaporins: More Than Functional Monomers in a Tetrameric Arrangement. Cells 2018; 7:E209. [PMID: 30423856 PMCID: PMC6262540 DOI: 10.3390/cells7110209] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/27/2018] [Accepted: 11/07/2018] [Indexed: 12/11/2022] Open
Abstract
Aquaporins (AQPs) function as tetrameric structures in which each monomer has its own permeable pathway. The combination of structural biology, molecular dynamics simulations, and experimental approaches has contributed to improve our knowledge of how protein conformational changes can challenge its transport capacity, rapidly altering the membrane permeability. This review is focused on evidence that highlights the functional relationship between the monomers and the tetramer. In this sense, we address AQP permeation capacity as well as regulatory mechanisms that affect the monomer, the tetramer, or tetramers combined in complex structures. We therefore explore: (i) water permeation and recent evidence on ion permeation, including the permeation pathway controversy-each monomer versus the central pore of the tetramer-and (ii) regulatory mechanisms that cannot be attributed to independent monomers. In particular, we discuss channel gating and AQPs that sense membrane tension. For the latter we propose a possible mechanism that includes the monomer (slight changes of pore shape, the number of possible H-bonds between water molecules and pore-lining residues) and the tetramer (interactions among monomers and a positive cooperative effect).
Collapse
Affiliation(s)
- Marcelo Ozu
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina.
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428EGA CABA, Argentina.
| | - Luciano Galizia
- Instituto de investigaciones Médicas A. Lanari, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1427ARO, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas, Laboratorio de Canales Iónicos, Instituto de Investigaciones Médicas (IDIM), Universidad de Buenos Aires, Buenos Aires C1427ARO, Argentina.
| | - Cynthia Acuña
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina.
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428EGA CABA, Argentina.
| | - Gabriela Amodeo
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina.
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428EGA CABA, Argentina.
| |
Collapse
|
48
|
Ghovanloo MR, Shuart NG, Mezeyova J, Dean RA, Ruben PC, Goodchild SJ. Inhibitory effects of cannabidiol on voltage-dependent sodium currents. J Biol Chem 2018; 293:16546-16558. [PMID: 30219789 PMCID: PMC6204917 DOI: 10.1074/jbc.ra118.004929] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/12/2018] [Indexed: 12/25/2022] Open
Abstract
Cannabis sativa contains many related compounds known as phytocannabinoids. The main psychoactive and nonpsychoactive compounds are Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), respectively. Much of the evidence for clinical efficacy of CBD-mediated antiepileptic effects has been from case reports or smaller surveys. The mechanisms for CBD's anticonvulsant effects are unclear and likely involve noncannabinoid receptor pathways. CBD is reported to modulate several ion channels, including sodium channels (Nav). Evaluating the therapeutic mechanisms and safety of CBD demands a richer understanding of its interactions with central nervous system targets. Here, we used voltage-clamp electrophysiology of HEK-293 cells and iPSC neurons to characterize the effects of CBD on Nav channels. Our results show that CBD inhibits hNav1.1-1.7 currents, with an IC50 of 1.9-3.8 μm, suggesting that this inhibition could occur at therapeutically relevant concentrations. A steep Hill slope of ∼3 suggested multiple interactions of CBD with Nav channels. CBD exhibited resting-state blockade, became more potent at depolarized potentials, and also slowed recovery from inactivation, supporting the idea that CBD binding preferentially stabilizes inactivated Nav channel states. We also found that CBD inhibits other voltage-dependent currents from diverse channels, including bacterial homomeric Nav channel (NaChBac) and voltage-gated potassium channel subunit Kv2.1. Lastly, the CBD block of Nav was temperature-dependent, with potency increasing at lower temperatures. We conclude that CBD's mode of action likely involves 1) compound partitioning in lipid membranes, which alters membrane fluidity affecting gating, and 2) undetermined direct interactions with sodium and potassium channels, whose combined effects are loss of channel excitability.
Collapse
Affiliation(s)
- Mohammad-Reza Ghovanloo
- From the Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada and
- the Department of Cellular and Molecular Biology, Xenon Pharmaceuticals, Burnaby, British Columbia V5G 4W8, Canada
| | - Noah Gregory Shuart
- the Department of Cellular and Molecular Biology, Xenon Pharmaceuticals, Burnaby, British Columbia V5G 4W8, Canada
| | - Janette Mezeyova
- the Department of Cellular and Molecular Biology, Xenon Pharmaceuticals, Burnaby, British Columbia V5G 4W8, Canada
| | - Richard A Dean
- the Department of Cellular and Molecular Biology, Xenon Pharmaceuticals, Burnaby, British Columbia V5G 4W8, Canada
| | - Peter C Ruben
- From the Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada and
| | - Samuel J Goodchild
- the Department of Cellular and Molecular Biology, Xenon Pharmaceuticals, Burnaby, British Columbia V5G 4W8, Canada
| |
Collapse
|
49
|
Zhang M, Peyear T, Patmanidis I, Greathouse DV, Marrink SJ, Andersen OS, Ingólfsson HI. Fluorinated Alcohols' Effects on Lipid Bilayer Properties. Biophys J 2018; 115:679-689. [PMID: 30077334 PMCID: PMC6104562 DOI: 10.1016/j.bpj.2018.07.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/23/2018] [Accepted: 07/02/2018] [Indexed: 12/21/2022] Open
Abstract
Fluorinated alcohols (fluoroalcohols) have physicochemical properties that make them excellent solvents of peptides, proteins, and other compounds. Like other alcohols, fluoroalcohols also alter membrane protein function and lipid bilayer properties and stability. Thus, the questions arise: how potent are fluoroalcohols as lipid-bilayer-perturbing compounds, could small residual amounts that remain after adding compounds dissolved in fluoroalcohols alter lipid bilayer properties sufficiently to affect membranes and membrane protein function, and do they behave like other alcohols? To address these questions, we used a gramicidin-based fluorescence assay to determine the bilayer-modifying potency of selected fluoroalcohols: trifluoroethanol (TFE), HFIP, and perfluoro-tert-butanol (PFTB). These fluoroalcohols alter bilayer properties in the low (PFTB) to high (TFE) mM range. Using the same assay, we determined the bilayer partitioning of the alcohols. When referenced to the aqueous concentrations, the fluoroalcohols are more bilayer perturbing than their nonfluorinated counterparts, with the largest fluoroalcohol, PFTB, being the most potent and the smallest, TFE, the least. When referenced to the mole fractions in the membrane, however, the fluoroalcohols have equal or lesser bilayer-perturbing potency than their nonfluorinated counterparts, with TFE being more bilayer perturbing than PFTB. We compared the fluoroalcohols' molecular level bilayer interactions using atomistic molecular dynamics simulations and showed how, at higher concentrations, they can cause bilayer breakdown using absorbance measurements and 31P nuclear magnetic resonance.
Collapse
Affiliation(s)
- Mike Zhang
- Department Physiology and Biophysics, Weill Cornell Medicine, New York City, New York; The Bronx High School of Science, New York City, New York
| | - Thasin Peyear
- Department Physiology and Biophysics, Weill Cornell Medicine, New York City, New York
| | - Ilias Patmanidis
- Groningen Biomolecular Science and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Denise V Greathouse
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas
| | - Siewert J Marrink
- Groningen Biomolecular Science and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Olaf S Andersen
- Department Physiology and Biophysics, Weill Cornell Medicine, New York City, New York.
| | - Helgi I Ingólfsson
- Department Physiology and Biophysics, Weill Cornell Medicine, New York City, New York; Groningen Biomolecular Science and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands; Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California.
| |
Collapse
|
50
|
Dockendorff C, Gandhi DM, Kimball IH, Eum KS, Rusinova R, Ingólfsson HI, Kapoor R, Peyear T, Dodge MW, Martin SF, Aldrich RW, Andersen OS, Sack JT. Synthetic Analogues of the Snail Toxin 6-Bromo-2-mercaptotryptamine Dimer (BrMT) Reveal That Lipid Bilayer Perturbation Does Not Underlie Its Modulation of Voltage-Gated Potassium Channels. Biochemistry 2018; 57:2733-2743. [PMID: 29616558 PMCID: PMC6007853 DOI: 10.1021/acs.biochem.8b00292] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Drugs do not act solely by canonical ligand-receptor binding interactions. Amphiphilic drugs partition into membranes, thereby perturbing bulk lipid bilayer properties and possibly altering the function of membrane proteins. Distinguishing membrane perturbation from more direct protein-ligand interactions is an ongoing challenge in chemical biology. Herein, we present one strategy for doing so, using dimeric 6-bromo-2-mercaptotryptamine (BrMT) and synthetic analogues. BrMT is a chemically unstable marine snail toxin that has unique effects on voltage-gated K+ channel proteins, making it an attractive medicinal chemistry lead. BrMT is amphiphilic and perturbs lipid bilayers, raising the question of whether its action against K+ channels is merely a manifestation of membrane perturbation. To determine whether medicinal chemistry approaches to improve BrMT might be viable, we synthesized BrMT and 11 analogues and determined their activities in parallel assays measuring K+ channel activity and lipid bilayer properties. Structure-activity relationships were determined for modulation of the Kv1.4 channel, bilayer partitioning, and bilayer perturbation. Neither membrane partitioning nor bilayer perturbation correlates with K+ channel modulation. We conclude that BrMT's membrane interactions are not critical for its inhibition of Kv1.4 activation. Further, we found that alkyl or ether linkages can replace the chemically labile disulfide bond in the BrMT pharmacophore, and we identified additional regions of the scaffold that are amenable to chemical modification. Our work demonstrates a strategy for determining if drugs act by specific interactions or bilayer-dependent mechanisms, and chemically stable modulators of Kv1 channels are reported.
Collapse
Affiliation(s)
- Chris Dockendorff
- Department of Chemistry , Marquette University , P.O. Box 1881, Milwaukee , Wisconsin 53201-1881 , United States
| | - Disha M Gandhi
- Department of Chemistry , Marquette University , P.O. Box 1881, Milwaukee , Wisconsin 53201-1881 , United States
| | - Ian H Kimball
- Department of Physiology & Membrane Biology , University of California , 1 Shields Avenue , Davis , California 95616 , United States
| | - Kenneth S Eum
- Department of Physiology & Membrane Biology , University of California , 1 Shields Avenue , Davis , California 95616 , United States
| | - Radda Rusinova
- Department of Physiology and Biophysics , Weill Cornell Medical College , New York , New York 10065 , United States
| | - Helgi I Ingólfsson
- Department of Physiology and Biophysics , Weill Cornell Medical College , New York , New York 10065 , United States
| | - Ruchi Kapoor
- Department of Physiology and Biophysics , Weill Cornell Medical College , New York , New York 10065 , United States
| | - Thasin Peyear
- Department of Physiology and Biophysics , Weill Cornell Medical College , New York , New York 10065 , United States
| | - Matthew W Dodge
- Department of Chemistry , Marquette University , P.O. Box 1881, Milwaukee , Wisconsin 53201-1881 , United States
| | - Stephen F Martin
- Department of Chemistry , University of Texas at Austin , 1 University Station , Austin , Texas 78712 , United States
| | - Richard W Aldrich
- Department of Neuroscience , University of Texas at Austin , 1 University Station , Austin , Texas 78712 , United States
| | - Olaf S Andersen
- Department of Physiology and Biophysics , Weill Cornell Medical College , New York , New York 10065 , United States
| | - Jon T Sack
- Department of Physiology & Membrane Biology , University of California , 1 Shields Avenue , Davis , California 95616 , United States
| |
Collapse
|