1
|
Pathak K, Ahmad MZ, Saikia R, Pathak MP, Sahariah JJ, Kalita P, Das A, Islam MA, Pramanik P, Tayeng D, Abdel-Wahab BA. Nanomedicine: A New Frontier in Alzheimer's Disease Drug Targeting. Cent Nerv Syst Agents Med Chem 2025; 25:3-19. [PMID: 38551038 DOI: 10.2174/0118715249281331240325042642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/12/2024] [Accepted: 02/26/2024] [Indexed: 01/31/2025]
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder affecting elderly individuals, characterized by progressive cognitive decline leading to dementia. This review examines the challenges posed by anatomical and biochemical barriers such as the blood-brain barrier (BBB), blood-cerebrospinal fluid barrier (BCSFB), and p-glycoproteins in delivering effective therapeutic agents to the central nervous system (CNS) for AD treatment. This article outlines the fundamental role of acetylcholinesterase inhibitors (AChEIs) and NMDA(N-Methyl-D-Aspartate) receptor antagonists in conventional AD therapy and highlights their limitations in terms of brain-specific delivery. It delves into the intricacies of BBB and pglycoprotein- mediated efflux mechanisms that impede drug transport to the CNS. The review further discusses cutting-edge nanomedicine-based strategies, detailing their composition and mechanisms that enable effective bypassing of BBB and enhancing drug accumulation in brain tissues. Conventional therapies, namely AChEIs and NMDA receptor antagonists, have shown limited efficacy and are hindered by suboptimal brain penetration. The advent of nanotechnology-driven therapeutic delivery systems offers promising strategies to enhance CNS targeting and bioavailability, thereby addressing the shortcomings of conventional treatments. Various nanomedicines, encompassing polymeric and metallic nanoparticles (MNPs), solid lipid nanoparticles (SLNs), liposomes, micelles, dendrimers, nanoemulsions, and carbon nanotubes, have been investigated for their potential in delivering anti-AD agents like AChEIs, polyphenols, curcumin, and resveratrol. These nanocarriers exhibit the ability to traverse the BBB and deliver therapeutic payloads to the brain, thereby holding immense potential for effective AD treatment and early diagnostic approaches. Notably, nanocarriers loaded with AChEIs have shown promising results in preclinical studies, exhibiting improved therapeutic efficacy and sustained release profiles. This review underscores the urgency of innovative drug delivery approaches to overcome barriers in AD therapy. Nanomedicine-based solutions offer a promising avenue for achieving effective CNS targeting, enabling enhanced bioavailability and sustained therapeutic effects. As ongoing research continues to elucidate the complexities of CNS drug delivery, these advancements hold great potential for revolutionizing AD treatment and diagnosis.
Collapse
Affiliation(s)
- Kalyani Pathak
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, 11001, Kingdom Saudi Arabia
| | - Riya Saikia
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Manash Pratim Pathak
- Faculty of Pharmaceutical Sciences, Assam Down Town University, Panikhaiti, Guwahati, 781026, Assam, India
| | - Jon Jyoti Sahariah
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Parimita Kalita
- School of Pharmacy, The Assam Kaziranga University, Jorhat, 785006, Assam, India
| | - Aparoop Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Md Ariful Islam
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Pallab Pramanik
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Dubom Tayeng
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Basel A Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, 11001, Kingdom of Saudi Arabia
- Department of Pharmacology, College of Medicine, Assiut University, Assiut, 71111, Egypt
| |
Collapse
|
2
|
Sangha V, Aboulhassane S, Bendayan R. Regulation of folate transport at the mouse arachnoid barrier. Fluids Barriers CNS 2024; 21:67. [PMID: 39192328 DOI: 10.1186/s12987-024-00566-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Folates are a family of B9 vitamins essential for normal growth and development in the central nervous system (CNS). Transport of folates is mediated by three major transport proteins: folate receptor alpha (FRα), proton-coupled folate transporter (PCFT), and reduced folate carrier (RFC). Brain folate uptake occurs at the choroid plexus (CP) epithelium through coordinated actions of FRα and PCFT, or directly into brain parenchyma at the vascular blood-brain barrier (BBB), mediated by RFC. Impaired folate transport can occur due to loss of function mutations in FRα or PCFT, resulting in suboptimal CSF folate levels. Our previous reports have demonstrated RFC upregulation by nuclear respiratory factor-1 (NRF-1) once activated by the natural compound pyrroloquinoline quinone (PQQ). More recently, we have identified folate transporter localization at the arachnoid barrier (AB). The purpose of the present study was to further characterize folate transporters localization and function in AB cells, as well as their regulation by NRF-1/PGC-1α signaling and folate deficiency. METHODS In immortalized mouse AB cells, polarized localization of RFC and PCFT was assessed by immunocytochemical analysis, with RFC and PCFT functionality examined with transport assays. The effects of PQQ treatment on changes in RFC functional expression were also investigated. Mouse AB cells grown in folate-deficient conditions were assessed for changes in gene expression of the folate transporters, and other key transporters and tight junction proteins. RESULTS Immunocytochemical analysis revealed apical localization of RFC at the mouse AB epithelium, with PCFT localized on the basolateral side and within intracellular compartments. PQQ led to significant increases in RFC functional expression, mediated by activation of the NRF-1/PGC-1α signalling cascade. Folate deficiency led to significant increases in expression of RFC, MRP3, P-gp, GLUT1 and the tight junction protein claudin-5. CONCLUSION These results uncover the polarized expression of RFC and PCFT at the AB, with induction of RFC functional expression by activation of the NRF-1/PGC-1α signalling pathway and folate deficiency. These results suggest that the AB may contribute to the flow of folates into the CSF, representing an additional pathway when folate transport at the CP is impaired.
Collapse
Affiliation(s)
- Vishal Sangha
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Sara Aboulhassane
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Reina Bendayan
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada.
| |
Collapse
|
3
|
Huang C, Hoque MT, Qu QR, Henderson J, Bendayan R. Antiretroviral drug dolutegravir induces inflammation at the mouse brain barriers. FASEB J 2024; 38:e23790. [PMID: 38982638 DOI: 10.1096/fj.202400558r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/05/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024]
Abstract
Integrase strand transfer inhibitors (INSTIs) based antiretroviral therapy (ART) is currently used as first-line regimen to treat HIV infection. Despite its high efficacy and barrier to resistance, ART-associated neuropsychiatric adverse effects remain a major concern. Recent studies have identified a potential interaction between the INSTI, dolutegravir (DTG), and folate transport pathways at the placental barrier. We hypothesized that such interactions could also occur at the two major blood-brain interfaces: blood-cerebrospinal fluid barrier (BCSFB) and blood-brain barrier (BBB). To address this question, we evaluated the effect of two INSTIs, DTG and bictegravir (BTG), on folate transporters and receptor expression at the mouse BCSFB and the BBB in vitro, ex vivo and in vivo. We demonstrated that DTG but not BTG significantly downregulated the mRNA and/or protein expression of folate transporters (RFC/SLC19A1, PCFT/SLC46A1) in human and mouse BBB models in vitro, and mouse brain capillaries ex vivo. Our in vivo study further revealed a significant downregulation in Slc19a1 and Slc46a1 mRNA expression at the BCSFB and the BBB following a 14-day DTG oral treatment in C57BL/6 mice. However, despite the observed downregulatory effect of DTG in folate transporters/receptor at both brain barriers, a 14-day oral treatment of DTG-based ART did not significantly alter the brain folate level in animals. Interestingly, DTG treatment robustly elevated the mRNA and/or protein expression of pro-inflammatory cytokines and chemokines (Cxcl1, Cxcl2, Cxcl3, Il6, Il23, Il12) in primary cultures of mouse brain microvascular endothelial cells (BBB). DTG oral treatment also significantly upregulated proinflammatory cytokines and chemokine (Il6, Il1β, Tnfα, Ccl2) at the BCSFB in mice. We additionally observed a downregulated mRNA expression of drug efflux transporters (Abcc1, Abcc4, and Abcb1a) and tight junction protein (Cldn3) at the CP isolated from mice treated with DTG. Despite the structural similarities, BTG only elicited minor effects on the markers of interest at both the BBB and BCSFB. In summary, our current data demonstrates that DTG but not BTG strongly induced inflammatory responses in a rodent BBB and BCSFB model. Together, these data provide valuable insights into the mechanism of DTG-induced brain toxicity, which may contribute to the pathogenesis of DTG-associated neuropsychiatric adverse effect.
Collapse
Affiliation(s)
- Chang Huang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Md Tozammel Hoque
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Qing Rui Qu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey Henderson
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Tan S, Li W, Yang C, Zhan Q, Lu K, Liu J, Jin YM, Bai JS, Wang L, Li J, Li Z, Yu F, Li YY, Duan YX, Lu L, Zhang T, Wei J, Li L, Zheng YT, Jiang S, Liu S. gp120-derived amyloidogenic peptides form amyloid fibrils that increase HIV-1 infectivity. Cell Mol Immunol 2024; 21:479-494. [PMID: 38443447 PMCID: PMC11061181 DOI: 10.1038/s41423-024-01144-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/02/2024] [Indexed: 03/07/2024] Open
Abstract
Apart from mediating viral entry, the function of the free HIV-1 envelope protein (gp120) has yet to be elucidated. Our group previously showed that EP2 derived from one β-strand in gp120 can form amyloid fibrils that increase HIV-1 infectivity. Importantly, gp120 contains ~30 β-strands. We examined whether gp120 might serve as a precursor protein for the proteolytic release of amyloidogenic fragments that form amyloid fibrils, thereby promoting viral infection. Peptide array scanning, enzyme degradation assays, and viral infection experiments in vitro confirmed that many β-stranded peptides derived from gp120 can indeed form amyloid fibrils that increase HIV-1 infectivity. These gp120-derived amyloidogenic peptides, or GAPs, which were confirmed to form amyloid fibrils, were termed gp120-derived enhancers of viral infection (GEVIs). GEVIs specifically capture HIV-1 virions and promote their attachment to target cells, thereby increasing HIV-1 infectivity. Different GAPs can cross-interact to form heterogeneous fibrils that retain the ability to increase HIV-1 infectivity. GEVIs even suppressed the antiviral activity of a panel of antiretroviral agents. Notably, endogenous GAPs and GEVIs were found in the lymphatic fluid, lymph nodes, and cerebrospinal fluid (CSF) of AIDS patients in vivo. Overall, gp120-derived amyloid fibrils might play a crucial role in the process of HIV-1 infectivity and thus represent novel targets for anti-HIV therapeutics.
Collapse
Affiliation(s)
- Suiyi Tan
- Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Wenjuan Li
- Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Chan Yang
- Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qingping Zhan
- Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Kunyu Lu
- Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jun Liu
- Department of Infectious Disease, The Third People's Hospital of Kunming, Kunming, 650041, China
| | - Yong-Mei Jin
- Department of Infectious Disease, The Third People's Hospital of Kunming, Kunming, 650041, China
| | - Jin-Song Bai
- Department of Infectious Disease, The Third People's Hospital of Kunming, Kunming, 650041, China
| | - Lin Wang
- Department of Pathology, The Third People's Hospital of Kunming, Kunming, 650041, China
| | - Jinqing Li
- Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhaofeng Li
- Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Fei Yu
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Yu-Ye Li
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Yue-Xun Duan
- Yunnan Provincial Infectious Disease Hospital, Kunming, 650301, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Jiaqi Wei
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Lin Li
- Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yong-Tang Zheng
- State Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Shuwen Liu
- Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
5
|
Rigalli JP, Gagliardi A, Diester K, Bajraktari-Sylejmani G, Blank A, Burhenne J, Lenard A, Werntz L, Huppertz A, Münch L, Wendt JM, Sauter M, Haefeli WE, Weiss J. Extracellular Vesicles as Surrogates for the Regulation of the Drug Transporters ABCC2 (MRP2) and ABCG2 (BCRP). Int J Mol Sci 2024; 25:4118. [PMID: 38612927 PMCID: PMC11012658 DOI: 10.3390/ijms25074118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Drug efflux transporters of the ATP-binding-cassette superfamily play a major role in the availability and concentration of drugs at their site of action. ABCC2 (MRP2) and ABCG2 (BCRP) are among the most important drug transporters that determine the pharmacokinetics of many drugs and whose overexpression is associated with cancer chemoresistance. ABCC2 and ABCG2 expression is frequently altered during treatment, thus influencing efficacy and toxicity. Currently, there are no routine approaches available to closely monitor transporter expression. Here, we developed and validated a UPLC-MS/MS method to quantify ABCC2 and ABCG2 in extracellular vesicles (EVs) from cell culture and plasma. In this way, an association between ABCC2 protein levels and transporter activity in HepG2 cells treated with rifampicin and hypericin and their derived EVs was observed. Although ABCG2 was detected in MCF7 cell-derived EVs, the transporter levels in the vesicles did not reflect the expression in the cells. An analysis of plasma EVs from healthy volunteers confirmed, for the first time at the protein level, the presence of both transporters in more than half of the samples. Our findings support the potential of analyzing ABC transporters, and especially ABCC2, in EVs to estimate the transporter expression in HepG2 cells.
Collapse
Affiliation(s)
- Juan Pablo Rigalli
- Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Faculty Heidelberg, Heidelberg University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany (W.E.H.); (J.W.)
| | - Anna Gagliardi
- Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Faculty Heidelberg, Heidelberg University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany (W.E.H.); (J.W.)
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Klara Diester
- Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Faculty Heidelberg, Heidelberg University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany (W.E.H.); (J.W.)
| | - Gzona Bajraktari-Sylejmani
- Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Faculty Heidelberg, Heidelberg University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany (W.E.H.); (J.W.)
| | - Antje Blank
- Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Faculty Heidelberg, Heidelberg University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany (W.E.H.); (J.W.)
| | - Jürgen Burhenne
- Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Faculty Heidelberg, Heidelberg University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany (W.E.H.); (J.W.)
| | - Alexander Lenard
- Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Faculty Heidelberg, Heidelberg University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany (W.E.H.); (J.W.)
| | - Lars Werntz
- Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Faculty Heidelberg, Heidelberg University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany (W.E.H.); (J.W.)
| | - Andrea Huppertz
- Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Faculty Heidelberg, Heidelberg University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany (W.E.H.); (J.W.)
- MVZ Diaverum Remscheid, Rosenhügelstraße 4a, 42859 Remscheid, Germany
| | - Lena Münch
- Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Faculty Heidelberg, Heidelberg University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany (W.E.H.); (J.W.)
| | - Janica Margrit Wendt
- Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Faculty Heidelberg, Heidelberg University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany (W.E.H.); (J.W.)
| | - Max Sauter
- Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Faculty Heidelberg, Heidelberg University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany (W.E.H.); (J.W.)
| | - Walter Emil Haefeli
- Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Faculty Heidelberg, Heidelberg University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany (W.E.H.); (J.W.)
| | - Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Faculty Heidelberg, Heidelberg University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany (W.E.H.); (J.W.)
| |
Collapse
|
6
|
Fernandes LDR, Lopes JR, Bonjorno AF, Prates JLB, Scarim CB, Dos Santos JL. The Application of Prodrugs as a Tool to Enhance the Properties of Nucleoside Reverse Transcriptase Inhibitors. Viruses 2023; 15:2234. [PMID: 38005911 PMCID: PMC10675571 DOI: 10.3390/v15112234] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/16/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Antiretroviral Therapy (ART) is an effective treatment for human immunodeficiency virus (HIV) which has transformed the highly lethal disease, acquired immunodeficiency syndrome (AIDS), into a chronic and manageable condition. However, better methods need to be developed for enhancing patient access and adherence to therapy and for improving treatment in the long term to reduce adverse effects. From the perspective of drug discovery, one promising strategy is the development of anti-HIV prodrugs. This approach aims to enhance the efficacy and safety of treatment, promoting the development of more appropriate and convenient systems for patients. In this review, we discussed the use of the prodrug approach for HIV antiviral agents and emphasized nucleoside reverse transcriptase inhibitors. We comprehensively described various strategies that are used to enhance factors such as water solubility, bioavailability, pharmacokinetic parameters, permeability across biological membranes, chemical stability, drug delivery to specific sites/organs, and tolerability. These strategies might help researchers conduct better studies in this field. We also reported successful examples from the primary therapeutic classes while discussing the advantages and limitations. In this review, we highlighted the key trends in the application of the prodrug approach for treating HIV/AIDS.
Collapse
Affiliation(s)
| | | | | | | | | | - Jean Leandro Dos Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (L.d.R.F.); (J.R.L.); (A.F.B.); (J.L.B.P.); (C.B.S.)
| |
Collapse
|
7
|
Canonico D, Casale S, Look T, Cao L. Effects of Morphine on Gp120-induced Neuroinflammation Under Immunocompetent Vs. Immunodeficient Conditions. J Neuroimmune Pharmacol 2023; 18:24-40. [PMID: 35059975 DOI: 10.1007/s11481-021-10040-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022]
Abstract
HIV-associated neurocognitive disorder (HAND) is a common complication of HIV infection, whose development is known to be facilitated by inflammation and exacerbated by morphine. Previously, using the gp120 transgenic (tg) mouse model in combination with LP-BM5 (a murine retrovirus that can cause systemic immunodeficiency in susceptible mouse strains) we demonstrated differential gp120-associated central nervous system (CNS) neuroinflammatory responses under immunocompetent (-LP-BM5) vs. immunocompromised (+LP-BM5) conditions. Here, we further investigated the effects of morphine on gp120-associated neuroinflammatory response within the hippocampus under differential immune status. First, we confirmed that morphine treatment (2 × 25 mg pellets) did not significantly affect the development of immunodeficiency induced by LP-BM5 and all brain regions examined (hippocampus, striatum, and frontal lobe) had detectable LP-BM5 viral gag genes. Morphine notably reduced the performance of gp120tg+ mice in the alteration T-maze assay when 2-minute retention was used, regardless of LP-BM5 treatment. Morphine further enhanced GFAP expression in gp120tg+ mice regardless of host immune status, while promoted CD11b expression only in immunocompetent mice, regardless of gp120tg expression. In immunocompetent gp120tg+ mice, morphine increased the RNA expression of CCL2, CCL5, CXCL10, IL-12p40, and IFNβ; while under the immunodeficient condition, morphine downregulated the expression of CCL2, CCL5, CXCL10, IL-12p40, and IL-1β. Further, expression of TNFα and IFNγ were enhanced by morphine regardless of host immune status. Altogether, our results suggest that the effects of morphine are complex and dependent on the immune status of the host, and host immune status-specific, targeted anti-neuroinflammatory strategies are required for effective treatment of HAND.
Collapse
Affiliation(s)
- Dalton Canonico
- Department of Biology, University of New England College of Arts and Sciences, Biddeford, United States, ME
| | - Sadie Casale
- Department of Biology, University of New England College of Arts and Sciences, Biddeford, United States, ME
| | - Tristan Look
- Department of Biology, University of New England College of Arts and Sciences, Biddeford, United States, ME
| | - Ling Cao
- Department of Biomedical Sciences, University of New England College of Osteopathic Medicine, Biddeford, United States, ME.
- , 11 Hills Beach Road, 04005, Biddeford, United States, ME.
| |
Collapse
|
8
|
Raghavendra Naveen N, Anitha P, Gowthami B, Goudanavar P, Fattepur S. QbD assisted formulation design and optimization of thiol pectin based Polyethyleneglycol and Montmorillonite(PEG/MMT) nanocomposite films of neomycin sulphate for wound healing. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
9
|
Sun L, Sun Z, Wang Q, Zhang Y, Jia Z. Role of nuclear receptor PXR in immune cells and inflammatory diseases. Front Immunol 2022; 13:969399. [PMID: 36119030 PMCID: PMC9481241 DOI: 10.3389/fimmu.2022.969399] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
Pregnane X receptor (PXR, NR1I2), a prototypical member of the nuclear receptor superfamily, has been implicated in various processes including metabolism, immune response, and inflammation. The immune system is made up of many interdependent parts, including lymphoid organs, cells, and cytokines, which play important roles in identifying, repelling, and eliminating pathogens and other foreign chemicals. An impaired immune system could contribute to various physical dysfunction, including severe infections, allergic diseases, autoimmune disorders, and other inflammatory diseases. Recent studies revealed the involvement of PXR in the pathogenesis of immune disorders and inflammatory responses. Thus, the aim of this work is to review and discuss the advances in research associated with PXR on immunity and inflammatory diseases and to provide insights into the development of therapeutic interventions of immune disorders and inflammatory diseases by targeting PXR.
Collapse
Affiliation(s)
- Le Sun
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Zhenzhen Sun
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Qian Wang
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Zhang
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Yue Zhang, ; Zhanjun Jia,
| | - Zhanjun Jia
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Yue Zhang, ; Zhanjun Jia,
| |
Collapse
|
10
|
Taggi V, Riera Romo M, Piquette-Miller M, Meyer zu Schwabedissen HE, Neuhoff S. Transporter Regulation in Critical Protective Barriers: Focus on Brain and Placenta. Pharmaceutics 2022; 14:pharmaceutics14071376. [PMID: 35890272 PMCID: PMC9319476 DOI: 10.3390/pharmaceutics14071376] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/14/2022] [Accepted: 06/24/2022] [Indexed: 01/06/2023] Open
Abstract
Drug transporters play an important role in the maintenance of chemical balance and homeostasis in different tissues. In addition to their physiological functions, they are crucial for the absorption, distribution, and elimination of many clinically important drugs, thereby impacting therapeutic efficacy and toxicity. Increasing evidence has demonstrated that infectious, metabolic, inflammatory, and neurodegenerative diseases alter the expression and function of drug transporters. However, the current knowledge on transporter regulation in critical protective barriers, such as the brain and placenta, is still limited and requires more research. For instance, while many studies have examined P-glycoprotein, it is evident that research on the regulation of highly expressed transporters in the blood–brain barrier and blood–placental barrier are lacking. The aim of this review is to summarize the currently available literature in order to better understand transporter regulation in these critical barriers.
Collapse
Affiliation(s)
- Valerio Taggi
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland; (V.T.); (H.E.M.z.S.)
| | - Mario Riera Romo
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; (M.R.R.); (M.P.-M.)
| | - Micheline Piquette-Miller
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; (M.R.R.); (M.P.-M.)
| | | | - Sibylle Neuhoff
- Certara UK Ltd., Simcyp Division, Sheffield S1 2BJ, UK
- Correspondence:
| |
Collapse
|
11
|
Bautista-Olivier CD, Elizondo G. PXR as the tipping point between innate immune response, microbial infections, and drug metabolism. Biochem Pharmacol 2022; 202:115147. [PMID: 35714683 DOI: 10.1016/j.bcp.2022.115147] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022]
Abstract
Pregnane X receptor (PXR) is a xenosensor that acts as a transcription factor in the cell nucleus to protect cells from toxic insults. In response to exposure to several chemical agents, PXR induces the expression of enzymes and drug transporters that biotransform xenobiotic and endobiotic and eliminate metabolites. Recently, PXR has been shown to have immunomodulatory effects that involve cross-communication with molecular pathways in innate immunity cells. Conversely, several inflammatory factors regulate PXR signaling. This review examines the crosstalk between PXR and nuclear factor kappa B (NFkB), Toll-like receptors (TLRs), and inflammasome components. Discussions of the consequences of these interactions on immune responses to infections caused by viruses, bacteria, fungi, and parasites are included together with a review of the effects of microorganisms on PXR-associated drug metabolism. This paper aims to encourage researchers to pursue studies that will better elucidate the relationship between PXR and the immune system and thus inform treatment development.
Collapse
Affiliation(s)
| | - Guillermo Elizondo
- Departamento de Biología Celular, CINVESTAV-IPN, Av. IPN 2508, C.P. 07360, Ciudad de México, Mexico.
| |
Collapse
|
12
|
Kovacs L, Kress TC, Belin de Chantemèle EJ. HIV, Combination Antiretroviral Therapy, and Vascular Diseases in Men and Women. JACC Basic Transl Sci 2022; 7:410-421. [PMID: 35540101 PMCID: PMC9079796 DOI: 10.1016/j.jacbts.2021.10.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/01/2022]
Abstract
Thanks to the advent of combination antiretroviral therapy (cART), people living with human immunodeficiency virus (HIV) (PLWH) experienced a marked increase in life expectancy but are now at higher risk for cardiovascular disease (CVD), the current leading cause of death in PLWH on cART. Although HIV preponderantly affects men over women, manifestations of HIV-related CVD differ by sex with women experiencing greater risks than men. Despite extensive investigation, the etiopathology of CVD, notably the respective contribution of viral infection and cART, remain ill-defined. However, both viral infection and cART have been reported to contribute to endothelial dysfunction, the precursor and major cause of atherosclerosis-associated CVD, through mechanisms involving endothelial cell activation, inflammation, and oxidative stress, all leading to reduced nitric oxide bioavailability. Therefore, preserving endothelial function in PLWH on cART should be a main target to reduce CVD morbidity and mortality, notably in females.
Collapse
Key Words
- CVD, cardiovascular disease
- FMD, flow-mediated dilatation
- HF, heart failure
- HIV
- HIV, human immunodeficiency virus
- MI, myocardial infarction
- NO, nitric oxide
- PAD, peripheral artery disease
- PH, pulmonary hypertension
- PLWH, people living with HIV
- cART, combination antiretroviral therapy
- cIMT, carotid intima-media thickness
- combination antiretroviral therapy
- endothelial dysfunction
- sex differences
Collapse
Affiliation(s)
- Laszlo Kovacs
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Taylor C Kress
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Eric J Belin de Chantemèle
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, USA.,Division of Cardiology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta Georgia, USA
| |
Collapse
|
13
|
Saib S, Delavenne X. Inflammation Induces Changes in the Functional Expression of P-gp, BCRP, and MRP2: An Overview of Different Models and Consequences for Drug Disposition. Pharmaceutics 2021; 13:pharmaceutics13101544. [PMID: 34683838 PMCID: PMC8539483 DOI: 10.3390/pharmaceutics13101544] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 12/22/2022] Open
Abstract
The ATP-binding cassette (ABC) transporters play a key role in drug pharmacokinetics. These membrane transporters expressed within physiological barriers can be a source of pharmacokinetic variability. Changes in ABC transporter expression and functionality may consequently affect the disposition of substrate drugs, resulting in different drug exposure. Inflammation, present in several acute and chronic diseases, has been identified as a source of modulation in drug transporter expression leading to variability in drug response. Its regulation may be particularly dangerous for drugs with a narrow therapeutic index. In this context, numerous in vitro and in vivo models have shown up- or downregulation in the expression and functionality of ABC transporters under inflammatory conditions. Nevertheless, the existence of contradictory data and the lack of standardization for the models used have led to a less conclusive interpretation of these data.
Collapse
Affiliation(s)
- Sonia Saib
- INSERM U1059, Dysfonction Vasculaire et de l’Hémostase, 42270 Saint-Priest-En-Jarez, France;
- Faculté de Médecine, Université Jean Monnet, 42023 Saint-Etienne, France
- Correspondence: ; Tel.: +33-477-42-1443
| | - Xavier Delavenne
- INSERM U1059, Dysfonction Vasculaire et de l’Hémostase, 42270 Saint-Priest-En-Jarez, France;
- Laboratoire de Pharmacologie Toxicologie Gaz du Sang, CHU de Saint-Etienne, 42000 Saint-Etienne, France
| |
Collapse
|
14
|
Whyte-Allman SK, Kaul R, Bendayan R. Regulation of ABC Drug Efflux Transporters in Human T-Cells Exposed to an HIV Pseudotype. Front Pharmacol 2021; 12:711999. [PMID: 34421607 PMCID: PMC8371480 DOI: 10.3389/fphar.2021.711999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/26/2021] [Indexed: 12/25/2022] Open
Abstract
ATP-binding cassette (ABC) drug efflux transporters could contribute to low intracellular concentrations of antiretroviral drugs in HIV-1 cell reservoirs and sanctuary sites. Furthermore, the functional expression of these transporters could be induced in activated T-cells. Therefore, we investigated the expression of ABC drug efflux transporters in human T-cells exposed to an HIV pseudotype virus (pHIVNL4-3), and further examined the potential involvement of the mammalian target of rapamycin (mTOR) signaling pathway in regulating their expression following exposure to pHIVNL4-3. Additionally, we investigated the contribution of the drug efflux transporters to the inflammatory response following pHIVNL4-3-induced T-cell activation. Human peripheral blood mononuclear cells (PBMCs) were exposed to HIV-1 envelope glycoprotein gp120IIIB, pHIVNL4-3 and/or mTOR inhibitors. The expression of ABC transporters, T-cell activation marker CD69, mTOR and pHIVNL4-3 was assessed in CD4+ T-cells by Flow cytometry. mRNA and protein levels of proinflammatory cytokines (IL6, TNFα and INFγ) were examined in PBMCs by qPCR and ELISA analyses, respectively, following exposure to pHIVNL4-3 with or without inhibitors of mTOR or ABC transporters. The expression of ABC transporters (P-glycoprotein, breast cancer resistance protein and multi-drug resistance associated protein-1) was significantly increased in CD4+ T-cells exposed to pHIVNL4-3. Treatment with mTOR inhibitors attenuated pHIVNL4-3-induced transporter expression, as well as mRNA and protein levels of IL6, TNFα and INFγ. Additionally, inhibition of P-gp or MRP1 activity resulted in lower concentrations of proinflammatory cytokines in supernatants of PBMC exposed to pHIVNL4-3. Herein we present novel data demonstrating that upregulation of ABC drug efflux transporters could involve the mTOR signaling pathway in CD4+ T-cells exposed to an HIV pseudotype. These transporters could limit antiretroviral drug penetration in HIV target T-cells. Furthermore, ABC transporters could potentially contribute to HIV-associated proinflammatory cytokine secretion.
Collapse
Affiliation(s)
- Sana-Kay Whyte-Allman
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Rupert Kaul
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Nickoloff-Bybel EA, Festa L, Meucci O, Gaskill PJ. Co-receptor signaling in the pathogenesis of neuroHIV. Retrovirology 2021; 18:24. [PMID: 34429135 PMCID: PMC8385912 DOI: 10.1186/s12977-021-00569-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
The HIV co-receptors, CCR5 and CXCR4, are necessary for HIV entry into target cells, interacting with the HIV envelope protein, gp120, to initiate several signaling cascades thought to be important to the entry process. Co-receptor signaling may also promote the development of neuroHIV by contributing to both persistent neuroinflammation and indirect neurotoxicity. But despite the critical importance of CXCR4 and CCR5 signaling to HIV pathogenesis, there is only one therapeutic (the CCR5 inhibitor Maraviroc) that targets these receptors. Moreover, our understanding of co-receptor signaling in the specific context of neuroHIV is relatively poor. Research into co-receptor signaling has largely stalled in the past decade, possibly owing to the complexity of the signaling cascades and functions mediated by these receptors. Examining the many signaling pathways triggered by co-receptor activation has been challenging due to the lack of specific molecular tools targeting many of the proteins involved in these pathways and the wide array of model systems used across these experiments. Studies examining the impact of co-receptor signaling on HIV neuropathogenesis often show activation of multiple overlapping pathways by similar stimuli, leading to contradictory data on the effects of co-receptor activation. To address this, we will broadly review HIV infection and neuropathogenesis, examine different co-receptor mediated signaling pathways and functions, then discuss the HIV mediated signaling and the differences between activation induced by HIV and cognate ligands. We will assess the specific effects of co-receptor activation on neuropathogenesis, focusing on neuroinflammation. We will also explore how the use of substances of abuse, which are highly prevalent in people living with HIV, can exacerbate the neuropathogenic effects of co-receptor signaling. Finally, we will discuss the current state of therapeutics targeting co-receptors, highlighting challenges the field has faced and areas in which research into co-receptor signaling would yield the most therapeutic benefit in the context of HIV infection. This discussion will provide a comprehensive overview of what is known and what remains to be explored in regard to co-receptor signaling and HIV infection, and will emphasize the potential value of HIV co-receptors as a target for future therapeutic development. ![]()
Collapse
Affiliation(s)
- E A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - L Festa
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 S. 40th Street, Philadelphia, PA, 19104, USA
| | - O Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.,Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - P J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.
| |
Collapse
|
16
|
Hoque TMD, Cattin A, Whyte-Allman SK, Winchester L, Fletcher CV, Routy JP, Ancuta P, Bendayan R. Antiretroviral Drug Transporters and Metabolic Enzymes in Circulating Monocytes and Monocyte-Derived Macrophages of ART-Treated People Living With HIV and HIV-Uninfected Individuals. J Acquir Immune Defic Syndr 2021; 87:1093-1101. [PMID: 34153016 PMCID: PMC8346207 DOI: 10.1097/qai.0000000000002682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/22/2021] [Indexed: 01/02/2023]
Abstract
ABSTRACT Membrane-associated drug transport proteins and drug metabolic enzymes could regulate intracellular antiretroviral (ARV) drug concentrations in HIV-1 target cells such as myeloid cells. We investigated the expression of these transporters and enzymes in monocyte subsets and monocyte-derived macrophages (MDMs) isolated from peripheral blood mononuclear cells (PBMCs) of HIV-uninfected individuals (HIV-negative) and people living with HIV receiving viral suppressive antiretroviral therapy (ART; HIV+ART) and examined plasma and intracellular ARV concentrations. Monocytes were isolated from PBMCs of 12 HIV-negative and 12 HIV+ART donors and differentiated into MDMs. The mRNA and protein expression of drug transporters and metabolic enzymes were analyzed by quantitative real-time polymerase chain reaction and flow cytometry, respectively. ARV drug concentrations were quantified in plasma, PBMCs, monocytes, and MDMs by LC-MS/MS. The mRNA expression of relevant ARV transporters or metabolic enzymes, ABCB1/P-gp, ABCG2/BCRP, ABCC1/MRP1, ABCC4/MRP4, SLC22A1/OCT1, SLC29A2/ENT2, CYP2B6, CYP2D6, and UGT1A1, was demonstrated in monocytes and MDMs of 2 to 4 HIV-negative donors. P-gp, BCRP, and MRP1 proteins were differentially expressed in classical, intermediate, and nonclassical monocytes and MDMs of both HIV+ART and HIV-negative donors. Intracellular concentrations of ARVs known to be substrates of these transporters and metabolic enzymes were detected in monocytes of HIV+ART donors but were undetectable in MDMs. In this study, we demonstrated the expression of drug transporters and metabolic enzymes in monocytes and MDMs of HIV-negative and HIV+ART individuals, which could potentially limit intracellular concentrations of ARVs and contribute to residual HIV replication. Further work is needed to assess the role of these transporters in the penetration of ARVs in tissue macrophages.
Collapse
Affiliation(s)
- Tozammel M. D. Hoque
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Amélie Cattin
- Faculté de Médecine, Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Quebec, Canada
- Centre de Recherche du CHUM, Montréal, Quebec, Canada
| | - Sana-Kay Whyte-Allman
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Lee Winchester
- Antiviral Pharmacology Laboratory, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE
| | - Courtney V. Fletcher
- Antiviral Pharmacology Laboratory, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE
| | - Jean-Pierre Routy
- The Research Institute of the McGill University Health Centre, Montréal, Quebec, Canada
| | - Petronela Ancuta
- Faculté de Médecine, Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Quebec, Canada
- Centre de Recherche du CHUM, Montréal, Quebec, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Miyazawa T, Itaya M, Burdeos GC, Nakagawa K, Miyazawa T. A Critical Review of the Use of Surfactant-Coated Nanoparticles in Nanomedicine and Food Nanotechnology. Int J Nanomedicine 2021; 16:3937-3999. [PMID: 34140768 PMCID: PMC8203100 DOI: 10.2147/ijn.s298606] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Surfactants, whose existence has been recognized as early as 2800 BC, have had a long history with the development of human civilization. With the rapid development of nanotechnology in the latter half of the 20th century, breakthroughs in nanomedicine and food nanotechnology using nanoparticles have been remarkable, and new applications have been developed. The technology of surfactant-coated nanoparticles, which provides new functions to nanoparticles for use in the fields of nanomedicine and food nanotechnology, is attracting a lot of attention in the fields of basic research and industry. This review systematically describes these "surfactant-coated nanoparticles" through various sections in order: 1) surfactants, 2) surfactant-coated nanoparticles, application of surfactant-coated nanoparticles to 3) nanomedicine, and 4) food nanotechnology. Furthermore, current progress and problems of the technology using surfactant-coated nanoparticles through recent research reports have been discussed.
Collapse
Affiliation(s)
- Taiki Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi, Japan
| | - Mayuko Itaya
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Gregor C Burdeos
- Institute for Animal Nutrition and Physiology, Christian Albrechts University Kiel, Kiel, Germany
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Teruo Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
18
|
Arabatzis TJ, Wakley AA, McLane VD, Canonico D, Cao L. Effects of HIV gp120 on Neuroinflammation in Immunodeficient vs. Immunocompetent States. J Neuroimmune Pharmacol 2021; 16:437-453. [PMID: 32627098 PMCID: PMC7785647 DOI: 10.1007/s11481-020-09936-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 06/17/2020] [Indexed: 11/30/2022]
Abstract
HIV affects 37 million people worldwide, 25-69% of which develop HIV-associated neurocognitive disorders (HAND) regardless of antiviral treatment. HIV infection of the brain decreases cognitive function, disrupts/impairs learning and memory, and reduces quality of life for those affected. HIV-induced neuroinflammation has been associated with viral proteins such as gp120 and Tat, which remain elevated in the CNS even in patients with low peripheral viremia counts. In this study, we examined the effects of gp120 on neuroinflammation in immunodeficient vs. immunocompetent states by examining neuroinflammatory markers in gp120tg mice with or without systemic immunodeficiency caused by murine retroviral administration (LP-BM5 murine AIDS). Changes in inflammatory cytokine/chemokine mRNA expression was complex and dependent upon expression of gp120 protein, immunodeficiency status, brain region (hippocampus, frontal lobe, or striatum), and age. Gp120 expression reduced hippocampal synaptophysin expression but did not affect animals' learning/memory on the spontaneous T-maze test in our experimental conditions. Our results emphasize the critical role of the neuroinflammatory micro-environment and the peripheral immune system context in which gp120 acts. Multiple factors, particularly system-level differences in the immune response of different brain regions, need to be considered when developing treatment for HAND. Graphical Abstract.
Collapse
Affiliation(s)
- Taxiarhia J Arabatzis
- Department of Biomedical Sciences, University of New England College of Osteopathic Medicine, 11 Hills Beach Road, Biddeford, ME, 04005, USA
- Department of Biology, University of New England College of Arts and Sciences, Biddeford, ME, USA
| | - Alexa A Wakley
- Department of Biomedical Sciences, University of New England College of Osteopathic Medicine, 11 Hills Beach Road, Biddeford, ME, 04005, USA
| | - Virginia D McLane
- Department of Biomedical Sciences, University of New England College of Osteopathic Medicine, 11 Hills Beach Road, Biddeford, ME, 04005, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, P.O. Box 980613, Richmond, VA, 23298-0613, USA
| | - Dalton Canonico
- Department of Biology, University of New England College of Arts and Sciences, Biddeford, ME, USA
| | - Ling Cao
- Department of Biomedical Sciences, University of New England College of Osteopathic Medicine, 11 Hills Beach Road, Biddeford, ME, 04005, USA.
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA.
| |
Collapse
|
19
|
Smith LK, Babcock IW, Minamide LS, Shaw AE, Bamburg JR, Kuhn TB. Direct interaction of HIV gp120 with neuronal CXCR4 and CCR5 receptors induces cofilin-actin rod pathology via a cellular prion protein- and NOX-dependent mechanism. PLoS One 2021; 16:e0248309. [PMID: 33705493 PMCID: PMC7951892 DOI: 10.1371/journal.pone.0248309] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/23/2021] [Indexed: 01/08/2023] Open
Abstract
Nearly 50% of individuals with long-term HIV infection are affected by the onset of progressive HIV-associated neurocognitive disorders (HAND). HIV infiltrates the central nervous system (CNS) early during primary infection where it establishes persistent infection in microglia (resident macrophages) and astrocytes that in turn release inflammatory cytokines, small neurotoxic mediators, and viral proteins. While the molecular mechanisms underlying pathology in HAND remain poorly understood, synaptodendritic damage has emerged as a hallmark of HIV infection of the CNS. Here, we report that the HIV viral envelope glycoprotein gp120 induces the formation of aberrant, rod-shaped cofilin-actin inclusions (rods) in cultured mouse hippocampal neurons via a signaling pathway common to other neurodegenerative stimuli including oligomeric, soluble amyloid-β and proinflammatory cytokines. Previous studies showed that synaptic function is impaired preferentially in the distal proximity of rods within dendrites. Our studies demonstrate gp120 binding to either chemokine co-receptor CCR5 or CXCR4 is capable of inducing rod formation, and signaling through this pathway requires active NADPH oxidase presumably through the formation of superoxide (O2-) and the expression of cellular prion protein (PrPC). These findings link gp120-mediated oxidative stress to the generation of rods, which may underlie early synaptic dysfunction observed in HAND.
Collapse
Affiliation(s)
- Lisa K. Smith
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America
| | - Isaac W. Babcock
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Laurie S. Minamide
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Alisa E. Shaw
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - James R. Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Thomas B. Kuhn
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
20
|
Ronaldson PT, Brzica H, Abdullahi W, Reilly BG, Davis TP. Transport Properties of Statins by Organic Anion Transporting Polypeptide 1A2 and Regulation by Transforming Growth Factor- β Signaling in Human Endothelial Cells. J Pharmacol Exp Ther 2021; 376:148-160. [PMID: 33168642 PMCID: PMC7839073 DOI: 10.1124/jpet.120.000267] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022] Open
Abstract
Our in vivo rodent studies have shown that organic anion transporting polypeptide (Oatp) 1a4 is critical for blood-to-brain transport of statins, drugs that are effective neuroprotectants. Additionally, transforming growth factor-β (TGF-β) signaling via the activin receptor-like kinase 1 (ALK1) receptor regulates Oatp1a4 functional expression. The human ortholog of Oatp1a4 is OATP1A2. Therefore, the translational significance of our work requires demonstration that OATP1A2 can transport statins and is regulated by TGF-β/ALK1 signaling. Cellular uptake and monolayer permeability of atorvastatin, pravastatin, and rosuvastatin were investigated in vitro using human umbilical vein endothelial cells (HUVECs). Regulation of OATP1A2 by the TGF-β/ALK1 pathway was evaluated using bone morphogenetic protein 9 (BMP-9), a selective ALK1 agonist, and LDN193189, an ALK1 antagonist. We showed that statin accumulation in HUVECs requires OATP1A2-mediated uptake but is also affected by efflux transporters (i.e., P-glycoprotein, breast cancer resistance protein). Absorptive flux (i.e., apical-to-basolateral) for all statins was higher than secretory flux (i.e., basolateral-to-apical) and was decreased by an OATP inhibitor (i.e., estrone-3-sulfate). OATP1A2 protein expression, statin uptake, and cellular monolayer permeability were increased by BMP-9 treatment. This effect was attenuated in the presence of LDN193189. Apical-to-basolateral statin transport across human endothelial cellular monolayers requires functional expression of OATP1A2, which can be controlled by therapeutically targeting TGF-β/ALK1 signaling. Taken together with our previous work, the present data show that OATP-mediated drug transport is a critical mechanism in facilitating neuroprotective drug disposition across endothelial barriers of the blood-brain barrier. SIGNIFICANCE STATEMENT: Transporter data derived from rodent models requires validation in human models. Using human umbilical vein endothelial cells, this study has shown that statin transport is mediated by OATP1A2. Additionally, we demonstrated that OATP1A2 is regulated by transforming growth factor-β/activin receptor-like kinase 1 signaling. This work emphasizes the need to consider endothelial transporter kinetics and regulation during preclinical drug development. Furthermore, our forward-thinking approach can identify effective therapeutics for diseases for which drug development has been challenging (i.e., neurological diseases).
Collapse
Affiliation(s)
- Patrick T Ronaldson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Hrvoje Brzica
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Wazir Abdullahi
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Bianca G Reilly
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Thomas P Davis
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| |
Collapse
|
21
|
Li Y, Jiang Q, Wang L. Appetite Regulation of TLR4-Induced Inflammatory Signaling. Front Endocrinol (Lausanne) 2021; 12:777997. [PMID: 34899611 PMCID: PMC8664591 DOI: 10.3389/fendo.2021.777997] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/04/2021] [Indexed: 12/20/2022] Open
Abstract
Appetite is the basis for obtaining food and maintaining normal metabolism. Toll-like receptor 4 (TLR4) is an important receptor expressed in the brain that induces inflammatory signaling after activation. Inflammation is considered to affect the homeostatic and non-homeostatic systems of appetite, which are dominated by hypothalamic and mesolimbic dopamine signaling. Although the pathological features of many types of inflammation are known, their physiological functions in appetite are largely unknown. This review mainly addresses several key issues, including the structures of the homeostatic and non-homeostatic systems. In addition, the mechanism by which TLR4-induced inflammatory signaling contributes to these two systems to regulate appetite is also discussed. This review will provide potential opportunities to develop new therapeutic interventions that control appetite under inflammatory conditions.
Collapse
Affiliation(s)
- Yongxiang Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- *Correspondence: Lina Wang, ; Qingyan Jiang,
| | - Lina Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- *Correspondence: Lina Wang, ; Qingyan Jiang,
| |
Collapse
|
22
|
Ronaldson PT, Davis TP. Regulation of blood-brain barrier integrity by microglia in health and disease: A therapeutic opportunity. J Cereb Blood Flow Metab 2020; 40:S6-S24. [PMID: 32928017 PMCID: PMC7687032 DOI: 10.1177/0271678x20951995] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The blood-brain barrier (BBB) is a critical regulator of CNS homeostasis. It possesses physical and biochemical characteristics (i.e. tight junction protein complexes, transporters) that are necessary for the BBB to perform this physiological role. Microvascular endothelial cells require support from astrocytes, pericytes, microglia, neurons, and constituents of the extracellular matrix. This intricate relationship implies the existence of a neurovascular unit (NVU). NVU cellular components can be activated in disease and contribute to dynamic remodeling of the BBB. This is especially true of microglia, the resident immune cells of the brain, which polarize into distinct proinflammatory (M1) or anti-inflammatory (M2) phenotypes. Current data indicate that M1 pro-inflammatory microglia contribute to BBB dysfunction and vascular "leak", while M2 anti-inflammatory microglia play a protective role at the BBB. Understanding biological mechanisms involved in microglia activation provides a unique opportunity to develop novel treatment approaches for neurological diseases. In this review, we highlight characteristics of M1 proinflammatory and M2 anti-inflammatory microglia and describe how these distinct phenotypes modulate BBB physiology. Additionally, we outline the role of other NVU cell types in regulating microglial activation and highlight how microglia can be targeted for treatment of disease with a focus on ischemic stroke and Alzheimer's disease.
Collapse
Affiliation(s)
- Patrick T Ronaldson
- Department of Pharmacology, College of Medicine University of Arizona, Tucson, AZ, USA
| | - Thomas P Davis
- Department of Pharmacology, College of Medicine University of Arizona, Tucson, AZ, USA
| |
Collapse
|
23
|
Whyte-Allman SK, Bendayan R. HIV-1 Sanctuary Sites-the Role of Membrane-Associated Drug Transporters and Drug Metabolic Enzymes. AAPS JOURNAL 2020; 22:118. [PMID: 32875457 DOI: 10.1208/s12248-020-00498-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/06/2020] [Indexed: 02/08/2023]
Abstract
Despite significant advances in the treatment of human immunodeficiency virus-1 (HIV) infection with highly active antiretroviral drug therapy, the persistence of the virus in cellular and anatomic reservoirs is a major obstacle preventing total HIV eradication. Viral persistence could result from a variety of contributing factors including, but not limited to, non-adherence to treatment and adverse drug reactions, latently infected cells carrying replication-competent virus, drug-drug interactions, and inadequate antiretroviral drug (ARV) concentrations reached in several anatomic sites such as the brain, testis, and gut-associated lymphoid tissues. The distribution of ARVs at specific sites of infection is primarily dependent on drug physicochemical properties and drug plasma protein binding, as well as drug efflux, influx, and metabolic processes. A thorough understanding of the functional roles of drug transporters and metabolic enzymes in the disposition of ARVs in immune cell types and tissues that are characterized as HIV reservoirs and sanctuaries is critical to overcome the challenge of suboptimal drug distribution at sites of persistent HIV infection. This review summarizes the current knowledge related to the expression and function of drug transporters and metabolic enzymes in HIV cellular and anatomic reservoirs, and their potential contribution to drug-drug interactions and insufficient drug concentration at these sites.
Collapse
Affiliation(s)
- Sana-Kay Whyte-Allman
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3M2, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3M2, Canada.
| |
Collapse
|
24
|
Omeragic A, Kayode O, Hoque MT, Bendayan R. Potential pharmacological approaches for the treatment of HIV-1 associated neurocognitive disorders. Fluids Barriers CNS 2020; 17:42. [PMID: 32650790 PMCID: PMC7350632 DOI: 10.1186/s12987-020-00204-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023] Open
Abstract
HIV associated neurocognitive disorders (HAND) are the spectrum of cognitive impairments present in patients infected with human immunodeficiency virus type 1 (HIV-1). The number of patients affected with HAND ranges from 30 to 50% of HIV infected individuals and although the development of combinational antiretroviral therapy (cART) has improved longevity, HAND continues to pose a significant clinical problem as the current standard of care does not alleviate or prevent HAND symptoms. At present, the pathological mechanisms contributing to HAND remain unclear, but evidence suggests that it stems from neuronal injury due to chronic release of neurotoxins, chemokines, viral proteins, and proinflammatory cytokines secreted by HIV-1 activated microglia, macrophages and astrocytes in the central nervous system (CNS). Furthermore, the blood-brain barrier (BBB) not only serves as a route for HIV-1 entry into the brain but also prevents cART therapy from reaching HIV-1 brain reservoirs, and therefore could play an important role in HAND. The goal of this review is to discuss the current data on the epidemiology, pathology and research models of HAND as well as address the potential pharmacological treatment approaches that are being investigated.
Collapse
Affiliation(s)
- Amila Omeragic
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Room 1001, Toronto, ON, M5S 3M2, Canada
| | - Olanre Kayode
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Room 1001, Toronto, ON, M5S 3M2, Canada
| | - Md Tozammel Hoque
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Room 1001, Toronto, ON, M5S 3M2, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Room 1001, Toronto, ON, M5S 3M2, Canada.
| |
Collapse
|
25
|
Gil-Martins E, Barbosa DJ, Silva V, Remião F, Silva R. Dysfunction of ABC transporters at the blood-brain barrier: Role in neurological disorders. Pharmacol Ther 2020; 213:107554. [PMID: 32320731 DOI: 10.1016/j.pharmthera.2020.107554] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/07/2020] [Indexed: 12/14/2022]
Abstract
ABC (ATP-binding cassette) transporters represent one of the largest and most diverse superfamily of proteins in living species, playing an important role in many biological processes such as cell homeostasis, cell signaling, drug metabolism and nutrient uptake. Moreover, using the energy generated from ATP hydrolysis, they mediate the efflux of endogenous and exogenous substrates from inside the cells, thereby reducing their intracellular accumulation. At present, 48 ABC transporters have been identified in humans, which were classified into 7 different subfamilies (A to G) according to their phylogenetic analysis. Nevertheless, the most studied members with importance in drug therapeutic efficacy and toxicity include P-glycoprotein (P-gp), a member of the ABCB subfamily, the multidrug-associated proteins (MPRs), members of the ABCC subfamily, and breast cancer resistance protein (BCRP), a member of the ABCG subfamily. They exhibit ubiquitous expression throughout the human body, with a special relevance in barrier tissues like the blood-brain barrier (BBB). At this level, they play a physiological function in tissue protection by reducing or limiting the brain accumulation of neurotoxins. Furthermore, dysfunction of ABC transporters, at expression and/or activity level, has been associated with many neurological diseases, including epilepsy, multiple sclerosis, Alzheimer's disease, and amyotrophic lateral sclerosis. Additionally, these transporters are strikingly associated with the pharmacoresistance to central nervous system (CNS) acting drugs, because they contribute to the decrease in drug bioavailability. This article reviews the signaling pathways that regulate the expression and activity of P-gp, BCRP and MRPs subfamilies of transporters, with particular attention at the BBB level, and their mis-regulation in neurological disorders.
Collapse
Affiliation(s)
- Eva Gil-Martins
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Daniel José Barbosa
- Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.
| | - Vera Silva
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Fernando Remião
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Renata Silva
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
26
|
HIV gp120 Protein Increases the Function of Connexin 43 Hemichannels and Pannexin-1 Channels in Astrocytes: Repercussions on Astroglial Function. Int J Mol Sci 2020; 21:ijms21072503. [PMID: 32260308 PMCID: PMC7178136 DOI: 10.3390/ijms21072503] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 11/17/2022] Open
Abstract
At least half of human immunodeficiency virus (HIV)-infected individuals suffer from a wide range of cognitive, behavioral and motor deficits, collectively known as HIV-associated neurocognitive disorders (HAND). The molecular mechanisms that amplify damage within the brain of HIV-infected individuals are unknown. Recently, we described that HIV augments the opening of connexin-43 (Cx43) hemichannels in cultured human astrocytes, which result in the collapse of neuronal processes. Whether HIV soluble viral proteins such as gp120, can regulate hemichannel opening in astrocytes is still ignored. These channels communicate the cytosol with the extracellular space during pathological conditions. We found that gp120 enhances the function of both Cx43 hemichannels and pannexin-1 channels in mouse cortical astrocytes. These effects depended on the activation of IL-1β/TNF-α, p38 MAP kinase, iNOS, cytoplasmic Ca2+ and purinergic signaling. The gp120-induced channel opening resulted in alterations in Ca2+ dynamics, nitric oxide production and ATP release. Although the channel opening evoked by gp120 in astrocytes was reproduced in ex vivo brain preparations, these responses were heterogeneous depending on the CA1 region analyzed. We speculate that soluble gp120-induced activation of astroglial Cx43 hemichannels and pannexin-1 channels could be crucial for the pathogenesis of HAND.
Collapse
|
27
|
Liu X, Yang W, Guo H, Ma Y. HIV-1 Tat protein potentiated ABCC-mediated efflux in Jurkat cells. ACTA ACUST UNITED AC 2020; 75:97-101. [PMID: 34432966 DOI: 10.1515/znc-2019-0217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/03/2020] [Indexed: 11/15/2022]
Affiliation(s)
- Xianfang Liu
- School of Pharmacy, Nankai University, Tianjin 300353, China
| | - Wengen Yang
- School of Pharmacy, Nankai University, Tianjin 300353, China
| | - Han Guo
- School of Pharmacy, Nankai University, Tianjin 300353, China
| | - Yonggang Ma
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| |
Collapse
|
28
|
Omeragic A, Saikali MF, Currier S, Volsky DJ, Cummins CL, Bendayan R. Selective peroxisome proliferator-activated receptor-gamma modulator, INT131 exhibits anti-inflammatory effects in an EcoHIV mouse model. FASEB J 2019; 34:1996-2010. [PMID: 31907999 DOI: 10.1096/fj.201901874r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/24/2019] [Accepted: 11/01/2019] [Indexed: 12/13/2022]
Abstract
Despite the use of antiretroviral therapy for the treatment of HIV-1 infection, cognitive impairments, that is, HIV-1-associated neurocognitive disorders remain prevalent potentially due to persistent viral replication, production of viral proteins, associated brain inflammation or in certain instances, antiretroviral neurotoxicity. Cellular targets in the brain include microglia which in response to infection release inflammatory markers and viral proteins. Evidence suggests that PPARγ agonists exert anti-inflammatory properties in neurological disorders. However, these agonists namely, thiazolidinediones have limited use in the clinic due to reported adverse side effects. INT131 is a novel non-thiazolidinedione compound that belongs to a new class of drugs known as selective PPARγ modulators. INT131 is considered to have a safer profile; however, its neuroprotective role in vivo is not known.The goal of this study was to examine the effect of INT131 in the context of EcoHIV-induced inflammation in vitro, in primary cultures of mouse glial cells and in vivo, in a mouse model of EcoHIV-associated brain inflammation, as well as characterize its pharmacokinetic properties and brain penetration. In primary cultures of glial cells and in the in vivo mouse model, EcoHIV exposure resulted in a significant elevation of inflammatory markers such as TNFα, IL-1β, CCL3, and C3 which were attenuated with INT131 treatment. Pharmacokinetic analyses revealed that INT131 penetrates into the brain with a brain to blood partition ratio Kp value of 8.5%. Overall, this is the first report to demonstrate that INT131 could be a potential candidate for the treatment of HIV-1-associated brain inflammation.
Collapse
Affiliation(s)
- Amila Omeragic
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Michael F Saikali
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Sydney Currier
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - David J Volsky
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carolyn L Cummins
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
29
|
Mirzaei SA, Dinmohammadi F, Alizadeh A, Elahian F. Inflammatory pathway interactions and cancer multidrug resistance regulation. Life Sci 2019; 235:116825. [PMID: 31494169 DOI: 10.1016/j.lfs.2019.116825] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Multidrug resistances against chemotherapeutics are among the major challenges related to cancer treatment. Recent studies have demonstrated that different conditions may tune the expression and activity of MDR transporters. For instance, inflammation occurs through a complex cytological process and chemical reactions in the most tumor microenvironment; it can play a critical role in cancer development and is capable of altering the expression and function of MDR transporters. Cytokines, interleukins, and prostaglandins are potent inflammatory mediators that can modulate the expression of MDRs at transcriptional and post-transcriptional levels in the most human cancer cells and tissues and potentially contribute to balance bioavailability of chemotherapeutic agents. Since cancer cases are usually accompanied by inflammatory responses, glucocorticoids and NSAIDs are the primary useful combination chemotherapies in a variety of cancer treatment protocols. In addition to the anti-inflammatory activities of these agents, they exert diverse modulatory effects on MDR-mediated drug resistance via specific mechanisms. Several factors, including cell and MDR-protein types, pharmacokinetics, and pharmacogenetics, mainly influence the regulatory mechanisms. Uncovering the networks between inflammation and multidrug resistance will be clinically helpful in the treatment of malignant cancers and decreasing the cancer mortality rates.
Collapse
Affiliation(s)
- Seyed Abbas Mirzaei
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran; Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Farideh Dinmohammadi
- Department of Food and Drug Control, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Akram Alizadeh
- Department of Tissue Engineering, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Elahian
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran; Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
30
|
Omeragic A, Kara-Yacoubian N, Kelschenbach J, Sahin C, Cummins CL, Volsky DJ, Bendayan R. Peroxisome Proliferator-Activated Receptor-gamma agonists exhibit anti-inflammatory and antiviral effects in an EcoHIV mouse model. Sci Rep 2019; 9:9428. [PMID: 31263138 PMCID: PMC6603270 DOI: 10.1038/s41598-019-45878-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023] Open
Abstract
The widespread use of combination antiretroviral therapy (cART) has resulted in significantly reduced deaths from HIV-1 associated complications and opportunistic infections. However, it is estimated that up to 50% of HIV-1 infected individuals still develop HIV-1 associated neurocognitive disorders (HAND). With no treatment currently available for patients, there is a critical need to identify therapeutic approaches that can treat this disorder. Evidence suggests that targeting Peroxisome Proliferator-Activated Receptor-gamma (PPARγ) can be anti-inflammatory in neurological disorders. Here we show that treatment with PPARγ agonists (rosiglitazone or pioglitazone) in primary cultures of mouse glial cells reversed EcoHIV-induced inflammatory genes (TNFα, IL-1β, CCL2, CCL3, CXCL10) and indicator of oxidative stress (iNOS). Furthermore, in vivo, mice administered with EcoHIV through intracranial injection resulted in upregulation of inflammatory genes (TNFα, IL-1β, IFNγ, CCL2, CCL3, CXCL10) and oxidative stress marker (iNOS) in the brain which was reversed through intraperitoneal administration of PPARγ agonists (rosiglitazone or pioglitazone). Finally, we demonstrated that treatment with these compounds in vivo reduced EcoHIV p24 protein burden in the brain. Our results suggest that treatment with PPARγ agonists are anti-inflammatory and antiviral in an in vivo model of EcoHIV infection. These drugs hold promise as potential candidates for HAND treatment in the future.
Collapse
Affiliation(s)
- Amila Omeragic
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
| | - Nareg Kara-Yacoubian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
| | - Jennifer Kelschenbach
- Department of Medicine - Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York City, USA
| | - Cigdem Sahin
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
| | - Carolyn L Cummins
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
| | - David J Volsky
- Department of Medicine - Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York City, USA
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada.
| |
Collapse
|
31
|
Lapierre J, Rodriguez M, Ojha CR, El-Hage N. Critical Role of Beclin1 in HIV Tat and Morphine-Induced Inflammation and Calcium Release in Glial Cells from Autophagy Deficient Mouse. J Neuroimmune Pharmacol 2018; 13:355-370. [PMID: 29752681 PMCID: PMC6230516 DOI: 10.1007/s11481-018-9788-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 04/16/2018] [Indexed: 12/19/2022]
Abstract
We previously showed that autophagy is an important component in human immunodeficiency virus (HIV) replication and in the combined morphine-induced neuroinflammation in human astrocytes and microglia. Here we further studied the consequences of autophagy using glial cells of mice partially lacking the essential autophagy gene Atg6 (Beclin1) exposed to HIV Tat and morphine. Tat is known to cause an inflammatory response, increase calcium release, and possibly interact with autophagy pathway proteins. Following Tat exposure, autophagy-deficient (Becn1+/-) glial cells had significantly and consistently reduced levels in the pro-inflammatory cytokine IL-6 and the chemokines RANTES and MCP-1 when compared to Tat-treated cells from control (C57BL/6J) mice, suggesting an association between the inflammatory effects of Tat and Beclin1. Further, differences in RANTES and MCP-1 secretion between C57BL/6J and Becn1+/- glia treated with Tat and morphine also suggest a role of Beclin1 in the morphine-induced enhancement. Analysis of autophagy maturation by immunoblot suggests that Beclin1 may be necessary for Tat, and to a lesser extent morphine-induced arrest of the pathway as demonstrated by accumulation of the adaptor protein p62/SQSTM1 in C57BL/6J glia. Calcium release induced by Tat alone or in combination with morphine in C57BL/6J glia was significantly reduced in Becn1+/- glia while minimal interactive effect of Tat with morphine in the production of reactive oxygen or nitrogen species was detected in glia derived from Becn1+/- or C57BL/6J. Overall, the data establish a role of Beclin1 in Tat and morphine-mediated inflammatory responses and calcium release in glial cells and support the notion that autophagy mediates Tat alone and combined morphine-induced neuropathology.
Collapse
Affiliation(s)
- Jessica Lapierre
- Department of Immunology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA
| | - Myosotys Rodriguez
- Department of Immunology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA
| | - Chet Raj Ojha
- Department of Immunology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA
| | - Nazira El-Hage
- Department of Immunology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA.
| |
Collapse
|
32
|
Wu YJ, Wang C, Wei W. The effects of DMARDs on the expression and function of P-gp, MRPs, BCRP in the treatment of autoimmune diseases. Biomed Pharmacother 2018; 105:870-878. [DOI: 10.1016/j.biopha.2018.06.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/24/2018] [Accepted: 06/04/2018] [Indexed: 12/17/2022] Open
|
33
|
McMahon D, Mah E, Hynynen K. Angiogenic response of rat hippocampal vasculature to focused ultrasound-mediated increases in blood-brain barrier permeability. Sci Rep 2018; 8:12178. [PMID: 30111814 PMCID: PMC6093874 DOI: 10.1038/s41598-018-30825-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/06/2018] [Indexed: 01/12/2023] Open
Abstract
Focused ultrasound (FUS) and circulating microbubbles can induce a targeted and transient increase in blood-brain barrier permeability. While preclinical research has demonstrated the utility of FUS for efficacious drug deliver to the brain, there remain gaps in our knowledge regarding the long-term response of brain vasculature to this intervention. Previous work has demonstrated transcriptional changes in hippocampal microvessels following sonication that are indicative of the initiation of angiogenic processes. Moreover, blood vessel growth has been reported in skeletal muscle following application of FUS and microbubbles. The current study demonstrates that blood vessel density in the rat hippocampus is modestly elevated at 7 and 14 d post-FUS compared to the contralateral hemisphere (7 d: 10.9 ± 6.0%, p = 0.02; 14 d: 12.1 ± 3.2%, p < 0.01), but returns to baseline by 21 d (5.9 ± 2.6%, p = 0.12). Concurrently, relative newborn endothelial cell density and frequency of small blood vessel segments were both elevated in the sonicated hippocampus. While further work is required to determine the mechanisms driving these changes, the findings presented here may have relevance to the optimal frequency of repeated treatments.
Collapse
Affiliation(s)
- Dallan McMahon
- Sunnybrook Research Institute, Toronto, M4N 3M5, Canada. .,University of Toronto, Department of Medical Biophysics, Toronto, M4N 3M5, Canada.
| | - Ethan Mah
- Sunnybrook Research Institute, Toronto, M4N 3M5, Canada
| | - Kullervo Hynynen
- Sunnybrook Research Institute, Toronto, M4N 3M5, Canada.,University of Toronto, Department of Medical Biophysics, Toronto, M4N 3M5, Canada.,University of Toronto, Institute of Biomaterials and Biomedical Engineering, Toronto, M5S 3G9, Canada
| |
Collapse
|
34
|
Effects of HIV-1 Tat and Methamphetamine on Blood-Brain Barrier Integrity and Function In Vitro. Antimicrob Agents Chemother 2017; 61:AAC.01307-17. [PMID: 28893794 DOI: 10.1128/aac.01307-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/05/2017] [Indexed: 12/28/2022] Open
Abstract
Human immunodeficiency (HIV) infection results in neurocognitive deficits in about one half of infected individuals. Despite systemic effectiveness, restricted antiretroviral penetration across the blood-brain barrier (BBB) is a major limitation in fighting central nervous system (CNS)-localized infection. Drug abuse exacerbates HIV-induced cognitive and pathological CNS changes. This study's purpose was to investigate the effects of the HIV-1 protein Tat and methamphetamine on factors affecting drug penetration across an in vitro BBB model. Factors affecting paracellular and transcellular flux in the presence of Tat and methamphetamine were examined. Transendothelial electrical resistance, ZO-1 expression, and lucifer yellow (a paracellular tracer) flux were aspects of paracellular processes that were examined. Additionally, effects on P-glycoprotein (P-gp) and multidrug resistance protein 1 (MRP-1) mRNA (via quantitative PCR [qPCR]) and protein (via immunoblotting) expression were measured; Pgp and MRP-1 are drug efflux proteins. Transporter function was examined after exposure of Tat with or without methamphetamine using the P-gp substrate rhodamine 123 and also using the dual P-gp/MRP-1 substrate and protease inhibitor atazanavir. Tat and methamphetamine elicit complex changes affecting transcellular and paracellular transport processes. Neither Tat nor methamphetamine significantly altered P-gp expression. However, Tat plus methamphetamine exposure significantly increased rhodamine 123 accumulation within brain endothelial cells, suggesting that treatment inhibited or impaired P-gp function. Intracellular accumulation of atazanavir was not significantly altered after Tat or methamphetamine exposure. Atazanavir accumulation was, however, significantly increased by simultaneous inhibition of P-gp and MRP. Collectively, our investigations indicate that Tat and methamphetamine alter aspects of BBB integrity without affecting net flux of paracellular compounds. Tat and methamphetamine may also affect several aspects of transcellular transport.
Collapse
|
35
|
Peroxisome proliferator-activated receptor-gamma: potential molecular therapeutic target for HIV-1-associated brain inflammation. J Neuroinflammation 2017; 14:183. [PMID: 28886715 PMCID: PMC5591559 DOI: 10.1186/s12974-017-0957-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/31/2017] [Indexed: 12/16/2022] Open
Abstract
Background Despite the use of combination antiretroviral therapy for the treatment of HIV-1 infection, cognitive impairments remain prevalent due to persistent viral replication and associated brain inflammation. Primary cellular targets of HIV-1 in the brain are macrophages, microglia, and to a certain extent astrocytes which in response to infection release inflammatory markers, viral proteins [i.e., glycoprotein 120 (gp120)] and exhibit impaired glutamate uptake. Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor superfamily of ligand-activated transcription factors. Compelling evidence suggests that PPARγ exerts anti-inflammatory properties in neurological disorders. The goal of this study was to examine the role of PPARγ in the context of HIV-1ADA gp120-induced inflammation in vitro, in primary cultures of rat astrocytes and microglia, and in vivo, in a rodent model of HIV-1ADA gp120-associated brain inflammation. Methods Primary mixed cultures of rat astrocytes and microglia were treated with PPARγ agonists (rosiglitazone or pioglitazone) and exposed to HIV-1ADA gp120. Inflammatory cytokines and indicator of oxidative stress response (TNFα, IL-1β, iNOS) were measured using qPCR, and glutamate transporter (GLT-1) was quantified by immunoblotting. In vivo, rats were administered an intracerebroventricular injection of HIV-1ADA gp120 and an intraperitoneal injection of PPARγ agonist (rosiglitazone) or co-administration with PPARγ antagonist (GW9662). qPCR and immunoblotting analyses were applied to measure inflammatory markers, GLT-1 and PPARγ. Results In primary mixed cultures of rat astrocytes and microglia, HIV-1ADA gp120 exposure resulted in a significant elevation of inflammatory markers and a decrease in GLT-1 expression which were significantly attenuated with rosiglitazone or pioglitazone treatment. Similarly, in vivo, treatment with rosiglitazone reversed the gp120-mediated inflammatory response and downregulation of GLT-1. Furthermore, we demonstrated that the anti-inflammatory effects of PPARγ agonist rosiglitazone were mediated through inhibition of NF-κB. Conclusion Our data demonstrate that gp120 can induce an inflammatory response and decrease expression of GLT-1 in the brain in vitro and in vivo. We have also successfully shown that these effects can be reversed by treatment with PPARγ agonists, rosiglitazone or pioglitazone. Together our data suggest that targeting PPARγ signaling may provide an option for preventing/treating HIV-associated brain inflammation. Electronic supplementary material The online version of this article (10.1186/s12974-017-0957-8) contains supplementary material, which is available to authorized users.
Collapse
|
36
|
An observational study examining the effects of a surgically induced inflammatory response on the distribution of morphine and its metabolites into cerebrospinal fluid. Can J Anaesth 2017; 64:1009-1022. [PMID: 28710563 DOI: 10.1007/s12630-017-0933-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/25/2017] [Accepted: 07/05/2017] [Indexed: 01/11/2023] Open
Abstract
PURPOSE Morphine is administered intravenously for pain management in the perioperative period. The effect of the inflammatory response to surgery on morphine distribution across the blood-brain barrier (BBB) in humans was investigated. We hypothesized that a graded surgically induced, systemic inflammatory response alters cerebrospinal fluid (CSF) levels of morphine, morphine-3-glucuronide (M3G), and morphine-6-glucuronide (M6G) through a temporary reduction in BBB drug efflux transporter function. METHODS We conducted a prospective pharmacokinetic study of the plasma and CSF distribution of the P-glycoprotein (PGP) substrate morphine in 33 patients undergoing open thoracic (n = 18) or endovascular (n = 15) aortic aneurysm repair. Morphine was administered with induction of anesthesia and in the intensive care unit. Plasma and CSF concentrations of interleukin (IL)-6, morphine, M3G, M6G, and albumin were measured prior to surgery (baseline), during surgery, and postoperatively every six hours until removal of the CSF drain. The area under the curve (AUC) was determined for plasma and CSF IL-6, morphine, M3G, and M6G concentrations vs time. The primary endpoint measures were the correlations between the morphine, M6G, and M3G AUC CSF/plasma ratios and systemic inflammation as quantified by the time-normalized IL-6 exposure, which was calculated for each individual by dividing the total exposure (AUC) by time (t). A Bonferroni corrected P < 0.017 indicated a significant correlation. RESULTS Plasma and CSF IL-6 concentrations increased postoperatively. The median [interquartile range] IL-6 exposures were significantly higher in the open vs endovascular surgical group for plasma (105 [40-256] pg·mL-1 vs 29 [16-70] pg·mL-1, respectively; P = 0.013) and CSF (79 [26-133] pg·mL-1 vs 16 [9-80] pg·mL-1, respectively; P = 0.013). For the primary endpoint, the plasma IL-6 AUC/t did not correlate with the CSF accumulation of morphine (r = -0.009; P = 0.96) or M3G (r = 0.37; P = 0.04) when corrected for surgical procedure, age, and sex. There were insufficient data on CSF concentration to complete the primary analysis for M6G. CONCLUSION Morphine distribution into the CSF was not significantly altered in patients undergoing thoracic aortic aneurysm repair. This suggests that BBB PGP function may not be affected by the perioperative inflammatory response. TRIAL REGISTRATION www.clinicaltrials.gov , NCT 00878371. Registered 7 April 2009.
Collapse
|
37
|
Aryl hydrocarbon receptor upregulates IL-1β expression in hCMEC/D3 human cerebral microvascular endothelial cells after TCDD exposure. Toxicol In Vitro 2017; 41:200-204. [DOI: 10.1016/j.tiv.2017.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 03/03/2017] [Accepted: 03/07/2017] [Indexed: 12/02/2022]
|
38
|
Joshy KS, George A, Jose J, Kalarikkal N, Pothen LA, Thomas S. Novel dendritic structure of alginate hybrid nanoparticles for effective anti-viral drug delivery. Int J Biol Macromol 2017; 103:1265-1275. [PMID: 28559185 DOI: 10.1016/j.ijbiomac.2017.05.094] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/28/2017] [Accepted: 05/16/2017] [Indexed: 12/23/2022]
Abstract
Lipid-polymer hybrid nanoparticles have recently gathered much attention as nanoplatforms for drug delivery applications due to their unique structural properties. In this study zidovudine (AZT) loaded hybrid nanoparticles of alginate (ALG) and stearic acid- poly ethylene glycol (SA-PEG) were synthesized. The structural characterization of drug loaded hybrid nanoparticles were studied using FT-IR spectroscopy, DLS and TEM analysis. These hybrid nanoparticles showed dendritic morphology and it can be used as an efficient carrier for zidovudine. In this drug loaded hybrid system of Alginate -Stearicacid/Poly (ethyleneglycol) Nanoparticles (ASNPs), AZT and alginate form the core wherein SA-PEG forms the external shell. We observed a dendritic morphology with internal voids and channels formed by the core molecule and the external shell forms the closed pack surface groups. The optimized formulation achieved a sub micron size of 407.67±19.18nm with drug encapsulation of 83.18±1.22%, and surface potential of -42.53mV, and has significant stability for six months. Haemolysis and aggregation studies revealed that there were no lysis and aggregation in WBC, RBC and platelets. In-vitro cytotoxicity and cellular uptake of the nanoparticles in Glioma, Neuro2a and Hela cells showed that ASNPs are non toxic. The results indicate that the synthesized hybrid nanoparticles represent a potential carrier for zidovudine, thus possibly increasing zidovudine's efficiency as an anti-HIV drug.
Collapse
Affiliation(s)
- K S Joshy
- Department of Chemistry, CMS College, Kottayam, Kerala, India; International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, 686 560, Kerala, India
| | - Anne George
- Department of Anatomy, Government Medical College, Kottayam, India
| | - Jiya Jose
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, 686 560, Kerala, India
| | - Nandakumar Kalarikkal
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, 686 560, Kerala, India; School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, 686 560, Kerala, India
| | - Laly A Pothen
- Department of Chemistry, Bishop Moore College, Mavelikkara, Kerala, India
| | - Sabu Thomas
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, 686 560, Kerala, India; School of Chemical Sciences, Mahatma Gandhi University, Kottayam, 686 560, Kerala, India.
| |
Collapse
|
39
|
Acute effects of focused ultrasound-induced increases in blood-brain barrier permeability on rat microvascular transcriptome. Sci Rep 2017; 7:45657. [PMID: 28374753 PMCID: PMC5379491 DOI: 10.1038/srep45657] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/02/2017] [Indexed: 02/07/2023] Open
Abstract
Therapeutic treatment options for central nervous system diseases are greatly limited by the blood-brain barrier (BBB). Focused ultrasound (FUS), in conjunction with circulating microbubbles, can be used to induce a targeted and transient increase in BBB permeability, providing a unique approach for the delivery of drugs from the systemic circulation into the brain. While preclinical research has demonstrated the utility of FUS, there remains a large gap in our knowledge regarding the impact of sonication on BBB gene expression. This work is focused on investigating the transcriptional changes in dorsal hippocampal rat microvessels in the acute stages following sonication. Microarray analysis of microvessels was performed at 6 and 24 hrs post-FUS. Expression changes in individual genes and bioinformatic analysis suggests that FUS may induce a transient inflammatory response in microvessels. Increased transcription of proinflammatory cytokine genes appears to be short-lived, largely returning to baseline by 24 hrs. This observation may help to explain some previously observed bioeffects of FUS and may also be a driving force for the angiogenic processes and reduced drug efflux suggested by this work. While further studies are necessary, these results open up intriguing possibilities for novel FUS applications and suggest possible routes for pharmacologically modifying the technique.
Collapse
|
40
|
Ghoneim RH, Kojovic D, Piquette-Miller M. Impact of endotoxin on the expression of drug transporters in the placenta of HIV-1 transgenic (HIV-Tg) rats. Eur J Pharm Sci 2017; 102:94-102. [PMID: 28274777 DOI: 10.1016/j.ejps.2017.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/06/2017] [Accepted: 03/03/2017] [Indexed: 10/20/2022]
Abstract
BACKGROUND Inflammatory responses in HIV (+) patients may be exacerbated due to reports of subclinical endotoxemia and existing immune dysregulation. As inflammation has been reported to mediate changes in the expression of transporters, this could be potentiated in pregnant HIV (+) women. Similar to humans, the HIV-Tg rat model develops immune dysregulation and chronic AIDS-like conditions. Our objective was to examine the expression of placental drug transporters in HIV-Tg rats in response to low-dose endotoxin. METHODS Pregnant HIV-Tg rats or wild-type littermates (WT) were treated with low dose bacterial endotoxin 0.1mg/kg (n=8) or 0.25mg/kg (n=4-6) on GD18 and placentas were harvested 18h later. Placental and hepatic expression of transporters and cytokines were examined using qRT-PCR and Western blotting. RESULTS As compared to WT, endotoxin administration increased the hepatic and placental expression of IL-6 and TNF-α to a greater extent in HIV-Tg rats (p<0.05). The placental mRNA and protein expression of Abcb1a and Slco2b1 was significantly decreased in endotoxin-treated HIV-Tg but not WT rats and downregulation of Slco4a1 mRNA was more pronounced in the HIV-Tg group (p<0.05). These changes significantly correlated with the placental expression of pro-inflammatory cytokines. Abcc3 mRNA expression was increased in the placenta of endotoxin treated WT rats only, while placental expression of Abcc1, Abcc2 and Abcc4 was not significantly affected in both WT and HIV rats. Endotoxin imposed a pronounced downregulation in the hepatic expression of Abcb1a, Abcc2, Abcc4, Abcg2, Slco1a1, Slco1b2 and Slc29a1 in both HIV-Tg and WT rats; however, Abcb1b expression was increased in HIV but not WT rats. CONCLUSION Our results indicate that low-dose endotoxin resulted in an augmented inflammatory response in HIV-Tg rats accompanied with significant changes in the placental expression of several drug transporters. Our data suggests that subclinical endotoxemia and other co-existing infections may alter the placental transfer of drugs in the HIV population.
Collapse
Affiliation(s)
- Ragia H Ghoneim
- Leslie Dan Faculty of Pharmacy, University of Toronto, ON, Canada
| | - Dea Kojovic
- Leslie Dan Faculty of Pharmacy, University of Toronto, ON, Canada
| | | |
Collapse
|
41
|
K.S J, Sharma CP, Kalarikkal N, Sandeep. K, Thomas S, Pothen LA. Evaluation of in-vitro cytotoxicity and cellular uptake efficiency of zidovudine-loaded solid lipid nanoparticles modified with Aloe Vera in glioma cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 66:40-50. [DOI: 10.1016/j.msec.2016.03.031] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/02/2016] [Accepted: 03/10/2016] [Indexed: 12/12/2022]
|
42
|
Alam C, Whyte-Allman SK, Omeragic A, Bendayan R. Role and modulation of drug transporters in HIV-1 therapy. Adv Drug Deliv Rev 2016; 103:121-143. [PMID: 27181050 DOI: 10.1016/j.addr.2016.05.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/29/2016] [Accepted: 05/03/2016] [Indexed: 12/15/2022]
Abstract
Current treatment of human immunodeficiency virus type-1 (HIV-1) infection involves a combination of antiretroviral drugs (ARVs) that target different stages of the HIV-1 life cycle. This strategy is commonly referred to as highly active antiretroviral therapy (HAART) or combined antiretroviral therapy (cART). Membrane-associated drug transporters expressed ubiquitously in mammalian systems play a crucial role in modulating ARV disposition during HIV-1 infection. Members of the ATP-binding cassette (ABC) and solute carrier (SLC) transporter superfamilies have been shown to interact with ARVs, including those that are used as part of first-line treatment regimens. As a result, the functional expression of drug transporters can influence the distribution of ARVs at specific sites of infection. In addition, pathological factors related to HIV-1 infection and/or ARV therapy itself can alter transporter expression and activity, thus further contributing to changes in ARV disposition and the effectiveness of HAART. This review summarizes current knowledge on the role of drug transporters in regulating ARV transport in the context of HIV-1 infection.
Collapse
Affiliation(s)
- Camille Alam
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada
| | - Sana-Kay Whyte-Allman
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada
| | - Amila Omeragic
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada.
| |
Collapse
|
43
|
Minuesa G, Arimany-Nardi C, Erkizia I, Cedeño S, Moltó J, Clotet B, Pastor-Anglada M, Martinez-Picado J. P-glycoprotein (ABCB1) activity decreases raltegravir disposition in primary CD4+P-gphigh cells and correlates with HIV-1 viral load. J Antimicrob Chemother 2016; 71:2782-92. [PMID: 27334660 PMCID: PMC5031918 DOI: 10.1093/jac/dkw215] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 05/05/2016] [Indexed: 01/25/2023] Open
Abstract
Objectives To evaluate the role of P-glycoprotein (P-gp) and multidrug-resistant-protein 1 (MRP1) on raltegravir intracellular drug disposition in CD4+ T cells, investigate the effect of HIV-1 infection on P-gp expression and correlate HIV-1 viraemia with P-gp activity in primary CD4+ T cell subsets. Methods The cellular accumulation ratio of [3H]raltegravir was quantified in CD4+ T cell lines overexpressing either P-gp (CEM-P-gp) or MRP1 (CEM-MRP1) and in primary CD3+CD4+ T cells with high (P-gphigh) and low P-gp activity (P-gplow); inhibition of efflux transporters was confirmed by the intracellular retention of calcein-AM. The correlation of P-gp activity with HIV-1 viraemia was assessed in naive and memory T cell subsets from 21 HIV-1-infected treatment-naive subjects. Results [3H]Raltegravir cellular accumulation ratio decreased in CEM-P-gp cells (P < 0.0001). XR9051 (a P-gp inhibitor) and HIV-1 PIs reversed this phenomenon. Primary CD4+P-gphigh cells accumulated less raltegravir (38.4% ± 9.6%) than P-gplow cells, whereas XR9051 also reversed this effect. In vitro HIV-1 infection of PBMCs and stimulation of CD4+ T cells increased P-gp mRNA and P-gp activity, respectively, while primary CD4+P-gphigh T cells sustained a higher HIV-1 replication than P-gplow cells. A significant correlation between HIV-1 viraemia and P-gp activity was found in different CD4+ T cell subsets, particularly memory CD4+ T cells (r = 0.792, P < 0.0001). Conclusions Raltegravir is a substrate of P-gp in CD4+ T cells. Primary CD4+P-gphigh T cells eliminate intracellular raltegravir more readily than P-gplow cells and HIV-1 viraemia correlates with P-gp overall activity. Specific CD4+P-gphigh T cell subsets could facilitate the persistence of viral replication in vivo and ultimately promote the appearance of drug resistance.
Collapse
Affiliation(s)
- Gerard Minuesa
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Cristina Arimany-Nardi
- Molecular Pharmacology and Experimental Therapeutics, Department of Biochemistry and Molecular Biology, Institute of Biomedicine (IBUB), University of Barcelona, 08028 Barcelona, Spain Oncology Program, National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBER EHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Itziar Erkizia
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Samandhy Cedeño
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - José Moltó
- Fundació Lluita contra la Sida, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Bonaventura Clotet
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain Fundació Lluita contra la Sida, Hospital Universitari Germans Trias i Pujol, Badalona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Marçal Pastor-Anglada
- Molecular Pharmacology and Experimental Therapeutics, Department of Biochemistry and Molecular Biology, Institute of Biomedicine (IBUB), University of Barcelona, 08028 Barcelona, Spain Oncology Program, National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBER EHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Martinez-Picado
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain Universitat de Vic, Universitat Central de Catalunya (UVic-UCC), Vic, Spain
| |
Collapse
|
44
|
Dwarkasing JT, Witkamp RF, Boekschoten MV, Ter Laak MC, Heins MS, van Norren K. Increased hypothalamic serotonin turnover in inflammation-induced anorexia. BMC Neurosci 2016; 17:26. [PMID: 27207102 PMCID: PMC4875640 DOI: 10.1186/s12868-016-0260-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 05/11/2016] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Anorexia can occur as a serious complication of disease. Increasing evidence suggests that inflammation plays a major role, along with a hypothalamic dysregulation characterized by locally elevated serotonin levels. The present study was undertaken to further explore the connections between peripheral inflammation, anorexia and hypothalamic serotonin metabolism and signaling pathways. First, we investigated the response of two hypothalamic neuronal cell lines to TNFα, IL-6 and LPS. Next, we studied transcriptomic changes and serotonergic activity in the hypothalamus of mice after intraperitoneal injection with TNFα, IL-6 or a combination of TNFα and IL-6. RESULTS In vitro, we showed that hypothalamic neurons responded to inflammatory mediators by releasing cytokines. This inflammatory response was associated with an increased serotonin release. Mice injected with TNFα and IL-6 showed decreased food intake, associated with altered expression of inflammation-related genes in the hypothalamus. In addition, hypothalamic serotonin turnover showed to be elevated in treated mice. CONCLUSIONS Overall, our results underline that peripheral inflammation reaches the hypothalamus where it affects hypothalamic serotoninergic metabolism. These hypothalamic changes in serotonin pathways are associated with decreased food intake, providing evidence for a role of serotonin in inflammation-induced anorexia.
Collapse
Affiliation(s)
- J T Dwarkasing
- Nutrition and Pharmacology Group, Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703HD, Wageningen, The Netherlands.
| | - R F Witkamp
- Nutrition and Pharmacology Group, Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703HD, Wageningen, The Netherlands
| | - M V Boekschoten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703HD, Wageningen, The Netherlands
| | - M C Ter Laak
- Nutrition and Pharmacology Group, Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703HD, Wageningen, The Netherlands
| | - M S Heins
- Brains On-line, P.O. Box 4030, 9701 EA, Groningen, The Netherlands
| | - K van Norren
- Nutrition and Pharmacology Group, Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703HD, Wageningen, The Netherlands
| |
Collapse
|
45
|
Ghoneim RH, Piquette-Miller M. Endotoxin-Mediated Downregulation of Hepatic Drug Transporters in HIV-1 Transgenic Rats. Drug Metab Dispos 2016; 44:709-19. [PMID: 26977098 DOI: 10.1124/dmd.115.067827] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/08/2016] [Indexed: 01/06/2023] Open
Abstract
Altered expression of drug transporters and metabolic enzymes is known to occur in infection-induced inflammation. We hypothesize that in human immunodeficiency virus (HIV)-infected individuals, further alteration could occur as a result of augmented inflammation. The HIV-1 transgenic (Tg) rat is used to simulate HIV pathologies associated with the presence of HIV viral proteins. Therefore, the objective of this study was to examine the effect of endotoxin administration on the gene expression of drug transporters in the liver of HIV-Tg rats. Male and female HIV-Tg and wild-type (WT) littermates were injected with 5 mg/kg endotoxin or saline (n= 7-9/group). Eighteen hours later, rats were euthanized and tissues were collected. Quantitative real-time polymerase chain reaction and Western blot analysis were used to measure hepatic gene and protein expression, respectively, and enzyme-linked immunosorbent assay was used to measure serum cytokine levels. Although an augmented inflammatory response was seen in HIV-Tg rats, similar endotoxin- mediated downregulation of Abcb1a, Abcc2, Abcg2, Abcb11, Slco1a1, Slco1a2, Slco1b2, Slc10a1, Slc22a1, Cyp3a2, and Cyp3a9 gene expression was seen in the HIV-Tg and WT groups. A significantly greater endotoxin- mediated downregulation of Ent1/Slc29a1 was seen in female HIV-Tg rats. Basal expression of inflammatory mediators was not altered in the HIV-Tg rat; likewise, the basal expression of most transporters was not significantly different between HIV-Tg and WT rats. Our findings suggest that hepatobiliary clearances of endogenous and exogenous substrates are altered in the HIV-Tg rat after endotoxin exposure. This is of particular importance because HIV-infected individuals frequently present with bacterial or viral infections, which are a potential source for drug-disease interactions.
Collapse
Affiliation(s)
- Ragia H Ghoneim
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
46
|
HIV-1 Alters Intestinal Expression of Drug Transporters and Metabolic Enzymes: Implications for Antiretroviral Drug Disposition. Antimicrob Agents Chemother 2016; 60:2771-81. [PMID: 26902756 DOI: 10.1128/aac.02278-15] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 02/14/2016] [Indexed: 01/05/2023] Open
Abstract
This study investigated the effects of HIV-1 infection and antiretroviral therapy (ART) on the expression of intestinal drug efflux transporters, i.e., P-glycoprotein (Pgp), multidrug resistance-associated proteins (MRPs), and breast cancer resistance protein (BCRP), and metabolic enzymes, such as cytochrome P450s (CYPs), in the human upper intestinal tract. Intestinal biopsy specimens were obtained from HIV-negative healthy volunteers, ART-naive HIV-positive (HIV(+)) subjects, and HIV(+) subjects receiving ART (10 in each group). Intestinal tissue expression of drug transporters and metabolic enzymes was examined by microarray, real-time quantitative reverse transcription-PCR (qPCR), and immunohistochemistry analyses. Microarray analysis demonstrated significantly lower expression of CYP3A4 and ABCC2/MRP2 in the HIV(+) ART-naive group than in uninfected subjects. qPCR analysis confirmed significantly lower expression of ABCC2/MRP2 in ART-naive subjects than in the control group, while CYP3A4 and ABCG2/BCRP showed a trend toward decreased expression. Protein expression of MRP2 and BCRP was also significantly lower in the HIV(+) naive group than in the control group and was partially restored to baseline levels in HIV(+) subjects receiving ART. In contrast, gene and protein expression of ABCB1/Pgp was significantly increased in HIV(+) subjects on ART relative to HIV(+) ART-naive subjects. These data demonstrate that the expression of drug-metabolizing enzymes and efflux transporters is significantly altered in therapy-naive HIV(+) subjects and in those receiving ART. Since CYP3A4, Pgp, MRPs, and BCRP metabolize or transport many antiretroviral drugs, their altered expression with HIV infection may negatively impact drug pharmacokinetics in HIV(+) subjects. This has clinical implications when using data from healthy volunteers to guide ART.
Collapse
|
47
|
Dwarkasing JT, Marks DL, Witkamp RF, van Norren K. Hypothalamic inflammation and food intake regulation during chronic illness. Peptides 2016; 77:60-6. [PMID: 26158772 DOI: 10.1016/j.peptides.2015.06.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 05/14/2015] [Accepted: 06/22/2015] [Indexed: 02/08/2023]
Abstract
Anorexia is a common symptom in chronic illness. It contributes to malnutrition and strongly affects survival and quality of life. A common denominator of many chronic diseases is an elevated inflammatory status, which is considered to play a pivotal role in the failure of food-intake regulating systems in the hypothalamus. In this review, we summarize findings on the role of hypothalamic inflammation on food intake regulation involving hypothalamic neuropeptide Y (NPY) and pro-opiomelanocortin (POMC). Furthermore, we outline the role of serotonin in the inability of these peptide based food-intake regulating systems to respond and adapt to changes in energy metabolism during chronic disease.
Collapse
Affiliation(s)
- J T Dwarkasing
- Nutrition and Pharmacology Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands.
| | - D L Marks
- Department of Pediatric Endocrinology, Oregon Health & Sciences University, Portland, OR 97201, USA
| | - R F Witkamp
- Nutrition and Pharmacology Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - K van Norren
- Nutrition and Pharmacology Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands; Nutricia Research, Utrecht, The Netherlands
| |
Collapse
|
48
|
Zhou Y, Zhang K, Yin X, Nie Q, Ma Y. HIV-1 Tat Protein Enhances Expression and Function of Breast Cancer Resistance Protein. AIDS Res Hum Retroviruses 2016; 32:1-3. [PMID: 26367065 DOI: 10.1089/aid.2015.0117] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
ATP binding cassette (ABC) transporters can transfer a variety of antiviral agents from the cytoplasm to body fluid, which results in a reduced intracellular concentration of the drugs. Proteins of HIV-1, e.g., Tat and gp120, altered some types of ABC transporter expression in brain microvascular endothelial cells and astrocytes. However, the effect of Tat on ABC transporters in T lymphocytes is unclear. In this study the status of breast cancer resistance protein (BCRP) in Tat expressing cell lines was examined with real-time PCR and flow cytometry. It was found that HIV-1 Tat protein upregulated BCRP expression and enhanced efflux mediated by BCRP significantly, which could inhibit antiviral drugs from entering infected cells and interfere with the therapeutic effect of HAART.
Collapse
Affiliation(s)
- Yancong Zhou
- School of Pharmacy, Nankai University, Tianjin, China
| | - Kun Zhang
- School of Pharmacy, Nankai University, Tianjin, China
| | - Xiaojie Yin
- School of Pharmacy, Nankai University, Tianjin, China
| | - Qichang Nie
- School of Pharmacy, Nankai University, Tianjin, China
| | - Yonggang Ma
- School of Pharmacy, Nankai University, Tianjin, China
| |
Collapse
|
49
|
McRae M. HIV and viral protein effects on the blood brain barrier. Tissue Barriers 2016; 4:e1143543. [PMID: 27141423 PMCID: PMC4836474 DOI: 10.1080/21688370.2016.1143543] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/09/2016] [Accepted: 01/12/2016] [Indexed: 12/31/2022] Open
Abstract
The blood brain barrier (BBB) plays a critical role in the normal physiology of the central nervous system (CNS) by regulating what crosses from the periphery into the brain. Damage to the BBB or alterations in transport systems may mediate the pathogenesis of many CNS diseases, including HIV-associated CNS dysfunction. HIV-1 infection can result in neuropathologic changes in about one half of infected individuals and also can result in damage to the BBB. HIV-1 and the HIV-1 viral proteins, Tat and gp120, cause alterations in the integrity and function of the BBB through both paracellular and transcellular mechanisms. The current review discusses HIV and viral protein-mediated injury to the BBB with a focus on the effects on tight junction proteins, barrier permeability, and drug efflux proteins.
Collapse
Affiliation(s)
- MaryPeace McRae
- Department of Pharmacotherapy and Outcomes Sciences; Virginia Commonwealth University; Richmond, VA USA
| |
Collapse
|
50
|
HIV-1 increases TLR responses in human primary astrocytes. Sci Rep 2015; 5:17887. [PMID: 26671458 PMCID: PMC4680863 DOI: 10.1038/srep17887] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/09/2015] [Indexed: 12/12/2022] Open
Abstract
Astrocytes are the major glial cell within the central nervous system and have a number of important physiological properties related to brain homeostasis. They provide trophic support to neurons and are immune cells with key roles during states-of-inflammation. The potential for production of proinflammatory cytokines and its consequences has been studied in the context of HIV-1 infection of normal human astrocytes (NHA). NHA express TLR3, TLR4, and TLR5. TLR3 ligation induced the strongest proinflammatory polarizing response, characterized by generation of high levels of TNF-α, IL-6, and IL-8. HIV-1 increased the transient production of key inflammatory mediators, and exposure to LPS of HIV-1-infected cells increased significantly the cytokine secretion. We confirmed that it is necessary viral gene expression from the moment of pretreatment with antiretrovirals inhibited totally HIV-1-induced TLR response. The higher response to LPS from HIV-1-infected cells did not correlate with TLR4 or MyD88 increased expression. LPS responsiveness of infected cells parallels MHC class II expression, but not CD14. HIV-1-infected NHA present increased sensitivity to the proinflammatory effects of LPS. If this phenomenon occurs in vivo, it will contribute to the immunopathogenesis of this disease and may ultimately offer novel targets for immunomodulatory therapy.
Collapse
|