1
|
Kirkham MN, Cooper C, Broberg E, Robertson P, Clarke D, Pickett BE, Bikman B, Reynolds PR, Arroyo JA. Different Lengths of Gestational Exposure to Secondhand Smoke or e-Cigarette Vapor Induce the Development of Placental Disease Symptoms. Cells 2024; 13:1009. [PMID: 38920640 PMCID: PMC11201565 DOI: 10.3390/cells13121009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/28/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Exposure to cigarette smoke is known to induce disease during pregnancy. Recent evidence showed that exposure to secondhand smoke (SHS) negatively impacts fetal and placental weights, leading to the development of intrauterine growth restriction (IUGR). Electronic cigarettes (eCigs) represent a phenomenon that has recently emerged, and their use is also steadily rising. Even so, the effects of SHS or eCigs during gestation remain limited. In the present study, we wanted to characterize the effects of SHS or eCig exposure at two different important gestational points during mouse pregnancy. C57/Bl6 mice were exposed to SHS or eCigs via a nose-only delivery system for 4 days (from 14.5 to 17.5 gestational days (dGA) or for 6 days (from 12.5 dGA to 17.5 dGA)). At the time of necropsy (18.5 dGA), placental and fetal weights were recorded, maternal blood pressure was determined, and a dipstick test to measure proteinuria was performed. Placental tissues were collected, and inflammatory molecules in the placenta were identified. Treatment with SHS showed the following: (1) a significant decrease in placental and fetal weights following four days of exposure, (2) higher systolic and diastolic blood pressure following six days of exposure, and (3) increased proteinuria after six days of exposure. Treatment with eCigs showed the following: (1) a significant decrease in placental weight and fetal weight following four or six days of exposure, (2) higher systolic and diastolic blood pressure following six days of exposure, and (3) increased proteinuria after six days of exposure. We also observed different inflammatory markers associated with the development of IUGR or PE. We conclude that the detrimental effects of SHS or eCig treatment coincide with the length of maternal exposure. These results could be beneficial in understanding the long-term effects of SHS or eCig exposure in the development of placental diseases.
Collapse
Affiliation(s)
- Madison N. Kirkham
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA (E.B.)
| | - Christian Cooper
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA (E.B.)
| | - Emily Broberg
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA (E.B.)
| | - Peter Robertson
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA (E.B.)
| | - Derek Clarke
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA (E.B.)
| | - Brett E. Pickett
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA;
| | - Benjamin Bikman
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA (E.B.)
| | - Paul R. Reynolds
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA (E.B.)
| | - Juan A. Arroyo
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA (E.B.)
| |
Collapse
|
2
|
Rosas Almanza J, Stehlik KE, Page JJ, Xiong SH, Tabor EG, Aperi B, Patel K, Kodali R, Kurpad S, Budde MD, Tarima S, Swartz K, Kroner A. IL-12p40 promotes secondary damage and functional impairment after spinal cord contusional injury. J Neurosci Res 2022; 100:2213-2231. [PMID: 36089917 DOI: 10.1002/jnr.25122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 01/07/2023]
Abstract
Secondary damage obstructs functional recovery for individuals who have sustained a spinal cord injury (SCI). Two processes significantly contributing to tissue damage after trauma are spinal cord hemorrhage and inflammation: more specifically, the recruitment and activation of immune cells, frequently driven by pro-inflammatory factors. Cytokines are inflammatory mediators capable of modulating the immune response. While cytokines are necessary to elicit inflammation for proper healing, excessive inflammation can result in destructive processes. The pro-inflammatory cytokines IL-12 and IL-23 are pathogenic in multiple autoimmune diseases. The cytokine subunit IL-12p40 is necessary to form bioactive IL-12 and IL-23. In this study, we examined the relationship between spinal cord hemorrhage and IL-12-related factors, as well as the impact of IL-12p40 (IL-12/IL-23) on secondary damage and functional recovery after SCI. Using in vivo magnetic resonance imaging and protein tissue analyses, we demonstrated a positive correlation between IL-12 and tissue hemorrhage. Receptor and ligand subunits of IL-12 were significantly upregulated after injury and colocalized with astrocytes, demonstrating a myriad of opportunities for IL-12 to induce an inflammatory response. IL-12p40-/- mice demonstrated significantly improved functional recovery and reduced lesion sizes compared to wild-type mice. Targeted gene array analysis in wild-type and IL-12p40-/- female mice after SCI revealed an upregulation of genes associated with worsened recovery after SCI. Taken together, our data reveal a pathogenic role of IL-12p40 in the secondary damage after SCI, hindering functional recovery. IL-12p40 (IL-12/IL-23) is thus an enticing neuroinflammatory target for further study as a potential therapeutic target to benefit recovery in acute SCI.
Collapse
Affiliation(s)
- Jose Rosas Almanza
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
| | - Kyle E Stehlik
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
| | - Justin J Page
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
| | - Shuana H Xiong
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
| | - Emma G Tabor
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
| | - Brandy Aperi
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
| | - Kishan Patel
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
| | - Rajiv Kodali
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
| | - Shekar Kurpad
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
| | - Matthew D Budde
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
| | - Sergey Tarima
- Department of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Karin Swartz
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
| | - Antje Kroner
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
| |
Collapse
|
3
|
Liu J, Li R, Huang Z, Lin J, Ji W, Huang Z, Liu Q, Wu X, Wu X, Jiang H, Ye Y, Zhu Q. Rapamycin Preserves Neural Tissue, Promotes Schwann Cell Myelination and Reduces Glial Scar Formation After Hemi-Contusion Spinal Cord Injury in Mice. Front Mol Neurosci 2021; 13:574041. [PMID: 33551740 PMCID: PMC7862581 DOI: 10.3389/fnmol.2020.574041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/23/2020] [Indexed: 11/13/2022] Open
Abstract
Protecting white matter is one of the key treatment strategies for spinal cord injury (SCI), including alleviation of myelin loss and promotion of remyelination. Rapamycin has been shown neuroprotective effects against SCI and cardiotoxic effects while enhancing autophagy. However, specific neuroprotection of rapamycin for the white matter after cervical SCI has not been reported. Therefore, we aim to evaluate the role of rapamycin in neuroprotection after hemi-contusion SCI in mice. Forty-six 8-week-old mice were randomly assigned into the rapamycin group (n = 16), vehicle group (n = 16), and sham group (n = 10). All mice of the rapamycin and vehicle groups received a unilateral contusion with 1.2-mm displacement at C5 followed by daily intraperitoneal injection of rapamycin or dimethyl sulfoxide solution (1.5 mg⋅kg-1⋅day-1). The behavioral assessment was conducted before the injury, 3 days and every 2 weeks post-injury (WPI). The autophagy-related proteins, the area of spared white matter, the number of oligodendrocytes (OLs) and axons were evaluated at 12 WPI, as well as the glial scar and the myelin sheaths formed by Schwann cells at the epicenter. The 1.2 mm contusion led to a consistent moderate-severe SCI in terms of motor function and tissue damage. Rapamycin administration promoted autophagy in spinal cord tissue after injury and reduced the glial scar at the epicenter. Additionally, rapamycin increased the number of OLs and improved motor function significantly than in the vehicle group. Furthermore, the rapamycin injection resulted in an increase of Schwann cell-mediated remyelination and weight loss. Our results suggest that rapamycin can enhance autophagy, promote Schwann cell myelination and motor function recovery by preserved neural tissue, and reduce glial scar after hemi-contusive cervical SCI, indicating a potential strategy for SCI treatment.
Collapse
Affiliation(s)
- Junhao Liu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Division of Spine Surgery, Department of Orthopaedics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Ruoyao Li
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zucheng Huang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junyu Lin
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Ji
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiping Huang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qi Liu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoliang Wu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiuhua Wu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hui Jiang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yongnong Ye
- Pharmaceutical Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Qingan Zhu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Montanucci P, Cari L, Basta G, Pescara T, Riccardi C, Nocentini G, Calafiore R. Engineered Alginate Microcapsules for Molecular Therapy Through Biologic Secreting Cells. Tissue Eng Part C Methods 2019; 25:296-304. [DOI: 10.1089/ten.tec.2018.0329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Pia Montanucci
- Laboratory for Endocrine Cell Transplants and Biohybrid Organs, Department of Medicine, Section of Endocrinology and Metabolism, University of Perugia, Perugia, Italy
| | - Luigi Cari
- Department of Medicine, Section of Pharmacology, University of Perugia, Perugia, Italy
| | - Giuseppe Basta
- Laboratory for Endocrine Cell Transplants and Biohybrid Organs, Department of Medicine, Section of Endocrinology and Metabolism, University of Perugia, Perugia, Italy
| | - Teresa Pescara
- Laboratory for Endocrine Cell Transplants and Biohybrid Organs, Department of Medicine, Section of Endocrinology and Metabolism, University of Perugia, Perugia, Italy
| | - Carlo Riccardi
- Department of Medicine, Section of Pharmacology, University of Perugia, Perugia, Italy
| | - Giuseppe Nocentini
- Department of Medicine, Section of Pharmacology, University of Perugia, Perugia, Italy
| | - Riccardo Calafiore
- Laboratory for Endocrine Cell Transplants and Biohybrid Organs, Department of Medicine, Section of Endocrinology and Metabolism, University of Perugia, Perugia, Italy
| |
Collapse
|
5
|
Lee WH, Seo D, Lim SG, Suk K. Reverse Signaling of Tumor Necrosis Factor Superfamily Proteins in Macrophages and Microglia: Superfamily Portrait in the Neuroimmune Interface. Front Immunol 2019; 10:262. [PMID: 30838001 PMCID: PMC6389649 DOI: 10.3389/fimmu.2019.00262] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/30/2019] [Indexed: 12/14/2022] Open
Abstract
The tumor necrosis factor (TNF) superfamily (TNFSF) is a protein superfamily of type II transmembrane proteins commonly containing the TNF homology domain. The superfamily contains more than 20 protein members, which can be released from the cell membrane by proteolytic cleavage. Members of the TNFSF function as cytokines and regulate diverse biological processes, including immune responses, proliferation, differentiation, apoptosis, and embryogenesis, by binding to TNFSF receptors. Many TNFSF proteins are also known to be responsible for the regulation of innate immunity and inflammation. Both receptor-mediated forward signaling and ligand-mediated reverse signaling play important roles in these processes. In this review, we discuss the functional expression and roles of various reverse signaling molecules and pathways of TNFSF members in macrophages and microglia in the central nervous system (CNS). A thorough understanding of the roles of TNFSF ligands and receptors in the activation of macrophages and microglia may improve the treatment of inflammatory diseases in the brain and periphery. In particular, TNFSF reverse signaling in microglia can be exploited to gain further insights into the functions of the neuroimmune interface in physiological and pathological processes in the CNS.
Collapse
Affiliation(s)
- Won-Ha Lee
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu, South Korea
| | - Donggun Seo
- BK21 Plus KNU Biomedical Convergence Program, Department of Pharmacology, School of Medicine, Brain Science & Engineering Institute, Kyungpook National University, Daegu, South Korea
| | - Su-Geun Lim
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu, South Korea
| | - Kyoungho Suk
- BK21 Plus KNU Biomedical Convergence Program, Department of Pharmacology, School of Medicine, Brain Science & Engineering Institute, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
6
|
Riccardi C, Ronchetti S, Nocentini G. Glucocorticoid-induced TNFR-related gene (GITR) as a therapeutic target for immunotherapy. Expert Opin Ther Targets 2018; 22:783-797. [DOI: 10.1080/14728222.2018.1512588] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Carlo Riccardi
- Department of Medicine, University of Perugia, Perugia, Italy
| | | | | |
Collapse
|
7
|
Pathak M, Sharma P, Sharma A, Verma M, Srivastava M, Misra-Bhattacharya S. Regulatory T-cell neutralization in mice during filariasis helps in parasite clearance by enhancing T helper type 17-mediated pro-inflammatory response. Immunology 2015; 147:190-203. [PMID: 26501838 DOI: 10.1111/imm.12550] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 10/16/2015] [Accepted: 10/16/2015] [Indexed: 12/24/2022] Open
Abstract
Lymphatic filariasis leads to profound impairment of parasite-specific T helper type 1 (Th1) and Th2 immune responses and significantly increases the expression of regulatory networks and regulatory effectors like transforming growth factor-β, CD25, cytotoxic T-lymphocyte antigen 4, glucocorticoid-induced tumour necrosis factor receptor (GITR) and regulatory T (Treg) cells, which together play an important role in immunosuppression. While Treg cells suppress the activity of effector cells, monocyte dysfunction, characterized by an alternatively activated immunoregulatory phenotype, is one hypothesis that explains the lack of an antigen-specific T-cell response in infected individuals. In the present study, we administered neutralizing antibodies against the Treg cell-associated markers CD25 and GITR and observed its effects on filaria-induced immunosuppression. Our results show that administration of anti-CD25 and anti-GITR in infected animals not only arrested the accumulation of Treg cells and reduced arginase activity, but also led to an increase in the percentages of Th17 cells in the secondary lymphoid organs of mice. Elevated levels of interferon-γ and decreased levels of interleukin-10 were also noted in the culture supernatants of mouse splenocytes that were treated with neutralizing antibodies. Furthermore, treatment with neutralizing antibodies enhanced the expression of inducible nitric oxide synthase on host macrophages and CD40 on host dendritic cells with concomitant decreased expression of alternative activation markers Arg1, Ym1 and Fizz1, which together lead to reduced parasite burden in treated animals. In summary, administration of neutralizing antibodies helps in breaking the regulatory network in mice and limits parasite-induced immunosuppression at the earliest host-parasite interface.
Collapse
Affiliation(s)
- Manisha Pathak
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Pankaj Sharma
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Aditi Sharma
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Meenakshi Verma
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Mrigank Srivastava
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Shailja Misra-Bhattacharya
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| |
Collapse
|
8
|
Wang H, Wang Y, Li D, Liu Z, Zhao Z, Han D, Yuan Y, Bi J, Mei X. VEGF inhibits the inflammation in spinal cord injury through activation of autophagy. Biochem Biophys Res Commun 2015; 464:453-8. [PMID: 26116774 DOI: 10.1016/j.bbrc.2015.06.146] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 06/22/2015] [Indexed: 01/17/2023]
Abstract
Vascular endothelial growth factor (VEGF) is a secreted mitogen associated with angiogenesis and re-vascularization of spinal cord injury (SCI). VEGF has long been thought to be a potent neurotrophic factor for the survival of spinal cord neuron. However, the neuroprotective mechanism of VEGF is still unclear. The aim of this study was to investigate the effect of VEGF on spinal cord injury and its mechanisms. Young male Wistar rats were subjected to SCI and then VEGF165 were injected directly into the lesion epicenter 24 h post injury. We detected Basso, Beattie and Bresnahan (BBB) scores and numbers of motor neuron via Nissl staining. The expressions of autophagy related protein Beclin1 and LC3B were determined by Western blot and RT-PCR. We also detected the contents of inflammation factors interleukin-1β (IL-1β), tumor necrosis factor alpha (TNF-α) and interleukin-10(IL-10) in LPS (Lipopolysaccharide) treated spinal neuron-glia co-culture by ELISA. We found that VEGF165 administration increased the BBB score and reduced the loss of motor neuron of rats induced by SCI. VEGF decreased the protein expressions of IL-1β, TNF-α and IL-10 and up-regulated the expressions of Beclin1 and LC3B of rats. In the in vitro study, VEGF165 decreased the levels of IL-1β, IL-10 and TNF-a in the medium of LPS treated spinal neuron-glia co-culture, which was partially blocked by 3-MA, the inhibitor of autophagy. In addition, VEGF165 up-regulate the expressions of Beclin1 and LC3B in co-culture cells. The results suggested that VEGF165 attenuated the spinal cord injury by inhibiting the inflammation and increasing the autophagy function.
Collapse
Affiliation(s)
- Hongyu Wang
- Department of Orthopedic Surgery, First Affiliated Hospital of Liaoning Medical University, Jinzhou City, PR China
| | - Yansong Wang
- Department of Orthopedic Surgery, First Affiliated Hospital of Liaoning Medical University, Jinzhou City, PR China
| | - Dingding Li
- Department of Orthopedic Surgery, First Affiliated Hospital of Liaoning Medical University, Jinzhou City, PR China
| | - Zhiyuan Liu
- Department of Orthopedic Surgery, First Affiliated Hospital of Liaoning Medical University, Jinzhou City, PR China
| | - Ziming Zhao
- Department of Stomatology, Second Affiliated Hospital of Liaoning Medical University, Jinzhou City, PR China
| | - Donghe Han
- Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Liaoning Medical University, Jinzhou City, PR China
| | - Yajiang Yuan
- Department of Orthopedic Surgery, First Affiliated Hospital of Liaoning Medical University, Jinzhou City, PR China
| | - Jing Bi
- Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Liaoning Medical University, Jinzhou City, PR China
| | - Xifan Mei
- Department of Orthopedic Surgery, First Affiliated Hospital of Liaoning Medical University, Jinzhou City, PR China.
| |
Collapse
|
9
|
Kobayashi Y, Kiguchi N, Fukazawa Y, Saika F, Maeda T, Kishioka S. Macrophage-T cell interactions mediate neuropathic pain through the glucocorticoid-induced tumor necrosis factor ligand system. J Biol Chem 2015; 290:12603-13. [PMID: 25787078 PMCID: PMC4432281 DOI: 10.1074/jbc.m115.636506] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 03/13/2015] [Indexed: 12/22/2022] Open
Abstract
Peripheral neuroinflammation caused by activated immune cells can provoke neuropathic pain. Herein, we investigate the actions of macrophages and T cells through glucocorticoid-induced tumor neurosis factor receptor ligand (GITRL) and its receptor (GITR) in neuropathic pain. After partial sciatic nerve ligation (PSL) in enhanced green fluorescent protein (eGFP) chimeric mice generated by the transplantation of eGFP(+) bone marrow cells, eGFP(+) macrophages, and T cells markedly migrated to the injured site after PSL. Administration of agents to deplete macrophages (liposome-clodronate and Clophosome-A(TM)) or T cells (anti-CD4 antibody and FTY720) could suppress PSL-induced thermal hyperalgesia and tactile allodynia. The expression levels of co-stimulatory molecules GITRL and GITR were increased on infiltrating macrophages and T cells, respectively. The perineural injection of a GITRL neutralizing antibody that could inhibit the function of the GITRL-GITR pathway attenuated PSL-induced neuropathic pain. Additionally, the induction of inflammatory cytokines and the accumulation of GITR(+) T cells in the injured SCN were abrogated after macrophage depletion by Clophosome-A(TM). In conclusion, GITRL expressed on macrophages drives cytokine release and T cell activation, resulting in neuropathic pain via GITR-dependent actions. The GITRL-GITR pathway might represent a novel target for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Yuka Kobayashi
- From the Department of Pharmacology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-0012 and
| | - Norikazu Kiguchi
- From the Department of Pharmacology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-0012 and
| | - Yohji Fukazawa
- From the Department of Pharmacology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-0012 and
| | - Fumihiro Saika
- From the Department of Pharmacology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-0012 and
| | - Takehiko Maeda
- the Department of Pharmacology, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Niigata 956-8603, Japan
| | - Shiroh Kishioka
- From the Department of Pharmacology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-0012 and
| |
Collapse
|
10
|
Glucocorticoid-induced tumour necrosis factor receptor-related protein: a key marker of functional regulatory T cells. J Immunol Res 2015; 2015:171520. [PMID: 25961057 PMCID: PMC4413981 DOI: 10.1155/2015/171520] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/18/2015] [Indexed: 12/18/2022] Open
Abstract
Glucocorticoid-induced tumour necrosis factor receptor-related protein (GITR, TNFRSF18, and CD357) is expressed at high levels in activated T cells and regulatory T cells (Tregs). In this review, we present data from mouse and human studies suggesting that GITR is a crucial player in the differentiation of thymic Tregs (tTregs), and expansion of both tTregs and peripheral Tregs (pTregs). The role of GITR in Treg expansion is confirmed by the association of GITR expression with markers of memory T cells. In this context, it is not surprising that GITR appears to be a marker of active Tregs, as suggested by the association of GITR expression with other markers of Treg activation or cytokines with suppressive activity (e.g., IL-10 and TGF-β), the presence of GITR(+) cells in tissues where Tregs are active (e.g., solid tumours), or functional studies on Tregs. Furthermore, some Treg subsets including Tr1 cells express either low or no classical Treg markers (e.g., FoxP3 and CD25) and do express GITR. Therefore, when evaluating changes in the number of Tregs in human diseases, GITR expression must be evaluated. Moreover, GITR should be considered as a marker for isolating Tregs.
Collapse
|
11
|
Gensel JC, Zhang B. Macrophage activation and its role in repair and pathology after spinal cord injury. Brain Res 2015; 1619:1-11. [PMID: 25578260 DOI: 10.1016/j.brainres.2014.12.045] [Citation(s) in RCA: 523] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 12/08/2014] [Indexed: 12/11/2022]
Abstract
The injured spinal cord does not heal properly. In contrast, tissue repair and functional recovery occur after skin or muscle injuries. The reason for this dichotomy in wound repair is unclear but inflammation, and specifically macrophage activation, likely plays a key role. Macrophages have the ability to promote the repair of injured tissue by regulating transitions through different phase of the healing response. In the current review we compare and contrast the healing and inflammatory responses between spinal cord injuries and tissues that undergo complete wound resolution. Through this comparison, we identify key macrophage phenotypes that are inaptly triggered or absent after spinal cord injury and discuss spinal cord stimuli that contribute to this maladaptive response. Sequential activation of classic, pro-inflammatory, M1 macrophages and alternatively activated, M2a, M2b, and M2c macrophages occurs during normal healing and facilitates transitions through the inflammatory, proliferative, and remodeling phases of repair. In contrast, in the injured spinal cord, pro-inflammatory macrophages potentiate a prolonged inflammatory phase and remodeling is not properly initiated. The desynchronized macrophage activation after spinal cord injury is reminiscent of the inflammation present in chronic, non-healing wounds. By refining the role macrophages play in spinal cord injury repair we bring to light important areas for future neuroinflammation and neurotrauma research. This article is part of a Special Issue entitled SI: Spinal cord injury.
Collapse
Affiliation(s)
- John C Gensel
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky, Lexington, KY 40536, United States.
| | - Bei Zhang
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky, Lexington, KY 40536, United States
| |
Collapse
|
12
|
GITR promoter polymorphism contributes to risk of coal workers' pneumoconiosis: a case-control study from China. Immunol Lett 2014; 162:210-6. [PMID: 25445616 DOI: 10.1016/j.imlet.2014.10.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/12/2014] [Accepted: 10/21/2014] [Indexed: 01/25/2023]
Abstract
BACKGROUND Glucocorticoid-induced tumor necrosis factor (TNF) receptor-related protein (GITR) mainly affects the functions of effector T cells and regulatory T cells thus it may influence various diseases. Coal workers' pneumoconiosis (CWP) is a serious occupational disease worldwide. In the present study, we examined the association between the functional polymorphisms in GITR and risk of CWP in a Chinese population. METHODS An association study analyzing three polymorphisms (rs3753348, rs2298213, and rs11466668) in GITR were performed in a case-control study including 693 patients with CWP and 690 controls. Genotyping was carried out by Taqman method. RESULTS The GITR rs3753348 GG/GC genotypes significantly enhanced the risk of CWP (adjusted OR=1.32, 95%CI=1.02-1.71), compared with the CC genotype, particularly among subgroups of long exposure years (adjusted OR=1.47, 95%CI=1.06-2.04) and non-smokers (adjusted OR=1.45, 95%CI=1.01-2.09). Moreover, the polymorphism was significantly associated with risk for CWP cases with stage II. CONCLUSIONS This is the first report revealing an association between the GITR rs3753348 polymorphism and CWP, and our results suggest that the GITR rs3753348 polymorphism may be involved in the development and susceptibility of CWP.
Collapse
|
13
|
Clouthier DL, Watts TH. Cell-specific and context-dependent effects of GITR in cancer, autoimmunity, and infection. Cytokine Growth Factor Rev 2014; 25:91-106. [DOI: 10.1016/j.cytogfr.2013.12.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 12/15/2013] [Indexed: 12/19/2022]
|
14
|
Liao G, O'Keeffe MS, Wang G, van Driel B, de Waal Malefyt R, Reinecker HC, Herzog RW, Terhorst C. Glucocorticoid-Induced TNF Receptor Family-Related Protein Ligand is Requisite for Optimal Functioning of Regulatory CD4(+) T Cells. Front Immunol 2014; 5:35. [PMID: 24550919 PMCID: PMC3909995 DOI: 10.3389/fimmu.2014.00035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/21/2014] [Indexed: 12/18/2022] Open
Abstract
Glucocorticoid-induced tumor necrosis factor receptor family-related protein (TNFRSF18, CD357) is constitutively expressed on regulatory T cells (Tregs) and is inducible on effector T cells. In this report, we examine the role of glucocorticoid-induced TNF receptor family-related protein ligand (GITR-L), which is expressed by antigen presenting cells, on the development and expansion of Tregs. We found that GITR-L is dispensable for the development of naturally occurring FoxP3+ Treg cells in the thymus. However, the expansion of Treg in GITR-L−/− mice is impaired after injection of the dendritic cells (DCs) inducing factor Flt3 ligand. Furthermore, DCs from the liver of GITR-L−/− mice were less efficient in inducing proliferation of antigen-specific Treg cells in vitro than the same cells from WT littermates. Upon gene transfer of ovalbumin into hepatocytes of GITR-L−/−FoxP3(GFP) reporter mice using adeno-associated virus (AAV8-OVA) the number of antigen-specific Treg in liver and spleen is reduced. The reduced number of Tregs resulted in an increase in the number of ovalbumin specific CD8+ T effector cells. This is highly significant because proliferation of antigen-specific CD8+ cells itself is dependent on the presence of GITR-L, as shown by in vitro experiments and by adoptive transfers into GITR-L−/−Rag−/− and Rag−/− mice that had received AAV8-OVA. Surprisingly, administering αCD3 significantly reduced the numbers of FoxP3+ Treg cells in the liver and spleen of GITR-L−/− but not WT mice. Because soluble Fc-GITR-L partially rescues αCD3 induced in vitro depletion of the CD103+ subset of FoxP3+CD4+ Treg cells, we conclude that expression of GITR-L by antigen presenting cells is requisite for optimal Treg-mediated regulation of immune responses including those in response during gene transfer.
Collapse
Affiliation(s)
- Gongxian Liao
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| | - Michael S O'Keeffe
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| | - Guoxing Wang
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| | - Boaz van Driel
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| | | | - Hans-Christian Reinecker
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Department of Medicine, Massachusetts General Hospital, Harvard Medical School , Boston, MA , USA
| | - Roland W Herzog
- Department of Pediatrics, University of Florida , Gainesville, FL , USA
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| |
Collapse
|
15
|
Juhász K, Buzás K, Duda E. Importance of reverse signaling of the TNF superfamily in immune regulation. Expert Rev Clin Immunol 2014; 9:335-48. [DOI: 10.1586/eci.13.14] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Xufré C, Costa M, Roura-Mir C, Codina-Busqueta E, Usero L, Pizarro E, Obiols G, Jaraquemada D, Martí M. Low frequency of GITR+ T cells in ex vivo and in vitro expanded Treg cells from type 1 diabetic patients. Int Immunol 2013; 25:563-74. [DOI: 10.1093/intimm/dxt020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
17
|
Nocentini G, Ronchetti S, Petrillo MG, Riccardi C. Pharmacological modulation of GITRL/GITR system: therapeutic perspectives. Br J Pharmacol 2012; 165:2089-99. [PMID: 22029729 DOI: 10.1111/j.1476-5381.2011.01753.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Glucocorticoid-induced TNFR-related (gitr) is a gene coding for a member of the TNF receptor superfamily. GITR activation by its ligand (GITRL) influences the activity of effector and regulatory T cells, thus participating in the development of immune response against tumours and infectious agents, as well as in autoimmune and inflammatory diseases. Notably, treating animals with GITR-Fc fusion protein ameliorates autoimmune/inflammatory diseases while GITR triggering, by treatment with anti-GITR mAb, is effective in treating viral, bacterial and parasitic infections, as well in boosting immune response against tumours. GITR modulation has been indicated as one of the top 25 most promising research areas by the American National Cancer Institute, and a clinical trial testing the efficacy of an anti-GITR mAb in melanoma patients has been started. In this review, we summarize results regarding: (i) the mechanisms by which GITRL/GITR system modulates immune response; (ii) the structural and functional studies clearly demonstrating differences between GITRL/GITR systems of mice and humans; (iii) the molecules with pharmacological activities including anti-GITR mAbs, GITR-Fc and GITRL-Fc fusion proteins, GITRL in monomer or multimer conformation; and (iv) the possible risks deriving from GITRL/GITR system pharmacological modulation. In conclusion, GITR triggering and inhibition could be useful in treating tumours, infectious diseases, as well as autoimmune and inflammatory diseases. However, differences between mouse and human GITRL/GITR systems suggest that further preclinical studies are needed to better understand how safe therapeutic results can be obtained and to design appropriate clinical trials.
Collapse
Affiliation(s)
- Giuseppe Nocentini
- Department of Clinical and Experimental Medicine, University of Perugia, Perugia, Italy
| | | | | | | |
Collapse
|
18
|
Croft M, Duan W, Choi H, Eun SY, Madireddi S, Mehta A. TNF superfamily in inflammatory disease: translating basic insights. Trends Immunol 2011; 33:144-52. [PMID: 22169337 DOI: 10.1016/j.it.2011.10.004] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 10/20/2011] [Accepted: 10/20/2011] [Indexed: 12/17/2022]
Abstract
The tumor necrosis factor (TNF) and TNF receptor superfamilies (TNFSF and TNFRSF) consist of approximately 50 membrane and soluble proteins that can modulate cellular function. Most of these molecules are expressed by or can target cells of the immune system, and they have a wide range of actions including promoting cellular differentiation, survival, and production of inflammatory cytokines and chemokines. Emerging data show that TNFSF ligand-receptor signaling pathways are active in inflammatory and autoimmune disease. Furthermore, several genetic polymorphisms in TNFSF and TNFRSF associate with susceptibility to developing disease. Here, we examine recent data regarding the potential of these molecules as targets for therapy of autoimmune and inflammatory disease.
Collapse
Affiliation(s)
- Michael Croft
- La Jolla Institute for Allergy and Immunology, Division of Immune Regulation, 9420 Athena Circle, La Jolla, CA 92037, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Takata M, Nakagomi T, Kashiwamura S, Nakano-Doi A, Saino O, Nakagomi N, Okamura H, Mimura O, Taguchi A, Matsuyama T. Glucocorticoid-induced TNF receptor-triggered T cells are key modulators for survival/death of neural stem/progenitor cells induced by ischemic stroke. Cell Death Differ 2011; 19:756-67. [PMID: 22052192 PMCID: PMC3321616 DOI: 10.1038/cdd.2011.145] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Increasing evidences show that immune response affects the reparative mechanisms in injured brain. Recently, we have demonstrated that CD4(+)T cells serve as negative modulators in neurogenesis after stroke, but the mechanistic detail remains unclear. Glucocorticoid-induced tumor necrosis factor (TNF) receptor (GITR), a multifaceted regulator of immunity belonging to the TNF receptor superfamily, is expressed on activated CD4(+)T cells. Herein, we show, by using a murine model of cortical infarction, that GITR triggering on CD4(+)T cells increases poststroke inflammation and decreases the number of neural stem/progenitor cells induced by ischemia (iNSPCs). CD4(+)GITR(+)T cells were preferentially accumulated at the postischemic cortex, and mice treated with GITR-stimulating antibody augmented poststroke inflammatory responses with enhanced apoptosis of iNSPCs. In contrast, blocking the GITR-GITR ligand (GITRL) interaction by GITR-Fc fusion protein abrogated inflammation and suppressed apoptosis of iNSPCs. Moreover, GITR-stimulated T cells caused apoptosis of the iNSPCs, and administration of GITR-stimulated T cells to poststroke severe combined immunodeficient mice significantly reduced iNSPC number compared with that of non-stimulated T cells. These observations indicate that among the CD4(+)T cells, GITR(+)CD4(+)T cells are major deteriorating modulators of poststroke neurogenesis. This suggests that blockade of the GITR-GITRL interaction may be a novel immune-based therapy in stroke.
Collapse
Affiliation(s)
- M Takata
- Laboratory of Neurogenesis and CNS Repair, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo 663-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Chittasupho C, Siahaan TJ, Vines CM, Berkland C. Autoimmune therapies targeting costimulation and emerging trends in multivalent therapeutics. Ther Deliv 2011; 2:873-89. [PMID: 21984960 PMCID: PMC3186944 DOI: 10.4155/tde.11.60] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Proteins participating in immunological signaling have emerged as important targets for controlling the immune response. A multitude of receptor-ligand pairs that regulate signaling pathways of the immune response have been identified. In the complex milieu of immune signaling, therapeutic agents targeting mediators of cellular signaling often either activate an inflammatory immune response or induce tolerance. This review is primarily focused on therapeutics that inhibit the inflammatory immune response by targeting membrane-bound proteins regulating costimulation or mediating immune-cell adhesion. Many of these signals participate in larger, organized structures such as the immunological synapse. Receptor clustering and arrangement into organized structures is also reviewed and emerging trends implicating a potential role for multivalent therapeutics is posited.
Collapse
Affiliation(s)
- Chuda Chittasupho
- Department of Pharmaceutical Chemistry, University of Kansas, KS, USA
- Department of Pharmaceutical Technology, Srinakharinwirot University, Nakhonnayok, Thailand
| | - Teruna J Siahaan
- Department of Pharmaceutical Chemistry, University of Kansas, KS, USA
| | - Charlotte M Vines
- Department of Microbiology, Molecular Genetics & Immunology, University of Kansas Medical Center, KS, USA
| | - Cory Berkland
- Department of Pharmaceutical Chemistry, University of Kansas, KS, USA
- Department of Pharmaceutical Chemistry, Department of Chemical & Petroleum Engineering, 2030 Becker Drive, Lawrence, KS 66047, USA
| |
Collapse
|
21
|
van der Werf N, Redpath SA, Phythian-Adams AT, Azuma M, Allen JE, Maizels RM, Macdonald AS, Taylor MD. Th2 responses to helminth parasites can be therapeutically enhanced by, but are not dependent upon, GITR-GITR ligand costimulation in vivo. THE JOURNAL OF IMMUNOLOGY 2011; 187:1411-20. [PMID: 21705620 DOI: 10.4049/jimmunol.1100834] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The immune suppression that characterizes human helminth infections can hinder the development of protective immunity or help to reduce pathogenic inflammation. Signaling through the T cell costimulator glucocorticoid-induced TNFR-related protein (GITR) counteracts immune downregulation by augmenting effector T cell responses and abrogating suppression by Foxp3(+) regulatory T cells. Thus, superphysiological Ab-mediated GITR costimulation represents a novel therapy for promoting protective immunity toward parasitic helminths, whereas blocking physiological GITR-GITR ligand (GITRL) interactions may provide a mechanism for dampening pathogenic Th2 inflammation. We investigated the superphysiological and physiological roles of the GITR-GITRL pathway in the development of protective and pathogenic Th2 responses in murine infection models of filariasis (Litomosoides sigmodontis) and schistosomiasis (Schistosoma mansoni). Providing superphysiological GITR costimulation using an agonistic anti-GITR mAb over the first 12 d of L. sigmodontis infection initially increased the quantity of Th2 cells, as well as their ability to produce Th2 cytokines. However, as infection progressed, the Th2 responses reverted to normal infection levels, and parasite killing remained unaffected. Despite the Th2-promoting role of superphysiological GITR costimulation, Ab-mediated blockade of the GITR-GITRL pathway did not affect Th2 cell priming or maintenance during L. sigmodontis infection. Blockade of GITR-GITRL interactions during the acute egg phase of S. mansoni infection resulted in reduced Th2 responses, but this effect was confined to the spleen and did not lead to changes in liver pathology. Thus, although superphysiological GITR costimulation can therapeutically enhance Th2 responses, physiological GITR-GITRL interactions are not required for the development of Th2-mediated resistance or pathology in murine models of filariasis and schistosomiasis.
Collapse
Affiliation(s)
- Nienke van der Werf
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Galuppo M, Nocentini G, Mazzon E, Ronchetti S, Esposito E, Riccardi L, Sportoletti P, Di Paola R, Bruscoli S, Riccardi C, Cuzzocrea S. The glucocorticoid-induced TNF receptor family-related protein (GITR) is critical to the development of acute pancreatitis in mice. Br J Pharmacol 2011; 162:1186-201. [PMID: 21091650 DOI: 10.1111/j.1476-5381.2010.01123.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Pancreatitis represents a life-threatening inflammatory condition where leucocytes, cytokines and vascular endothelium contribute to the development of the inflammatory disease. The glucocorticoid-induced tumour necrosis factor (TNF) receptor family-related protein (GITR) is a costimulatory molecule for T lymphocytes, modulates innate and adaptive immune system and has been found to participate in a variety of immune responses and inflammatory processes. Our purpose was to verify whether inhibition of GITR triggering results in a better outcome in experimental pancreatitis. EXPERIMENTAL APPROACH In male GITR knock-out (GITR(-/-)) and GITR(+/+) mice on Sv129 background, acute pancreatitis was induced after i.p. administration of cerulein. Other experimental groups of GITR(+/+) mice were also treated with different doses of Fc-GITR fusion protein (up to 6.25 µg·mouse⁻¹), given by implanted mini-osmotic pump. Clinical score and pro-inflammatory parameters were evaluated. KEY RESULTS A less acute pancreatitis was found in GITR(-/-) mice than in GITR(+/+) mice, with marked differences in oedema, neutrophil infiltration, pancreatic dysfunction and injury. Co-treatment of GITR(+/+) mice with cerulein and Fc-GITR fusion protein (6.25 µg·mouse⁻¹) decreased the inflammatory response and tissue injury, compared with treatment with cerulein alone. Inhibition of GITR triggering was found to modulate activation of nuclear factor κB as well as the production of TNF-α, interleukin-1β, inducible nitric oxide synthase, nitrotyrosine, poly-ADP-ribose, intercellular adhesion molecule-1 and P-selectin. CONCLUSIONS AND IMPLICATIONS The GITR-GITR ligand system is crucial to the development of acute pancreatitis in mice. Our results also suggest that the Fc-GITR fusion protein could be useful in the treatment of acute pancreatitis.
Collapse
Affiliation(s)
- M Galuppo
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Messina, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Cantarella G, Di Benedetto G, Scollo M, Paterniti I, Cuzzocrea S, Bosco P, Nocentini G, Riccardi C, Bernardini R. Neutralization of tumor necrosis factor-related apoptosis-inducing ligand reduces spinal cord injury damage in mice. Neuropsychopharmacology 2010; 35:1302-14. [PMID: 20107429 PMCID: PMC3055339 DOI: 10.1038/npp.2009.234] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 12/17/2009] [Accepted: 12/21/2009] [Indexed: 12/30/2022]
Abstract
Spinal cord injury (SCI) is a major cause of disability, its clinical outcome depending mostly on the extent of damage in which proapoptotic cytokines have a crucial function. In particular, the inducers of apoptosis belonging to TNF receptor superfamily and their respective ligands are upregulated after SCI. In this study, the function of the proapoptotic cytokine tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in SCI-induced damage was investigated in the mouse. SCI resulted in severe trauma, characterized by prominent inflammation-related damage and apoptosis. Immunostaining for TRAIL and its receptor DR5 was found in the white and gray matter of the perilesional area, as also confirmed by western blotting experiments. Immunoneutralization of TRAIL resulted in improved functional recovery, reduced apoptotic cell number, modulation of molecules involved in the inflammatory response (FasL, TNF-alpha, IL-1beta, and MPO), and the corresponding signaling (caspase-8 and -3 activation, JNK phosphorylation, Bax, and Bcl-2 expression). As glucocorticoid-induced TNF receptor superfamily-related protein (GITR) activated by its ligand (GITRL) contributes to SCI-related inflammation, interactions between TRAIL and GITRL were investigated. SCI was associated with upregulated GITR and GITRL expression, a phenomenon prevented by anti-TRAIL treatment. Moreover, the expression of both TRAIL and DR5 was reduced in tissues from mice lacking the GITR gene (GITR(-/-)) in comparison with wild-type mice suggesting that TRAIL- and GITRL-activated pathways synergise in the development of SCI-related inflammatory damage. Characterization of new targets within such molecular systems may constitute a platform for innovative treatment of SCI.
Collapse
Affiliation(s)
- Giuseppina Cantarella
- Department of Experimental and Clinical Pharmacology, University of Catania School of Medicine, Catania, Italy
| | - Giulia Di Benedetto
- Department of Experimental and Clinical Pharmacology, University of Catania School of Medicine, Catania, Italy
- ‘Oasi' Institute for Research on Mental Retardation and Brain Aging (I.R.C.C.S.), Troina (EN), Italy
| | - Mimmo Scollo
- Department of Experimental and Clinical Pharmacology, University of Catania School of Medicine, Catania, Italy
| | - Irene Paterniti
- Department of Pharmacology, University of Messina School of Medicine, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Pharmacology, University of Messina School of Medicine, Messina, Italy
| | - Paolo Bosco
- ‘Oasi' Institute for Research on Mental Retardation and Brain Aging (I.R.C.C.S.), Troina (EN), Italy
| | - Giuseppe Nocentini
- Department of Experimental Medicine, University of Perugia School of Medicine, Perugia, Italy
| | - Carlo Riccardi
- Department of Experimental Medicine, University of Perugia School of Medicine, Perugia, Italy
| | - Renato Bernardini
- Department of Experimental and Clinical Pharmacology, University of Catania School of Medicine, Catania, Italy
| |
Collapse
|
24
|
Kim JI, Sonawane SB, Lee MK, Lee SH, Duff PE, Moore DJ, O’Connor MR, Lian MM, Deng S, Choi Y, Yeh H, Caton AJ, Markmann JF. Blockade of GITR-GITRL interaction maintains Treg function to prolong allograft survival. Eur J Immunol 2010; 40:1369-74. [PMID: 20148423 PMCID: PMC2935584 DOI: 10.1002/eji.200940046] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Involvement of Treg in transplant tolerance has been demonstrated in multiple models. During the active process of graft rejection, these regulatory cells are themselves regulated and inactivated, a process termed counter-regulation. We hypothesize that ligation of the costimulatory molecule glucocorticoid-induced TNF receptor-related protein (GITR) on Treg inhibits their ability to promote graft survival, and by blocking GITR ligation graft survival can be prolonged. To this aim, we have designed a soluble GITR fusion protein (GITR-Fc), which binds GITR ligand and inhibits activation of GITR. Here, we show that GITR-Fc prolonged mouse skin graft survival, and this prolongation is dependent on Treg. In a full MHC-mismatched skin graft setting, GITR-Fc significantly improved graft survival when used in combination with MR1, anti-CD40L, while GITR-Fc alone did not demonstrate graft prolongation. These results demonstrate that disruption of binding of GITR with GITR ligand may be an important strategy in prolonging allograft survival.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Antigen-Presenting Cells/drug effects
- Antigen-Presenting Cells/immunology
- Binding, Competitive
- CD40 Ligand
- Glucocorticoid-Induced TNFR-Related Protein
- Graft Survival/drug effects
- Histocompatibility Antigens Class I
- Humans
- Immune Tolerance/drug effects
- Immunosuppressive Agents/administration & dosage
- Immunosuppressive Agents/pharmacology
- Immunosuppressive Agents/therapeutic use
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Transgenic
- Minor Histocompatibility Antigens
- Receptors, Nerve Growth Factor/genetics
- Receptors, Nerve Growth Factor/immunology
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/immunology
- Recombinant Fusion Proteins/administration & dosage
- Recombinant Fusion Proteins/pharmacology
- Recombinant Fusion Proteins/therapeutic use
- Skin Transplantation/immunology
- T-Lymphocytes, Regulatory/immunology
- Transplantation, Homologous/immunology
- Tumor Necrosis Factor Inhibitors
- Tumor Necrosis Factors/immunology
Collapse
Affiliation(s)
- James I. Kim
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Samsher B. Sonawane
- Harrison Department of Surgical Research, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Major K. Lee
- Harrison Department of Surgical Research, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Seoung-Hoon Lee
- Abramson Family Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick E. Duff
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Daniel J. Moore
- Department of Pediatrics, Vanderbilt Children’s Hospital, Nashville, TN, USA
| | | | - Moh-Moh Lian
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Shaoping Deng
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Yongwon Choi
- Abramson Family Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Heidi Yeh
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | | | - James F. Markmann
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
25
|
Hwang H, Lee S, Lee WH, Lee HJ, Suk K. Stimulation of glucocorticoid-induced tumor necrosis factor receptor family-related protein ligand (GITRL) induces inflammatory activation of microglia in culture. J Neurosci Res 2010; 88:2188-96. [DOI: 10.1002/jnr.22378] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
26
|
Nolte MA, van Olffen RW, van Gisbergen KPJM, van Lier RAW. Timing and tuning of CD27-CD70 interactions: the impact of signal strength in setting the balance between adaptive responses and immunopathology. Immunol Rev 2009; 229:216-31. [PMID: 19426224 DOI: 10.1111/j.1600-065x.2009.00774.x] [Citation(s) in RCA: 240] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
SUMMARY After binding its natural ligand cluster of differentiation 70 (CD70), CD27, a tumor necrosis factor receptor (TNFR)-associated factor-binding member of the TNFR family, regulates cellular activity in subsets of T, B, and natural killer cells as well as hematopoietic progenitor cells. In normal immune responses, CD27 signaling appears to be limited predominantly by the restricted expression of CD70, which is only transiently expressed by cells of the immune system upon activation. Studies performed in CD27-deficient and CD70-transgenic mice have defined a non-redundant role of this receptor-ligand pair in shaping adaptive T-cell responses. Moreover, adjuvant properties of CD70 have been exploited for the design of anti-cancer vaccines. However, continuous CD27-CD70 interactions may cause immune dysregulation and immunopathology in conditions of chronic immune activation such as during persistent virus infection and autoimmune disease. We conclude that optimal tuning of CD27-CD70 interaction is crucial for the regulation of the cellular immune response. We provide a detailed comparison of costimulation through CD27 with its closely related family members 4-1BB (CD137), CD30, herpes virus entry mediator, OX40 (CD134), and glucocorticoid-induced TNFR family-related gene, and we argue that these receptors do not have a unique function per se but that rather the timing, context, and intensity of these costimulatory signals determine the functional consequence of their activity.
Collapse
Affiliation(s)
- Martijn A Nolte
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
27
|
Identification of glucocorticoid-induced TNF receptor-related protein ligand on keratinocytes: ligation by GITR induces keratinocyte chemokine production and augments T-cell proliferation. J Invest Dermatol 2009; 129:2784-94. [PMID: 19536139 DOI: 10.1038/jid.2009.163] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Glucocorticoid-induced tumor necrosis factor (TNF) receptor-related protein ligand (GITRL) is a recently described co-stimulatory molecule expressed by antigen-presenting cells (APCs). Activated keratinocytes are known to engage intraepithelial T cells through co-stimulatory molecules. This study investigated the expression and function of GITRL in resting keratinocytes. We showed by immunofluorescence and flow cytometry that keratinocytes from Balb/C and C57Bl/6 mice, as well as PAM 212 murine cell line keratinocytes and human epidermal keratinocytes (HEK), express cell-surface GITRL. Stimulation of murine skin biopsies and HEK with GITR fusion protein (GITR: Fc FP) resulted in mRNA induction for chemoattractants: cutaneous T-cell-attracting chemokine (CTACK), thymus and activation-regulated chemokine (TARC), IL-8, monocyte chemoattractant protein-1 (MCP-1), and murine beta-defensin 3 (MBD3). Immunofluorescent studies on mouse biopsies treated with GITR: Fc FP confirmed corresponding TARC and MCP-1 protein production by keratinocytes. Chemokine induction was shown to be NF-kappaB-mediated. T-cell proliferation was enhanced by the addition of keratinocytes. This was reversed by pretreatment with an anti-GITRL antibody. We conclude that keratinocytes express GITRL, and that through this important co-stimulatory molecule, they have the potential to influence T-cell numbers in the skin through chemokine production and through a direct cell-cell effect on T-cell proliferation.
Collapse
|
28
|
van Olffen RW, Koning N, van Gisbergen KPJM, Wensveen FM, Hoek RM, Boon L, Hamann J, van Lier RAW, Nolte MA. GITR Triggering Induces Expansion of Both Effector and Regulatory CD4+ T Cells In Vivo. THE JOURNAL OF IMMUNOLOGY 2009; 182:7490-500. [DOI: 10.4049/jimmunol.0802751] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|