1
|
Bai M, Shen Q, Wu Y, Ma Z, Wang Y, Chen M, Liu D, Zhou L. Evaluation of transport mechanisms of methotrexate in human choriocarcinoma cell lines by LC-MS/MS. J Pharm Biomed Anal 2024; 247:116268. [PMID: 38823222 DOI: 10.1016/j.jpba.2024.116268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
Methotrexate (MTX) is commonly prescribed as the initial treatment for gestational trophoblastic neoplasia (GTN), but MTX monotherapy may not be effective for high-risk GTN and choriocarcinoma. The cellular uptake of MTX is essential for its pharmacological activity. Thus, our study aimed to investigate the cellular pharmacokinetics and transport mechanisms of MTX in choriocarcinoma cells. For the quantification of MTX concentrations in cellular matrix, a liquid chromatography-tandem mass spectrometry method was created and confirmed initially. MTX accumulation in BeWo, JEG-3, and JAR cells was minimal. Additionally, the mRNA levels of folate receptor α (FRα) and breast cancer resistance protein (BCRP) were relatively high in the three choriocarcinoma cell lines, whereas proton-coupled folate transporter (PCFT), reduced folate carrier (RFC), and organic anion transporter (OAT) 4 were low. Furthermore, the expression of other transporters was either very low or undetectable. Notably, the application of inhibitors and small interfering RNAs (siRNAs) targeting FRα, RFC, and PCFT led to a notable decrease in the accumulation of MTX in BeWo cells. Conversely, the co-administration of multidrug resistance protein 1 (MDR1) and BCRP inhibitors increased MTX accumulation. In addition, inhibitors of OATs and organic-anion transporting polypeptides (OATPs) reduced MTX accumulation, while peptide transporter inhibitors had no effect. Results from siRNA knockdown experiments and transporter overexpression cell models indicated that MTX was not a substrate of nucleoside transporters. In conclusion, the results indicate that FRα and multiple transporters such as PCFT, RFC, OAT4, and OATPs are likely involved in the uptake of MTX, whereas MDR1 and BCRP are implicated in the efflux of MTX from choriocarcinoma cells. These results have implications for predicting transporter-mediated drug interactions and offer potential directions for further research on enhancing MTX sensitivity.
Collapse
Affiliation(s)
- Mengru Bai
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, PR China
| | - Qian Shen
- Key Laboratory for Core Technology of Generic Drug Evaluation National Medical Product Administration, Zhejiang Institute for Food and Drug Control, Hangzhou 310052, PR China
| | - Yong Wu
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, PR China
| | - Zhiyuan Ma
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, PR China
| | - Yuqing Wang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, PR China
| | - Mingyang Chen
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Dan Liu
- Shanghai AB Sciex Analytical Instrument Trading Co., Ltd, Shanghai 200050, PR China
| | - Lin Zhou
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, PR China.
| |
Collapse
|
2
|
Peters GJ, Kathmann I, Giovannetti E, Smid K, Assaraf YG, Jansen G. The role of l-leucovorin uptake and metabolism in the modulation of 5-fluorouracil efficacy and antifolate toxicity. Front Pharmacol 2024; 15:1450418. [PMID: 39234107 PMCID: PMC11371747 DOI: 10.3389/fphar.2024.1450418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024] Open
Abstract
Background L-Leucovorin (l-LV; 5-formyltetrahydrofolate, folinic acid) is a precursor for 5,10-methylenetetrahydrofolate (5,10-CH2-THF), which is important for the potentiation of the antitumor activity of 5-fluorouracil (5FU). LV is also used to rescue antifolate toxicity. LV is commonly administered as a racemic mixture of its l-LV and d-LV stereoisomers. We compared dl-LV with l-LV and investigated whether d-LV would interfere with the activity of l-LV. Methods Using radioactive substrates, we characterized the transport properties of l-LV and d-LV, and compared the efficacy of l-LV with d-LV to potentiate 5FU-mediated thymidylate synthase (TS) inhibition. Using proliferation assays, we investigated their potential to protect cancer cells from cytotoxicity of the antifolates methotrexate, pemetrexed (Alimta), raltitrexed (Tomudex) and pralatrexate (Folotyn). Results l-LV displayed an 8-fold and 3.5-fold higher substrate affinity than d-LV for the reduced folate carrier (RFC/SLC19A1) and proton coupled folate transporter (PCFT/SLC46A1), respectively. In selected colon cancer cell lines, the greatest enhanced efficacy of 5FU was observed for l-LV (2-fold) followed by the racemic mixture, whereas d-LV was ineffective. The cytotoxicity of antifolates in lymphoma and various solid tumor cell lines could be protected very efficiently by l-LV but not by d-LV. This protective effect of l-LV was dependent on cellular RFC expression as corroborated in RFC/PCFT-knockout and RFC/PCFT-transfected cells. Assessment of TS activity in situ showed that TS inhibition by 5FU could be enhanced by l-LV and dl-LV and only partially by d-LV. However, protection from inhibition by various antifolates was solely achieved by l-LV and dl-LV. Conclusion In general l-LV acts similar to the dl-LV formulations, however disparate effects were observed when d-LV and l-LV were used in combination, conceivably by d-LV affecting (anti)folate transport and intracellular metabolism.
Collapse
Affiliation(s)
- Godefridus J Peters
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Ietje Kathmann
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Kees Smid
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Faculty of Biology, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Gerrit Jansen
- Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
3
|
Lücke G. Interplay of a well-known medication and newly discovered transporters driving bacteria-induced inflammation in psoriasis. Allergy 2024; 79:2019-2021. [PMID: 38349022 DOI: 10.1111/all.16056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/05/2024] [Indexed: 07/11/2024]
Affiliation(s)
- Greta Lücke
- Department of Dermatology and Allergy, Hannover Medical School (MHH), Hannover, Germany
| |
Collapse
|
4
|
He Q, Li J. The evolution of folate supplementation - from one size for all to personalized, precision, poly-paths. J Transl Int Med 2023; 11:128-137. [PMID: 37408570 PMCID: PMC10318921 DOI: 10.2478/jtim-2023-0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023] Open
Abstract
Folate is a crucial nutrient that supports physiological functions. Low folate levels is a risk factor for several diseases, including cardiovascular diseases and neural tube defects. The most used folate supplement is folic acid, a synthetic oxidative form, and folic acid grain fortification is a success story of public health. However, the metabolic conversion of folic acid to bioactive tetrahydrofolate requires several enzymes and cofactors. Therefore, these factors influence its bioavailability and efficacy. In contrast, 5-methyltetrahydrofolate is used directly and participates in one-carbon metabolism, and the use of 5-methyltetrahydrofolate as an alternative folate supplement has increased. The metabolism of 5-methyltetrahydrofolate is primarily dependent on the transmembrane transporter, reduced folate carrier (RFC), and the RFC gene SLC19A1 variant is a functional polymorphism that affects folate status indexes. Recent studies demonstrated that the expression of RFC and cystathionine β-synthase, another enzyme required for homocysteine clearance, increases significantly by supplementation with calcitriol (vitamin D3), suggesting that calcitriol intake promotes the bioavailability of folate and has synergistic effects in homocysteine clearance. The advancements in biomedical and cohort studies and clinical trials have enhanced our understanding of the critical roles of folate and the regulation of one-carbon metabolism. We anticipate that the field of folate supplementation is poised to evolve from one size for all to personalized, precision, poly-paths (3Ps), which is a critical measure to meet individual needs, maximize health benefits, and minimize side effects.
Collapse
Affiliation(s)
- Qiangqiang He
- Graduate School at Shenzhen, Tsinghua University, Shenzhen518055, Guangdong Province, China
- Shenzhen Evergreen Medical Institute, Shenzhen518057, Guangdong Province, China
| | - Jianping Li
- Department of Cardiology, Peking University First Hospital, Beijing100871, China
| |
Collapse
|
5
|
MiRNAs in Hematopoiesis and Acute Lymphoblastic Leukemia. Int J Mol Sci 2023; 24:ijms24065436. [PMID: 36982511 PMCID: PMC10049736 DOI: 10.3390/ijms24065436] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 03/14/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common kind of pediatric cancer. Although the cure rates in ALL have significantly increased in developed countries, still 15–20% of patients relapse, with even higher rates in developing countries. The role of non-coding RNA genes as microRNAs (miRNAs) has gained interest from researchers in regard to improving our knowledge of the molecular mechanisms underlying ALL development, as well as identifying biomarkers with clinical relevance. Despite the wide heterogeneity reveled in miRNA studies in ALL, consistent findings give us confidence that miRNAs could be useful to discriminate between leukemia linages, immunophenotypes, molecular groups, high-risk-for-relapse groups, and poor/good responders to chemotherapy. For instance, miR-125b has been associated with prognosis and chemoresistance in ALL, miR-21 has an oncogenic role in lymphoid malignancies, and the miR-181 family can act either as a oncomiR or tumor suppressor in several hematological malignancies. However, few of these studies have explored the molecular interplay between miRNAs and their targeted genes. This review aims to state the different ways in which miRNAs could be involved in ALL and their clinical implications.
Collapse
|
6
|
Boosman RJ, de Rouw N, Huitema ADR, Burgers JA, Ter Heine R. Prediction of the pharmacokinetics of pemetrexed with a low test dose: A proof-of-concept study. Br J Clin Pharmacol 2023; 89:699-704. [PMID: 36053283 DOI: 10.1111/bcp.15520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 08/05/2022] [Accepted: 08/24/2022] [Indexed: 01/18/2023] Open
Abstract
PURPOSE Pemetrexed is a cytotoxic drug used for the treatment of lung cancer and mesothelioma. The use of a low test dosing of cytotoxic drugs may aid in dose individualization without causing harm. The aim of this proof-of-concept study was to assess if the pharmacokinetics (PKs) of a test dose could predict the PKs of a therapeutic pemetrexed dose. METHODS Ten patients received both a low test dose (100 μg) and a therapeutic dose of pemetrexed after which plasma concentrations pemetrexed were measured. PK analysis was performed by means of nonlinear mixed-effects modelling. The predictive performances of test dose clearance and renal function towards a therapeutic dose were assessed. RESULTS The PKs of a pemetrexed test dose were best described by a one-compartment model with linear elimination. A high variability in the administered dose was observed for the test dose, but not for the therapeutic dose. A statistically significant correlation between test dose clearance and therapeutic dose clearance was observed (Spearman's rho: 0.758, P = 0.02). The predictive performance of test dose clearance was worse than renal function: mean predictive error (+95% confidence interval [CI]) 53.9% (50.1-57.6%) vs 19.4% (12.4-26.4%) and normalized root-mean square error (+95% CI) 57.8% (30.5-85.1%) vs 25.7% (20.3-31.0%). CONCLUSION We show that test dosing of pemetrexed is feasible, but there seems no added value for a low test dosing in the dose individualization of pemetrexed.
Collapse
Affiliation(s)
- René J Boosman
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek - The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Nikki de Rouw
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Pharmacy, Jeroen Bosch Hospital, 's-Hertogenbosch, the Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek - The Netherlands Cancer Institute, Amsterdam, the Netherlands.,Department of Clinical Pharmacy, Utrecht University Medical Center, Utrecht University, Utrecht, the Netherlands.,Department of Pharmacology, Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Jacobus A Burgers
- Department of Thoracic Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Rob Ter Heine
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
7
|
Puris E, Fricker G, Gynther M. The Role of Solute Carrier Transporters in Efficient Anticancer Drug Delivery and Therapy. Pharmaceutics 2023; 15:pharmaceutics15020364. [PMID: 36839686 PMCID: PMC9966068 DOI: 10.3390/pharmaceutics15020364] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Transporter-mediated drug resistance is a major obstacle in anticancer drug delivery and a key reason for cancer drug therapy failure. Membrane solute carrier (SLC) transporters play a crucial role in the cellular uptake of drugs. The expression and function of the SLC transporters can be down-regulated in cancer cells, which limits the uptake of drugs into the tumor cells, resulting in the inefficiency of the drug therapy. In this review, we summarize the current understanding of low-SLC-transporter-expression-mediated drug resistance in different types of cancers. Recent advances in SLC-transporter-targeting strategies include the development of transporter-utilizing prodrugs and nanocarriers and the modulation of SLC transporter expression in cancer cells. These strategies will play an important role in the future development of anticancer drug therapies by enabling the efficient delivery of drugs into cancer cells.
Collapse
|
8
|
Newstead S. Structural basis for recognition and transport of folic acid in mammalian cells. Curr Opin Struct Biol 2022; 74:102353. [PMID: 35303537 PMCID: PMC7612623 DOI: 10.1016/j.sbi.2022.102353] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/29/2022] [Accepted: 02/08/2022] [Indexed: 12/19/2022]
Abstract
Structural studies on mammalian vitamin transport lag behind other metabolites. Folates, also known as B9 vitamins, are essential cofactors in one-carbon transfer reactions in biology. Three different systems control folate uptake in the human body; folate receptors function to capture and internalise extracellular folates via endocytosis, whereas two major facilitator superfamily transporters, the reduced folate carrier (RFC; SLC19A1) and proton-coupled folate transporter (PCFT; SLC46A1) control the transport of folates across cellular membranes. Targeting specific folate transporters is being pursued as a route to developing new antifolates with improved pharmacology. Recent structures of the proton-coupled folate transporter, PCFT, revealed key insights into antifolate recognition and the mechanism of proton-coupled transport. Combined with previously determined structures of folate receptors and new predictions for the structure of the RFC, we are now able to develop a structure-based understanding of folate and antifolate recognition to accelerate efforts in antifolate drug development.
Collapse
Affiliation(s)
- Simon Newstead
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK.
| |
Collapse
|
9
|
Do HQ, Bassil CM, Andersen EI, Jansen M. Impact of nanodisc lipid composition on cell-free expression of proton-coupled folate transporter. PLoS One 2021; 16:e0253184. [PMID: 34793461 PMCID: PMC8601550 DOI: 10.1371/journal.pone.0253184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/31/2021] [Indexed: 01/19/2023] Open
Abstract
The Proton-Coupled Folate Transporter (PCFT) is a transmembrane transport protein that controls the absorption of dietary folates in the small intestine. PCFT also mediates uptake of chemotherapeutically used antifolates into tumor cells. PCFT has been identified within lipid rafts observed in phospholipid bilayers of plasma membranes, a micro environment that is altered in tumor cells. The present study aimed at investigating the impact of different lipids within Lipid-protein nanodiscs (LPNs), discoidal lipid structures stabilized by membrane scaffold proteins, to yield soluble PCFT expression in an E. coli lysate-based cell-free transcription/translation system. In the absence of detergents or lipids, we observed PCFT quantitatively as precipitate in this system. We then explored the ability of LPNs to support solubilized PCFT expression when present during in-vitro translation. LPNs consisted of either dimyristoyl phosphatidylcholine (DMPC), palmitoyl-oleoyl phosphatidylcholine (POPC), or dimyristoyl phosphatidylglycerol (DMPG). While POPC did not lead to soluble PCFT expression, both DMPG and DMPC supported PCFT translation directly into LPNs, the latter in a concentration dependent manner. The results obtained through this study provide insights into the lipid preferences of PCFT. Membrane-embedded or solubilized PCFT will enable further studies with diverse biophysical approaches to enhance the understanding of the structure and molecular mechanism of folate transport through PCFT.
Collapse
Affiliation(s)
- Hoa Quynh Do
- Department of Cell Physiology and Molecular Biophysics and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Carla M. Bassil
- Department of Cell Physiology and Molecular Biophysics and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
- The Clark Scholar Program, Texas Tech University, Lubbock, TX, United States of America
| | - Elizabeth I. Andersen
- Department of Cell Physiology and Molecular Biophysics and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Michaela Jansen
- Department of Cell Physiology and Molecular Biophysics and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| |
Collapse
|
10
|
Mechanisms, Management and Prevention of Pemetrexed-Related Toxicity. Drug Saf 2021; 44:1271-1281. [PMID: 34741752 DOI: 10.1007/s40264-021-01135-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 12/17/2022]
Abstract
Pemetrexed is a cytostatic antifolate drug and a cornerstone in the treatment of lung cancer. Although generally well tolerated, a substantial part of the patient population experiences dose-limiting or even treatment-limiting toxicities. These include mucositis, skin problems, fatigue, renal toxicity, and neutropenia. Several studies confirmed that pemetrexed pharmacokinetics can serve as a prognostic factor for the development of toxicity, especially for neutropenia. Preventing and managing toxicity of pemetrexed can help to ensure durable treatment. Several evidence-based strategies are already implemented in clinical care. With the introduction of standard vitamin supplementation and dexamethasone, the incidence of hematological toxicity and skin reactions substantially decreased. In the case of high risk for toxicity, granulocyte colony-stimulating factor can be used to prevent severe hematological toxicity. Moreover, high-dose folinic acid can resolve severe pemetrexed-induced toxicity. There are several experimental options to prevent or manage pemetrexed-related toxicity, such as the use of standard folinic acid, hemodialysis, antidotes such as thymidine, hypoxanthine, and glucarpidase, and the use of therapeutic drug monitoring. These strategies still need clinical evaluation before implementation, but could enable treatment with pemetrexed for patients who are at risk for toxicity, such as in renal impairment.
Collapse
|
11
|
Parker JL, Deme JC, Kuteyi G, Wu Z, Huo J, Goldman ID, Owens RJ, Biggin PC, Lea SM, Newstead S. Structural basis of antifolate recognition and transport by PCFT. Nature 2021; 595:130-134. [PMID: 34040256 PMCID: PMC9990147 DOI: 10.1038/s41586-021-03579-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/23/2021] [Indexed: 12/20/2022]
Abstract
Folates (also known as vitamin B9) have a critical role in cellular metabolism as the starting point in the synthesis of nucleic acids, amino acids and the universal methylating agent S-adenylsmethionine1,2. Folate deficiency is associated with a number of developmental, immune and neurological disorders3-5. Mammals cannot synthesize folates de novo; several systems have therefore evolved to take up folates from the diet and distribute them within the body3,6. The proton-coupled folate transporter (PCFT) (also known as SLC46A1) mediates folate uptake across the intestinal brush border membrane and the choroid plexus4,7, and is an important route for the delivery of antifolate drugs in cancer chemotherapy8-10. How PCFT recognizes folates or antifolate agents is currently unclear. Here we present cryo-electron microscopy structures of PCFT in a substrate-free state and in complex with a new-generation antifolate drug (pemetrexed). Our results provide a structural basis for understanding antifolate recognition and provide insights into the pH-regulated mechanism of folate transport mediated by PCFT.
Collapse
Affiliation(s)
- Joanne L Parker
- Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Justin C Deme
- Dunn School of Pathology, University of Oxford, Oxford, UK
- Central Oxford Structural Molecular Imaging Centre, University of Oxford, Oxford, UK
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Gabriel Kuteyi
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Zhiyi Wu
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Jiandong Huo
- Structural Biology, The Rosalind Franklin Institute, Didcot, UK
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Protein Production UK, The Research Complex at Harwell, Didcot, UK
| | - I David Goldman
- Departments of Molecular Pharmacology and Medicine, Albert Einstein College of Medicine, New York, NY, USA
| | - Raymond J Owens
- Structural Biology, The Rosalind Franklin Institute, Didcot, UK
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Protein Production UK, The Research Complex at Harwell, Didcot, UK
| | - Philip C Biggin
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Susan M Lea
- Dunn School of Pathology, University of Oxford, Oxford, UK.
- Central Oxford Structural Molecular Imaging Centre, University of Oxford, Oxford, UK.
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
| | - Simon Newstead
- Department of Biochemistry, University of Oxford, Oxford, UK.
- The Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.
| |
Collapse
|
12
|
Razaghi A, Zickler AM, Spallholz J, Kirsch G, Björnstedt M. Selenofolate inhibits the proliferation of IGROV1 cancer cells independently from folate receptor alpha. Heliyon 2021; 7:e07254. [PMID: 34169173 PMCID: PMC8209087 DOI: 10.1016/j.heliyon.2021.e07254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/07/2021] [Accepted: 06/03/2021] [Indexed: 12/28/2022] Open
Abstract
Cancer is one of the main causes of human mortality worldwide and novel chemotherapeutics are required due to the limitations of conventional cancer therapies. For example, using redox selenium compounds as novel chemotherapeutics seem to be very promising. The objective of this study was to explore if folate could be used as a carrier to deliver a newly synthesised selenium derivative selenofolate into cancer cells. Particularly, the cytotoxic effects of this selenofolate compound were investigated in a variety of cancer cell types including lung, liver, and cervical cancers and specifically IGROV1 cells. Our results showed that selenofolate inhibits the growth of cancer cells in-vitro. However, despite the expectations, folate receptor alpha (FRα) was not involved in the transportation of selenofolate compound into the cells i.e. growth inhibition was independent of FRα, suggesting that multiple transporters (e.g. reduced folate carrier-1) are possibly involved in the delivery and internalisation of folate in IGROV1 cells. Additionally, selenofolate did not exert cell death through apoptosis. Instead, anti-proliferative activity showed to be the main cause of growth inhibition of selenolofate in the IGROV1 cell line. In conclusion, selenofolate inhibits the growth of cancer cells and thus, may be explored further as a potential chemotherapeutic agent.
Collapse
Affiliation(s)
- Ali Razaghi
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University-Hospital, SE-14152, Stockholm, Sweden
| | - Antje Maria Zickler
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University-Hospital, SE-14152, Stockholm, Sweden
| | - Julian Spallholz
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University-Hospital, SE-14152, Stockholm, Sweden
| | - Gilbert Kirsch
- Université de Lorraine, CNRS, L2CM, F-57000, Metz, France
| | - Mikael Björnstedt
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University-Hospital, SE-14152, Stockholm, Sweden
- Corresponding author.
| |
Collapse
|
13
|
A Role for Folate in Microbiome-Linked Control of Autoimmunity. J Immunol Res 2021; 2021:9998200. [PMID: 34104654 PMCID: PMC8159645 DOI: 10.1155/2021/9998200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/04/2021] [Indexed: 02/03/2023] Open
Abstract
The microbiome exerts considerable control over immune homeostasis and influences susceptibility to autoimmune and autoinflammatory disease (AD/AID) such as inflammatory bowel disease (IBD), multiple sclerosis (MS), type 1 diabetes (T1D), psoriasis, and uveitis. In part, this is due to direct effects of the microbiome on gastrointestinal (GI) physiology and nutrient transport, but also to indirect effects on immunoregulatory controls, including induction and stabilization of T regulatory cells (T reg). Secreted bacterial metabolites such as short-chain fatty acids (SCFA) are under intense investigation as mediators of these effects. In contrast, folate (vitamin B9), an essential micronutrient, has attracted less attention, possibly because it exerts global physiological effects which are difficult to differentiate from specific effects on the immune system. Here, we review the role of folate in AD/AID with some emphasis on sight-threatening autoimmune uveitis. Since folate is required for the generation and maintenance of T reg , we propose that one mechanism for microbiome-based control of AD/AID is via folate-dependent induction of GI tract T reg , particularly colonic T reg, via anergic T cells (T an). Hence, folate supplementation has potential prophylactic and/or therapeutic benefit in AID/AD.
Collapse
|
14
|
O'Connor C, Wallace-Povirk A, Ning C, Frühauf J, Tong N, Gangjee A, Matherly LH, Hou Z. Folate transporter dynamics and therapy with classic and tumor-targeted antifolates. Sci Rep 2021; 11:6389. [PMID: 33737637 PMCID: PMC7973545 DOI: 10.1038/s41598-021-85818-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/05/2021] [Indexed: 01/03/2023] Open
Abstract
There are three major folate uptake systems in human tissues and tumors, including the reduced folate carrier (RFC), folate receptors (FRs) and proton-coupled folate transporter (PCFT). We studied the functional interrelationships among these systems for the novel tumor-targeted antifolates AGF94 (transported by PCFT and FRs but not RFC) and AGF102 (selective for FRs) versus the classic antifolates pemetrexed, methotrexate and PT523 (variously transported by FRs, PCFT and RFC). We engineered HeLa cell models to express FRα or RFC under control of a tetracycline-inducible promoter with or without constitutive PCFT. We showed that cellular accumulations of extracellular folates were determined by the type and levels of the major folate transporters, with PCFT and RFC prevailing over FRα, depending on expression levels and pH. Based on patterns of cell proliferation in the presence of the inhibitors, we established transport redundancy for RFC and PCFT in pemetrexed uptake, and for PCFT and FRα in AGF94 uptake; uptake by PCFT predominated for pemetrexed and FRα for AGF94. For methotrexate and PT523, uptake by RFC predominated even in the presence of PCFT or FRα. For both classic (methotrexate, PT523) and FRα-targeted (AGF102) antifolates, anti-proliferative activities were antagonized by PCFT, likely due to its robust activity in mediating folate accumulation. Collectively, our findings describe a previously unrecognized interplay among the major folate transport systems that depends on transporter levels and extracellular pH, and that determines their contributions to the uptake and anti-tumor efficacies of targeted and untargeted antifolates.
Collapse
Affiliation(s)
- Carrie O'Connor
- Departments of Oncology, Wayne State University School of Medicine, 421 E. Canfield, Detroit, MI, 48201, USA
| | - Adrianne Wallace-Povirk
- Departments of Oncology, Wayne State University School of Medicine, 421 E. Canfield, Detroit, MI, 48201, USA
| | - Changwen Ning
- Departments of Oncology, Wayne State University School of Medicine, 421 E. Canfield, Detroit, MI, 48201, USA
| | - Josephine Frühauf
- Departments of Oncology, Wayne State University School of Medicine, 421 E. Canfield, Detroit, MI, 48201, USA
| | - Nian Tong
- Division of Medicinal Chemistry, Duquesne University, Pittsburgh, PA, USA
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Duquesne University, Pittsburgh, PA, USA
| | - Larry H Matherly
- Departments of Oncology, Wayne State University School of Medicine, 421 E. Canfield, Detroit, MI, 48201, USA.
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA.
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA.
| | - Zhanjun Hou
- Departments of Oncology, Wayne State University School of Medicine, 421 E. Canfield, Detroit, MI, 48201, USA.
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA.
| |
Collapse
|
15
|
Folylpoly-ɣ-glutamate synthetase association to the cytoskeleton: Implications to folate metabolon compartmentalization. J Proteomics 2021; 239:104169. [PMID: 33676037 DOI: 10.1016/j.jprot.2021.104169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/03/2021] [Accepted: 02/19/2021] [Indexed: 11/23/2022]
Abstract
Folates are essential for nucleotide biosynthesis, amino acid metabolism and cellular proliferation. Following carrier-mediated uptake, folates are polyglutamylated by folylpoly-ɣ-glutamate synthetase (FPGS), resulting in their intracellular retention. FPGS appears as a long isoform, directed to mitochondria via a leader sequence, and a short isoform reported as a soluble cytosolic protein (cFPGS). However, since folates are labile and folate metabolism is compartmentalized, we herein hypothesized that cFPGS is associated with the cytoskeleton, to couple folate uptake and polyglutamylation and channel folate polyglutamates to metabolon compartments. We show that cFPGS is a cytoskeleton-microtubule associated protein: Western blot analysis revealed that endogenous cFPGS is associated with the insoluble cellular fraction, i.e., cytoskeleton and membranes, but not with the cytosol. Mass spectrometry analysis identified the putative cFPGS interactome primarily consisting of microtubule subunits and cytoskeletal motor proteins. Consistently, immunofluorescence microscopy with cytosol-depleted cells demonstrated the association of cFPGS with the cytoskeleton and unconventional myosin-1c. Furthermore, since anti-microtubule, anti-actin cytoskeleton, and coatomer dissociation-inducing agents yielded perinuclear pausing of cFPGS, we propose an actin- and microtubule-dependent transport of cFPGS between the ER-Golgi and the plasma membrane. These novel findings support the coupling of folate transport with polyglutamylation and folate channeling to intracellular metabolon compartments. SIGNIFICANCE: FPGS, an essential enzyme catalyzing intracellular folate polyglutamylation and efficient retention, was described as a soluble cytosolic enzyme in the past 40 years. However, based on the lability of folates and the compartmentalization of folate metabolism and nucleotide biosynthesis, we herein hypothesized that cytoplasmic FPGS is associated with the cytoskeleton, to couple folate transport and polyglutamylation as well as channel folate polyglutamates to biosynthetic metabolon compartments. Indeed, using complementary techniques including Mass-spectrometry proteomics and fluorescence microscopy, we show that cytoplasmic FPGS is associated with the cytoskeleton and unconventional myosin-1c. This novel cytoskeletal localization of cytoplasmic FPGS supports the dynamic channeling of polyglutamylated folates to metabolon compartments to avoid oxidation and intracellular dilution of folates, while enhancing folate-dependent de novo biosynthesis of nucleotides and DNA/protein methylation.
Collapse
|
16
|
Mölzer C, Heissigerova J, Wilson HM, Kuffova L, Forrester JV. Immune Privilege: The Microbiome and Uveitis. Front Immunol 2021; 11:608377. [PMID: 33569055 PMCID: PMC7868421 DOI: 10.3389/fimmu.2020.608377] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/04/2020] [Indexed: 02/03/2023] Open
Abstract
Immune privilege (IP), a term introduced to explain the unpredicted acceptance of allogeneic grafts by the eye and the brain, is considered a unique property of these tissues. However, immune responses are modified by the tissue in which they occur, most of which possess IP to some degree. The eye therefore displays a spectrum of IP because it comprises several tissues. IP as originally conceived can only apply to the retina as it contains few tissue-resident bone-marrow derived myeloid cells and is immunologically shielded by a sophisticated barrier – an inner vascular and an outer epithelial barrier at the retinal pigment epithelium. The vascular barrier comprises the vascular endothelium and the glia limitans. Immune cells do not cross the blood-retinal barrier (BRB) despite two-way transport of interstitial fluid, governed by tissue oncotic pressure. The BRB, and the blood-brain barrier (BBB) mature in the neonatal period under signals from the expanding microbiome and by 18 months are fully established. However, the adult eye is susceptible to intraocular inflammation (uveitis; frequency ~200/100,000 population). Uveitis involving the retinal parenchyma (posterior uveitis, PU) breaches IP, while IP is essentially irrelevant in inflammation involving the ocular chambers, uveal tract and ocular coats (anterior/intermediate uveitis/sclerouveitis, AU). Infections cause ~50% cases of AU and PU but infection may also underlie the pathogenesis of immune-mediated “non-infectious” uveitis. Dysbiosis accompanies the commonest form, HLA-B27–associated AU, while latent infections underlie BRB breakdown in PU. This review considers the pathogenesis of uveitis in the context of IP, infection, environment, and the microbiome.
Collapse
Affiliation(s)
- Christine Mölzer
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Jarmila Heissigerova
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Heather M Wilson
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Lucia Kuffova
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Eye Clinic, Aberdeen Royal Infirmary, Aberdeen, United Kingdom
| | - John V Forrester
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
17
|
Halik PK, Koźmiński P, Gniazdowska E. Perspectives of Methotrexate-Based Radioagents for Application in Nuclear Medicine. Mol Pharm 2020; 18:33-43. [PMID: 33251808 PMCID: PMC7788572 DOI: 10.1021/acs.molpharmaceut.0c00740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Methotrexate is a gold standard among
disease modifying antirheumatic
drugs and is also extensively used clinically in combination with
oncological therapies. Thus, it is not surprising that nuclear medicine
found an interest in methotrexate in the search for diagnostic and
therapeutic solutions. Numerous folate-related radiopharmaceuticals
have been proposed for nuclear medicine purposes; however, methotrexate
radioagents represent only a minority. This imbalance results from
the fact that methotrexate has significantly weaker affinity for folate
receptors than folic acid. Nevertheless, radiolabeled methotrexate
agents utilized as a tool for early detection and imaging of inflammation
in rheumatoid arthritis patients gave promising results. Similarly,
the use of multimodal MTX-release nanosystems may find potential applications
in radiosynovectomy and theranostic approaches in folate receptor
positive cancers.
Collapse
Affiliation(s)
- Paweł Krzysztof Halik
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| | - Przemysław Koźmiński
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| | - Ewa Gniazdowska
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| |
Collapse
|
18
|
Peters GJ, van Gemert FPA, Kathmann I, Reddy G, Cillessen SAGM, Jansen G. Schedule-Dependent Synergy Between the Histone Deacetylase Inhibitor Belinostat and the Dihydrofolate Reductase Inhibitor Pralatrexate in T-and B-cell Lymphoma Cells in vitro. Front Cell Dev Biol 2020; 8:577215. [PMID: 33163492 PMCID: PMC7581941 DOI: 10.3389/fcell.2020.577215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/09/2020] [Indexed: 11/21/2022] Open
Abstract
Pralatrexate (Folotyn; PLX) and belinostat (Beleodaq; BLS) are registered for the treatment of patients with peripheral T-cell lymphoma (PTCL) and are being considered for other lymphomas. In this study we investigated whether BLS had the ability to potentiate the cytotoxicity of PLX. A panel of lymphoma cell lines was used for the combination studies: the B-cell SUDHL-4, SUDHL-5, HT, Jeko-1 and T-cell Karpas-299 and Hut-78. Uptake of PLX was mediated by the reduced folate carrier (RFC). PLX showed a 6-fold better RFC substrate affinity compared to methotrexate, and 2-fold better than levoleucovorin (l-LV). Sensitivity expressed as the concentration that resulted in 50% growth inhibition (IC50) after 72 hr exposure to PLX varied from 2.8 to 20 nM and for BLS from 72 to 233 nM, independent of the background of the cell lines. The interaction between BLS and PLX was studied using the median-drug effect analysis. At a fixed molar ratio between the drugs based on the IC50 concentration the average combination index (CI) for all cell lines showed additivity (CI: around 1.0). In three selected cell lines (SUDHL-4, SUDHL-5, and HT) sequential exposure (24 h pretreatment with BLS, followed by 48 h to PLX + BLS), did not improve interaction (CI: 0.9–1.4). As an alternative approach a non-fixed ratio was used by exposing SUDHL-4, SUDHL-5, and HT cells to IC25 concentrations of either BLS or PLX in combination with the other drug. Exposure to IC25 of PLX did not decrease the IC50 for BLS (CI from 0.6–1.2), but exposure to IC25 of BLS markedly increased PLX sensitivity (low CIs from 0.40 to 0.66). Mechanistic studies focused on induction of apoptosis, and showed cleavage of predominantly caspase-9 in HT and SUDHL-4 cells for both drugs at their IC50s, being similar in the combination setting. Moreover, at these concentrations, the drugs were shown to confer an S-phase arrest. In conclusion, the combination of PLX and BLS showed additivity in various lymphoma cell lines, with a schedule-dependent synergism in B-cell lymphoma. Based on these data, proficient inhibition of HDAC activity by BLS holds promise in sensitization of tumor cells to PLX.
Collapse
Affiliation(s)
- Godefridus J Peters
- Department of Medical Oncology, Amsterdam UMC, VU University Medical Center Amsterdam, Amsterdam, Netherlands.,Department of Biochemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Frank P A van Gemert
- Department of Medical Oncology, Amsterdam UMC, VU University Medical Center Amsterdam, Amsterdam, Netherlands
| | - Ietje Kathmann
- Department of Medical Oncology, Amsterdam UMC, VU University Medical Center Amsterdam, Amsterdam, Netherlands
| | - Guru Reddy
- Spectrum Pharmaceuticals, Irvine, CA, United States
| | - Saskia A G M Cillessen
- Department of Pathology, Amsterdam UMC, VU University Medical Center Amsterdam, Amsterdam, Netherlands
| | - Gerrit Jansen
- Amsterdam Rheumatology and Immunology Center, Amsterdam UMC, VU University Medical Center Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
19
|
Zhan HQ, Najmi M, Lin K, Aluri S, Fiser A, Goldman ID, Zhao R. A proton-coupled folate transporter mutation causing hereditary folate malabsorption locks the protein in an inward-open conformation. J Biol Chem 2020; 295:15650-15661. [PMID: 32893190 DOI: 10.1074/jbc.ra120.014757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/26/2020] [Indexed: 11/06/2022] Open
Abstract
The proton-coupled folate transporter (PCFT, SLC46A1) is required for folate intestinal absorption and transport across the choroid plexus. Recent work has identified a F392V mutation causing hereditary folate malabsorption. However, the residue properties responsible for this loss of function remains unknown. Using site-directed mutagenesis, we observed complete loss of function with charged (Lys, Asp, and Glu) and polar (Thr, Ser, and Gln) Phe-392 substitutions and minimal function with some neutral substitutions; however, F392M retained full function. Using the substituted-cysteine accessibility method (with N-biotinyl aminoethyl methanethiosulfonate labeling), Phe-392 mutations causing loss of function, although preserving membrane expression and trafficking, also resulted in loss of accessibility of the substituted cysteine in P314C-PCFT located within the aqueous translocation pathway. F392V function and accessibility of the P314C cysteine were restored by insertion of a G305L (suppressor) mutation. A S196L mutation localized in proximity to Gly-305 by homology modeling was inactive. However, when inserted into the inactive F392V scaffold, function was restored (mutually compensatory mutations), as was accessibility of the P314C cysteine residue. Reduced function, documented with F392H PCFT, was due to a 15-fold decrease in methotrexate influx V max, accompanied by a decreased influx Kt (4.5-fold) and Ki (3-fold). The data indicate that Phe-392 is required for rapid oscillation of the carrier among its conformational states and suggest that this is achieved by dampening affinity of the protein for its folate substrates. F392V and other inactivating Phe-392 PCFT mutations lock the protein in its inward-open conformation. Reach (length) and hydrophobicity of Phe-392 appear to be features required for full activity.
Collapse
Affiliation(s)
- He-Qin Zhan
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA; Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Mitra Najmi
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kai Lin
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA; Air Force Medical Center, People's Liberation Army, Beijing, China
| | - Srinivas Aluri
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - I David Goldman
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA.
| | - Rongbao Zhao
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
20
|
Impact of hypoxia on chemoresistance of mesothelioma mediated by the proton-coupled folate transporter, and preclinical activity of new anti-LDH-A compounds. Br J Cancer 2020; 123:644-656. [PMID: 32493992 PMCID: PMC7434895 DOI: 10.1038/s41416-020-0912-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/12/2020] [Accepted: 05/07/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Expression of proton-coupled folate transporter (PCFT) is associated with survival of mesothelioma patients treated with pemetrexed, and is reduced by hypoxia, prompting studies to elucidate their correlation. METHODS Modulation of glycolytic gene expression was evaluated by PCR arrays in tumour cells and primary cultures growing under hypoxia, in spheroids and after PCFT silencing. Inhibitors of lactate dehydrogenase (LDH-A) were tested in vitro and in vivo. LDH-A expression was determined in tissue microarrays of radically resected malignant pleural mesothelioma (MPM, N = 33) and diffuse peritoneal mesothelioma (DMPM, N = 56) patients. RESULTS Overexpression of hypoxia marker CAIX was associated with low PCFT expression and decreased MPM cell growth inhibition by pemetrexed. Through integration of PCR arrays in hypoxic cells and spheroids and following PCFT silencing, we identified the upregulation of LDH-A, which correlated with shorter survival of MPM and DMPM patients. Novel LDH-A inhibitors enhanced spheroid disintegration and displayed synergistic effects with pemetrexed in MPM and gemcitabine in DMPM cells. Studies with bioluminescent hypoxic orthotopic and subcutaneous DMPM athymic-mice models revealed the marked antitumour activity of the LDH-A inhibitor NHI-Glc-2, alone or combined with gemcitabine. CONCLUSIONS This study provides novel insights into hypoxia/PCFT-dependent chemoresistance, unravelling the potential prognostic value of LDH-A, and demonstrating the preclinical activity of LDH-A inhibitors.
Collapse
|
21
|
Liang J, Lu T, Chen Z, Zhan C, Wang Q. Mechanisms of resistance to pemetrexed in non-small cell lung cancer. Transl Lung Cancer Res 2019; 8:1107-1118. [PMID: 32010588 DOI: 10.21037/tlcr.2019.10.14] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Currently, lung cancer has remained the most common cause of cancer death while non-small cell lung cancer (NSCLC) accounts for the most of all lung cancer cases. Regardless of multiple existing managements, chemotherapy regimens are still the mainstay of treatment for NSCLC, where pemetrexed has shown cytotoxic activity and has increasingly been used, especially for advanced cases. However, chemo-resistance may inhibit clinical efficacy after long-term use. Mechanisms responsible for chemo-resistance to pemetrexed in NSCLC are plethoric but can be separated into two categories to be discussed: tumor cells and their interactions with drugs. Phenomena relevant to tumor cells such as oncogene or oncoprotein alterations, DNA synthesis, DNA repair, and tumor cell biology behavior are discussed, as well as processes associated with drug dynamics, including drug uptake, drug elimination, and antifolate polyglutamylation. This review will focus on clinical trials and the basic biomedical mechanisms of NSCLC treated with pemetrexed and will describe the underlying mechanisms of resistance to facilitate more efficient clinical therapies to treat patients.
Collapse
Affiliation(s)
- Jiaqi Liang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Tao Lu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhencong Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
22
|
Tozawa Y, Abdrabou SSMA, Nogawa-Chida N, Nishiuchi R, Ishida T, Suzuki Y, Sano H, Kobayashi R, Kishimoto K, Ohara O, Imai K, Naruto T, Kobayashi K, Ariga T, Yamada M. A deep intronic mutation of c.1166-285 T > G in SLC46A1 is shared by four unrelated Japanese patients with hereditary folate malabsorption (HFM). Clin Immunol 2019; 208:108256. [DOI: 10.1016/j.clim.2019.108256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 02/07/2023]
|
23
|
Samodelov SL, Gai Z, Kullak-Ublick GA, Visentin M. Renal Reabsorption of Folates: Pharmacological and Toxicological Snapshots. Nutrients 2019; 11:nu11102353. [PMID: 31581752 PMCID: PMC6836044 DOI: 10.3390/nu11102353] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 01/16/2023] Open
Abstract
Folates are water-soluble B9 vitamins that serve as one-carbon donors in the de novo synthesis of thymidylate and purines, and in the conversion of homocysteine to methionine. Due to their key roles in nucleic acid synthesis and in DNA methylation, inhibiting the folate pathway is still one of the most efficient approaches for the treatment of several tumors. Methotrexate and pemetrexed are the most prescribed antifolates and are mainly used in the treatment of acute myeloid leukemia, osteosarcoma, and lung cancers. Normal levels of folates in the blood are maintained not only by proper dietary intake and intestinal absorption, but also by an efficient renal reabsorption that seems to be primarily mediated by the glycosylphosphatidylinositol- (GPI) anchored protein folate receptor α (FRα), which is highly expressed at the brush-border membrane of proximal tubule cells. Folate deficiency due to malnutrition, impaired intestinal absorption or increased urinary elimination is associated with severe hematological and neurological deficits. This review describes the role of the kidneys in folate homeostasis, the molecular basis of folate handling by the kidneys, and the use of high dose folic acid as a model of acute kidney injury. Finally, we provide an overview on the development of folate-based compounds and their possible therapeutic potential and toxicological ramifications.
Collapse
Affiliation(s)
- Sophia L Samodelov
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland.
| | - Zhibo Gai
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland.
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland.
- Mechanistic Safety, CMO & Patient Safety, Global Drug Development, Novartis Pharma, 4056 Basel, Switzerland.
| | - Michele Visentin
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland.
| |
Collapse
|
24
|
Regulation of differential proton-coupled folate transporter gene expression in human tumors: transactivation by KLF15 with NRF-1 and the role of Sp1. Biochem J 2019; 476:1247-1266. [PMID: 30914440 DOI: 10.1042/bcj20180394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 03/07/2019] [Accepted: 03/26/2019] [Indexed: 12/18/2022]
Abstract
Tumors can be therapeutically targeted with novel antifolates (e.g. AGF94) that are selectively transported by the human proton-coupled folate transporter (hPCFT). Studies were performed to determine the transcription regulation of hPCFT in tumors and identify possible mechanisms that contribute to the highly disparate levels of hPCFT in HepG2 versus HT1080 tumor cells. Transfection of hPCFT-null HT1080 cells with hPCFT restored transport and sensitivity to AGF94 Progressive deletions of the hPCFT promoter construct (-2005 to +96) and reporter gene assays in HepG2 and HT1080 cells confirmed differences in hPCFT transactivation and localized a minimal promoter to between positions -50 and +96. The minimal promoter included KLF15, GC-Box and NRF-1 cis-binding elements whose functional importance was confirmed by promoter deletions and mutations of core consensus sequences and reporter gene assays. In HepG2 cells, NRF-1, KLF15 and Sp1 transcripts were increased over HT1080 cells by ∼5.1-, ∼44-, and ∼2.4-fold, respectively. In Drosophila SL2 cells, transfection with KLF15 and NRF-1 synergistically activated the hPCFT promoter; Sp1 was modestly activating or inhibitory. Chromatin immunoprecipitation and electrophoretic mobility shift assay (EMSA) and supershifts confirmed differential binding of KLF15, Sp1, and NRF-1 to the hPCFT promoter in HepG2 and HT1080 cells that paralleled hPCFT levels. Treatment of HT1080 nuclear extracts (NE) with protein kinase A increased Sp1 binding to its consensus sequence by EMSA, suggesting a role for Sp1 phosphorylation in regulating hPCFT transcription. A better understanding of determinants of hPCFT transcriptional control may identify new therapeutic strategies for cancer by modulating hPCFT levels in combination with hPCFT-targeted antifolates.
Collapse
|
25
|
Zhang G, Zeng R, Wang K, A Y, Li L, Gong K. Clinical efficacy and safety evaluation of pemetrexed combined with radiotherapy in treatment of patients with lung adenocarcinoma brain metastasis. Oncol Lett 2019; 17:2874-2880. [PMID: 30854063 PMCID: PMC6365961 DOI: 10.3892/ol.2019.9894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/18/2018] [Indexed: 11/14/2022] Open
Abstract
Clinical efficacy and adverse reactions of pemetrexed combined with stereotactic gamma-ray radiotherapy in the treatment of patients with lung adenocarcinoma brain metastasis in The First People's Hospital of Yunnan Province were evaluated. A total of 67 patients with lung adenocarcinoma brain metastasis in experimental group were treated with simple pemetrexed chemotherapy, and then with radiotherapy, followed by pemetrexed chemotherapy. Their treatment results were compared with those of 53 patients treated with simple gamma knife in control group. The results were analyzed by comparing the clinical efficacy, side reactions, serum level changes, and survival between the two groups. Among 67 patients in the experimental group, there were 16 cases of complete response (CR), 39 cases of partial response (PR), 7 cases of stable disease (SD) and 5 cases of progressive disease (PD), with an effective rate of 82.09% (55/67) and a tumor local control rate of 92.54% (62/67). Among 53 patients in the control group, there were 13 cases of CR, 20 cases of PR, 9 cases of SD and 11 cases of PD, with an effective rate of 62.26% (33/53) and a tumor local control rate of 79.25% (42/53). There were statistically significant differences in the effective rate and local control rate between the two groups (P<0.05). The 6-, 12- and 24-month survival rates in experimental group were higher than those in control group (P<0.05). The main adverse reactions after pemetrexed combined with radiotherapy were lower than those after simple radiotherapy (P<0.05). The expression levels of the tumor markers carcinoembryonic antigen (CEA) and cytokeratin fragment antigen 21-1 (CYFRA21-1) in the two groups of patients after treatment were lower than those before treatment (P<0.05). After treatment, the expression levels of serum CEA and CYFRA21-1 in the experimental group were significantly lower than those in the control group (P<0.05). Pemetrexed combined with radiotherapy in the treatment of lung adenocarcinoma brain metastasis is more effective than simple radiotherapy, with lighter adverse reactions, worthy of clinical application and promotion.
Collapse
Affiliation(s)
- Guoqiao Zhang
- Department of Oncology, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, P.R. China
| | - Rong Zeng
- Department of Oncology, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, P.R. China
| | - Kai Wang
- Department of Oncology, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, P.R. China
| | - Yinzhuoyang A
- Department of Oncology, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, P.R. China
| | - Linhai Li
- Department of General Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, P.R. China
| | - Kunmei Gong
- Department of General Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
26
|
Aluri S, Zhao R, Lin K, Shin DS, Fiser A, Goldman ID. Substitutions that lock and unlock the proton-coupled folate transporter (PCFT-SLC46A1) in an inward-open conformation. J Biol Chem 2019; 294:7245-7258. [PMID: 30858177 DOI: 10.1074/jbc.ra118.005533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 03/06/2019] [Indexed: 11/06/2022] Open
Abstract
The proton-coupled folate transporter (PCFT) mediates intestinal absorption of folates and their transport from blood to cerebrospinal fluid across the choroid plexus. Substitutions at Asp-109 in the first intracellular loop between the first and second transmembrane domains (TMDs) abolish PCFT function, but protein expression and trafficking to the cell membrane are retained. Here, we used site-directed mutagenesis, the substituted-cysteine accessibility method, functional analyses, and homology modeling to determine whether the D109A substitution locks PCFT in one of its conformational states. Cys-substituted residues lining the PCFT aqueous translocation pathway and accessible in WT PCFT to the membrane-impermeable cysteine-biotinylation reagent, MTSEA-biotin, lost accessibility when introduced into the D109A scaffold. Substitutions at Gly-305 located exofacially within the eighth TMD, particularly with bulky residues, when introduced into the D109A scaffold largely restored function and MTSEA-biotin accessibility to Cys-substituted residues within the pathway. Likewise, Ser-196 substitution in the fifth TMD, predicted by homology modeling to be in proximity to Gly-305, also partially restored function found in solute transporters, is critical to oscillation of the carrier among its conformational states. Substitutions at Asp-109 and Gly-112 lock PCFT in an inward-open conformation, resulting in the loss of function. However, the integrity of the locked protein is preserved, indicated by the restoration of function after insertion of a second "unlocking" mutation. and accessibility. Similarly, the inactivating G112K substitution within the first intracellular loop was partially reactivated by introducing the G305L substitution. These data indicate that the first intracellular loop, with a sequence identical to "motif A" (GXXXDXXGR(R/K)).
Collapse
Affiliation(s)
| | | | - Kai Lin
- From the Departments of Pharmacology.,the Air Force Medical Center, PLA, Beijing 100142, China
| | | | - Andras Fiser
- Systems and Computational Biology, and.,Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461 and
| | | |
Collapse
|
27
|
Ravindra M, Wilson MR, Tong N, O'Connor C, Karim M, Polin L, Wallace-Povirk A, White K, Kushner J, Hou Z, Matherly LH, Gangjee A. Fluorine-Substituted Pyrrolo[2,3- d]Pyrimidine Analogues with Tumor Targeting via Cellular Uptake by Folate Receptor α and the Proton-Coupled Folate Transporter and Inhibition of de Novo Purine Nucleotide Biosynthesis. J Med Chem 2018; 61:4228-4248. [PMID: 29701475 DOI: 10.1021/acs.jmedchem.8b00408] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Novel fluorinated 2-amino-4-oxo-6-substituted pyrrolo[2,3- d]pyrimidine analogues 7-12 were synthesized and tested for selective cellular uptake by folate receptors (FRs) α and β or the proton-coupled folate transporter (PCFT) and for antitumor efficacy. Compounds 8, 9, 11, and 12 showed increased in vitro antiproliferative activities (∼11-fold) over the nonfluorinated analogues 2, 3, 5, and 6 toward engineered Chinese hamster ovary and HeLa cells expressing FRs or PCFT. Compounds 8, 9, 11, and 12 also inhibited proliferation of IGROV1 and A2780 epithelial ovarian cancer cells; in IGROV1 cells with knockdown of FRα, 9, 11, and 12 showed sustained inhibition associated with uptake by PCFT. All compounds inhibited glycinamide ribonucleotide formyltransferase, a key enzyme in the de novo purine biosynthesis pathway. Molecular modeling studies validated in vitro cell-based results. NMR evidence supports the presence of an intramolecular fluorine-hydrogen bond. Potent in vivo efficacy of 11 was established with IGROV1 xenografts in severe compromised immunodeficient mice.
Collapse
Affiliation(s)
- Manasa Ravindra
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences , Duquesne University , 600 Forbes Avenue , Pittsburgh , Pennsylvania 15282 , United States
| | - Mike R Wilson
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences , Duquesne University , 600 Forbes Avenue , Pittsburgh , Pennsylvania 15282 , United States.,Department of Oncology , Wayne State University School of Medicine , Detroit , Michigan 48201 , United States
| | - Nian Tong
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences , Duquesne University , 600 Forbes Avenue , Pittsburgh , Pennsylvania 15282 , United States
| | - Carrie O'Connor
- Department of Oncology , Wayne State University School of Medicine , Detroit , Michigan 48201 , United States
| | - Mohammad Karim
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences , Duquesne University , 600 Forbes Avenue , Pittsburgh , Pennsylvania 15282 , United States
| | - Lisa Polin
- Molecular Therapeutics Program , Barbara Ann Karmanos Cancer Institute , 421 East Canfield Street , Detroit , Michigan 48201 , United States.,Department of Oncology , Wayne State University School of Medicine , Detroit , Michigan 48201 , United States
| | - Adrianne Wallace-Povirk
- Department of Oncology , Wayne State University School of Medicine , Detroit , Michigan 48201 , United States
| | - Kathryn White
- Molecular Therapeutics Program , Barbara Ann Karmanos Cancer Institute , 421 East Canfield Street , Detroit , Michigan 48201 , United States.,Department of Oncology , Wayne State University School of Medicine , Detroit , Michigan 48201 , United States
| | - Juiwanna Kushner
- Molecular Therapeutics Program , Barbara Ann Karmanos Cancer Institute , 421 East Canfield Street , Detroit , Michigan 48201 , United States.,Department of Oncology , Wayne State University School of Medicine , Detroit , Michigan 48201 , United States
| | - Zhanjun Hou
- Molecular Therapeutics Program , Barbara Ann Karmanos Cancer Institute , 421 East Canfield Street , Detroit , Michigan 48201 , United States.,Department of Oncology , Wayne State University School of Medicine , Detroit , Michigan 48201 , United States
| | - Larry H Matherly
- Molecular Therapeutics Program , Barbara Ann Karmanos Cancer Institute , 421 East Canfield Street , Detroit , Michigan 48201 , United States.,Department of Oncology , Wayne State University School of Medicine , Detroit , Michigan 48201 , United States.,Department of Pharmacology , Wayne State University School of Medicine , Detroit , Michigan 48201 , United States
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences , Duquesne University , 600 Forbes Avenue , Pittsburgh , Pennsylvania 15282 , United States
| |
Collapse
|
28
|
Zhao R, Najmi M, Aluri S, Spray DC, Goldman ID. Concentrative Transport of Antifolates Mediated by the Proton-Coupled Folate Transporter (SLC46A1); Augmentation by a HEPES Buffer. Mol Pharmacol 2018; 93:208-215. [PMID: 29326243 DOI: 10.1124/mol.117.110445] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/08/2018] [Indexed: 11/22/2022] Open
Abstract
The proton-coupled folate transporter (PCFT) is ubiquitously expressed in solid tumors to which it delivers antifolates, particularly pemetrexed, into cancer cells. Studies of PCFT-mediated transport, to date, have focused exclusively on the influx of folates and antifolates. This article addresses the impact of PCFT on concentrative transport, critical to the formation of the active polyglutamate congeners, and at pH levels relevant to the tumor microenvironment. An HeLa-derived cell line was employed, in which folate-specific transport was mediated exclusively by PCFT. At pH 7.0, there was a substantial chemical gradient for methotrexate that decreased as the extracellular pH was increased. A chemical gradient was still detected at pH 7.4 in the usual HEPES-based transport buffer in contrast to what was observed in a bicarbonate/CO2-buffered medium. This antifolate gradient correlated with an alkaline intracellular pH in the former (pH 7.85), but not the latter (pH 7.39), buffer and was abolished by the protonophore carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone. The gradient in HEPES buffer at pH 7.4 was the result of the activity of Na+/H+ exchanger(s); it was eliminated by inhibitors of Na+/H+ exchanger (s) or Na+/K+ ATPase. An antifolate chemical gradient was also detected in bicarbonate buffer at pH 6.9 versus 7.4, also suppressed by carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone. When the membrane potential is considered, PCFT generates substantial transmembrane electrochemical-potential gradients at extracellular pH levels relevant to the tumor microenvironment. The augmentation of intracellular pH, when cells are in a HEPES buffer, should be taken into consideration in studies that encompass all proton-coupled transporter families.
Collapse
Affiliation(s)
- Rongbao Zhao
- Departments of Molecular Pharmacology (R.Z., M.N., S.A., I.D.G.), Medicine (R.Z., I.D.G.), and Dominick P. Purpura Department of Neuroscience (D.C.S.), Albert Einstein College of Medicine, Bronx, New York
| | - Mitra Najmi
- Departments of Molecular Pharmacology (R.Z., M.N., S.A., I.D.G.), Medicine (R.Z., I.D.G.), and Dominick P. Purpura Department of Neuroscience (D.C.S.), Albert Einstein College of Medicine, Bronx, New York
| | - Srinivas Aluri
- Departments of Molecular Pharmacology (R.Z., M.N., S.A., I.D.G.), Medicine (R.Z., I.D.G.), and Dominick P. Purpura Department of Neuroscience (D.C.S.), Albert Einstein College of Medicine, Bronx, New York
| | - David C Spray
- Departments of Molecular Pharmacology (R.Z., M.N., S.A., I.D.G.), Medicine (R.Z., I.D.G.), and Dominick P. Purpura Department of Neuroscience (D.C.S.), Albert Einstein College of Medicine, Bronx, New York
| | - I David Goldman
- Departments of Molecular Pharmacology (R.Z., M.N., S.A., I.D.G.), Medicine (R.Z., I.D.G.), and Dominick P. Purpura Department of Neuroscience (D.C.S.), Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
29
|
Hereditary folate malabsorption due to a mutation in the external gate of the proton-coupled folate transporter SLC46A1. Blood Adv 2018; 2:61-68. [PMID: 29344585 DOI: 10.1182/bloodadvances.2017012690] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/28/2017] [Indexed: 01/08/2023] Open
Abstract
Hereditary folate malabsorption (HFM) is an autosomal recessive disorder characterized by impaired intestinal folate absorption and impaired folate transport across the choroid plexus due to loss of function of the proton-coupled folate transporter (PCFT-SLC46A1). We report a novel mutation, causing HFM, affecting a residue located in the 11th transmembrane helix within the external gate. The mutant N411K-PCFT was stable, trafficked to the cell membrane, and had sufficient residual activity to characterize the transport defect and the structural requirements at this site for gate function. The influx Vmax of the N411K mutant was markedly decreased, as was the affinity for most, but not all, folate/antifolate substrates. The greatest loss of activity was for 5-methyltetrahydrofolate. Substitutions with positive charged residues resulted in a loss of activity (arginine > lysine > histidine). Function was retained for the negative charged aspartate, but not the larger glutamate substitutions, whereas the bulky hydrophobic (leucine), or polar (glutamine) substitutions, were tolerated. Homology models of PCFT, in the inward and outward open conformations, based upon the mammalian Glut5 fructose transporter structures, localize Asn411 protruding into the aqueous pathway. This is most prominent when the carrier is in the inward open conformation when the external gate is closed. Mutations at this site likely result in highly specific steric and electrostatic interactions between the Asn411-substituted, and other, residues in the gate region that impede carrier function. The substrate specificity of the N411K mutant may be due to alterations of substrate flows through the external gate, downstream allosteric alterations in the folate-binding pocket, or both.
Collapse
|
30
|
Matherly LH, Hou Z, Gangjee A. The promise and challenges of exploiting the proton-coupled folate transporter for selective therapeutic targeting of cancer. Cancer Chemother Pharmacol 2018; 81:1-15. [PMID: 29127457 PMCID: PMC5756103 DOI: 10.1007/s00280-017-3473-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/20/2017] [Indexed: 12/17/2022]
Abstract
This review considers the "promise" of exploiting the proton-coupled folate transporter (PCFT) for selective therapeutic targeting of cancer. PCFT was discovered in 2006 and was identified as the principal folate transporter involved in the intestinal absorption of dietary folates. The recognition that PCFT was highly expressed in many tumors stimulated substantial interest in using PCFT for cytotoxic drug targeting, taking advantage of its high level transport activity under the acidic pH conditions that characterize many tumors. For pemetrexed, among the best PCFT substrates, transport by PCFT establishes its importance as a clinically important transporter in malignant pleural mesothelioma and non-small cell lung cancer. In recent years, the notion of PCFT-targeting has been extended to a new generation of tumor-targeted 6-substituted pyrrolo[2,3-d]pyrimidine compounds that are structurally and functionally distinct from pemetrexed, and that exhibit near exclusive transport by PCFT and potent inhibition of de novo purine nucleotide biosynthesis. Based on compelling preclinical evidence in a wide range of human tumor models, it is now time to advance the most optimized PCFT-targeted agents with the best balance of PCFT transport specificity and potent antitumor efficacy to the clinic to validate this novel paradigm of highly selective tumor targeting.
Collapse
Affiliation(s)
- Larry H Matherly
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, 421 East Canfield Street, Detroit, MI, 48201, USA.
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| | - Zhanjun Hou
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, 421 East Canfield Street, Detroit, MI, 48201, USA
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA
| |
Collapse
|
31
|
Aluri S, Zhao R, Fiser A, Goldman ID. Substituted-cysteine accessibility and cross-linking identify an exofacial cleft in the 7th and 8th helices of the proton-coupled folate transporter (SLC46A1). Am J Physiol Cell Physiol 2017; 314:C289-C296. [PMID: 29167151 DOI: 10.1152/ajpcell.00215.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The proton-coupled folate transporter (PCFT-SLC46A1) is required for folate transport across the apical membrane of the small intestine and across the choroid plexus. This study focuses on the structure/function of the 7th transmembrane domain (TMD), and its relationship to the 8th TMD as assessed by the substituted cysteine accessibility method (SCAM) and dicysteine cross-linking. Nine exofacial residues (I278C; H281C-L288C) of 23 residues in the 7th TMD were accessible to 2-((biotinoyl)amino)ethyl methanethiosulfonate (MTSEA-biotin). Pemetrexed, a high-affinity substrate for PCFT, decreased or abolished biotinylation of seven of these residues consistent with their location in or near the folate binding pocket. Homology models of PCFT based on Glut5 fructose transporter structures in both inward- and outward- open conformations were constructed and predicted that two pairs of residues (T289-I304C and Q285-Q311C) from the 7th and 8th TMDs should be in sufficiently close proximity to form a disulfide bond when substituted with cysteines. The single Cys-substituted mutants were accessible to MTSEA-biotin and functional with and without pretreatment with dithiotreitol. However, the double mutants were either not accessible at all, or accessibility was markedly reduced and function markedly impaired. This occurred spontaneously without inclusion of an oxidizing agent. Dithiotreitol restored accessibility and function consistent with disulfide bond disruption. The data establish the proximity of exofacial regions of the 7th and 8th TMDs and their role in defining the aqueous translocation pathway and suggest that these helices may be a component of an exofacial cleft through which substrates enter the protein binding pocket in its outward-open conformation.
Collapse
Affiliation(s)
- Srinivas Aluri
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York.,Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Rongbao Zhao
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York.,Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York.,Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York
| | - I David Goldman
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York.,Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
32
|
Aluri S, Zhao R, Fiser A, Goldman ID. Residues in the eighth transmembrane domain of the proton-coupled folate transporter (SLC46A1) play an important role in defining the aqueous translocation pathway and in folate substrate binding. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2193-2202. [PMID: 28802835 DOI: 10.1016/j.bbamem.2017.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/28/2017] [Accepted: 08/08/2017] [Indexed: 01/12/2023]
Abstract
The proton-coupled folate transporter (PCFT-SLC46A1) is required for intestinal folate absorption and folate transport across the choroid plexus. This report addresses the structure/function of the 8th transmembrane helix. Based upon biotinylation of cysteine-substituted residues by MTSEA-biotin, 14 contiguous exofacial residues to Leu316 were accessible to the extracellular compartment of the 23 residues in this helix (Leu303-Leu325). Pemetrexed blocked biotinylation of six Cys-substituted residues deep within the helix implicating an important role for this region in folate binding. Accessibility decreased at 4°C vs RT. The influx Kt, Ki and Vmax were markedly increased for the P314C mutant, similar to what was observed for Y315A and Y315P mutants. However, the Kt, alone, was increased for the P314Y mutant. To correlate these observations with PCFT structural changes during the transport cycle, homology models were built for PCFT based upon the recently reported structures of bovine and rodent GLUT5 fructose transporters in the inward-open and outward- open conformations, respectively. The models predict substantial structural alterations in the exofacial region of the eighth transmembrane helix as it cycles between its conformational states that can account for the extended and contiguous aqueous accessibility of this region of the helix. Further, a helix break in one of the two conformations can account for the critical roles Pro314 and Tyr315, located in this region, play in PCFT function. The data indicates that the 8th transmembrane helix of PCFT plays an important role in defining the aqueous channel and the folate binding pocket.
Collapse
Affiliation(s)
- Srinivas Aluri
- Department of Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Rongbao Zhao
- Department of Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461, United States; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - I David Goldman
- Department of Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, United States.
| |
Collapse
|
33
|
Date SS, Fiori MC, Altenberg GA, Jansen M. Expression in Sf9 insect cells, purification and functional reconstitution of the human proton-coupled folate transporter (PCFT, SLC46A1). PLoS One 2017; 12:e0177572. [PMID: 28493963 PMCID: PMC5426777 DOI: 10.1371/journal.pone.0177572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 04/28/2017] [Indexed: 01/05/2023] Open
Abstract
The proton-coupled folate transporter (PCFT) provides an essential uptake route for the vitamin folic acid (B9) in mammals. In addition, it is currently of high interest for targeting chemotherapeutic agents to tumors due to the increased folic acid requirement of rapidly dividing tumor cells as well as the upregulated PCFT expression in several tumors. To understand its function, determination of its atomic structure and molecular mechanism of transport are essential goals that require large amounts of functional PCFT. Here, we present a high-level heterologous expression system for human PCFT using a recombinant baculovirus and Spodoptera frugiperda (Sf9) insect cells. We demonstrate folate transport functionality along the PCFT expression, isolation, and purification process. Importantly, purified PCFT transports folic acid after reconstitution. We thus succeeded in overcoming heterologous expression as a major bottleneck of PCFT research. The availability of an overexpression system for human PCFT provides the basis for future biochemical, biophysical and structural studies.
Collapse
Affiliation(s)
- Swapneeta S. Date
- Department of Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States of America
- Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States of America
| | - Mariana C. Fiori
- Department of Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States of America
- Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States of America
| | - Guillermo A. Altenberg
- Department of Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States of America
- Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States of America
| | - Michaela Jansen
- Department of Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States of America
- Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States of America
- * E-mail:
| |
Collapse
|
34
|
Kanamitsu K, Kusuhara H, Schuetz JD, Takeuchi K, Sugiyama Y. Investigation of the Importance of Multidrug Resistance-Associated Protein 4 (Mrp4/Abcc4) in the Active Efflux of Anionic Drugs Across the Blood-Brain Barrier. J Pharm Sci 2017; 106:2566-2575. [PMID: 28456721 DOI: 10.1016/j.xphs.2017.04.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/16/2017] [Accepted: 04/17/2017] [Indexed: 10/19/2022]
Abstract
The importance of multidrug resistance-associated protein 4 (Mrp4/Abcc4) in limiting the penetration of Mrp4 substrate compounds into the central nervous system across the blood-brain barrier was investigated using Mrp4-/- mice. Significant adenosine triphosphate-dependent uptake by MRP4 was observed for ochratoxin A, pitavastatin, raltitrexed (Km = 43.7 μM), pravastatin, cyclic guanosine monophosphate, 2,4-dichlorophenoxyacetate, and urate. The defect in the Mrp4 gene did not affect the brain-to-plasma ratio (Kp,brain) of quinidine and dantrolene. Following intravenous infusion in wild-type and Mrp4-/- mice, the plasma concentrations of the tested compounds (cefazolin, cefmetazole, ciprofloxacin, cyclophosphamide, furosemide, hydrochlorothiazide, methotrexate, pitavastatin, pravastatin, and raltitrexed) were identical; however, Mrp4-/- mice showed a significantly higher (1.9- to 2.5-fold) Kp,brain than wild-type mice for methotrexate, raltitrexed, and cyclophosphamide. GF120918, a dual inhibitor of P-gp and Bcrp, significantly decreased Kp,cortex and Kp,cerebellum only in Mrp4-/- mice. Methotrexate and raltitrexed are also substrates of multispecific organic anion transporters such as Oatp1a4 and Oat3. GF120918 showed an inhibition potency against Oatp1a4, but not against Oat3. These results suggest that Mrp4 limits the penetration of methotrexate and raltitrexed into the brain across the blood-brain barrier, which is likely to be facilitated by some uptake transporters.
Collapse
Affiliation(s)
- Kayoko Kanamitsu
- Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan; Tokushima Research Institute, Otsuka Pharmaceutical Company, Ltd., Tokushima, Japan
| | - Hiroyuki Kusuhara
- Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan.
| | - John D Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Kenji Takeuchi
- Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan; Tokushima Research Institute, Otsuka Pharmaceutical Company, Ltd., Tokushima, Japan
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, Research Cluster for Innovation, RIKEN, Kanagawa, Japan
| |
Collapse
|
35
|
Hou Z, Gattoc L, O'Connor C, Yang S, Wallace-Povirk A, George C, Orr S, Polin L, White K, Kushner J, Morris RT, Gangjee A, Matherly LH. Dual Targeting of Epithelial Ovarian Cancer Via Folate Receptor α and the Proton-Coupled Folate Transporter with 6-Substituted Pyrrolo[2,3- d]pyrimidine Antifolates. Mol Cancer Ther 2017; 16:819-830. [PMID: 28138029 DOI: 10.1158/1535-7163.mct-16-0444] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 01/06/2017] [Accepted: 01/19/2017] [Indexed: 02/04/2023]
Abstract
Folate uptake in epithelial ovarian cancer (EOC) involves the reduced folate carrier (RFC) and the proton-coupled folate transporter (PCFT), both facilitative transporters and folate receptor (FR) α. Although in primary EOC specimens, FRα is widely expressed and increases with tumor stage, PCFT was expressed independent of tumor stage (by real-time RT-PCR and IHC). EOC cell line models, including cisplatin sensitive (IGROV1 and A2780) and resistant (SKOV3 and TOV112D) cells, expressed a 17-fold range of FRα and similar amounts (within ∼2-fold) of PCFT. Novel 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolates AGF94 and AGF154 exhibited potent antiproliferative activities toward all of the EOC cell lines, reflecting selective cellular uptake by FRα and/or PCFT over RFC. When IGROV1 cells were pretreated with AGF94 at pH 6.8, clonogenicity was potently inhibited, confirming cell killing. FRα was knocked down in IGROV1 cells with lentiviral shRNAs. Two FRα knockdown clones (KD-4 and KD-10) showed markedly reduced binding and uptake of [3H]folic acid and [3H]AGF154 by FRα, but maintained high levels of [3H]AGF154 uptake by PCFT compared to nontargeted control cells. In proliferation assays, KD-4 and KD-10 cells preserved in vitro inhibition by AGF94 and AGF154, compared to a nontargeted control, attributable to residual FRα- and substantial PCFT-mediated uptake. KD-10 tumor xenografts in severe-compromised immune-deficient mice were likewise sensitive to AGF94 Collectively, our results demonstrate the substantial therapeutic potential of novel 6-substituted pyrrolo[2,3-d]pyrimidine antifolates with dual targeting of PCFT and FRα toward EOCs that express a range of FRα, along with PCFT, as well as cisplatin resistance. Mol Cancer Ther; 16(5); 819-30. ©2017 AACR.
Collapse
Affiliation(s)
- Zhanjun Hou
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan. .,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Leda Gattoc
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Carrie O'Connor
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Si Yang
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Science, Duquesne University, Pittsburgh, Pennsylvania
| | | | - Christina George
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Steve Orr
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Lisa Polin
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Kathryn White
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Juiwanna Kushner
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Robert T Morris
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Science, Duquesne University, Pittsburgh, Pennsylvania.
| | - Larry H Matherly
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan. .,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan.,Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
36
|
MiR-pharmacogenetics of methotrexate in childhood B-cell acute lymphoblastic leukemia. Pharmacogenet Genomics 2016; 26:517-525. [DOI: 10.1097/fpc.0000000000000245] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
37
|
Hattinger CM, Tavanti E, Fanelli M, Vella S, Picci P, Serra M. Pharmacogenomics of genes involved in antifolate drug response and toxicity in osteosarcoma. Expert Opin Drug Metab Toxicol 2016; 13:245-257. [PMID: 27758143 DOI: 10.1080/17425255.2017.1246532] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Antifolates are structural analogs of folates, which have been used as antitumor drugs for more than 60 years. The antifolate drug most commonly used for treating human tumors is methotrexate (MTX), which is utilized widely in first-line treatment protocols of high-grade osteosarcoma (HGOS). In addition to MTX, two other antifolates, trimetrexate and pemetrexed, have been tested in clinical settings for second-line treatment of recurrent HGOS with patients unfortunately showing modest activity. Areas covered: There is clinical evidence which suggsest that, like other chemotherapeutic agents, not all HGOS patients are equally responsive to antifolates and do not have the same susceptibility to experience adverse drug-related toxicities. Here, we summarize the pharmacogenomic information reported so far for genes involved in antifolate metabolism and transport and in MTX-related toxicity in HGOS patients. Expert opinion: Identification and validation of genetic biomarkers that significantly impact clinical antifolate treatment response and related toxicity may provide the basis for a future treatment modulation based on the pharmacogenetic and pharmacogenomic features of HGOS patients.
Collapse
Affiliation(s)
- Claudia Maria Hattinger
- a Pharmacogenomics and Pharmacogenetics Research Unit, Laboratory of Experimental Oncology , Orthopaedic Rizzoli Institute , Bologna , Italy
| | - Elisa Tavanti
- a Pharmacogenomics and Pharmacogenetics Research Unit, Laboratory of Experimental Oncology , Orthopaedic Rizzoli Institute , Bologna , Italy
| | - Marilù Fanelli
- a Pharmacogenomics and Pharmacogenetics Research Unit, Laboratory of Experimental Oncology , Orthopaedic Rizzoli Institute , Bologna , Italy
| | - Serena Vella
- a Pharmacogenomics and Pharmacogenetics Research Unit, Laboratory of Experimental Oncology , Orthopaedic Rizzoli Institute , Bologna , Italy
| | - Piero Picci
- a Pharmacogenomics and Pharmacogenetics Research Unit, Laboratory of Experimental Oncology , Orthopaedic Rizzoli Institute , Bologna , Italy
| | - Massimo Serra
- a Pharmacogenomics and Pharmacogenetics Research Unit, Laboratory of Experimental Oncology , Orthopaedic Rizzoli Institute , Bologna , Italy
| |
Collapse
|
38
|
Zhao R, Aluri S, Goldman ID. The proton-coupled folate transporter (PCFT-SLC46A1) and the syndrome of systemic and cerebral folate deficiency of infancy: Hereditary folate malabsorption. Mol Aspects Med 2016; 53:57-72. [PMID: 27664775 DOI: 10.1016/j.mam.2016.09.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/18/2016] [Indexed: 02/07/2023]
Abstract
The proton-coupled folate transporter (PCFT-SLC46A1) is the mechanism by which folates are absorbed across the brush-border membrane of the small intestine. The transporter is also expressed in the choroid plexus and is required for transport of folates into the cerebrospinal fluid. Loss of PCFT function, as occurs in the autosomal recessive disorder "hereditary folate malabsorption" (HFM), results in a syndrome characterized by severe systemic and cerebral folate deficiency. Folate-receptor alpha (FRα) is expressed in the choroid plexus, and loss of function of this protein, as also occurs in an autosomal recessive disorder, results solely in "cerebral folate deficiency" (CFD), the designation for this disorder. This paper reviews the current understanding of the functional and structural properties and regulation of PCFT, an electrogenic proton symporter, and contrasts PCFT properties with those of the reduced folate carrier (RFC), an organic anion antiporter, that is the major route of folate transport to systemic tissues. The clinical characteristics of HFM and its treatment, based upon the thirty-seven known cases with the clinical syndrome, of which thirty have been verified by genotype, are presented. The ways in which PCFT and FRα might interact at the level of the choroid plexus such that each is required for folate transport from blood to cerebrospinal fluid are considered along with the different clinical presentations of HFM and CFD.
Collapse
Affiliation(s)
- Rongbao Zhao
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Srinivas Aluri
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - I David Goldman
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA.
| |
Collapse
|
39
|
Reduced folate and serum vitamin metabolites in patients with rectal carcinoma: an open-label feasibility study of pemetrexed with folic acid and vitamin B12 supplementation. Anticancer Drugs 2016; 27:439-46. [PMID: 26825869 PMCID: PMC4825111 DOI: 10.1097/cad.0000000000000345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The objectives of this single-center, open-label, phase II study were to evaluate (a) the feasibility and safety of neoadjuvant administration of pemetrexed with oral folic acid and vitamin B12 (FA/B12) in newly diagnosed patients with resectable rectal cancer and (b) intracellular and systemic vitamin metabolism. Patients were treated with three cycles of pemetrexed (500 mg/m2, every 3 weeks) and FA/B12 before surgery. The reduced folates tetrahydrofolate, 5-methyltetrahydrofolate, and 5,10-methylenetetrahydrofolate were evaluated from biopsies in tumor tissue and in adjacent mucosa. Serum levels of homocysteine, cystathionine, and methylmalonic acid were also measured. All 37 patients received three cycles of pemetrexed; 89.2% completed their planned dosage within a 9-week feasibility time frame. Neither dose reductions nor study drug-related serious adverse events were reported. Reduced folate levels were significantly higher in tumor tissue compared with adjacent mucosa at baseline. After FA/B12 administration, tissue levels of reduced folates increased significantly and remained high during treatment in both tumor and mucosa until surgery. Serum levels of cystathionine increased significantly compared with baseline after FA/B12 administration, but then decreased, fluctuating cyclically during pemetrexed therapy. Homocysteine and methylmalonic acid levels decreased significantly after FA/B12 administration, and remained below baseline levels during the study. These results indicate that administration of three neoadjuvant cycles of single-agent pemetrexed, every 3 weeks, with FA/B12 in patients with resectable rectal cancer is feasible and tolerable. Tissue and serum vitamin metabolism results demonstrate the influence of pemetrexed and FA/B12 on vitamin metabolism and warrant further study.
Collapse
|
40
|
Functional and mechanistic roles of the human proton-coupled folate transporter transmembrane domain 6-7 linker. Biochem J 2016; 473:3545-3562. [PMID: 27514717 DOI: 10.1042/bcj20160399] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/11/2016] [Indexed: 12/15/2022]
Abstract
The proton-coupled folate transporter (PCFT; SLC46A1) is a folate-proton symporter expressed in solid tumors and is used for tumor-targeted delivery of cytotoxic antifolates. Topology modeling suggests that the PCFT secondary structure includes 12 transmembrane domains (TMDs) with TMDs 6 and 7 linked by an intracellular loop (positions 236-265) including His247, implicated as functionally important. Single-cysteine (Cys) mutants were inserted from positions 241 to 251 in Cys-less PCFT and mutant proteins were expressed in PCFT-null (R1-11) HeLa cells; none were reactive with 2-aminoethyl methanethiosulfonate biotin, suggesting that the TMD6-7 loop is intracellular. Twenty-nine single alanine mutants spanning the entire TMD6-7 loop were expressed in R1-11 cells; activity was generally preserved, with the exception of the 247, 250, and 251 mutants, partly due to decreased surface expression. Coexpression of PCFT TMD1-6 and TMD7-12 half-molecules in R1-11 cells partially restored transport activity, although removal of residues 252-265 from TMD7-12 abolished transport. Chimeric proteins, including a nonhomologous sequence from a thiamine transporter (ThTr1) inserted into the PCFT TMD6-7 loop (positions 236-250 or 251-265), were active, although replacement of the entire loop with the ThTr1 sequence resulted in substantial loss of activity. Amino acid replacements (Ala, Arg, His, Gln, and Glu) or deletions at position 247 in wild-type and PCFT-ThTr1 chimeras resulted in differential effects on transport. Collectively, our findings suggest that the PCFT TMD6-7 connecting loop confers protein stability and may serve a unique functional role that depends on secondary structure rather than particular sequence elements.
Collapse
|
41
|
Zaïr ZM, Singer DR. Influx transporter variants as predictors of cancer chemotherapy-induced toxicity: systematic review and meta-analysis. Pharmacogenomics 2016; 17:1189-1205. [PMID: 27380948 DOI: 10.2217/pgs-2015-0005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AIM Chemotherapeutic agents have been shown to increase lung patient survival, however their use may be limited by their serious adverse effects. We aimed to assess int impact of pharmacogenetic variation of influx transporters on inter-individual patient variation in adverse drug reactions. PATIENTS & METHODS We conducted a meta-analysis and systemic review and identified 16 publications, totaling 1510 patients, to be eligible for review. RESULTS Meta-analysis showed east-Asian patients expressing SLCO1B1 521T>C or 1118G>A to have a two- to fourfold increased risk of irinotecan-induced neutropenia but not diarrhea. American patients, expressing SLC19A1 IVS2(4935) G>A, were further associated with pemetrexed/gemcitabine-induced grade 3+ leukopenia. CONCLUSION Future studies should look to robust validation of SLCO1B1 and SLC19A1 as prognostic markers in the management of lung cancer patients.
Collapse
Affiliation(s)
| | - Donald Rj Singer
- Yale University School of Medicine, New Haven, CT, USA.,Fellowship of Postgraduate Medicine 11 Chandos Street, London, UK
| |
Collapse
|
42
|
Raz S, Stark M, Assaraf YG. Folylpoly-γ-glutamate synthetase: A key determinant of folate homeostasis and antifolate resistance in cancer. Drug Resist Updat 2016; 28:43-64. [PMID: 27620954 DOI: 10.1016/j.drup.2016.06.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 06/10/2016] [Accepted: 06/16/2016] [Indexed: 01/26/2023]
Abstract
Mammalians are devoid of autonomous biosynthesis of folates and hence must obtain them from the diet. Reduced folate cofactors are B9-vitamins which play a key role as donors of one-carbon units in the biosynthesis of purine nucleotides, thymidylate and amino acids as well as in a multitude of methylation reactions including DNA, RNA, histone and non-histone proteins, phospholipids, as well as intermediate metabolites. The products of these S-adenosylmethionine (SAM)-dependent methylations are involved in the regulation of key biological processes including transcription, translation and intracellular signaling. Folate-dependent one-carbon metabolism occurs in several subcellular compartments including the cytoplasm, mitochondria, and nucleus. Since folates are essential for DNA replication, intracellular folate cofactors play a central role in cancer biology and inflammatory autoimmune disorders. In this respect, various folate-dependent enzymes catalyzing nucleotide biosynthesis have been targeted by specific folate antagonists known as antifolates. Currently, antifolates are used in drug treatment of multiple human cancers, non-malignant chronic inflammatory disorders as well as bacterial and parasitic infections. An obligatory key component of intracellular folate retention and intracellular homeostasis is (anti)folate polyglutamylation, mediated by the unique enzyme folylpoly-γ-glutamate synthetase (FPGS), which resides in both the cytoplasm and mitochondria. Consistently, knockout of the FPGS gene in mice results in embryonic lethality. FPGS catalyzes the addition of a long polyglutamate chain to folates and antifolates, hence rendering them polyanions which are efficiently retained in the cell and are now bound with enhanced affinity by various folate-dependent enzymes. The current review highlights the crucial role that FPGS plays in maintenance of folate homeostasis under physiological conditions and delineates the plethora of the molecular mechanisms underlying loss of FPGS function and consequent antifolate resistance in cancer.
Collapse
Affiliation(s)
- Shachar Raz
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Michal Stark
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
43
|
Najmi M, Zhao R, Fiser A, Goldman ID. Role of the tryptophan residues in proton-coupled folate transporter (PCFT-SLC46A1) function. Am J Physiol Cell Physiol 2016; 311:C150-7. [PMID: 27251438 DOI: 10.1152/ajpcell.00084.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 05/30/2016] [Indexed: 12/12/2022]
Abstract
The proton-coupled folate transporter (PCFT) mediates folate absorption across the brush-border membrane of the proximal small intestine and is required for folate transport across the choroid plexus into the cerebrospinal fluid. In this study, the functional role and accessibility of the seven PCFT Trp residues were assessed by the substituted-cysteine accessibility method. Six Trp residues at a lipid-aqueous interface tolerated Cys substitution in terms of protein stability and function. W85C, W202C, and W213C were accessible to N-biotinyl aminoethylmethanethiosulfonate; W48C and W299C were accessible only after treatment with dithiotreitol (DTT), consistent with modification of these residues by an endogenous thiol-reacting molecule and their extracellular location. Neither W107C nor W333C was accessible (even after DTT) consistent with their cytoplasmic orientation. Biotinylation was blocked by pemetrexed only for the W48C (after DTT), W85C, W202C residues. Function was impaired only for the W299C PCFT mutant located in the 4th external loop between the 7th and 8th transmembrane helices. Despite its aqueous location, function could only be fully preserved with Phe and, to a lesser extent, Ala substitutions. There was a 6.5-fold decrease in the pemetrexed influx Vmax and a 3.5- and 6-fold decrease in the influx Kt and Ki, respectively, for the W299S PCFT. The data indicate that the hydrophobicity of the W299 residue is important for function suggesting that during the transport cycle this residue interacts with the lipid membrane thereby impacting on the oscillation of the carrier and, indirectly, on the folate binding pocket.
Collapse
Affiliation(s)
- Mitra Najmi
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
| | - Rongbao Zhao
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York; Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Andras Fiser
- Department of Systems and Computational Biology; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York
| | - I David Goldman
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York; Department of Medicine, Albert Einstein College of Medicine, Bronx, New York;
| |
Collapse
|
44
|
Fung E, Anand S, Bhalla V. Pemetrexed-Induced Nephrogenic Diabetes Insipidus. Am J Kidney Dis 2016; 68:628-632. [PMID: 27241854 DOI: 10.1053/j.ajkd.2016.04.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/13/2016] [Indexed: 11/11/2022]
Abstract
Pemetrexed is an approved antimetabolite agent, now widely used for treating locally advanced or metastatic nonsquamous non-small cell lung cancer. Although no electrolyte abnormalities are described in the prescribing information for this drug, several case reports have noted nephrogenic diabetes insipidus with associated acute kidney injury. We present a case of nephrogenic diabetes insipidus without severely reduced kidney function and propose a mechanism for the isolated finding. Severe hypernatremia can lead to encephalopathy and osmotic demyelination, and our report highlights the importance of careful monitoring of electrolytes and kidney function in patients with lung cancer receiving pemetrexed.
Collapse
Affiliation(s)
- Enrica Fung
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA.
| | - Shuchi Anand
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA
| | - Vivek Bhalla
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA
| |
Collapse
|
45
|
Chen Q, Meng X, McQuade P, Rubins D, Lin SA, Zeng Z, Haley H, Miller P, González Trotter D, Low PS. Synthesis and Preclinical Evaluation of Folate-NOTA-Al(18)F for PET Imaging of Folate-Receptor-Positive Tumors. Mol Pharm 2016; 13:1520-7. [PMID: 27054811 DOI: 10.1021/acs.molpharmaceut.5b00989] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
UNLABELLED Folate-receptor-targeted PET radiotracers can potentially serve as versatile imaging agents for the diagnosis, staging, and prediction of response to therapy of patients with folate-receptor (FR)-expressing cancers. Because current FR-targeted PET reagents can be compromised by complex labeling procedures, low specific activities, poor radiochemical yields, or unwanted accumulation in FR negative tissues, we have undertaken to design an improved folate-PET agent that might be more amenable for clinical development. For this purpose, we have synthesized a folate-NOTA-Al(18)F radiotracer and examined its properties both in vitro and in vivo. METHODS Radiochemical synthesis of folate-NOTA-Al(18)F was achieved by incubating (18)F(-) with AlCl3 for 2 min followed by heating in the presence of folate-NOTA for 15 min at 100 °C. Binding of folate-NOTA-Al(18)F to FR was quantitated in homogenates of KB and Cal51 tumor xenografts in the presence and absence of excess folic acid as a competitor. In vivo imaging was performed on nu/nu mice bearing either FR+ve (KB cell) or FR-ve (A549 cell) tumor xenografts, and specific accumulation of the radiotracer in tumor and other tissues was assessed by high-resolution micro-PET and ex vivo biodistribution in the presence and absence of excess folic acid. Image quality of folate-NOTA-Al(18)F was compared with that of (99m)Tc-EC20, a clinically established folate-targeted SPECT imaging agent. RESULTS Total radiochemical synthesis and purification of folate-NOTA-Al(18)F was completed within 37 min, yielding a specific activity of 68.82 ± 18.5 GBq/μmol, radiochemical yield of 18.6 ± 4.5%, and radiochemical purity of 98.3 ± 2.9%. Analysis of FR binding revealed a Kd of ∼1.0 nM, and micro-PET imaging together with ex vivo biodistribution analyses demonstrated high FR-mediated uptake in an FR+ tumor and the kidneys. CONCLUSIONS Folate-NOTA-Al(18)F constitutes an easily prepared FR-targeted PET imaging agent with improved radiopharmaceutical properties and high specificity for folate receptor expressing tumors. Given its improved properties over (99m)Tc-EC20 (i.e., higher resolution, shorter image acquisition time, etc.), we conclude that folate-NOTA-Al(18)F constitutes a viable alternative to (99m)Tc-EC20 for use in identification, diagnosis, and staging of patients with FR-expressing cancers.
Collapse
Affiliation(s)
- Qingshou Chen
- Department of Chemistry, Purdue University , 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| | - Xiangjun Meng
- Imaging, Merck Research Laboratories, Merck & Co., Inc. , 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Paul McQuade
- Imaging, Merck Research Laboratories, Merck & Co., Inc. , 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Daniel Rubins
- Imaging, Merck Research Laboratories, Merck & Co., Inc. , 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Shu-An Lin
- Imaging, Merck Research Laboratories, Merck & Co., Inc. , 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Zhizhen Zeng
- Imaging, Merck Research Laboratories, Merck & Co., Inc. , 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Hyking Haley
- Imaging, Merck Research Laboratories, Merck & Co., Inc. , 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Patricia Miller
- Imaging, Merck Research Laboratories, Merck & Co., Inc. , 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Dinko González Trotter
- Imaging, Merck Research Laboratories, Merck & Co., Inc. , 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Philip S Low
- Department of Chemistry, Purdue University , 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
46
|
Zhao R, Najmi M, Fiser A, Goldman ID. Identification of an Extracellular Gate for the Proton-coupled Folate Transporter (PCFT-SLC46A1) by Cysteine Cross-linking. J Biol Chem 2016; 291:8162-72. [PMID: 26884338 DOI: 10.1074/jbc.m115.693929] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Indexed: 01/04/2023] Open
Abstract
The proton-coupled folate transporter (PCFT, SLC46A1) is required for intestinal folate absorption and folate homeostasis in humans. A homology model of PCFT, based upon theEscherichia coliglycerol 3-phosphate transporter structure, predicted that PCFT transmembrane domains (TMDs) 1, 2, 7, and 11 form an extracellular gate in the inward-open conformation. To assess this model, five residues (Gln(45)-TMD1, Asn(90)-TMD2, Leu(290)-TMD7, Ser(407)-TMD11 and Asn(411)-TMD11) in the predicted gate were substituted with Cys to generate single and nine double mutants. Transport function of the mutants was assayed in transient transfectants by measurement of [(3)H]substrate influx as was accessibility of the Cys residues to biotinylation. Pairs of Cys residues were assessed for spontaneous formation of a disulfide bond, induction of a disulfide bond by oxidization with dichloro(1,10-phenanthroline)copper (II) (CuPh), or the formation of a Cd(2+)complex. The data were consistent with the formation of a spontaneous disulfide bond between the N90C/S407C pair and a CuPh- and Cd(2+)-induced disulfide bond and complex, respectively, for the Q45C/L290C and L290C/N411C pairs. The decrease in activity induced by cross-linkage of the Cys residue pairs was due to a decrease in the influxVmaxconsistent with restriction in the mobility of the transporter. The presence of folate substrate decreased the CuPh-induced inhibition of transport. Hence, the data support the glycerol 3-phosphate transporter-based homology model of PCFT and the presence of an extracellular gate formed by TMDs 1, 2, 7, and 11.
Collapse
Affiliation(s)
- Rongbao Zhao
- From the Departments of Molecular Pharmacology, Medicine
| | - Mitra Najmi
- From the Departments of Molecular Pharmacology
| | - Andras Fiser
- Biochemistry, and Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | | |
Collapse
|
47
|
Narasimhan B, Goodman JT, Vela Ramirez JE. Rational Design of Targeted Next-Generation Carriers for Drug and Vaccine Delivery. Annu Rev Biomed Eng 2016; 18:25-49. [PMID: 26789697 DOI: 10.1146/annurev-bioeng-082615-030519] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pattern recognition receptors on innate immune cells play an important role in guiding how cells interact with the rest of the organism and in determining the direction of the downstream immune response. Recent advances have elucidated the structure and function of these receptors, providing new opportunities for developing targeted drugs and vaccines to treat infections, cancers, and neurological disorders. C-type lectin receptors, Toll-like receptors, and folate receptors have attracted interest for their ability to endocytose their ligands or initiate signaling pathways that influence the immune response. Several novel technologies are being developed to engage these receptors, including recombinant antibodies, adoptive immunotherapy, and chemically modified antigens and drug delivery vehicles. These active targeting technologies will help address current challenges facing drug and vaccine delivery and lead to new tools to treat human diseases.
Collapse
Affiliation(s)
- Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011;
| | - Jonathan T Goodman
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011;
| | - Julia E Vela Ramirez
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011;
| |
Collapse
|
48
|
Abstract
Despite a growing interest in development of non-cytotoxic targeted agents, systemic chemotherapy is still the mainstay of treatment for both non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). However, chemotherapy resistance limits our ability to effectively treat advanced lung cancer. Some lung tumors are intrinsically resistant to chemotherapy, and in virtually all cases, even the initial responders rapidly develop acquired resistance. While targeting histology could result in enhanced tumor sensitivity to a particular chemotherapeutic agent, better understanding of molecular determinants of chemotherapy sensitivity/resistance would be critically important. Development of predictive biomarkers to personalize chemotherapeutic agents and combining novel agents targeting specific resistance pathways with standard chemotherapy could be some promising strategies to overcome chemotherapy resistance in lung cancer. In this chapter, we will discuss some key mechanisms of resistance for commonly used chemotherapeutic agents in lung cancer.
Collapse
Affiliation(s)
- Eric S Kim
- Department of Medicine, James P. Wilmot Cancer Center, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
49
|
Giovannetti E, Zucali PA, Rolfo C, Assaraf YG, Peters GJ. Prognostic and Predictive Roles of Thymidylate Synthase Expression in Lung Cancer: The Debate Is Still Open. J Clin Oncol 2015; 34:511-2. [PMID: 26712221 DOI: 10.1200/jco.2015.64.2496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Elisa Giovannetti
- Vrije Universiteit University Medical Center, Amsterdam, the Netherlands; and Pisa University, Pisa, Italy
| | | | | | | | | |
Collapse
|
50
|
Inside the biochemical pathways of thymidylate synthase perturbed by anticancer drugs: Novel strategies to overcome cancer chemoresistance. Drug Resist Updat 2015; 23:20-54. [PMID: 26690339 DOI: 10.1016/j.drup.2015.10.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 10/08/2015] [Accepted: 10/23/2015] [Indexed: 12/11/2022]
Abstract
Our current understanding of the mechanisms of action of antitumor agents and the precise mechanisms underlying drug resistance is that these two processes are directly linked. Moreover, it is often possible to delineate chemoresistance mechanisms based on the specific mechanism of action of a given anticancer drug. A more holistic approach to the chemoresistance problem suggests that entire metabolic pathways, rather than single enzyme targets may better explain and educate us about the complexity of the cellular responses upon cytotoxic drug administration. Drugs, which target thymidylate synthase and folate-dependent enzymes, represent an important therapeutic arm in the treatment of various human malignancies. However, prolonged patient treatment often provokes drug resistance phenomena that render the chemotherapeutic treatment highly ineffective. Hence, strategies to overcome drug resistance are primarily designed to achieve either enhanced intracellular drug accumulation, to avoid the upregulation of folate-dependent enzymes, and to circumvent the impairment of DNA repair enzymes which are also responsible for cross-resistance to various anticancer drugs. The current clinical practice based on drug combination therapeutic regimens represents the most effective approach to counteract drug resistance. In the current paper, we review the molecular aspects of the activity of TS-targeting drugs and describe how such mechanisms are related to the emergence of clinical drug resistance. We also discuss the current possibilities to overcome drug resistance by using a molecular mechanistic approach based on medicinal chemistry methods focusing on rational structural modifications of novel antitumor agents. This paper also focuses on the importance of the modulation of metabolic pathways upon drug administration, their analysis and the assessment of their putative roles in the networks involved using a meta-analysis approach. The present review describes the main pathways that are modulated by TS-targeting anticancer drugs starting from the description of the normal functioning of the folate metabolic pathway, through the protein modulation occurring upon drug delivery to cultured tumor cells as well as cancer patients, finally describing how the pathways are modulated by drug resistance development. The data collected are then analyzed using network/netwire connecting methods in order to provide a wider view of the pathways involved and of the importance of such information in identifying additional proteins that could serve as novel druggable targets for efficacious cancer therapy.
Collapse
|