1
|
McMahon KL, Vetter I, Schroeder CI. Voltage-Gated Sodium Channel Inhibition by µ-Conotoxins. Toxins (Basel) 2024; 16:55. [PMID: 38251271 PMCID: PMC10819908 DOI: 10.3390/toxins16010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
µ-Conotoxins are small, potent pore-blocker inhibitors of voltage-gated sodium (NaV) channels, which have been identified as pharmacological probes and putative leads for analgesic development. A limiting factor in their therapeutic development has been their promiscuity for different NaV channel subtypes, which can lead to undesirable side-effects. This review will focus on four areas of µ-conotoxin research: (1) mapping the interactions of µ-conotoxins with different NaV channel subtypes, (2) µ-conotoxin structure-activity relationship studies, (3) observed species selectivity of µ-conotoxins and (4) the effects of µ-conotoxin disulfide connectivity on activity. Our aim is to provide a clear overview of the current status of µ-conotoxin research.
Collapse
Affiliation(s)
- Kirsten L. McMahon
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Irina Vetter
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- The School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Christina I. Schroeder
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
2
|
McMahon KL, O'Brien H, Schroeder CI, Deuis JR, Venkatachalam D, Huang D, Green BR, Bandyopadhyay PK, Li Q, Yandell M, Safavi-Hemami H, Olivera BM, Vetter I, Robinson SD. Identification of sodium channel toxins from marine cone snails of the subgenera Textilia and Afonsoconus. Cell Mol Life Sci 2023; 80:287. [PMID: 37689602 PMCID: PMC10492761 DOI: 10.1007/s00018-023-04935-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/11/2023]
Abstract
Voltage-gated sodium (NaV) channels are transmembrane proteins that play a critical role in electrical signaling in the nervous system and other excitable tissues. µ-Conotoxins are peptide toxins from the venoms of marine cone snails (genus Conus) that block NaV channels with nanomolar potency. Most species of the subgenera Textilia and Afonsoconus are difficult to acquire; therefore, their venoms have yet to be comprehensively interrogated for µ-conotoxins. The goal of this study was to find new µ-conotoxins from species of the subgenera Textilia and Afonsoconus and investigate their selectivity at human NaV channels. Using RNA-seq of the venom gland of Conus (Textilia) bullatus, we identified 12 µ-conotoxin (or µ-conotoxin-like) sequences. Based on these sequences we designed primers which we used to identify additional µ-conotoxin sequences from DNA extracted from historical specimens of species from Textilia and Afonsoconus. We synthesized six of these µ-conotoxins and tested their activity on human NaV1.1-NaV1.8. Five of the six synthetic peptides were potent blockers of human NaV channels. Of these, two peptides (BuIIIB and BuIIIE) were potent blockers of hNaV1.3. Three of the peptides (BuIIIB, BuIIIE and AdIIIA) had submicromolar activity at hNaV1.7. This study serves as an example of the identification of new peptide toxins from historical DNA and provides new insights into structure-activity relationships of µ-conotoxins with activity at hNaV1.3 and hNaV1.7.
Collapse
Affiliation(s)
- Kirsten L McMahon
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Henrik O'Brien
- Biology Department, University of Utah, Salt Lake City, UT, 84112, USA
| | - Christina I Schroeder
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
- Peptide Therapeutics, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Jennifer R Deuis
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | | | - Di Huang
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Brad R Green
- Biology Department, University of Utah, Salt Lake City, UT, 84112, USA
| | | | - Qing Li
- Department of Human Genetics, Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT, 84112, USA
- Cancer Bioinformatics, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Mark Yandell
- Department of Human Genetics, Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT, 84112, USA
| | | | | | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Samuel D Robinson
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia.
- Biology Department, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
3
|
Groome JR. Historical Perspective of the Characterization of Conotoxins Targeting Voltage-Gated Sodium Channels. Mar Drugs 2023; 21:md21040209. [PMID: 37103349 PMCID: PMC10142487 DOI: 10.3390/md21040209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Marine toxins have potent actions on diverse sodium ion channels regulated by transmembrane voltage (voltage-gated ion channels) or by neurotransmitters (nicotinic acetylcholine receptor channels). Studies of these toxins have focused on varied aspects of venom peptides ranging from evolutionary relationships of predator and prey, biological actions on excitable tissues, potential application as pharmacological intervention in disease therapy, and as part of multiple experimental approaches towards an understanding of the atomistic characterization of ion channel structure. This review examines the historical perspective of the study of conotoxin peptides active on sodium channels gated by transmembrane voltage, which has led to recent advances in ion channel research made possible with the exploitation of the diversity of these marine toxins.
Collapse
Affiliation(s)
- James R Groome
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209, USA
| |
Collapse
|
4
|
McMahon KL, Tran HNT, Deuis JR, Craik DJ, Vetter I, Schroeder CI. µ-Conotoxins Targeting the Human Voltage-Gated Sodium Channel Subtype NaV1.7. Toxins (Basel) 2022; 14:toxins14090600. [PMID: 36136538 PMCID: PMC9506549 DOI: 10.3390/toxins14090600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 12/03/2022] Open
Abstract
µ-Conotoxins are small, potent, peptide voltage-gated sodium (NaV) channel inhibitors characterised by a conserved cysteine framework. Despite promising in vivo studies indicating analgesic potential of these compounds, selectivity towards the therapeutically relevant subtype NaV1.7 has so far been limited. We recently identified a novel µ-conotoxin, SxIIIC, which potently inhibits human NaV1.7 (hNaV1.7). SxIIIC has high sequence homology with other µ-conotoxins, including SmIIIA and KIIIA, yet shows different NaV channel selectivity for mammalian subtypes. Here, we evaluated and compared the inhibitory potency of µ-conotoxins SxIIIC, SmIIIA and KIIIA at hNaV channels by whole-cell patch-clamp electrophysiology and discovered that these three closely related µ-conotoxins display unique selectivity profiles with significant variations in inhibitory potency at hNaV1.7. Analysis of other µ-conotoxins at hNaV1.7 shows that only a limited number are capable of inhibition at this subtype and that differences between the number of residues in loop 3 appear to influence the ability of µ-conotoxins to inhibit hNaV1.7. Through mutagenesis studies, we confirmed that charged residues in this region also affect the selectivity for hNaV1.4. Comparison of µ-conotoxin NMR solution structures identified differences that may contribute to the variance in hNaV1.7 inhibition and validated the role of the loop 1 extension in SxIIIC for improving potency at hNaV1.7, when compared to KIIIA. This work could assist in designing µ-conotoxin derivatives specific for hNaV1.7.
Collapse
Affiliation(s)
- Kirsten L. McMahon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Hue N. T. Tran
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jennifer R. Deuis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- The School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
- Correspondence: (I.V.); (C.I.S.)
| | - Christina I. Schroeder
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
- Correspondence: (I.V.); (C.I.S.)
| |
Collapse
|
5
|
Torres NS. Activation of reverse Na +-Ca 2+ exchanger by skeletal Na + channel isoform increases excitation-contraction coupling efficiency in rabbit cardiomyocytes. Am J Physiol Heart Circ Physiol 2020; 320:H593-H603. [PMID: 33275521 DOI: 10.1152/ajpheart.00545.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Our prior work has shown that Na+ current (INa) affects sarcoplasmic reticular (SR) Ca2+ release by activating early reverse of the Na+-Ca2+ exchanger (NCX). The resulting Ca2+ entry primes the dyadic cleft, which appears to increase Ca2+ channel coupling fidelity. It has been shown that the skeletal isoform of the voltage-gated Na+ channel (Nav1.4) is the main tetrodotoxin (TTX)-sensitive Nav isoform expressed in adult rabbit ventricular cardiomyocytes. Here, I tested the hypothesis that it is also the principal isoform involved in the priming mechanism. Action potentials (APs) were evoked in isolated rabbit ventricular cells loaded with fluo-4, and simultaneously recorded Ca2+ transients before and after the application of either relatively low doses of TTX (100 nM), the specific Nav1.4 inhibitor μ-Conotoxin GIIIB or the specific Nav1.1 inhibitor ICA 121430. Although APs changes after the application of each drug reflected the relative abundance of each isoform, the effects of TTX and GIIIB on SR Ca2+ release (measured as the transient maximum upstroke velocity) were no different. Furthermore, this reduction in SR Ca2+ release was comparable with the value that we obtained previously when total INa was inactivated with a ramp applied under voltage clamp. Finally, SR Ca2+ release was unaltered by the same ramp in the presence of TTX or GIIB. In contrast, application of ICA had no effect of SR Ca2+ release. These results suggest that Nav1.4 is the main Nav isoform involved in regulating the efficiency of excitation-contraction coupling in rabbit cardiomyocytes by priming the junction via activation of reverse-mode NCX.NEW & NOTEWORTHY A number of studies suggest that the Na+-Ca2+ exchanger (NCX) activated by Na+ currents is involved in the process of excitation-contraction (EC) coupling in cardiac ventricular myocytes. Although insufficient to trigger sarcoplasmic Ca2+ release alone, the Ca2+ entering through reverse NCX during an action potential can prime the dyadic cleft and increase the Ca2+ current coupling fidelity. Using specific Na+ inhibitors in this study, we show that in rabbit ventricular cells the skeletal Na+ channel isoform (Nav1.4) is the main isoform responsible for this priming. Our study provides insights into a mechanism that may have an increased relevance where EC coupling is remodeled.
Collapse
Affiliation(s)
- Natalia S Torres
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| |
Collapse
|
6
|
Yang M, Zhou M. μ-conotoxin TsIIIA, a peptide inhibitor of human voltage-gated sodium channel hNa v1.8. Toxicon 2020; 186:29-34. [PMID: 32758497 DOI: 10.1016/j.toxicon.2020.07.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/19/2020] [Accepted: 07/22/2020] [Indexed: 10/23/2022]
Abstract
TsIIIA, the first μ-conotoxin from Conus tessulatus, can selectively inhibit rat tetrodotoxin-resistant sodium channels. TsIIIA also shows potent analgesic activity in a mice hotplate analgesic assay, but its effect on human sodium channels remains unknown. In this study, eight human sodium channel subtypes, hNav1.1- hNav1.8, were expressed in HEK293 or ND7/23 cells and tested on the chemically synthesized TsIIIA. Patch clamp experiments showed that 10 μM TsIIIA had no effects on the tetrodotoxin-sensitive hNav1.1, hNav1.2, hNav1.3, hNav1.4, hNav1.6 and hNav1.7, as well as tetrodotoxin-resistant hNav1.5. For tetrodotoxin-resistant hNav1.8, concentrations of 1, 5 and 10 μM TsIIIA reduced the hNav1.8 currents to 59.26%, 36.21% and 24.93% respectively. Further detailed dose-effect experiments showed that TsIIIA inhibited hNav1.8 currents with an IC50 value of 2.11 μM. In addition, 2 μM TsIIIA did not induce a shift in the current-voltage relationship of hNav1.8. Taken together, the hNav1.8 peptide inhibitor TsIIIA provides a pharmacological probe for sodium channels and a potential therapeutic agent for pain.
Collapse
Affiliation(s)
- Manyi Yang
- Department of Hepatobiliary and Pancreatic Surgery, NHC Key Laboratory of Nanobiological Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Maojun Zhou
- Department of Oncology, State Local Joint Engineering Laboratory for Anticancer Drugs, NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
7
|
McMahon KL, Tran HN, Deuis JR, Lewis RJ, Vetter I, Schroeder CI. Discovery, Pharmacological Characterisation and NMR Structure of the Novel µ-Conotoxin SxIIIC, a Potent and Irreversible Na V Channel Inhibitor. Biomedicines 2020; 8:biomedicines8100391. [PMID: 33023152 PMCID: PMC7599555 DOI: 10.3390/biomedicines8100391] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium (NaV) channel subtypes, including NaV1.7, are promising targets for the treatment of neurological diseases, such as chronic pain. Cone snail-derived µ-conotoxins are small, potent NaV channel inhibitors which represent potential drug leads. Of the 22 µ-conotoxins characterised so far, only a small number, including KIIIA and CnIIIC, have shown inhibition against human NaV1.7. We have recently identified a novel µ-conotoxin, SxIIIC, from Conus striolatus. Here we present the isolation of native peptide, chemical synthesis, characterisation of human NaV channel activity by whole-cell patch-clamp electrophysiology and analysis of the NMR solution structure. SxIIIC displays a unique NaV channel selectivity profile (1.4 > 1.3 > 1.1 ≈ 1.6 ≈ 1.7 > 1.2 >> 1.5 ≈ 1.8) when compared to other µ-conotoxins and represents one of the most potent human NaV1.7 putative pore blockers (IC50 152.2 ± 21.8 nM) to date. NMR analysis reveals the structure of SxIIIC includes the characteristic α-helix seen in other µ-conotoxins. Future investigations into structure-activity relationships of SxIIIC are expected to provide insights into residues important for NaV channel pore blocker selectivity and subsequently important for chronic pain drug development.
Collapse
Affiliation(s)
- Kirsten L. McMahon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; (K.L.M.); (H.N.T.T.); (J.R.D.); (R.J.L.)
| | - Hue N.T. Tran
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; (K.L.M.); (H.N.T.T.); (J.R.D.); (R.J.L.)
| | - Jennifer R. Deuis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; (K.L.M.); (H.N.T.T.); (J.R.D.); (R.J.L.)
| | - Richard J. Lewis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; (K.L.M.); (H.N.T.T.); (J.R.D.); (R.J.L.)
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; (K.L.M.); (H.N.T.T.); (J.R.D.); (R.J.L.)
- The School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
- Correspondence: (I.V.); (C.I.S.)
| | - Christina I. Schroeder
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; (K.L.M.); (H.N.T.T.); (J.R.D.); (R.J.L.)
- National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
- Correspondence: (I.V.); (C.I.S.)
| |
Collapse
|
8
|
Gallo A, Boni R, Tosti E. Neurobiological activity of conotoxins via sodium channel modulation. Toxicon 2020; 187:47-56. [PMID: 32877656 DOI: 10.1016/j.toxicon.2020.08.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/20/2020] [Accepted: 08/22/2020] [Indexed: 01/02/2023]
Abstract
Conotoxins (CnTX) are bioactive peptides produced by marine molluscs belonging to Conus genus. The biochemical structure of these venomous peptides is characterized by a low number of amino acids linked with disulfide bonds formed by a high degree of post-translational modifications and glycosylation steps which increase the diversity and rate of evolution of these molecules. CnTX different isoforms are known to target ion channels and, in particular, voltage-gated sodium (Na+) channels (Nav channels). These are transmembrane proteins fundamental in excitable cells for generating the depolarization of plasma membrane potential known as action potential which propagates electrical signals in muscles and nerves for physiological functions. Disorders in Nav channel activity have been shown to induce neurological pathologies and pain states. Here, we describe the current knowledge of CnTX isoform modulation of the Nav channel activity, the mechanism of action and the potential therapeutic use of these toxins in counteracting neurological dysfunctions.
Collapse
Affiliation(s)
- Alessandra Gallo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Raffele Boni
- Department of Sciences, University of Basilicata, 85100, Potenza, Italy.
| | - Elisabetta Tosti
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| |
Collapse
|
9
|
Coates MD, Vrana KE, Ruiz-Velasco V. The influence of voltage-gated sodium channels on human gastrointestinal nociception. Neurogastroenterol Motil 2019; 31:e13460. [PMID: 30216585 DOI: 10.1111/nmo.13460] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/01/2018] [Accepted: 08/07/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Abdominal pain is a frequent and persistent problem in the most common gastrointestinal disorders, including irritable bowel syndrome and inflammatory bowel disease. Pain adversely impacts quality of life, incurs significant healthcare expenditures, and remains a challenging issue to manage with few safe therapeutic options currently available. It is imperative that new methods are developed for identifying and treating this symptom. A variety of peripherally active neuroendocrine signaling elements have the capability to influence gastrointestinal pain perception. A large and growing body of evidence suggests that voltage-gated sodium channels (VGSCs) play a critical role in the development and modulation of nociceptive signaling associated with the gut. Several VGSC isoforms demonstrate significant promise as potential targets for improved diagnosis and treatment of gut-based disorders associated with hyper- and hyposensitivity to abdominal pain. PURPOSE In this article, we critically review key investigations that have evaluated the potential role that VGSCs play in visceral nociception and discuss recent advances related to this topic. Specifically, we discuss the following: (a) what is known about the structure and basic function of VGSCs, (b) the role that each VGSC plays in gut nociception, particularly as it relates to human physiology, and (c) potential diagnostic and therapeutic uses of VGSCs to manage disorders associated with chronic abdominal pain.
Collapse
Affiliation(s)
- Matthew D Coates
- Division of Gastroenterology & Hepatology, Department of Medicine, Penn State University College of Medicine, Hershey, Pennsylvania
| | - Kent E Vrana
- Department of Pharmacology, Penn State University College of Medicine, Hershey, Pennsylvania
| | - Victor Ruiz-Velasco
- Department of Anesthesiology and Perioperative Medicine, Penn State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
10
|
Dutt M, Dutertre S, Jin AH, Lavergne V, Alewood PF, Lewis RJ. Venomics Reveals Venom Complexity of the Piscivorous Cone Snail, Conus tulipa. Mar Drugs 2019; 17:md17010071. [PMID: 30669642 PMCID: PMC6356538 DOI: 10.3390/md17010071] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/12/2019] [Accepted: 01/14/2019] [Indexed: 01/30/2023] Open
Abstract
The piscivorous cone snail Conus tulipa has evolved a net-hunting strategy, akin to the deadly Conus geographus, and is considered the second most dangerous cone snail to humans. Here, we present the first venomics study of C. tulipa venom using integrated transcriptomic and proteomic approaches. Parallel transcriptomic analysis of two C. tulipa specimens revealed striking differences in conopeptide expression levels (2.5-fold) between individuals, identifying 522 and 328 conotoxin precursors from 18 known gene superfamilies. Despite broad overlap at the superfamily level, only 86 precursors (11%) were common to both specimens. Conantokins (NMDA antagonists) from the superfamily B1 dominated the transcriptome and proteome of C. tulipa venom, along with superfamilies B2, A, O1, O3, con-ikot-ikot and conopressins, plus novel putative conotoxins precursors T1.3, T6.2, T6.3, T6.4 and T8.1. Thus, C. tulipa venom comprised both paralytic (putative ion channel modulating α-, ω-, μ-, δ-) and non-paralytic (conantokins, con-ikot-ikots, conopressins) conotoxins. This venomic study confirms the potential for non-paralytic conotoxins to contribute to the net-hunting strategy of C. tulipa.
Collapse
Affiliation(s)
- Mriga Dutt
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4068, Australia.
| | - Sébastien Dutertre
- Institut des Biomolecules Max Mousseron, UMR 5247, Université Montpellier-CNRS, 34093 Montpellier, France.
| | - Ai-Hua Jin
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4068, Australia.
| | | | - Paul Francis Alewood
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4068, Australia.
| | - Richard James Lewis
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4068, Australia.
| |
Collapse
|
11
|
NMR Structure of μ-Conotoxin GIIIC: Leucine 18 Induces Local Repacking of the N-Terminus Resulting in Reduced Na V Channel Potency. Molecules 2018; 23:molecules23102715. [PMID: 30360356 PMCID: PMC6222493 DOI: 10.3390/molecules23102715] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 12/14/2022] Open
Abstract
μ-Conotoxins are potent and highly specific peptide blockers of voltage-gated sodium channels. In this study, the solution structure of μ-conotoxin GIIIC was determined using 2D NMR spectroscopy and simulated annealing calculations. Despite high sequence similarity, GIIIC adopts a three-dimensional structure that differs from the previously observed conformation of μ-conotoxins GIIIA and GIIIB due to the presence of a bulky, non-polar leucine residue at position 18. The side chain of L18 is oriented towards the core of the molecule and consequently the N-terminus is re-modeled and located closer to L18. The functional characterization of GIIIC defines it as a canonical μ-conotoxin that displays substantial selectivity towards skeletal muscle sodium channels (NaV), albeit with ~2.5-fold lower potency than GIIIA. GIIIC exhibited a lower potency of inhibition of NaV1.4 channels, but the same NaV selectivity profile when compared to GIIIA. These observations suggest that single amino acid differences that significantly affect the structure of the peptide do in fact alter its functional properties. Our work highlights the importance of structural factors, beyond the disulfide pattern and electrostatic interactions, in the understanding of the functional properties of bioactive peptides. The latter thus needs to be considered when designing analogues for further applications.
Collapse
|
12
|
Prashanth JR, Dutertre S, Lewis RJ. Pharmacology of predatory and defensive venom peptides in cone snails. MOLECULAR BIOSYSTEMS 2018; 13:2453-2465. [PMID: 29090697 DOI: 10.1039/c7mb00511c] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cone snails are predatory gastropods whose neurotoxic venom peptides (conotoxins) have been extensively studied for pharmacological probes, venom evolution mechanisms and potential therapeutics. Conotoxins have a wide range of structural and functional classes that continue to undergo accelerated evolution that underlies the rapid expansion of the genus over their short evolutionary history. A number of pharmacological classes, driven by separately evolved defensive and predatory venoms, have been hypothesised to facilitate shifts in prey that exemplify the adaptability of cone snails. Here we provide an overview of these pharmacological families and discuss their ecological roles and evolutionary impact.
Collapse
Affiliation(s)
- Jutty Rajan Prashanth
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, 4072, Australia.
| | | | | |
Collapse
|
13
|
|
14
|
Tosti E, Boni R, Gallo A. µ-Conotoxins Modulating Sodium Currents in Pain Perception and Transmission: A Therapeutic Potential. Mar Drugs 2017; 15:E295. [PMID: 28937587 PMCID: PMC5666403 DOI: 10.3390/md15100295] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/12/2017] [Accepted: 09/20/2017] [Indexed: 12/27/2022] Open
Abstract
The Conus genus includes around 500 species of marine mollusks with a peculiar production of venomous peptides known as conotoxins (CTX). Each species is able to produce up to 200 different biological active peptides. Common structure of CTX is the low number of amino acids stabilized by disulfide bridges and post-translational modifications that give rise to different isoforms. µ and µO-CTX are two isoforms that specifically target voltage-gated sodium channels. These, by inducing the entrance of sodium ions in the cell, modulate the neuronal excitability by depolarizing plasma membrane and propagating the action potential. Hyperexcitability and mutations of sodium channels are responsible for perception and transmission of inflammatory and neuropathic pain states. In this review, we describe the current knowledge of µ-CTX interacting with the different sodium channels subtypes, the mechanism of action and their potential therapeutic use as analgesic compounds in the clinical management of pain conditions.
Collapse
Affiliation(s)
- Elisabetta Tosti
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.
| | - Raffaele Boni
- Department of Sciences, University of Basilicata, 75100 Potenza, Italy.
| | - Alessandra Gallo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.
| |
Collapse
|
15
|
A novel μ-conotoxin from worm-hunting Conus tessulatus that selectively inhibit rat TTX-resistant sodium currents. Toxicon 2017; 130:11-18. [DOI: 10.1016/j.toxicon.2017.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 02/01/2017] [Accepted: 02/16/2017] [Indexed: 12/13/2022]
|
16
|
Prashanth JR, Hasaballah N, Vetter I. Pharmacological screening technologies for venom peptide discovery. Neuropharmacology 2017; 127:4-19. [PMID: 28377116 DOI: 10.1016/j.neuropharm.2017.03.038] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/11/2017] [Accepted: 03/31/2017] [Indexed: 01/13/2023]
Abstract
Venomous animals occupy one of the most successful evolutionary niches and occur on nearly every continent. They deliver venoms via biting and stinging apparatuses with the aim to rapidly incapacitate prey and deter predators. This has led to the evolution of venom components that act at a number of biological targets - including ion channels, G-protein coupled receptors, transporters and enzymes - with exquisite selectivity and potency, making venom-derived components attractive pharmacological tool compounds and drug leads. In recent years, plate-based pharmacological screening approaches have been introduced to accelerate venom-derived drug discovery. A range of assays are amenable to this purpose, including high-throughput electrophysiology, fluorescence-based functional and binding assays. However, despite these technological advances, the traditional activity-guided fractionation approach is time-consuming and resource-intensive. The combination of screening techniques suitable for miniaturization with sequence-based discovery approaches - supported by advanced proteomics, mass spectrometry, chromatography as well as synthesis and expression techniques - promises to further improve venom peptide discovery. Here, we discuss practical aspects of establishing a pipeline for venom peptide drug discovery with a particular emphasis on pharmacology and pharmacological screening approaches. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Jutty Rajan Prashanth
- Centre for Pain Research, Institute for Molecular Bioscience, 306 Carmody Rd, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Nojod Hasaballah
- Centre for Pain Research, Institute for Molecular Bioscience, 306 Carmody Rd, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Irina Vetter
- Centre for Pain Research, Institute for Molecular Bioscience, 306 Carmody Rd, The University of Queensland, St Lucia, Qld 4072, Australia; School of Pharmacy, 20 Cornwall St, Woolloongabba, Qld 4102, Australia.
| |
Collapse
|
17
|
Munasinghe NR, Christie MJ. Conotoxins That Could Provide Analgesia through Voltage Gated Sodium Channel Inhibition. Toxins (Basel) 2015; 7:5386-407. [PMID: 26690478 PMCID: PMC4690140 DOI: 10.3390/toxins7124890] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/23/2015] [Accepted: 11/19/2015] [Indexed: 12/19/2022] Open
Abstract
Chronic pain creates a large socio-economic burden around the world. It is physically and mentally debilitating, and many sufferers are unresponsive to current therapeutics. Many drugs that provide pain relief have adverse side effects and addiction liabilities. Therefore, a great need has risen for alternative treatment strategies. One rich source of potential analgesic compounds that has emerged over the past few decades are conotoxins. These toxins are extremely diverse and display selective activity at ion channels. Voltage gated sodium (NaV) channels are one such group of ion channels that play a significant role in multiple pain pathways. This review will explore the literature around conotoxins that bind NaV channels and determine their analgesic potential.
Collapse
Affiliation(s)
- Nehan R Munasinghe
- Discipline of Pharmacology, The University of Sydney, Sydney, NSW 2006, Australia.
| | - MacDonald J Christie
- Discipline of Pharmacology, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
18
|
Abstract
Peptide neurotoxins from cone snails called conotoxins are renowned for their therapeutic potential to treat pain and several neurodegenerative diseases. Inefficient assay-guided discovery methods have been replaced by high-throughput bioassays integrated with advanced MS and next-generation sequencing, ushering in the era of 'venomics'. In this review, we focus on the impact of venomics on the understanding of cone snail biology as well as the application of venomics to accelerate the discovery of new conotoxins. We also discuss the continued importance of medicinal chemistry approaches to optimize conotoxins for clinical use, with a descriptive case study of MrIA featured.
Collapse
|
19
|
Structure and function of μ-conotoxins, peptide-based sodium channel blockers with analgesic activity. Future Med Chem 2015; 6:1677-98. [PMID: 25406007 DOI: 10.4155/fmc.14.107] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
μ-Conotoxins block voltage-gated sodium channels (VGSCs) and compete with tetrodotoxin for binding to the sodium conductance pore. Early efforts identified µ-conotoxins that preferentially blocked the skeletal muscle subtype (NaV1.4). However, the last decade witnessed a significant increase in the number of µ-conotoxins and the range of VGSC subtypes inhibited (NaV1.2, NaV1.3 or NaV1.7). Twenty µ-conotoxin sequences have been identified to date and structure-activity relationship studies of several of these identified key residues responsible for interactions with VGSC subtypes. Efforts to engineer-in subtype specificity are driven by in vivo analgesic and neuromuscular blocking activities. This review summarizes structural and pharmacological studies of µ-conotoxins, which show promise for development of selective blockers of NaV1.2, and perhaps also NaV1.1,1.3 or 1.7.
Collapse
|
20
|
Zhang MM, Wilson MJ, Gajewiak J, Rivier JE, Bulaj G, Olivera BM, Yoshikami D. Pharmacological fractionation of tetrodotoxin-sensitive sodium currents in rat dorsal root ganglion neurons by μ-conotoxins. Br J Pharmacol 2014; 169:102-14. [PMID: 23351163 DOI: 10.1111/bph.12119] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 12/18/2012] [Accepted: 12/27/2012] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Adult rat dorsal root ganglion (DRG) neurons normally express transcripts for five isoforms of the α-subunit of voltage-gated sodium channels: NaV 1.1, 1.6, 1.7, 1.8 and 1.9. Tetrodotoxin (TTX) readily blocks all but NaV 1.8 and 1.9, and pharmacological agents that discriminate among the TTX-sensitive NaV 1-isoforms are scarce. Recently, we used the activity profile of a panel of μ-conotoxins in blocking cloned rodent NaV 1-isoforms expressed in Xenopus laevis oocytes to conclude that action potentials of A- and C-fibres in rat sciatic nerve were, respectively, mediated primarily by NaV 1.6 and NaV 1.7. EXPERIMENTAL APPROACH We used three μ-conotoxins, μ-TIIIA, μ-PIIIA and μ-SmIIIA, applied individually and in combinations, to pharmacologically differentiate the TTX-sensitive INa of voltage-clamped neurons acutely dissociated from adult rat DRG. We examined only small and large neurons whose respective INa were >50% and >80% TTX-sensitive. KEY RESULTS In both small and large neurons, the ability of the toxins to block TTX-sensitive INa was μ-TIIIA < μ-PIIIA < μ-SmIIIA, with the latter blocking ≳90%. Comparison of the toxin-susceptibility profiles of the neuronal INa with recently acquired profiles of rat NaV 1-isoforms, co-expressed with various NaV β-subunits in X. laevis oocytes, were consistent: NaV 1.1, 1.6 and 1.7 could account for all of the TTX-sensitive INa , with NaV 1.1 < NaV 1.6 < NaV 1.7 for small neurons and NaV 1.7 < NaV 1.1 < NaV 1.6 for large neurons. CONCLUSIONS AND IMPLICATIONS Combinations of μ-conotoxins can be used to determine the probable NaV 1-isoforms underlying the INa in DRG neurons. Preliminary experiments with sympathetic neurons suggest that this approach is extendable to other neurons.
Collapse
Affiliation(s)
- Min-Min Zhang
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Akondi KB, Muttenthaler M, Dutertre S, Kaas Q, Craik DJ, Lewis RJ, Alewood PF. Discovery, synthesis, and structure-activity relationships of conotoxins. Chem Rev 2014; 114:5815-47. [PMID: 24720541 PMCID: PMC7610532 DOI: 10.1021/cr400401e] [Citation(s) in RCA: 237] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | | | - Sébastien Dutertre
- Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| | - Richard J Lewis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| | - Paul F Alewood
- Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| |
Collapse
|
22
|
Nguyen B, Caer JPL, Mourier G, Thai R, Lamthanh H, Servent D, Benoit E, Molgó J. Characterization of a novel Conus bandanus conopeptide belonging to the M-superfamily containing bromotryptophan. Mar Drugs 2014; 12:3449-65. [PMID: 24905483 PMCID: PMC4071585 DOI: 10.3390/md12063449] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 03/07/2014] [Accepted: 05/22/2014] [Indexed: 01/29/2023] Open
Abstract
A novel conotoxin (conopeptide) was biochemically characterized from the crude venom of the molluscivorous marine snail, Conus bandanus (Hwass in Bruguière, 1792), collected in the south-central coast of Vietnam. The peptide was identified by screening bromotryptophan from chromatographic fractions of the crude venom. Tandem mass spectrometry techniques were used to detect and localize different post-translational modifications (PTMs) present in the BnIIID conopeptide. The sequence was confirmed by Edman’s degradation and mass spectrometry revealing that the purified BnIIID conopeptide had 15 amino acid residues, with six cysteines at positions 1, 2, 7, 11, 13, and 14, and three PTMs: bromotryptophan, γ-carboxy glutamate, and amidated aspartic acid, at positions “4”, “5”, and “15”, respectively. The BnIIID peptide was synthesized for comparison with the native peptide. Homology comparison with conopeptides having the III-cysteine framework (–CCx1x2x3x4Cx1x2x3Cx1CC–) revealed that BnIIID belongs to the M-1 family of conotoxins. This is the first report of a member of the M-superfamily containing bromotryptophan as PTM.
Collapse
Affiliation(s)
- Bao Nguyen
- Neurobiology and Development Laboratory, Research Unit # 3294, Institute of Neurobiology Alfred Fessard # 2118, National Center for Scientific Research, Gif sur Yvette Cedex 91198, France.
| | - Jean-Pierre Le Caer
- Research Unit # 2301, Natural Product Chemistry Institute, National Center for Scientific Research, Gif sur Yvette Cedex 91198, France.
| | - Gilles Mourier
- Molecular Engineering of Proteins, Institute of Biology and Technology Saclay, Atomic Energy Commission, Gif sur Yvette Cedex 91191, France.
| | - Robert Thai
- Molecular Engineering of Proteins, Institute of Biology and Technology Saclay, Atomic Energy Commission, Gif sur Yvette Cedex 91191, France.
| | - Hung Lamthanh
- Neurobiology and Development Laboratory, Research Unit # 3294, Institute of Neurobiology Alfred Fessard # 2118, National Center for Scientific Research, Gif sur Yvette Cedex 91198, France.
| | - Denis Servent
- Molecular Engineering of Proteins, Institute of Biology and Technology Saclay, Atomic Energy Commission, Gif sur Yvette Cedex 91191, France.
| | - Evelyne Benoit
- Neurobiology and Development Laboratory, Research Unit # 3294, Institute of Neurobiology Alfred Fessard # 2118, National Center for Scientific Research, Gif sur Yvette Cedex 91198, France.
| | - Jordi Molgó
- Neurobiology and Development Laboratory, Research Unit # 3294, Institute of Neurobiology Alfred Fessard # 2118, National Center for Scientific Research, Gif sur Yvette Cedex 91198, France.
| |
Collapse
|
23
|
Akondi KB, Lewis RJ, Alewood PF. Re-engineering the μ-conotoxin SIIIA scaffold. Biopolymers 2014; 101:347-54. [DOI: 10.1002/bip.22368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/21/2013] [Accepted: 07/26/2013] [Indexed: 12/19/2022]
Affiliation(s)
- K. B. Akondi
- Institute for Molecular Bioscience (IMB); The University of Queensland; Brisbane 4072 Queensland Australia
| | - R. J. Lewis
- Institute for Molecular Bioscience (IMB); The University of Queensland; Brisbane 4072 Queensland Australia
| | - P. F. Alewood
- Institute for Molecular Bioscience (IMB); The University of Queensland; Brisbane 4072 Queensland Australia
| |
Collapse
|
24
|
Abstract
Voltage-gated sodium (Nav) channels are essential contributors to neuronal excitability, making them the most commonly targeted ion channel family by toxins found in animal venoms. These molecules can be used to probe the functional aspects of Nav channels on a molecular level and to explore their physiological role in normal and diseased tissues. This chapter summarizes our existing knowledge of the mechanisms by which animal toxins influence Nav channels as well as their potential application in designing therapeutic drugs.
Collapse
|
25
|
Zhang MM, Wilson MJ, Azam L, Gajewiak J, Rivier JE, Bulaj G, Olivera BM, Yoshikami D. Co-expression of Na(V)β subunits alters the kinetics of inhibition of voltage-gated sodium channels by pore-blocking μ-conotoxins. Br J Pharmacol 2013; 168:1597-610. [PMID: 23146020 DOI: 10.1111/bph.12051] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 10/19/2012] [Accepted: 10/24/2012] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Voltage-gated sodium channels (VGSCs) are assembled from two classes of subunits, a pore-bearing α-subunit (NaV 1) and one or two accessory β-subunits (NaV βs). Neurons in mammals can express one or more of seven isoforms of NaV 1 and one or more of four isoforms of NaV β. The peptide μ-conotoxins, like the guanidinium alkaloids tetrodotoxin (TTX) and saxitoxin (STX), inhibit VGSCs by blocking the pore in NaV 1. Hitherto, the effects of NaV β-subunit co-expression on the activity of these toxins have not been comprehensively assessed. EXPERIMENTAL APPROACH Four μ-conotoxins (μ-TIIIA, μ-PIIIA, μ-SmIIIA and μ-KIIIA), TTX and STX were tested against NaV 1.1, 1.2, 1.6 or 1.7, each co-expressed in Xenopus laevis oocytes with one of NaV β1, β2, β3 or β4 and, for NaV 1.7, binary combinations of thereof. KEY RESULTS Co-expression of NaV β-subunits modifies the block by μ-conotoxins: in general, NaV β1 or β3 co-expression tended to increase kon (in the most extreme instance by ninefold), whereas NaV β2 or β4 co-expression decreased kon (in the most extreme instance by 240-fold). In contrast, the block by TTX and STX was only minimally, if at all, affected by NaV β-subunit co-expression. Tests of NaV β1 : β2 chimeras co-expressed with NaV 1.7 suggest that the extracellular portion of the NaV β subunit is largely responsible for altering μ-conotoxin kinetics. CONCLUSIONS AND IMPLICATIONS These results are the first indication that NaV β subunit co-expression can markedly influence μ-conotoxin binding and, by extension, the outer vestibule of the pore of VGSCs. μ-Conotoxins could, in principle, be used to pharmacologically probe the NaV β subunit composition of endogenously expressed VGSCs.
Collapse
Affiliation(s)
- Min-Min Zhang
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Kuang Z, Zhang MM, Gupta K, Gajewiak J, Gulyas J, Balaram P, Rivier JE, Olivera BM, Yoshikami D, Bulaj G, Norton RS. Mammalian neuronal sodium channel blocker μ-conotoxin BuIIIB has a structured N-terminus that influences potency. ACS Chem Biol 2013; 8:1344-51. [PMID: 23557677 DOI: 10.1021/cb300674x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Among the μ-conotoxins that block vertebrate voltage-gated sodium channels (VGSCs), some have been shown to be potent analgesics following systemic administration in mice. We have determined the solution structure of a new representative of this family, μ-BuIIIB, and established its disulfide connectivities by direct mass spectrometric collision induced dissociation fragmentation of the peptide with disulfides intact. The major oxidative folding product adopts a 1-4/2-5/3-6 pattern with the following disulfide bridges: Cys5-Cys17, Cys6-Cys23, and Cys13-Cys24. The solution structure reveals that the unique N-terminal extension in μ-BuIIIB, which is also present in μ-BuIIIA and μ-BuIIIC but absent in other μ-conotoxins, forms part of a short α-helix encompassing Glu3 to Asn8. This helix is packed against the rest of the toxin and stabilized by the Cys5-Cys17 and Cys6-Cys23 disulfide bonds. As such, the side chain of Val1 is located close to the aromatic rings of Trp16 and His20, which are located on the canonical helix that displays several residues found to be essential for VGSC blockade in related μ-conotoxins. Mutations of residues 2 and 3 in the N-terminal extension enhanced the potency of μ-BuIIIB for NaV1.3. One analogue, [d-Ala2]BuIIIB, showed a 40-fold increase, making it the most potent peptide blocker of this channel characterized to date and thus a useful new tool with which to characterize this channel. On the basis of previous results for related μ-conotoxins, the dramatic effects of mutations at the N-terminus were unanticipated and suggest that further gains in potency might be achieved by additional modifications of this region.
Collapse
Affiliation(s)
- Zhihe Kuang
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade,
Parkville, Victoria, 3052, Australia
| | - Min-Min Zhang
- Department of Biology, University of Utah, Salt Lake City, Utah 84112, United
States
| | - Kallol Gupta
- Molecular Biophysics
Unit, Indian Institute of Science, Bangalore,
560 012, India
| | - Joanna Gajewiak
- Department
of Medicinal Chemistry,
College of Pharmacy, University of Utah, Salt Lake City, Utah 84108, United States
| | - Jozsef Gulyas
- The Clayton
Foundation Laboratories
for Peptide Biology, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California
92037, United States
| | - Padmanabhan Balaram
- Molecular Biophysics
Unit, Indian Institute of Science, Bangalore,
560 012, India
| | - Jean E. Rivier
- The Clayton
Foundation Laboratories
for Peptide Biology, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California
92037, United States
| | - Baldomero M. Olivera
- Department
of Medicinal Chemistry,
College of Pharmacy, University of Utah, Salt Lake City, Utah 84108, United States
| | - Doju Yoshikami
- Department
of Medicinal Chemistry,
College of Pharmacy, University of Utah, Salt Lake City, Utah 84108, United States
| | - Grzegorz Bulaj
- Department
of Medicinal Chemistry,
College of Pharmacy, University of Utah, Salt Lake City, Utah 84108, United States
| | - Raymond S. Norton
- Medicinal Chemistry, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| |
Collapse
|
27
|
Favreau P, Benoit E, Hocking HG, Carlier L, D' hoedt D, Leipold E, Markgraf R, Schlumberger S, Córdova MA, Gaertner H, Paolini-Bertrand M, Hartley O, Tytgat J, Heinemann SH, Bertrand D, Boelens R, Stöcklin R, Molgó J. A novel µ-conopeptide, CnIIIC, exerts potent and preferential inhibition of NaV1.2/1.4 channels and blocks neuronal nicotinic acetylcholine receptors. Br J Pharmacol 2012; 166:1654-68. [PMID: 22229737 DOI: 10.1111/j.1476-5381.2012.01837.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE The µ-conopeptide family is defined by its ability to block voltage-gated sodium channels (VGSCs), a property that can be used for the development of myorelaxants and analgesics. We characterized the pharmacology of a new µ-conopeptide (µ-CnIIIC) on a range of preparations and molecular targets to assess its potential as a myorelaxant. EXPERIMENTAL APPROACH µ-CnIIIC was sequenced, synthesized and characterized by its direct block of elicited twitch tension in mouse skeletal muscle and action potentials in mouse sciatic and pike olfactory nerves. µ-CnIIIC was also studied on HEK-293 cells expressing various rodent VGSCs and also on voltage-gated potassium channels and nicotinic acetylcholine receptors (nAChRs) to assess cross-interactions. Nuclear magnetic resonance (NMR) experiments were carried out for structural data. KEY RESULTS Synthetic µ-CnIIIC decreased twitch tension in mouse hemidiaphragms (IC(50) = 150 nM), and displayed a higher blocking effect in mouse extensor digitorum longus muscles (IC = 46 nM), compared with µ-SIIIA, µ-SmIIIA and µ-PIIIA. µ-CnIIIC blocked Na(V)1.4 (IC(50) = 1.3 nM) and Na(V)1.2 channels in a long-lasting manner. Cardiac Na(V)1.5 and DRG-specific Na(V)1.8 channels were not blocked at 1 µM. µ-CnIIIC also blocked the α3β2 nAChR subtype (IC(50) = 450 nM) and, to a lesser extent, on the α7 and α4β2 subtypes. Structure determination of µ-CnIIIC revealed some similarities to α-conotoxins acting on nAChRs. CONCLUSION AND IMPLICATIONS µ-CnIIIC potently blocked VGSCs in skeletal muscle and nerve, and hence is applicable to myorelaxation. Its atypical pharmacological profile suggests some common structural features between VGSCs and nAChR channels.
Collapse
|
28
|
Bingham JP, Andrews EA, Kiyabu SM, Cabalteja CC. Drugs from slugs. Part II--conopeptide bioengineering. Chem Biol Interact 2012; 200:92-113. [PMID: 23063744 DOI: 10.1016/j.cbi.2012.09.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 08/27/2012] [Accepted: 09/17/2012] [Indexed: 11/27/2022]
Abstract
The biological transformation of toxins as research probes, or as pharmaceutical drug leads, is an onerous and drawn out process. Issues regarding changes to pharmacological specificity, desired potency, and bioavailability are compounded naturally by their inherent toxicity. These often scuttle their progress as they move up the narrowing drug development pipeline. Yet one class of peptide toxins, from the genus Conus, has in many ways spearheaded the expansion of new peptide bioengineering techniques to aid peptide toxin pharmaceutical development. What has now emerged is the sequential bioengineering of new research probes and drug leads that owe their lineage to these highly potent and isoform specific peptides. Here we discuss the progressive bioengineering steps that many conopeptides have transitioned through, and specifically illustrate some of the biochemical approaches that have been established to maximize their biological research potential and pharmaceutical worth.
Collapse
Affiliation(s)
- Jon-Paul Bingham
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI 96822, USA.
| | | | | | | |
Collapse
|
29
|
Stevens M, Peigneur S, Dyubankova N, Lescrinier E, Herdewijn P, Tytgat J. Design of bioactive peptides from naturally occurring μ-conotoxin structures. J Biol Chem 2012; 287:31382-92. [PMID: 22773842 DOI: 10.1074/jbc.m112.375733] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To date, cone snail toxins ("conotoxins") are of great interest in the pursuit of novel subtype-selective modulators of voltage-gated sodium channels (Na(v)s). Na(v)s participate in a wide range of electrophysiological processes. Consequently, their malfunctioning has been associated with numerous diseases. The development of subtype-selective modulators of Na(v)s remains highly important in the treatment of such disorders. In current research, a series of novel, synthetic, and bioactive compounds were designed based on two naturally occurring μ-conotoxins that target Na(v)s. The initial designed peptide contains solely 13 amino acids and was therefore named "Mini peptide." It was derived from the μ-conotoxins KIIIA and BuIIIC. Based on this Mini peptide, 10 analogues were subsequently developed, comprising 12-16 amino acids with two disulfide bridges. Following appropriate folding and mass verification, blocking effects on Na(v)s were investigated. The most promising compound established an IC(50) of 34.1 ± 0.01 nM (R2-Midi on Na(v)1.2). An NMR structure of one of our most promising compounds was determined. Surprisingly, this structure does not reveal an α-helix. We prove that it is possible to design small peptides based on known pharmacophores of μ-conotoxins without losing their potency and selectivity. These data can provide crucial material for further development of conotoxin-based therapeutics.
Collapse
Affiliation(s)
- Marijke Stevens
- Laboratory of Toxicology, Katholieke Universiteit (KU) Leuven, Campus Gasthuisberg O and N2, Herestraat 49 Box 922, 3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
30
|
Conotoxins that confer therapeutic possibilities. Mar Drugs 2012; 10:1244-1265. [PMID: 22822370 PMCID: PMC3397437 DOI: 10.3390/md10061244] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/24/2012] [Accepted: 05/24/2012] [Indexed: 12/19/2022] Open
Abstract
Cone snails produce a distinctive repertoire of venom peptides that are used both as a defense mechanism and also to facilitate the immobilization and digestion of prey. These peptides target a wide variety of voltage- and ligand-gated ion channels, which make them an invaluable resource for studying the properties of these ion channels in normal and diseased states, as well as being a collection of compounds of potential pharmacological use in their own right. Examples include the United States Food and Drug Administration (FDA) approved pharmaceutical drug, Ziconotide (Prialt®; Elan Pharmaceuticals, Inc.) that is the synthetic equivalent of the naturally occurring ω-conotoxin MVIIA, whilst several other conotoxins are currently being used as standard research tools and screened as potential therapeutic drugs in pre-clinical or clinical trials. These developments highlight the importance of driving conotoxin-related research. A PubMed query from 1 January 2007 to 31 August 2011 combined with hand-curation of the retrieved articles allowed for the collation of 98 recently identified conotoxins with therapeutic potential which are selectively discussed in this review. Protein sequence similarity analysis tentatively assigned uncharacterized conotoxins to predicted functional classes. Furthermore, conotoxin therapeutic potential for neurodegenerative disorders (NDD) was also inferred.
Collapse
|
31
|
Characterisation of Nav types endogenously expressed in human SH-SY5Y neuroblastoma cells. Biochem Pharmacol 2012; 83:1562-71. [DOI: 10.1016/j.bcp.2012.02.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 02/24/2012] [Indexed: 02/05/2023]
|
32
|
Tietze AA, Tietze D, Ohlenschläger O, Leipold E, Ullrich F, Kühl T, Mischo A, Buntkowsky G, Görlach M, Heinemann SH, Imhof D. Strukturell diverse Isomere des μ-Conotoxins PIIIA blockieren den Natriumkanal Na V1.4. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201107011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Tietze AA, Tietze D, Ohlenschläger O, Leipold E, Ullrich F, Kühl T, Mischo A, Buntkowsky G, Görlach M, Heinemann SH, Imhof D. Structurally diverse μ-conotoxin PIIIA isomers block sodium channel NaV 1.4. Angew Chem Int Ed Engl 2012; 51:4058-61. [PMID: 22407516 DOI: 10.1002/anie.201107011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 12/22/2011] [Indexed: 12/20/2022]
Affiliation(s)
- Alesia A Tietze
- Pharmaceutical Chemistry I, Institute of Pharmacy, University of Bonn, Brühler Strasse 7, 53119 Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lewis RJ, Dutertre S, Vetter I, Christie MJ. Conus Venom Peptide Pharmacology. Pharmacol Rev 2012; 64:259-98. [DOI: 10.1124/pr.111.005322] [Citation(s) in RCA: 323] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
35
|
Schroeder CI, Adams D, Thomas L, Alewood PF, Lewis RJ. N- and C-terminal extensions of μ-conotoxins increase potency and selectivity for neuronal sodium channels. Biopolymers 2012; 98:161-5. [PMID: 22733528 DOI: 10.1002/bip.22032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/11/2011] [Accepted: 12/21/2011] [Indexed: 11/07/2022]
Abstract
μ-Conotoxins are peptide blockers of voltage-gated sodium channels (sodium channels), inhibiting tetrodotoxin-sensitive neuronal (Na(v) 1.2) and skeletal (Na(v) 1.4) subtypes with highest affinity. Structure-activity relationship studies of μ-conotoxins SIIIA, TIIIA, and KIIIA have shown that it is mainly the C-terminal part of the three-loop peptide that is involved in binding to the sodium channel. In this study, we characterize the effect of N- and C-terminal extensions of μ-conotoxins SIIIA, SIIIB, and TIIIA on their potency and selectivity for neuronal versus muscle sodium channels. Interestingly, extending the N- or C-terminal of the peptide by introducing neutral, positive, and/or negatively charged residues, the selectivity of the native peptide can be altered from neuronal to skeletal and the other way around. The results from this study provide further insight into the binding profile of μ-conotoxins at voltage-gated sodium channels, revealing that binding interactions outside the cysteine-stablilized loops can contribute to μ-conotoxin affinity and sodium channel selectivity.
Collapse
Affiliation(s)
- Christina I Schroeder
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | | | | | | | | |
Collapse
|
36
|
μ-Conotoxins that differentially block sodium channels NaV1.1 through 1.8 identify those responsible for action potentials in sciatic nerve. Proc Natl Acad Sci U S A 2011; 108:10302-7. [PMID: 21652775 DOI: 10.1073/pnas.1107027108] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels (VGSCs) are important for action potentials. There are seven major isoforms of the pore-forming and gate-bearing α-subunit (Na(V)1) of VGSCs in mammalian neurons, and a given neuron can express more than one isoform. Five of the neuronal isoforms, Na(V)1.1, 1.2, 1.3, 1.6, and 1.7, are exquisitely sensitive to tetrodotoxin (TTX), and a functional differentiation of these presents a serious challenge. Here, we examined a panel of 11 μ-conopeptides for their ability to block rodent Na(V)1.1 through 1.8 expressed in Xenopus oocytes. Although none blocked Na(V)1.8, a TTX-resistant isoform, the resulting "activity matrix" revealed that the panel could readily discriminate between the members of all pair-wise combinations of the tested isoforms. To examine the identities of endogenous VGSCs, a subset of the panel was tested on A- and C-compound action potentials recorded from isolated preparations of rat sciatic nerve. The results show that the major subtypes in the corresponding A- and C-fibers were Na(V)1.6 and 1.7, respectively. Ruled out as major players in both fiber types were Na(V)1.1, 1.2, and 1.3. These results are consistent with immunohistochemical findings of others. To our awareness this is the first report describing a qualitative pharmacological survey of TTX-sensitive Na(V)1 isoforms responsible for propagating action potentials in peripheral nerve. The panel of μ-conopeptides should be useful in identifying the functional contributions of Na(V)1 isoforms in other preparations.
Collapse
|
37
|
Velásquez JE, van der Donk W. Genome mining for ribosomally synthesized natural products. Curr Opin Chem Biol 2011; 15:11-21. [PMID: 21095156 PMCID: PMC3090663 DOI: 10.1016/j.cbpa.2010.10.027] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 10/20/2010] [Accepted: 10/25/2010] [Indexed: 11/20/2022]
Abstract
In recent years, the number of known peptide natural products that are synthesized via the ribosomal pathway has rapidly grown. Taking advantage of sequence homology among genes encoding precursor peptides or biosynthetic proteins, in silico mining of genomes combined with molecular biology approaches has guided the discovery of a large number of new ribosomal natural products, including lantipeptides, cyanobactins, linear thiazole/oxazole-containing peptides, microviridins, lasso peptides, amatoxins, cyclotides, and conopeptides. In this review, we describe the strategies used for the identification of these ribosomally synthesized and posttranslationally modified peptides (RiPPs) and the structures of newly identified compounds. The increasing number of chemical entities and their remarkable structural and functional diversity may lead to novel pharmaceutical applications.
Collapse
Affiliation(s)
- Juan E. Velásquez
- Department of Chemistry, University of Illinois at Urbana-Champaign; Urbana, Illinois, 61801; USA
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign; Urbana, Illinois, 61801; USA
| | - Wilfred van der Donk
- Department of Chemistry, University of Illinois at Urbana-Champaign; Urbana, Illinois, 61801; USA
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign; Urbana, Illinois, 61801; USA
- Howard Hughes Medical Institute; University of Illinois at Urbana-Champaign; Urbana, Illinois, 61801; USA
| |
Collapse
|
38
|
McArthur JR, Ostroumov V, Al-Sabi A, McMaster D, French RJ. Multiple, distributed interactions of μ-conotoxin PIIIA associated with broad targeting among voltage-gated sodium channels. Biochemistry 2010; 50:116-24. [PMID: 21110521 DOI: 10.1021/bi101316y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The first μ-conotoxin studied, μCTX GIIIA, preferentially blocked voltage-gated skeletal muscle sodium channels, Na(v)1.4, while μCTX PIIIA was the first to show significant blocking action against neuronal voltage-gated sodium channels. PIIIA shares >60% sequence identity with the well-studied GIIIA, and both toxins preferentially block the skeletal muscle sodium channel isoform. Two important features of blocking by wild-type GIIIA are the toxin's high binding affinity and the completeness of block of a single channel by a bound toxin molecule. With GIIIA, neutral replacement of the critical residue, Arg-13, allows a residual single-channel current (~30% of the unblocked, unitary amplitude) when the mutant toxin is bound to the channel and reduces the binding affinity of the toxin for Na(v)1.4 (~100-fold) [Becker, S., et al. (1992) Biochemistry 31, 8229-8238]. The homologous residue in PIIIA, Arg-14, is also essential for completeness of block but less important in the toxin's binding affinity (~55% residual current and ~11-fold decrease in affinity when substituted with alanine or glutamine). The weakened dominance of this key arginine in PIIIA is also seen in the fact that there is not just one (R13 in GIIIA) but three basic residues (R12, R14, and K17) for which individual neutral replacement enables a substantial residual current through the bound channel. We suggest that, despite a high degree of sequence conservation between GIIIA and PIIIA, the weaker dependence of PIIIA's action on its key arginine and the presence of a nonconserved histidine near the C-terminus may contribute to the greater promiscuity of its interactions with different sodium channel isoforms.
Collapse
Affiliation(s)
- Jeff R McArthur
- Department of Physiology and Pharmacology, and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | |
Collapse
|
39
|
Abstract
Venoms of snakes, scorpions, spiders, insects, sea anemones, and cone snails are complex mixtures of mostly peptides and small proteins that have evolved for prey capture and/or defense. These deadly animals have long fascinated scientists and the public. Early studies isolated lethal components in the search for cures and understanding of their mechanisms of action. Ion channels have emerged as targets for many venom peptides, providing researchers highly selective and potent molecular probes that have proved invaluable in unraveling ion channel structure and function. This minireview highlights molecular details of their toxin-receptor interactions and opportunities for development of peptide therapeutics.
Collapse
Affiliation(s)
- Sébastien Dutertre
- From Atheris Laboratories, CH-1233 Bernex-Geneva, Switzerland and
- the Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Richard J. Lewis
- the Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4067, Australia
| |
Collapse
|
40
|
Norton RS. Mu-conotoxins as leads in the development of new analgesics. Molecules 2010; 15:2825-44. [PMID: 20428082 PMCID: PMC6257286 DOI: 10.3390/molecules15042825] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 04/06/2010] [Accepted: 04/12/2010] [Indexed: 02/02/2023] Open
Abstract
Voltage-gated sodium channels (VGSCs) contain a specific binding site for a family of cone shell toxins known as mu-conotoxins. As some VGSCs are involved in pain perception and mu-conotoxins are able to block these channels, mu-conotoxins show considerable potential as analgesics. Recent studies have advanced our understanding of the three-dimensional structures and structure-function relationships of the mu-conotoxins, including their interaction with VGSCs. Truncated peptide analogues of the native toxins have been created in which secondary structure elements are stabilized by non-native linkers such as lactam bridges. Ultimately, it would be desirable to capture the favourable analgesic properties of the native toxins, in particular their potency and channel sub-type selectivity, in non-peptide mimetics. Such mimetics would constitute lead compounds in the development of new therapeutics for the treatment of pain.
Collapse
Affiliation(s)
- Raymond S Norton
- Walter and Eliza Hall Institute of Medical Research, Victoria, Australia.
| |
Collapse
|
41
|
Jacob RB, McDougal OM. The M-superfamily of conotoxins: a review. Cell Mol Life Sci 2010; 67:17-27. [PMID: 19705062 PMCID: PMC3741454 DOI: 10.1007/s00018-009-0125-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 07/30/2009] [Accepted: 08/03/2009] [Indexed: 12/19/2022]
Abstract
The focus of this review is the M-superfamily of Conus venom peptides. Disulfide rich peptides belonging to the M-superfamily have three loop regions and the cysteine arrangement: CC-C-C-CC, where the dashes represent loops one, two, and three, respectively. Characterization of M-superfamily peptides has demonstrated that diversity in cystine connectivity occurs between different branches of peptides even though the cysteine pattern remains consistent. This superfamily is subdivided into five branches, M-1 through M-5, based on the number of residues in the third loop region, between the fourth and fifth cysteine residues. M-superfamily peptides appear to be ubiquitous in Conus venom. They are largely unexplained in indigenous biological function, and they represent an active area of research within the scientific community.
Collapse
Affiliation(s)
- Reed B. Jacob
- Department of Chemistry and Biochemistry, Boise State University, 1910 University Drive, Boise, ID 83725-1520 USA
| | - Owen M. McDougal
- Department of Chemistry and Biochemistry, Boise State University, 1910 University Drive, Boise, ID 83725-1520 USA
| |
Collapse
|
42
|
Abstract
Voltage-gated sodium channels are key to the initiation and propagation of action potentials in electrically excitable cells. Molecular characterization has shown there to be nine functional members of the family, with a high degree of sequence homology between the channels. This homology translates into similar biophysical and pharmacological properties. Confidence in some of the channels as drug targets has been boosted by the discovery of human mutations in the genes encoding a number of them, which give rise to clinical conditions commensurate with the changes predicted from the altered channel biophysics. As a result, they have received much attention for their therapeutic potential. Sodium channels represent well-precedented drug targets as antidysrhythmics, anticonvulsants and local anaesthetics provide good clinical efficacy, driven through pharmacology at these channels. However, electrophysiological characterization of clinically useful compounds in recombinant expression systems shows them to be weak, with poor selectivity between channel types. This has led to the search for subtype-selective modulators, which offer the promise of treatments with improved clinical efficacy and better toleration. Despite developments in high-throughput electrophysiology platforms, this has proven very challenging. Structural biology is beginning to offer us a greater understanding of the three-dimensional structure of voltage-gated ion channels, bringing with it the opportunity to do real structure-based drug design in the future. This discipline is still in its infancy, but developments with the expression and purification of prokaryotic sodium channels offer the promise of structure-based drug design in the not too distant future.
Collapse
Affiliation(s)
- Steve England
- Pfizer Global Research and Development, Sandwich Laboratories, Kent, UK.
| | | |
Collapse
|
43
|
Han TS, Zhang MM, Walewska A, Gruszczynski P, Robertson CR, Cheatham TE, Yoshikami D, Olivera BM, Bulaj G. Structurally minimized mu-conotoxin analogues as sodium channel blockers: implications for designing conopeptide-based therapeutics. ChemMedChem 2009; 4:406-14. [PMID: 19107760 DOI: 10.1002/cmdc.200800292] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Disulfide bridges that stabilize the native conformation of conotoxins pose a challenge in the synthesis of smaller conotoxin analogues. Herein we describe the synthesis of a minimized analogue of the analgesic mu-conotoxin KIIIA that blocks two sodium channel subtypes, the neuronal Na(V)1.2 and skeletal muscle Na(V)1.4. Three disulfide-deficient analogues of KIIIA were initially synthesized in which the native disulfide bridge formed between either C1-C9, C2-C15, or C4-C16 was removed. Deletion of the first bridge only slightly affected the peptide's bioactivity. To further minimize this analogue, the N-terminal residue was removed and two nonessential serine residues were replaced by a single 5-amino-3-oxapentanoic acid residue. The resulting "polytide" analogue retained the ability to block sodium channels and to produce analgesia. Until now, the peptidomimetic approach applied to conotoxins has progressed only modestly at best; thus, the disulfide-deficient analogues containing backbone spacers provide an alternative advance toward the development of conopeptide-based therapeutics.
Collapse
Affiliation(s)
- Tiffany S Han
- Department of Biology, University of Utah, 257 S 1400 E, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Conotoxins: molecular and therapeutic targets. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2009; 46:45-65. [PMID: 19184584 DOI: 10.1007/978-3-540-87895-7_2] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Marine molluscs known as cone snails produce beautiful shells and a complex array of over 50,000 venom peptides evolved for prey capture and defence. Many of these peptides selectively modulate ion channels and transporters, making them a valuable source of new ligands for studying the role these targets play in normal and disease physiology. A number of conopeptides reduce pain in animal models, and several are now in pre-clinical and clinical development for the treatment of severe pain often associated with diseases such as cancer. Less than 1% of cone snail venom peptides are pharmacologically characterised.
Collapse
|
45
|
Pruning nature: Biodiversity-derived discovery of novel sodium channel blocking conotoxins from Conus bullatus. Toxicon 2008; 53:90-8. [PMID: 18950653 DOI: 10.1016/j.toxicon.2008.10.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 10/08/2008] [Accepted: 10/10/2008] [Indexed: 12/19/2022]
Abstract
Described herein is a general approach to identify novel compounds using the biodiversity of a megadiverse group of animals; specifically, the phylogenetic lineage of the venomous gastropods that belong to the genus Conus ("cone snails"). Cone snail biodiversity was exploited to identify three new mu-conotoxins, BuIIIA, BuIIIB and BuIIIC, encoded by the fish-hunting species Conus bullatus. BuIIIA, BuIIIB and BuIIIC are strikingly divergent in their amino acid composition compared to previous mu-conotoxins known to target the voltage-gated Na channel skeletal muscle subtype Na(v)1.4. Our preliminary results indicate that BuIIIB and BuIIIC are potent inhibitors of Na(v)1.4 (average block approximately 96%, at a 1muM concentration of peptide), displaying a very slow off-rate not seen in previously characterized mu-conotoxins that block Na(v)1.4. In addition, the three new C. bullatus mu-conopeptides help to define a new branch of the M-superfamily of conotoxins, namely M-5. The exogene strategy used to discover these Na channel-inhibiting peptides was based on both understanding the phylogeny of Conus, as well as the molecular genetics of venom mu-conotoxin peptides previously shown to generally target voltage-gated Na channels. The discovery of BuIIIA, BuIIIB and BuIIIC Na channel blockers expands the diversity of ligands useful in determining the structure-activity relationship of voltage-gated sodium channels.
Collapse
|
46
|
Walewska A, Skalicky JJ, Davis DR, Zhang MM, Lopez-Vera E, Watkins M, Han TS, Yoshikami D, Olivera BM, Bulaj G. NMR-based mapping of disulfide bridges in cysteine-rich peptides: application to the mu-conotoxin SxIIIA. J Am Chem Soc 2008; 130:14280-6. [PMID: 18831583 PMCID: PMC2665793 DOI: 10.1021/ja804303p] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Disulfide-rich peptides represent a megadiverse group of natural products with very promising therapeutic potential. To accelerate their functional characterization, high-throughput chemical synthesis and folding methods are required, including efficient mapping of multiple disulfide bridges. Here, we describe a novel approach for such mapping and apply it to a three-disulfide-bridged conotoxin, mu-SxIIIA (from the venom of Conus striolatus), whose discovery is also reported here for the first time. Mu-SxIIIA was chemically synthesized with three cysteine residues labeled 100% with (15)N/(13)C, while the remaining three cysteine residues were incorporated using a mixture of 70%/30% unlabeled/labeled Fmoc-protected residues. After oxidative folding, the major product was analyzed by NMR spectroscopy. Sequence-specific resonance assignments for the isotope-enriched Cys residues were determined with 2D versions of standard triple-resonance ((1)H, (13)C, (15)N) NMR experiments and 2D [(13)C, (1)H] HSQC. Disulfide patterns were directly determined with cross-disulfide NOEs confirming that the oxidation product had the disulfide connectivities characteristic of mu-conotoxins. Mu-SxIIIA was found to be a potent blocker of the sodium channel subtype Na(V)1.4 (IC50 = 7 nM). These results suggest that differential incorporation of isotope-labeled cysteine residues is an efficient strategy to map disulfides and should facilitate the discovery and structure-function studies of many bioactive peptides.
Collapse
Affiliation(s)
- Aleksandra Walewska
- Department of Biology, University of Utah, Salt Lake City, Utah, 84112, USA
- Faculty of Chemistry, University of Gdansk, 80-952 Gdansk, Poland
| | - Jack J. Skalicky
- Department of Biochemistry, University of Utah, Salt Lake City, Utah, 84112, USA
| | - Darrell R. Davis
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, 84112, USA
| | - Min-Min Zhang
- Department of Biology, University of Utah, Salt Lake City, Utah, 84112, USA
| | | | - Maren Watkins
- Department of Pathology, University of Utah, Salt Lake City, Utah, 84112, USA
| | - Tiffany S. Han
- Department of Biology, University of Utah, Salt Lake City, Utah, 84112, USA
| | - Doju Yoshikami
- Department of Biology, University of Utah, Salt Lake City, Utah, 84112, USA
| | | | - Grzegorz Bulaj
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, 84112, USA
| |
Collapse
|
47
|
Yao S, Zhang MM, Yoshikami D, Azam L, Olivera BM, Bulaj G, Norton RS. Structure, dynamics, and selectivity of the sodium channel blocker mu-conotoxin SIIIA. Biochemistry 2008; 47:10940-9. [PMID: 18798648 DOI: 10.1021/bi801010u] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
mu-SIIIA, a novel mu-conotoxin from Conus striatus, appeared to be a selective blocker of tetrodotoxin-resistant sodium channels in frog preparations. It also exhibited potent analgesic activity in mice, although its selectivity profile against mammalian sodium channels remains unknown. We have determined the structure of mu-SIIIA in aqueous solution and characterized its backbone dynamics by NMR and its functional properties electrophysiologically. Consistent with the absence of hydroxyprolines, mu-SIIIA adopts a single conformation with all peptide bonds in the trans conformation. The C-terminal region contains a well-defined helix encompassing residues 11-16, while residues 3-5 in the N-terminal region form a helix-like turn resembling 3 10-helix. The Trp12 and His16 side chains are close together, as in the related conotoxin mu-SmIIIA, but Asn2 is more distant. Dynamics measurements show that the N-terminus and Ser9 have larger-magnitude motions on the subnanosecond time scale, while the C-terminus is more rigid. Cys4, Trp12, and Cys13 undergo significant conformational exchange on microsecond to millisecond time scales. mu-SIIIA is a potent, nearly irreversible blocker of Na V1.2 but also blocks Na V1.4 and Na V1.6 with submicromolar potency. The selectivity profile of mu-SIIIA, including poor activity against the cardiac sodium channel, Na V1.5, is similar to that of the closely related mu-KIIIA, suggesting that the C-terminal regions of both are critical for blocking neuronal Na V1.2. The structural and functional characterization described in this paper of an analgesic mu-conotoxin that targets neuronal subtypes of mammalian sodium channels provides a basis for the design of novel analogues with an improved selectivity profile.
Collapse
Affiliation(s)
- Shenggen Yao
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | | | | | | | | | | | | |
Collapse
|
48
|
Schroeder CI, Ekberg J, Nielsen KJ, Adams D, Loughnan ML, Thomas L, Adams DJ, Alewood PF, Lewis RJ. Neuronally Selective μ-Conotoxins from Conus striatus Utilize an α-Helical Motif to Target Mammalian Sodium Channels. J Biol Chem 2008; 283:21621-8. [DOI: 10.1074/jbc.m802852200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
49
|
Zhang MM, Green BR, Catlin P, Fiedler B, Azam L, Chadwick A, Terlau H, McArthur JR, French RJ, Gulyas J, Rivier JE, Smith BJ, Norton RS, Olivera BM, Yoshikami D, Bulaj G. Structure/Function Characterization of μ-Conotoxin KIIIA, an Analgesic, Nearly Irreversible Blocker of Mammalian Neuronal Sodium Channels. J Biol Chem 2007; 282:30699-706. [PMID: 17724025 DOI: 10.1074/jbc.m704616200] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peptide neurotoxins from cone snails continue to supply compounds with therapeutic potential. Although several analgesic conotoxins have already reached human clinical trials, a continuing need exists for the discovery and development of novel non-opioid analgesics, such as subtype-selective sodium channel blockers. Micro-conotoxin KIIIA is representative of micro-conopeptides previously characterized as inhibitors of tetrodotoxin (TTX)-resistant sodium channels in amphibian dorsal root ganglion neurons. Here, we show that KIIIA has potent analgesic activity in the mouse pain model. Surprisingly, KIIIA was found to block most (>80%) of the TTX-sensitive, but only approximately 20% of the TTX-resistant, sodium current in mouse dorsal root ganglion neurons. KIIIA was tested on cloned mammalian channels expressed in Xenopus oocytes. Both Na(V)1.2 and Na(V)1.6 were strongly blocked; within experimental wash times of 40-60 min, block was reversed very little for Na(V)1.2 and only partially for Na(V)1.6. Other isoforms were blocked reversibly: Na(V)1.3 (IC50 8 microM), Na(V)1.5 (IC50 284 microM), and Na(V)1.4 (IC50 80 nM). "Alanine-walk" and related analogs were synthesized and tested against both Na(V)1.2 and Na(V)1.4; replacement of Trp-8 resulted in reversible block of Na(V)1.2, whereas replacement of Lys-7, Trp-8, or Asp-11 yielded a more profound effect on the block of Na(V)1.4 than of Na(V)1.2. Taken together, these data suggest that KIIIA is an effective tool to study structure and function of Na(V)1.2 and that further engineering of micro-conopeptides belonging to the KIIIA group may provide subtype-selective pharmacological compounds for mammalian neuronal sodium channels and potential therapeutics for the treatment of pain.
Collapse
Affiliation(s)
- Min-Min Zhang
- Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|