1
|
Courjaret RJ, Wagner II LE, Ammouri RR, Yule DI, Machaca K. Ca2+ tunneling architecture and function are important for secretion. J Cell Biol 2025; 224:e202402107. [PMID: 39499286 PMCID: PMC11540855 DOI: 10.1083/jcb.202402107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/29/2024] [Accepted: 10/10/2024] [Indexed: 11/07/2024] Open
Abstract
Ca2+ tunneling requires both store-operated Ca2+ entry (SOCE) and Ca2+ release from the endoplasmic reticulum (ER). Tunneling expands the SOCE microdomain through Ca2+ uptake by SERCA into the ER lumen where it diffuses and is released via IP3 receptors. In this study, using high-resolution imaging, we outline the spatial remodeling of the tunneling machinery (IP3R1; SERCA; PMCA; and Ano1 as an effector) relative to STIM1 in response to store depletion. We show that these modulators redistribute to distinct subdomains laterally at the plasma membrane (PM) and axially within the cortical ER. To functionally define the role of Ca2+ tunneling, we engineered a Ca2+ tunneling attenuator (CaTAr) that blocks tunneling without affecting Ca2+ release or SOCE. CaTAr inhibits Cl- secretion in sweat gland cells and reduces sweating in vivo in mice, showing that Ca2+ tunneling is important physiologically. Collectively our findings argue that Ca2+ tunneling is a fundamental Ca2+ signaling modality.
Collapse
Affiliation(s)
- Raphael J. Courjaret
- Research Department, Ca Signaling Group, Weill Cornell Medicine Qatar, Qatar Foundation, Education City, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Larry E. Wagner II
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Rahaf R. Ammouri
- Research Department, Ca Signaling Group, Weill Cornell Medicine Qatar, Qatar Foundation, Education City, Qatar
| | - David I. Yule
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Khaled Machaca
- Research Department, Ca Signaling Group, Weill Cornell Medicine Qatar, Qatar Foundation, Education City, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
2
|
Hammad AS, Yu F, Al-Hamaq J, Horgen FD, Machaca K. STIM1 signals through NFAT1 independently of Orai1 and SOCE to regulate breast cancer cell migration. Cell Calcium 2023; 114:102779. [PMID: 37399784 DOI: 10.1016/j.ceca.2023.102779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023]
Abstract
Store-operated calcium entry (SOCE) contributes to several physiological and pathological conditions including transcription, secretion, immunodeficiencies, and cancer. SOCE has been shown to be important for breast cancer cell migration where knockdown of SOCE components (STIM1 or Orai1) decreases cancer metastasis. Here we show unexpectedly that complete knockout of STIM1 (STIM1-KO) using gene editing in metastatic MDA-MB-231 breast cancer cells results in faster migration and enhanced invasion capacity. In contrast, Orai1-KO cells, which have similar levels of SOCE inhibition as STIM1-KO, migrate slower than the parental cell line. This shows that the enhanced migration phenotype of STIM1-KO cells is not due to the loss of Ca2+ entry through SOCE, rather it involves transcriptional remodeling as elucidated by RNA-seq analyses. Interestingly, NFAT1 is significantly downregulated in STIM1-KO cells and overexpression of NFAT1 reversed the enhanced migration of STIM1-KO cells. STIM1 knockout in other breast cancer cells, independent of their metastatic potential, also enhanced cell migration while reducing NFAT1 expression. These data argue that in breast cancer cells STIM1 modulates NFAT1 expression and cell migration independently of its role in SOCE.
Collapse
Affiliation(s)
- Ayat S Hammad
- College of Health and Life Science, Hamad bin Khalifa University, Doha, Qatar; Calcium Signaling Group, Research Department, Weill Cornell Medicine, Doha, Qatar
| | - Fang Yu
- Calcium Signaling Group, Research Department, Weill Cornell Medicine, Doha, Qatar; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States
| | - Jawaher Al-Hamaq
- Calcium Signaling Group, Research Department, Weill Cornell Medicine, Doha, Qatar
| | - F David Horgen
- Department of Natural Sciences, Hawaii Pacific University, Honolulu, Hawaii, United States
| | - Khaled Machaca
- Calcium Signaling Group, Research Department, Weill Cornell Medicine, Doha, Qatar; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States.
| |
Collapse
|
3
|
Zhang H, Graham V, Nepliouev I, Stiber JA, Rosenberg P. STIM1 interacts with HCN4 channels to coordinate diastolic depolarization in the mouse Sinoatrial node. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539287. [PMID: 37205552 PMCID: PMC10187156 DOI: 10.1101/2023.05.03.539287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Cardiomyocytes in the sinoatrial node (SAN) are specialized to undergo spontaneous diastolic depolarization (DD) to create action potentials (AP) that serve as the origin of the heartbeat. Two cellular clocks govern DD: the membrane clock where ion channels contribute ionic conductance to create DD and the Ca 2+ clock where rhythmic Ca 2+ release from sarcoplasmic reticulum (SR) during diastole contributes pacemaking. How the membrane and Ca 2+ clocks interact to synchronize and drive DD is not well understood. Here, we identified stromal interaction molecule 1 (STIM1), the activator of store operated Ca 2+ entry (SOCE), in the P-cell cardiomyocytes of the SAN. Functional studies from STIM1 KO mice reveal dramatic changes in properties of AP and DD. Mechanistically, we show that STIM1 regulates the funny currents and HCN4 channels that are required to initiate DD and maintain sinus rhythm in mice. Taken together, our studies suggest that STIM1 acts as a sensor for both the Ca 2+ and membrane clocks for mouse SAN for cardiac pacemaking.
Collapse
|
4
|
Nieto-Felipe J, Macias-Diaz A, Sanchez-Collado J, Berna-Erro A, Jardin I, Salido GM, Lopez JJ, Rosado JA. Role of Orai-family channels in the activation and regulation of transcriptional activity. J Cell Physiol 2023; 238:714-726. [PMID: 36952615 DOI: 10.1002/jcp.30971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/27/2023] [Indexed: 03/25/2023]
Abstract
Store operated Ca2+ entry (SOCE) is a cornerstone for the maintenance of intracellular Ca2+ homeostasis and the regulation of a variety of cellular functions. SOCE is mediated by STIM and Orai proteins following the activation of inositol 1,4,5-trisphosphate receptors. Then, a reduction of the endoplasmic reticulum intraluminal Ca2+ concentration is sensed by STIM proteins, which undergo a conformational change and activate plasma membrane Ca2+ channels comprised by Orai proteins. STIM1/Orai-mediated Ca2+ signals are finely regulated and modulate the activity of different transcription factors, including certain isoforms of the nuclear factor of activated T-cells, the cAMP-response element binding protein, the nuclear factor κ-light chain-enhancer of activated B cells, c-fos, and c-myc. These transcription factors associate SOCE with a plethora of signaling events and cellular functions. Here we provide an overview of the current knowledge about the role of Orai channels in the regulation of transcription factors through Ca2+ -dependent signaling pathways.
Collapse
Affiliation(s)
- Joel Nieto-Felipe
- Departamento de Fisiología, Instituto Universitario de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, Caceres, Spain
| | - Alvaro Macias-Diaz
- Departamento de Fisiología, Instituto Universitario de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, Caceres, Spain
| | - Jose Sanchez-Collado
- Departamento de Fisiología, Instituto Universitario de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, Caceres, Spain
| | - Alejandro Berna-Erro
- Departamento de Fisiología, Instituto Universitario de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, Caceres, Spain
| | - Isaac Jardin
- Departamento de Fisiología, Instituto Universitario de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, Caceres, Spain
| | - Gines M Salido
- Departamento de Fisiología, Instituto Universitario de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, Caceres, Spain
| | - Jose J Lopez
- Departamento de Fisiología, Instituto Universitario de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, Caceres, Spain
| | - Juan A Rosado
- Departamento de Fisiología, Instituto Universitario de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, Caceres, Spain
| |
Collapse
|
5
|
Jardin I, Berna-Erro A, Nieto-Felipe J, Macias A, Sanchez-Collado J, Lopez JJ, Salido GM, Rosado JA. Similarities and Differences between the Orai1 Variants: Orai1α and Orai1β. Int J Mol Sci 2022; 23:ijms232314568. [PMID: 36498894 PMCID: PMC9735889 DOI: 10.3390/ijms232314568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Orai1, the first identified member of the Orai protein family, is ubiquitously expressed in the animal kingdom. Orai1 was initially characterized as the channel responsible for the store-operated calcium entry (SOCE), a major mechanism that allows cytosolic calcium concentration increments upon receptor-mediated IP3 generation, which results in intracellular Ca2+ store depletion. Furthermore, current evidence supports that abnormal Orai1 expression or function underlies several disorders. Orai1 is, together with STIM1, the key element of SOCE, conducting the Ca2+ release-activated Ca2+ (CRAC) current and, in association with TRPC1, the store-operated Ca2+ (SOC) current. Additionally, Orai1 is involved in non-capacitative pathways, as the arachidonate-regulated or LTC4-regulated Ca2+ channel (ARC/LRC), store-independent Ca2+ influx activated by the secretory pathway Ca2+-ATPase (SPCA2) and the small conductance Ca2+-activated K+ channel 3 (SK3). Furthermore, Orai1 possesses two variants, Orai1α and Orai1β, the latter lacking 63 amino acids in the N-terminus as compared to the full-length Orai1α form, which confers distinct features to each variant. Here, we review the current knowledge about the differences between Orai1α and Orai1β, the implications of the Ca2+ signals triggered by each variant, and their downstream modulatory effect within the cell.
Collapse
|
6
|
Chen J, Ding Q, An L, Wang H. Ca2+-stimulated adenylyl cyclases as therapeutic targets for psychiatric and neurodevelopmental disorders. Front Pharmacol 2022; 13:949384. [PMID: 36188604 PMCID: PMC9523369 DOI: 10.3389/fphar.2022.949384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
As the main secondary messengers, cyclic AMP (cAMP) and Ca2+ trigger intracellular signal transduction cascade and, in turn, regulate many aspects of cellular function in developing and mature neurons. The group I adenylyl cyclase (ADCY, also known as AC) isoforms, including ADCY1, 3, and 8 (also known as AC1, AC3, and AC8), are stimulated by Ca2+ and thus functionally positioned to integrate cAMP and Ca2+ signaling. Emerging lines of evidence have suggested the association of the Ca2+-stimulated ADCYs with bipolar disorder, schizophrenia, major depressive disorder, post-traumatic stress disorder, and autism. In this review, we discuss the molecular and cellular features as well as the physiological functions of ADCY1, 3, and 8. We further discuss the recent therapeutic development to target the Ca2+-stimulated ADCYs for potential treatments of psychiatric and neurodevelopmental disorders.
Collapse
|
7
|
Ostrom KF, LaVigne JE, Brust TF, Seifert R, Dessauer CW, Watts VJ, Ostrom RS. Physiological roles of mammalian transmembrane adenylyl cyclase isoforms. Physiol Rev 2022; 102:815-857. [PMID: 34698552 PMCID: PMC8759965 DOI: 10.1152/physrev.00013.2021] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/20/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Adenylyl cyclases (ACs) catalyze the conversion of ATP to the ubiquitous second messenger cAMP. Mammals possess nine isoforms of transmembrane ACs, dubbed AC1-9, that serve as major effector enzymes of G protein-coupled receptors (GPCRs). The transmembrane ACs display varying expression patterns across tissues, giving the potential for them to have a wide array of physiological roles. Cells express multiple AC isoforms, implying that ACs have redundant functions. Furthermore, all transmembrane ACs are activated by Gαs, so it was long assumed that all ACs are activated by Gαs-coupled GPCRs. AC isoforms partition to different microdomains of the plasma membrane and form prearranged signaling complexes with specific GPCRs that contribute to cAMP signaling compartments. This compartmentation allows for a diversity of cellular and physiological responses by enabling unique signaling events to be triggered by different pools of cAMP. Isoform-specific pharmacological activators or inhibitors are lacking for most ACs, making knockdown and overexpression the primary tools for examining the physiological roles of a given isoform. Much progress has been made in understanding the physiological effects mediated through individual transmembrane ACs. GPCR-AC-cAMP signaling pathways play significant roles in regulating functions of every cell and tissue, so understanding each AC isoform's role holds potential for uncovering new approaches for treating a vast array of pathophysiological conditions.
Collapse
Affiliation(s)
| | - Justin E LaVigne
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Tarsis F Brust
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas
| | - Val J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana
| | - Rennolds S Ostrom
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California
| |
Collapse
|
8
|
Krishnan V, Ali S, Gonzales AL, Thakore P, Griffin CS, Yamasaki E, Alvarado MG, Johnson MT, Trebak M, Earley S. STIM1-dependent peripheral coupling governs the contractility of vascular smooth muscle cells. eLife 2022; 11:70278. [PMID: 35147077 PMCID: PMC8947769 DOI: 10.7554/elife.70278] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 02/10/2022] [Indexed: 11/28/2022] Open
Abstract
Peripheral coupling between the sarcoplasmic reticulum (SR) and plasma membrane (PM) forms signaling complexes that regulate the membrane potential and contractility of vascular smooth muscle cells (VSMCs). The mechanisms responsible for these membrane interactions are poorly understood. In many cells, STIM1 (stromal interaction molecule 1), a single-transmembrane-domain protein that resides in the endoplasmic reticulum (ER), transiently moves to ER-PM junctions in response to depletion of ER Ca2+ stores and initiates store-operated Ca2+ entry (SOCE). Fully differentiated VSMCs express STIM1 but exhibit only marginal SOCE activity. We hypothesized that STIM1 is constitutively active in contractile VSMCs and maintains peripheral coupling. In support of this concept, we found that the number and size of SR-PM interacting sites were decreased, and SR-dependent Ca2+-signaling processes were disrupted in freshly isolated cerebral artery SMCs from tamoxifen-inducible, SMC-specific STIM1-knockout (Stim1-smKO) mice. VSMCs from Stim1-smKO mice also exhibited a reduction in nanoscale colocalization between Ca2+-release sites on the SR and Ca2+-activated ion channels on the PM, accompanied by diminished channel activity. Stim1-smKO mice were hypotensive, and resistance arteries isolated from them displayed blunted contractility. These data suggest that STIM1 – independent of SR Ca2+ store depletion – is critically important for stable peripheral coupling in contractile VSMCs.
Collapse
Affiliation(s)
- Vivek Krishnan
- Department of Pharmacology, University of Nevada Reno, Reno, United States
| | - Sher Ali
- Department of Pharmacology, University of Nevada Reno, Reno, United States
| | - Albert L Gonzales
- Department of Physiology and Cell Biology, University of Nevada Reno, Reno, United States
| | - Pratish Thakore
- Department of Pharmacology, University of Nevada, Reno, Reno, United States
| | - Caoimhin S Griffin
- Department of Pharmacology, University of Nevada Reno, Reno, United States
| | - Evan Yamasaki
- Department of Pharmacology, University of Nevada Reno, Reno, United States
| | - Michael G Alvarado
- Department of Pharmacology, University of Nevada Reno, Reno, United States
| | - Martin T Johnson
- Department of Cellular and Molecular Physiology, Penn State University, Hershey, United States
| | - Mohamed Trebak
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, United States
| | - Scott Earley
- Department of Pharmacology, University of Nevada Reno, Reno, United States
| |
Collapse
|
9
|
Humer C, Romanin C, Höglinger C. Highlighting the Multifaceted Role of Orai1 N-Terminal- and Loop Regions for Proper CRAC Channel Functions. Cells 2022; 11:371. [PMID: 35159181 PMCID: PMC8834118 DOI: 10.3390/cells11030371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 11/16/2022] Open
Abstract
Orai1, the Ca2+-selective pore in the plasma membrane, is one of the key components of the Ca2+release-activated Ca2+ (CRAC) channel complex. Activated by the Ca2+ sensor in the endoplasmic reticulum (ER) membrane, stromal interaction molecule 1 (STIM1), via direct interaction when ER luminal Ca2+ levels recede, Orai1 helps to maintain Ca2+ homeostasis within a cell. It has already been proven that the C-terminus of Orai1 is indispensable for channel activation. However, there is strong evidence that for CRAC channels to function properly and maintain all typical hallmarks, such as selectivity and reversal potential, additional parts of Orai1 are needed. In this review, we focus on these sites apart from the C-terminus; namely, the second loop and N-terminus of Orai1 and on their multifaceted role in the functioning of CRAC channels.
Collapse
Affiliation(s)
| | | | - Carmen Höglinger
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria; (C.H.); (C.R.)
| |
Collapse
|
10
|
Cross-Talk Between the Adenylyl Cyclase/cAMP Pathway and Ca 2+ Homeostasis. Rev Physiol Biochem Pharmacol 2021; 179:73-116. [PMID: 33398503 DOI: 10.1007/112_2020_55] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cyclic AMP and Ca2+ are the first second or intracellular messengers identified, unveiling the cellular mechanisms activated by a plethora of extracellular signals, including hormones. Cyclic AMP generation is catalyzed by adenylyl cyclases (ACs), which convert ATP into cAMP and pyrophosphate. By the way, Ca2+, as energy, can neither be created nor be destroyed; Ca2+ can only be transported, from one compartment to another, or chelated by a variety of Ca2+-binding molecules. The fine regulation of cytosolic concentrations of cAMP and free Ca2+ is crucial in cell function and there is an intimate cross-talk between both messengers to fine-tune the cellular responses. Cancer is a multifactorial disease resulting from a combination of genetic and environmental factors. Frequent cases of cAMP and/or Ca2+ homeostasis remodeling have been described in cancer cells. In those tumoral cells, cAMP and Ca2+ signaling plays a crucial role in the development of hallmarks of cancer, including enhanced proliferation and migration, invasion, apoptosis resistance, or angiogenesis. This review summarizes the cross-talk between the ACs/cAMP and Ca2+ intracellular pathways with special attention to the functional and reciprocal regulation between Orai1 and AC8 in normal and cancer cells.
Collapse
|
11
|
Sánchez-Collado J, López JJ, Rosado JA. The Orai1-AC8 Interplay: How Breast Cancer Cells Escape from Orai1 Channel Inactivation. Cells 2021; 10:1308. [PMID: 34070268 PMCID: PMC8225208 DOI: 10.3390/cells10061308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
The interplay between the Ca2+-sensitive adenylyl cyclase 8 (AC8) and Orai1 channels plays an important role both in the activation of the cAMP/PKA signaling and the modulation of Orai1-dependent Ca2+ signals. AC8 interacts with a N-terminal region that is exclusive to the Orai1 long variant, Orai1α. The interaction between both proteins allows the Ca2+ that enters the cell through Orai1α to activate the generation of cAMP by AC8. Subsequent PKA activation results in Orai1α inactivation by phosphorylation at serine-34, thus shaping Orai1-mediated cellular functions. In breast cancer cells, AC8 plays a relevant role supporting a variety of cancer hallmarks, including proliferation and migration. Breast cancer cells overexpress AC8, which shifts the AC8-Orai1 stoichiometry in favor of the former and leads to the impairment of PKA-dependent Orai1α inactivation. This mechanism contributes to the enhanced SOCE observed in triple-negative breast cancer cells. This review summarizes the functional interaction between AC8 and Orai1α in normal and breast cancer cells and its relevance for different cancer features.
Collapse
Affiliation(s)
| | - José J. López
- Cellular Physiology Research Group, Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain;
| | - Juan A. Rosado
- Cellular Physiology Research Group, Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain;
| |
Collapse
|
12
|
Brzezinska P, Simpson NJ, Hubert F, Jacobs AN, Umana MB, MacKeil JL, Burke-Kleinman J, Payne DM, Ferguson AV, Maurice DH. Phosphodiesterase 1C integrates store-operated calcium entry and cAMP signaling in leading-edge protrusions of migrating human arterial myocytes. J Biol Chem 2021; 296:100606. [PMID: 33789162 PMCID: PMC8095186 DOI: 10.1016/j.jbc.2021.100606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 01/17/2023] Open
Abstract
In addition to maintaining cellular ER Ca2+ stores, store-operated Ca2+ entry (SOCE) regulates several Ca2+-sensitive cellular enzymes, including certain adenylyl cyclases (ADCYs), enzymes that synthesize the secondary messenger cyclic AMP (cAMP). Ca2+, acting with calmodulin, can also increase the activity of PDE1-family phosphodiesterases (PDEs), which cleave the phosphodiester bond of cAMP. Surprisingly, SOCE-regulated cAMP signaling has not been studied in cells expressing both Ca2+-sensitive enzymes. Here, we report that depletion of ER Ca2+ activates PDE1C in human arterial smooth muscle cells (HASMCs). Inhibiting the activation of PDE1C reduced the magnitude of both SOCE and subsequent Ca2+/calmodulin–mediated activation of ADCY8 in these cells. Because inhibiting or silencing Ca2+-insensitive PDEs had no such effects, these data identify PDE1C-mediated hydrolysis of cAMP as a novel and important link between SOCE and its activation of ADCY8. Functionally, we showed that PDE1C regulated the formation of leading-edge protrusions in HASMCs, a critical early event in cell migration. Indeed, we found that PDE1C populated the tips of newly forming leading-edge protrusions in polarized HASMCs, and co-localized with ADCY8, the Ca2+ release activated Ca2+ channel subunit, Orai1, the cAMP-effector, protein kinase A, and an A-kinase anchoring protein, AKAP79. Because this polarization could allow PDE1C to control cAMP signaling in a hyper-localized manner, we suggest that PDE1C-selective therapeutic agents could offer increased spatial specificity in HASMCs over agents that regulate cAMP globally in cells. Similarly, such agents could also prove useful in regulating crosstalk between Ca2+/cAMP signaling in other cells in which dysregulated migration contributes to human pathology, including certain cancers.
Collapse
Affiliation(s)
- Paulina Brzezinska
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Nicholas J Simpson
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Fabien Hubert
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Ariana N Jacobs
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - M Bibiana Umana
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Jodi L MacKeil
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Jonah Burke-Kleinman
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Darrin M Payne
- Department of Surgery, Queen's University, Kingston, Ontario, Canada
| | - Alastair V Ferguson
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Donald H Maurice
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
13
|
Berlansky S, Humer C, Sallinger M, Frischauf I. More Than Just Simple Interaction between STIM and Orai Proteins: CRAC Channel Function Enabled by a Network of Interactions with Regulatory Proteins. Int J Mol Sci 2021; 22:E471. [PMID: 33466526 PMCID: PMC7796502 DOI: 10.3390/ijms22010471] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 12/27/2022] Open
Abstract
The calcium-release-activated calcium (CRAC) channel, activated by the release of Ca2+ from the endoplasmic reticulum (ER), is critical for Ca2+ homeostasis and active signal transduction in a plethora of cell types. Spurred by the long-sought decryption of the molecular nature of the CRAC channel, considerable scientific effort has been devoted to gaining insights into functional and structural mechanisms underlying this signalling cascade. Key players in CRAC channel function are the Stromal interaction molecule 1 (STIM1) and Orai1. STIM1 proteins span through the membrane of the ER, are competent in sensing luminal Ca2+ concentration, and in turn, are responsible for relaying the signal of Ca2+ store-depletion to pore-forming Orai1 proteins in the plasma membrane. A direct interaction of STIM1 and Orai1 allows for the re-entry of Ca2+ from the extracellular space. Although much is already known about the structure, function, and interaction of STIM1 and Orai1, there is growing evidence that CRAC under physiological conditions is dependent on additional proteins to function properly. Several auxiliary proteins have been shown to regulate CRAC channel activity by means of direct interactions with STIM1 and/or Orai1, promoting or hindering Ca2+ influx in a mechanistically diverse manner. Various proteins have also been identified to exert a modulatory role on the CRAC signalling cascade although inherently lacking an affinity for both STIM1 and Orai1. Apart from ubiquitously expressed representatives, a subset of such regulatory mechanisms seems to allow for a cell-type-specific control of CRAC channel function, considering the rather restricted expression patterns of the specific proteins. Given the high functional and clinical relevance of both generic and cell-type-specific interacting networks, the following review shall provide a comprehensive summary of regulators of the multilayered CRAC channel signalling cascade. It also includes proteins expressed in a narrow spectrum of cells and tissues that are often disregarded in other reviews of similar topics.
Collapse
Affiliation(s)
| | | | | | - Irene Frischauf
- Institute of Biophysics, Johannes Kepler University, 4020 Linz, Austria; (S.B.); (C.H.); (M.S.)
| |
Collapse
|
14
|
Tiffner A, Derler I. Molecular Choreography and Structure of Ca 2+ Release-Activated Ca 2+ (CRAC) and K Ca2+ Channels and Their Relevance in Disease with Special Focus on Cancer. MEMBRANES 2020; 10:E425. [PMID: 33333945 PMCID: PMC7765462 DOI: 10.3390/membranes10120425] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022]
Abstract
Ca2+ ions play a variety of roles in the human body as well as within a single cell. Cellular Ca2+ signal transduction processes are governed by Ca2+ sensing and Ca2+ transporting proteins. In this review, we discuss the Ca2+ and the Ca2+-sensing ion channels with particular focus on the structure-function relationship of the Ca2+ release-activated Ca2+ (CRAC) ion channel, the Ca2+-activated K+ (KCa2+) ion channels, and their modulation via other cellular components. Moreover, we highlight their roles in healthy signaling processes as well as in disease with a special focus on cancer. As KCa2+ channels are activated via elevations of intracellular Ca2+ levels, we summarize the current knowledge on the action mechanisms of the interplay of CRAC and KCa2+ ion channels and their role in cancer cell development.
Collapse
Affiliation(s)
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria;
| |
Collapse
|
15
|
Poth V, Knapp ML, Niemeyer BA. STIM proteins at the intersection of signaling pathways. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2020.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Murphy MT, Qin X, Kaul S, Barrientos G, Zou Z, Mathias CB, Thomas D, Bose DD. The polyphenol ellagic acid exerts anti-inflammatory actions via disruption of store-operated calcium entry (SOCE) pathway activators and coupling mediators. Eur J Pharmacol 2020; 875:173036. [PMID: 32101765 DOI: 10.1016/j.ejphar.2020.173036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 01/28/2020] [Accepted: 02/21/2020] [Indexed: 12/24/2022]
Abstract
Ellagic acid, a naturally occurring phenol found in a variety of fruits and nuts has been shown to possess anti-inflammatory properties. However, the mechanism of action behind its anti-inflammatory action is unclear. Using human Jurkat T cells, our study examined the effects of ellagic acid (EA) on Ca2+ handling, in particular, store-operated Ca2+ entry (SOCE), a process critical to proper T cell function. We observed that the acute addition of EA-induced Ca2+ release with an EC50 of 63 μM. The Ca2+ release was significantly attenuated by Xestospongin C, a known inhibitor of the Inositol 1,4,5-trisphosphate receptor (IP3R) channel and was unaffected by the phospholipase C (PLC) inhibitor, U73122. Furthermore, chronic incubation of Jurkat T cells with EA not only decreased the ATP-induced Ca2+ release but also diminished the SOCE-mediated Ca2+ influx in a dose-dependent manner. This inhibition was confirmed by reduced Mn2+ entry rates in the EA-treated cells. The ATP-induced Ca2+ entry was also attenuated in EA-treated HEK293 cells transiently transfected with SOCE channel Orai1-myc and ER-sensor stromal interaction molecule (STIM1) (HEKSTIM/Orai). Moreover, EA treatment interfered with the Orai1 and STIM1 coupling by disrupting STIM1 puncta formation in the HEKSTIM/Orai cells. We observed that EA treatment reduced cytokine secretion and nuclear factor of activated T-cell transcriptional activity in stimulated T cells. Hence, by inhibiting SOCE mediated Ca2+ influx, EA decreased downstream activation of pro-inflammatory mediators. These results suggest a novel target for EA-mediated effects and provide insight into the mechanisms underlying EA-mediated anti-inflammatory effects.
Collapse
Affiliation(s)
- Matthew T Murphy
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA, 01119, USA.
| | - Xia Qin
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Shashank Kaul
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA, 01119, USA
| | - Genaro Barrientos
- Physiology and Biophysics Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile.
| | - Zhen Zou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China.
| | - Clinton B Mathias
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA, 01119, USA.
| | - David Thomas
- Department of Pharmacology, Thomas J Long School of Pharmacy, University of the Pacific, Stockton, CA, USA.
| | - Diptiman D Bose
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA, 01119, USA.
| |
Collapse
|
17
|
Butorac C, Krizova A, Derler I. Review: Structure and Activation Mechanisms of CRAC Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:547-604. [PMID: 31646526 DOI: 10.1007/978-3-030-12457-1_23] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ca2+ release activated Ca2+ (CRAC) channels represent a primary pathway for Ca2+ to enter non-excitable cells. The two key players in this process are the stromal interaction molecule (STIM), a Ca2+ sensor embedded in the membrane of the endoplasmic reticulum, and Orai, a highly Ca2+ selective ion channel located in the plasma membrane. Upon depletion of the internal Ca2+ stores, STIM is activated, oligomerizes, couples to and activates Orai. This review provides an overview of novel findings about the CRAC channel activation mechanisms, structure and gating. In addition, it highlights, among diverse STIM and Orai mutants, also the disease-related mutants and their implications.
Collapse
Affiliation(s)
- Carmen Butorac
- Institute of Biophysics, Johannes Kepler University of Linz, Linz, Austria
| | - Adéla Krizova
- Institute of Biophysics, Johannes Kepler University of Linz, Linz, Austria
| | - Isabella Derler
- Institute of Biophysics, Johannes Kepler University of Linz, Linz, Austria.
| |
Collapse
|
18
|
Yu Q, Shuai H, Ahooghalandari P, Gylfe E, Tengholm A. Glucose controls glucagon secretion by directly modulating cAMP in alpha cells. Diabetologia 2019; 62:1212-1224. [PMID: 30953108 PMCID: PMC6560012 DOI: 10.1007/s00125-019-4857-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/22/2019] [Indexed: 01/18/2023]
Abstract
AIMS/HYPOTHESIS Glucagon is critical for normal glucose homeostasis and aberrant secretion of the hormone aggravates dysregulated glucose control in diabetes. However, the mechanisms by which glucose controls glucagon secretion from pancreatic alpha cells remain elusive. The aim of this study was to investigate the role of the intracellular messenger cAMP in alpha-cell-intrinsic glucose regulation of glucagon release. METHODS Subplasmalemmal cAMP and Ca2+ concentrations were recorded in isolated and islet-located alpha cells using fluorescent reporters and total internal reflection microscopy. Glucagon secretion from mouse islets was measured using ELISA. RESULTS Glucose induced Ca2+-independent alterations of the subplasmalemmal cAMP concentration in alpha cells that correlated with changes in glucagon release. Glucose-lowering-induced stimulation of glucagon secretion thus corresponded to an elevation in cAMP that was independent of paracrine signalling from insulin or somatostatin. Imposed cAMP elevations stimulated glucagon secretion and abolished inhibition by glucose elevation, while protein kinase A inhibition mimicked glucose suppression of glucagon release. CONCLUSIONS/INTERPRETATION Glucose concentrations in the hypoglycaemic range control glucagon secretion by directly modulating the cAMP concentration in alpha cells independently of paracrine influences. These findings define a novel mechanism for glucose regulation of glucagon release that underlies recovery from hypoglycaemia and may be disturbed in diabetes.
Collapse
Affiliation(s)
- Qian Yu
- Department of Medical Cell Biology, Biomedical Centre, Uppsala University, Box 571, SE-751 23, Uppsala, Sweden
| | - Hongyan Shuai
- Department of Medical Cell Biology, Biomedical Centre, Uppsala University, Box 571, SE-751 23, Uppsala, Sweden
| | - Parvin Ahooghalandari
- Department of Medical Cell Biology, Biomedical Centre, Uppsala University, Box 571, SE-751 23, Uppsala, Sweden
| | - Erik Gylfe
- Department of Medical Cell Biology, Biomedical Centre, Uppsala University, Box 571, SE-751 23, Uppsala, Sweden
| | - Anders Tengholm
- Department of Medical Cell Biology, Biomedical Centre, Uppsala University, Box 571, SE-751 23, Uppsala, Sweden.
| |
Collapse
|
19
|
Filadi R, Basso E, Lefkimmiatis K, Pozzan T. Beyond Intracellular Signaling: The Ins and Outs of Second Messengers Microdomains. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 981:279-322. [PMID: 29594866 DOI: 10.1007/978-3-319-55858-5_12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A typical characteristic of eukaryotic cells compared to prokaryotes is represented by the spatial heterogeneity of the different structural and functional components: for example, most of the genetic material is surrounded by a highly specific membrane structure (the nuclear membrane), continuous with, yet largely different from, the endoplasmic reticulum (ER); oxidative phosphorylation is carried out by organelles enclosed by a double membrane, the mitochondria; in addition, distinct domains, enriched in specific proteins, are present in the plasma membrane (PM) of most cells. Less obvious, but now generally accepted, is the notion that even the concentration of small molecules such as second messengers (Ca2+ and cAMP in particular) can be highly heterogeneous within cells. In the case of most organelles, the differences in the luminal levels of second messengers depend either on the existence on their membrane of proteins that allow the accumulation/release of the second messenger (e.g., in the case of Ca2+, pumps, exchangers or channels), or on the synthesis and degradation of the specific molecule within the lumen (the autonomous intramitochondrial cAMP system). It needs stressing that the existence of a surrounding membrane does not necessarily imply the existence of a gradient between the cytosol and the organelle lumen. For example, the nuclear membrane is highly permeable to both Ca2+ and cAMP (nuclear pores are permeable to solutes up to 50 kDa) and differences in [Ca2+] or [cAMP] between cytoplasm and nucleoplasm are not seen in steady state and only very transiently during cell activation. A similar situation has been observed, as far as Ca2+ is concerned, in peroxisomes.
Collapse
Affiliation(s)
- Riccardo Filadi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Emy Basso
- Institute of Neuroscience, Padova Section, National Research Council, Padova, Italy
| | - Konstantinos Lefkimmiatis
- Institute of Neuroscience, Padova Section, National Research Council, Padova, Italy
- Venetian Institute of Molecular Medicine, Padova, Italy
| | - Tullio Pozzan
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
- Institute of Neuroscience, Padova Section, National Research Council, Padova, Italy.
- Venetian Institute of Molecular Medicine, Padova, Italy.
| |
Collapse
|
20
|
Kondo C, Clark RB, Al‐Jezani N, Kim TY, Belke D, Banderali U, Szerencsei RT, Jalloul AH, Schnetkamp PPM, Spitzer KW, Giles WR. ATP triggers a robust intracellular [Ca 2+ ]-mediated signalling pathway in human synovial fibroblasts. Exp Physiol 2018; 103:1101-1122. [PMID: 29791754 DOI: 10.1113/ep086851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/26/2018] [Indexed: 01/05/2023]
Abstract
NEW FINDINGS What is the central question of this study? What are the main [Ca2+ ]i signalling pathways activated by ATP in human synovial fibroblasts? What is the main finding and its importance? In human synovial fibroblasts ATP acts through a linked G-protein (Gq ) and phospholipase C signalling mechanism to produce IP3 , which then markedly enhances release of Ca2+ from the endoplasmic reticulum. These results provide new information for the detection of early pathophysiology of arthritis. ABSTRACT In human articular joints, synovial fibroblasts (HSFs) have essential physiological functions that include synthesis and secretion of components of the extracellular matrix and essential articular joint lubricants, as well as release of paracrine substances such as ATP. Although the molecular and cellular processes that lead to a rheumatoid arthritis (RA) phenotype are not fully understood, HSF cells exhibit significant changes during this disease progression. The effects of ATP on HSFs were studied by monitoring changes in intracellular Ca2+ ([Ca2+ ]i ), and measuring electrophysiological properties. ATP application to HSF cell populations that had been enzymatically released from 2-D cell culture revealed that ATP (10-100 μm), or its analogues UTP or ADP, consistently produced a large transient increase in [Ca2+ ]i . These changes (i) were initiated by activation of the P2 Y purinergic receptor family, (ii) required Gq -mediated signal transduction, (iii) did not involve a transmembrane Ca2+ influx, but instead (iv) arose almost entirely from activation of endoplasmic reticulum (ER)-localized inositol 1,4,5-trisphosphate (IP3 ) receptors that triggered Ca2+ release from the ER. Corresponding single cell electrophysiological studies revealed that these ATP effects (i) were insensitive to [Ca2+ ]o removal, (ii) involved an IP3 -mediated intracellular Ca2+ release process, and (iii) strongly turned on Ca2+ -activated K+ current(s) that significantly hyperpolarized these cells. Application of histamine produced very similar effects in these HSF cells. Since ATP is a known paracrine agonist and histamine is released early in the inflammatory response, these findings may contribute to identification of early steps/defects in the initiation and progression of RA.
Collapse
Affiliation(s)
- C Kondo
- Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - R B Clark
- Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | | | - T Y Kim
- Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - D Belke
- Cumming School of Medicine, University of Calgary, Calgary, Canada
| | | | - R T Szerencsei
- Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - A H Jalloul
- Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - P P M Schnetkamp
- Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - K W Spitzer
- Nora Eccles Harrison Cardiovascular Centre, Salt Lake City, UT, USA
| | - W R Giles
- Faculty of Kinesiology, University of Calgary, Calgary, Canada.,Faculty of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
21
|
Vallin B, Legueux-Cajgfinger Y, Clément N, Glorian M, Duca L, Vincent P, Limon I, Blaise R. Novel short isoforms of adenylyl cyclase as negative regulators of cAMP production. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1326-1340. [PMID: 29940197 DOI: 10.1016/j.bbamcr.2018.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/15/2018] [Accepted: 06/20/2018] [Indexed: 12/22/2022]
Abstract
Here, we cloned a new family of four adenylyl cyclase (AC) splice variants from interleukin-1β (IL-1β)-transdifferentiated vascular smooth muscle cells (VSMCs) encoding short forms of AC8 that we have named "AC8E-H". Using biosensor imaging and biochemical approaches, we showed that AC8E-H isoforms have no cyclase activity and act as dominant-negative regulators by forming heterodimers with other full-length ACs, impeding the traffic of functional units towards the plasma membrane. The existence of these dominant-negative isoforms may account for an unsuspected additional degree of cAMP signaling regulation. It also reconciles the induction of an AC in transdifferentiated VSMCs with the vasoprotective influence of cAMP. The generation of alternative splice variants of ACs may constitute a generalized strategy of adaptation to the cell's environment whose scope had so far been ignored in physiological and/or pathological contexts.
Collapse
Affiliation(s)
- Benjamin Vallin
- Sorbonne Université, Université Pierre et Marie Curie (UPMC), Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256 Adaptation biologique et vieillissement (B2A), 75005 Paris, France
| | - Yohan Legueux-Cajgfinger
- Sorbonne Université, Université Pierre et Marie Curie (UPMC), Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256 Adaptation biologique et vieillissement (B2A), 75005 Paris, France
| | - Nathalie Clément
- Sorbonne Université, Université Pierre et Marie Curie (UPMC), Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256 Adaptation biologique et vieillissement (B2A), 75005 Paris, France
| | - Martine Glorian
- Sorbonne Université, Université Pierre et Marie Curie (UPMC), Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256 Adaptation biologique et vieillissement (B2A), 75005 Paris, France
| | - Laurent Duca
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne Ardenne (URCA), UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), Campus Moulin de la Housse, 51687 Reims, France
| | - Pierre Vincent
- Sorbonne Université, Université Pierre et Marie Curie (UPMC), Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256 Adaptation biologique et vieillissement (B2A), 75005 Paris, France.
| | - Isabelle Limon
- Sorbonne Université, Université Pierre et Marie Curie (UPMC), Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256 Adaptation biologique et vieillissement (B2A), 75005 Paris, France.
| | - Régis Blaise
- Sorbonne Université, Université Pierre et Marie Curie (UPMC), Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256 Adaptation biologique et vieillissement (B2A), 75005 Paris, France
| |
Collapse
|
22
|
Bak LK, Walls AB, Schousboe A, Waagepetersen HS. Astrocytic glycogen metabolism in the healthy and diseased brain. J Biol Chem 2018; 293:7108-7116. [PMID: 29572349 DOI: 10.1074/jbc.r117.803239] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The brain contains a fairly low amount of glycogen, mostly located in astrocytes, a fact that has prompted the suggestion that glycogen does not have a significant physiological role in the brain. However, glycogen metabolism in astrocytes is essential for several key physiological processes and is adversely affected in disease. For instance, diminished ability to break down glycogen impinges on learning, and epilepsy, Alzheimer's disease, and type 2 diabetes are all associated with abnormal astrocyte glycogen metabolism. Glycogen metabolism supports astrocytic K+ and neurotransmitter glutamate uptake and subsequent glutamine synthesis-three fundamental steps in excitatory signaling at most brain synapses. Thus, there is abundant evidence for a key role of glycogen in brain function. Here, we summarize the physiological brain functions that depend on glycogen, discuss glycogen metabolism in disease, and investigate how glycogen breakdown is regulated at the cellular and molecular levels.
Collapse
Affiliation(s)
- Lasse K Bak
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2 Universitetsparken, 2100 Copenhagen, Denmark.
| | - Anne B Walls
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2 Universitetsparken, 2100 Copenhagen, Denmark.
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2 Universitetsparken, 2100 Copenhagen, Denmark
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2 Universitetsparken, 2100 Copenhagen, Denmark
| |
Collapse
|
23
|
Nelson HA, Roe MW. Molecular physiology and pathophysiology of stromal interaction molecules. Exp Biol Med (Maywood) 2018; 243:451-472. [PMID: 29363328 DOI: 10.1177/1535370218754524] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Ca2+ release from the endoplasmic reticulum is an important component of Ca2+ signal transduction that controls numerous physiological processes in eukaryotic cells. Release of Ca2+ from the endoplasmic reticulum is coupled to the activation of store-operated Ca2+ entry into cells. Store-operated Ca2+ entry provides Ca2+ for replenishing depleted endoplasmic reticulum Ca2+ stores and a Ca2+ signal that regulates Ca2+-dependent intracellular biochemical events. Central to connecting discharge of endoplasmic reticulum Ca2+ stores following G protein-coupled receptor activation with the induction of store-operated Ca2+ entry are stromal interaction molecules (STIM1 and STIM2). These highly homologous endoplasmic reticulum transmembrane proteins function as sensors of the Ca2+ concentration within the endoplasmic reticulum lumen and activators of Ca2+ release-activated Ca2+ channels. Emerging evidence indicates that in addition to their role in Ca2+ release-activated Ca2+ channel gating and store-operated Ca2+ entry, STIM1 and STIM2 regulate other cellular signaling events. Recent studies have shown that disruption of STIM expression and function is associated with the pathogenesis of several diseases including autoimmune disorders, cancer, cardiovascular disease, and myopathies. Here, we provide an overview of the latest developments in the molecular physiology and pathophysiology of STIM1 and STIM2. Impact statement Intracellular Ca2+ signaling is a fundamentally important regulator of cell physiology. Recent studies have revealed that Ca2+-binding stromal interaction molecules (Stim1 and Stim2) expressed in the membrane of the endoplasmic reticulum (ER) are essential components of eukaryote Ca2+ signal transduction that control the activity of ion channels and other signaling effectors present in the plasma membrane. This review summarizes the most recent information on the molecular physiology and pathophysiology of stromal interaction molecules. We anticipate that the work presented in our review will provide new insights into molecular interactions that participate in interorganelle signaling crosstalk, cell function, and the pathogenesis of human diseases.
Collapse
Affiliation(s)
- Heather A Nelson
- 1 Department of Cell and Developmental Biology, 12302 SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Michael W Roe
- 1 Department of Cell and Developmental Biology, 12302 SUNY Upstate Medical University, Syracuse, NY 13210, USA.,2 Department of Medicine, 12302 SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
24
|
Rodríguez-Hernández CJ, Mateo-Lozano S, García M, Casalà C, Briansó F, Castrejón N, Rodríguez E, Suñol M, Carcaboso AM, Lavarino C, Mora J, de Torres C. Cinacalcet inhibits neuroblastoma tumor growth and upregulates cancer-testis antigens. Oncotarget 2017; 7:16112-29. [PMID: 26893368 PMCID: PMC4941301 DOI: 10.18632/oncotarget.7448] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/05/2016] [Indexed: 12/14/2022] Open
Abstract
The calcium–sensing receptor is a G protein-coupled receptor that exerts cell-type specific functions in numerous tissues and some cancers. We have previously reported that this receptor exhibits tumor suppressor properties in neuroblastoma. We have now assessed cinacalcet, an allosteric activator of the CaSR approved for clinical use, as targeted therapy for this developmental tumor using neuroblastoma cell lines and patient-derived xenografts (PDX) with different MYCN and TP53 status. In vitro, acute exposure to cinacalcet induced endoplasmic reticulum stress coupled to apoptosis via ATF4-CHOP-TRB3 in CaSR-positive, MYCN-amplified cells. Both phenotypes were partially abrogated by phospholipase C inhibitor U73122. Prolonged in vitro treatment also promoted dose- and time-dependent apoptosis in CaSR-positive, MYCN-amplified cells and, irrespective of MYCN status, differentiation in surviving cells. Cinacalcet significantly inhibited tumor growth in MYCN-amplified xenografts and reduced that of MYCN-non amplified PDX. Morphology assessment showed fibrosis in MYCN-amplified xenografts exposed to the drug. Microarrays analyses revealed up-regulation of cancer-testis antigens (CTAs) in cinacalcet-treated MYCN-amplified tumors. These were predominantly CTAs encoded by genes mapping on chromosome X, which are the most immunogenic. Other modulated genes upon prolonged exposure to cinacalcet were involved in differentiation, cell cycle exit, microenvironment remodeling and calcium signaling pathways. CTAs were up-regulated in PDX and in vitro models as well. Moreover, progressive increase of CaSR expression upon cinacalcet treatment was seen both in vitro and in vivo. In summary, cinacalcet reduces neuroblastoma tumor growth and up-regulates CTAs. This effect represents a therapeutic opportunity and provides surrogate circulating markers of neuroblastoma response to this treatment.
Collapse
Affiliation(s)
- Carlos J Rodríguez-Hernández
- Developmental Tumor Biology Laboratory, Institut de Recerca Pediàtrica - Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Silvia Mateo-Lozano
- Developmental Tumor Biology Laboratory, Institut de Recerca Pediàtrica - Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Marta García
- Developmental Tumor Biology Laboratory, Institut de Recerca Pediàtrica - Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Carla Casalà
- Developmental Tumor Biology Laboratory, Institut de Recerca Pediàtrica - Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Ferran Briansó
- Statistics and Bioinformatics Unit, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Nerea Castrejón
- Developmental Tumor Biology Laboratory, Institut de Recerca Pediàtrica - Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Eva Rodríguez
- Developmental Tumor Biology Laboratory, Institut de Recerca Pediàtrica - Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Mariona Suñol
- Department of Pathology, Institut de Recerca Pediàtrica - Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Angel M Carcaboso
- Developmental Tumor Biology Laboratory, Institut de Recerca Pediàtrica - Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Cinzia Lavarino
- Developmental Tumor Biology Laboratory, Institut de Recerca Pediàtrica - Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain.,Department of Oncology, Institut de Recerca Pediàtrica - Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Jaume Mora
- Developmental Tumor Biology Laboratory, Institut de Recerca Pediàtrica - Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain.,Department of Oncology, Institut de Recerca Pediàtrica - Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Carmen de Torres
- Developmental Tumor Biology Laboratory, Institut de Recerca Pediàtrica - Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain.,Department of Oncology, Institut de Recerca Pediàtrica - Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| |
Collapse
|
25
|
Lee K, Kim YJ, Cho YY, Chung S, Jo SH, Choi SY. Polychlorinated biphenyl 19 blocks the most common form of store-operated Ca2+ entry through Orai. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:1221-1228. [DOI: 10.1007/s00210-017-1420-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 08/23/2017] [Indexed: 01/17/2023]
|
26
|
Leech CA, Kopp RF, Nelson HA, Nandi J, Roe MW. Stromal Interaction Molecule 1 (STIM1) Regulates ATP-sensitive Potassium ( KATP) and Store-operated Ca 2+ Channels in MIN6 β-Cells. J Biol Chem 2016; 292:2266-2277. [PMID: 28003364 DOI: 10.1074/jbc.m116.767681] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/12/2016] [Indexed: 01/14/2023] Open
Abstract
Stromal interaction molecule 1 (STIM1) regulates store-operated Ca2+ entry (SOCE) and other ion channels either as an endoplasmic reticulum Ca2+-sensing protein or when present in the plasma membrane. However, the role of STIM1 in insulin-secreting β-cells is unresolved. We report that lowering expression of STIM1, the gene that encodes STIM1, in insulin-secreting MIN6 β-cells with RNA interference inhibits SOCE and ATP-sensitive K+ (KATP) channel activation. The effects of STIM1 knockdown were reversed by transduction of MIN6 cells with an adenovirus gene shuttle vector that expressed human STIM1 Immunoprecipitation studies revealed that STIM1 binds to nucleotide binding fold-1 (NBF1) of the sulfonylurea receptor 1 (SUR1) subunit of the KATP channel. Binding of STIM1 to SUR1 was enhanced by poly-lysine. Our data indicate that SOCE and KATP channel activity are regulated by STIM1. This suggests that STIM1 is a multifunctional signaling effector that participates in the control of membrane excitability and Ca2+ signaling events in β-cells.
Collapse
Affiliation(s)
| | | | - Heather A Nelson
- the Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York 13210
| | | | - Michael W Roe
- From the Department of Medicine and .,the Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York 13210
| |
Collapse
|
27
|
Abstract
Store Operated Ca(2+) Entry (SOCE), the main Ca(2+) influx mechanism in non-excitable cells, is implicated in the immune response and has been reported to be affected in several pathologies including cancer. The basic molecular constituents of SOCE are Orai, the pore forming unit, and STIM, a multidomain protein with at least two principal functions: one is to sense the Ca(2+) content inside the lumen of the endoplasmic reticulum(ER) and the second is to activate Orai channels upon depletion of the ER. The link between Ca(2+) depletion inside the ER and Ca(2+) influx from extracellular media is through a direct association of STIM and Orai, but for this to occur, both molecules have to interact and form clusters where ER and plasma membrane (PM) are intimately apposed. In recent years a great number of components have been identified as participants in SOCE regulation, including regions of plasma membrane enriched in cholesterol and sphingolipids, the so called lipid rafts, which recruit a complex platform of specialized microdomains, which cells use to regulate spatiotemporal Ca(2+) signals.
Collapse
|
28
|
Abstract
The regulatory protein STIM1 controls gating of the Ca(2+) channel ORAI1 by a direct protein-protein interaction. Because STIM1 is anchored in the ER membrane and ORAI1 is in the plasma membrane, the STIM-ORAI pathway can support Ca(2+) influx only where the two membranes come into close apposition, effectively demarcating a microdomain for Ca(2+) signalling. This review begins with a brief summary of the STIM-ORAI pathway of store-operated Ca(2+) influx, then turns to the special geometry of the STIM-ORAI microdomain and the expected characteristics of the microdomain Ca(2+) signal. A final section of the review seeks to place the STIM-ORAI microdomain into a broader context of cellular Ca(2+) signalling.
Collapse
Affiliation(s)
- Patrick G Hogan
- La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA.
| |
Collapse
|
29
|
Cooper DMF. Store-operated Ca²⁺-entry and adenylyl cyclase. Cell Calcium 2015; 58:368-75. [PMID: 25978874 DOI: 10.1016/j.ceca.2015.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 04/13/2015] [Accepted: 04/15/2015] [Indexed: 02/06/2023]
Abstract
One of the longest-standing effects of SOCE is in its selective regulation of Ca(2+)-sensitive adenylyl cyclase (AC) activity in non-excitable cells. Remarkably it was this source of Ca(2+) (SOCE) rather than the apparent magnitude of the Ca(2+)-rise that conferred AC responsiveness. The molecular basis for this dependence is now resolved in the case of adenylyl cyclase 8 (AC8). Sensors for Ca(2+) and cAMP targeted to ACs have been particularly useful in dissecting the influences upon and composition of what turn out to be signalling microdomains centred on ACs. A number of physiological processes depend on the regulation by SOCE of ACs, but the issue is under-studied. Here I will expand on these topics and point to some immediate unresolved questions.
Collapse
Affiliation(s)
- Dermot M F Cooper
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom.
| |
Collapse
|
30
|
Abstract
SOCE (store-operated Ca2+ entry) is mediated via specific plasma membrane channels in response to ER (endoplasmic reticulum) Ca2+ store depletion. This route of Ca2+ entry is central to the dynamic interplay between Ca2+ and cAMP signalling in regulating the activity of Ca2+-sensitive adenylate cyclase isoforms (AC1, AC5, AC6 and AC8). Two proteins have been identified as key components of SOCE: STIM1 (stromal interaction molecule 1), which senses ER Ca2+ store content and translocates to the plasma membrane upon store depletion, where it then activates Orai1, the pore-forming component of the CRAC (Ca2+ release-activated Ca2+) channel. Previous studies reported that co-expression of STIM1 and Orai1 in HEK-293 (human embryonic kidney 293) cells enhances Ca2+-stimulated AC8 activity and that AC8 and Orai1 directly interact to enhance this regulation. Nonetheless, the additional involvement of TRPC (transient receptor potential canonical) channels in SOCE has also been proposed. In the present study, we evaluate the contribution of TRPC1 to SOCE-mediated regulation of Ca2+-sensitive ACs in HEK-293 cells stably expressing AC8 (HEK-AC8) and HSG (human submandibular gland) cells expressing an endogenous Ca2+-inhibited AC6. We demonstrate a role for TRPC1 as an integral component of SOCE, alongside STIM1 and Orai1, in regulating Ca2+ fluxes within AC microdomains and influencing cAMP production.
Collapse
|
31
|
Abstract
Recent advances in the AC (adenylate cyclase)/cAMP field reveal overarching roles for the ACs. Whereas few processes are unaffected by cAMP in eukaryotes, ranging from the rapid modulation of ion channel kinetics to the slowest developmental effects, the large number of cellular processes modulated by only three intermediaries, i.e. PKA (protein kinase A), Epacs (exchange proteins directly activated by cAMP) and CNG (cyclic nucleotide-gated) channels, poses the question of how selectivity and fine control is achieved by cAMP. One answer rests on the number of differently regulated and distinctly expressed AC species. Specific ACs are implicated in processes such as insulin secretion, immunological responses, sino-atrial node pulsatility and memory formation, and specific ACs are linked with particular diseased conditions or predispositions, such as cystic fibrosis, Type 2 diabetes and dysrhythmias. However, much of the selectivity and control exerted by cAMP lies in the sophisticated properties of individual ACs, in terms of their coincident responsiveness, dynamic protein scaffolding and organization of cellular microassemblies. The ACs appear to be the centre of highly organized microdomains, where both cAMP and Ca2+, the other major influence on ACs, change in patterns quite discrete from the broad cellular milieu. How these microdomains are organized is beginning to become clear, so that ACs may now be viewed as fundamental signalling centres, whose properties exceed their production of cAMP. In the present review, we summarize how ACs are multiply regulated and the steps that are put in place to ensure discrimination in their signalling. This includes scaffolding of targets and modulators by the ACs and assembling of signalling nexuses in discrete cellular domains. We also stress how these assemblies are cell-specific, context-specific and dynamic, and may be best addressed by targeted biosensors. These perspectives on the organization of ACs uncover new strategies for intervention in systems mediated by cAMP, which promise far more informed specificity than traditional approaches.
Collapse
|
32
|
An improved targeted cAMP sensor to study the regulation of adenylyl cyclase 8 by Ca2+ entry through voltage-gated channels. PLoS One 2013; 8:e75942. [PMID: 24086669 PMCID: PMC3781085 DOI: 10.1371/journal.pone.0075942] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 08/19/2013] [Indexed: 11/19/2022] Open
Abstract
Here we describe an improved sensor with reduced pH sensitivity tethered to adenylyl cyclase (AC) 8. The sensor was used to study cAMP dynamics in the AC8 microdomain of MIN6 cells, a pancreatic β-cell line. In these cells, AC8 was activated by Ca(2+) entry through L-type voltage-gated channels following depolarisation. This activation could be reconstituted in HEK293 cells co-expressing AC8 and either the α1C or α1D subunit of L-type voltage-gated Ca(2+) channels. The development of this improved sensor opens the door to the study of cAMP microdomains in excitable cells that have previously been challenging due to the sensitivity of fluorescent proteins to pH changes.
Collapse
|
33
|
Frizzell RA, Hanrahan JW. Physiology of epithelial chloride and fluid secretion. Cold Spring Harb Perspect Med 2013; 2:a009563. [PMID: 22675668 DOI: 10.1101/cshperspect.a009563] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epithelial salt and water secretion serves a variety of functions in different organ systems, such as the airways, intestines, pancreas, and salivary glands. In cystic fibrosis (CF), the volume and/or composition of secreted luminal fluids are compromised owing to mutations in the gene encoding CFTR, the apical membrane anion channel that is responsible for salt secretion in response to cAMP/PKA stimulation. This article examines CFTR and related cellular transport processes that underlie epithelial anion and fluid secretion, their regulation, and how these processes are altered in CF disease to account for organ-specific secretory phenotypes.
Collapse
Affiliation(s)
- Raymond A Frizzell
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| | | |
Collapse
|
34
|
Extracellular calcium influx activates adenylate cyclase 1 and potentiates insulin secretion in MIN6 cells. Biochem J 2013; 450:365-73. [PMID: 23282092 DOI: 10.1042/bj20121022] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Intracellular cAMP and Ca(2+) are important second messengers that regulate insulin secretion in pancreatic β-cells; however, the molecular mechanism underlying their mutual interaction for exocytosis is not fully understood. In the present study, we investigated the interplay between intracellular cAMP and Ca(2+) concentrations ([cAMP](i) and [Ca(2+)](i) respectively) in the pancreatic β-cell line MIN6 using total internal reflection fluorescence microscopy. For measuring [cAMP](i), we developed a genetically encoded yellow fluorescent biosensor for cAMP [Flamindo (fluorescent cAMP indicator)], which changes fluorescence intensity with cAMP binding. Application of high-KCl or glucose to MIN6 cells induced the elevation of [cAMP](i) and exocytosis. Furthermore, application of an L-type Ca(2+) channel agonist or ionomycin to induce extracellular Ca(2+) influx evoked the elevation of [cAMP](i), whereas application of carbachol or thapsigargin, which mobilize Ca(2+) from internal stores, did not evoke the elevation of [cAMP](i). We performed RT (reverse transcription)-PCR analysis and found that Ca(2+)-sensitive Adcy1 (adenylate cyclase 1) was expressed in MIN6 cells. Knockdown of endogenous ADCY1 by small interference RNA significantly suppressed glucose-induced exocytosis and the elevation of both [cAMP](i) and [Ca(2+)](i). Taken together, the findings of the present study demonstrate that ADCY1 plays an important role in the control of pancreatic β-cell cAMP homoeostasis and insulin secretion.
Collapse
|
35
|
Alternative Forms of the Store-Operated Calcium Entry Mediators, STIM1 and Orai1. CURRENT TOPICS IN MEMBRANES 2013; 71:109-23. [DOI: 10.1016/b978-0-12-407870-3.00005-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
Muscarinic receptors stimulate AC2 by novel phosphorylation sites, whereas Gβγ subunits exert opposing effects depending on the G-protein source. Biochem J 2012; 447:393-405. [PMID: 22906005 PMCID: PMC3465989 DOI: 10.1042/bj20120279] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Direct phosphorylation of AC2 (adenylyl cyclase 2) by PKC (protein kinase C) affords an opportunity for AC2 to integrate signals from non-canonical pathways to produce the second messenger, cyclic AMP. The present study shows that stimulation of AC2 by pharmacological activation of PKC or muscarinic receptor activation is primarily the result of phosphorylation of Ser490 and Ser543, as opposed to the previously proposed Thr1057. A double phosphorylation-deficient mutant (S490/543A) of AC2 was insensitive to PMA (phorbol myristic acid) and CCh (carbachol) stimulation, whereas a double phosphomimetic mutant (S490/543D) mimicked the activity of PKC-activated AC2. Putative Gβγ-interacting sites are in the immediate environment of these PKC phosphorylation sites (Ser490 and Ser543) that are located within the C1b domain of AC2, suggesting a significant regulatory importance of this domain. Consequently, we examined the effect of both Gq-coupled muscarinic and Gi-coupled somatostatin receptors. Employing pharmacological and FRET (fluorescence resonance energy transfer)-based real-time single cell imaging approaches, we found that Gβγ released from the Gq-coupled muscarinic receptor or Gi-coupled somatostatin receptors exert inhibitory or stimulatory effects respectively. These results underline the sophisticated regulatory capacities of AC2, in not only being subject to regulation by PKC, but also and in an opposite manner to Gβγ subunits, depending on their source.
Collapse
|
37
|
Abstract
Insulin secretion from pancreatic β-cells is tightly regulated by glucose and other nutrients, hormones, and neural factors. The exocytosis of insulin granules is triggered by an elevation of the cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) and is further amplified by cyclic AMP (cAMP). Cyclic AMP is formed primarily in response to glucoincretin hormones and other G(s)-coupled receptor agonists, but generation of the nucleotide is critical also for an optimal insulin secretory response to glucose. Nutrient and receptor stimuli trigger oscillations of the cAMP concentration in β-cells. The oscillations arise from variations in adenylyl cyclase-mediated cAMP production and phosphodiesterase-mediated degradation, processes controlled by factors like cell metabolism and [Ca(2+)](i). Protein kinase A and the guanine nucleotide exchange factor Epac2 mediate the actions of cAMP in β-cells and operate at multiple levels to promote exocytosis and pulsatile insulin secretion. The cAMP signaling system contains important targets for pharmacological improvement of insulin secretion in type 2 diabetes.
Collapse
Affiliation(s)
- Anders Tengholm
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre , Box 571, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
38
|
Lysophosphatidic acid promotes cell migration through STIM1- and Orai1-mediated Ca2+(i) mobilization and NFAT2 activation. J Invest Dermatol 2012; 133:793-802. [PMID: 23096711 PMCID: PMC3572452 DOI: 10.1038/jid.2012.370] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Lysophosphatidic acid (LPA) enhances cell migration and promotes wound healing in vivo, but the intracellular signaling pathways regulating these processes remain incompletely understood. Here we investigated the involvement of agonist-induced Ca2+ entry and STIM1 and Orai1 proteins in regulating nuclear factor of activated T cell (NFAT) signaling and LPA-induced keratinocyte cell motility. As monitored by Fluo-4 imaging, stimulation with 10 μℳ LPA in 60 μℳ Ca2+o evoked Ca2+i transients owing to store release, whereas addition of LPA in physiological 1.2 mℳ Ca2+o triggered store release coupled to extracellular Ca2+ entry. Store-operated Ca2+ entry (SOCE) was blocked by the SOCE inhibitor diethylstilbestrol (DES), STIM1 silencing using RNA interference (RNAi), and expression of dominant/negative Orai1R91W. LPA induced significant NFAT activation as monitored by nuclear translocation of green fluorescent protein-tagged NFAT2 and a luciferase reporter assay, which was impaired by DES, expression of Orai1R91W, and inhibition of calcineurin using cyclosporin A (CsA). By using chemotactic migration assays, LPA-induced cell motility was significantly impaired by STIM1, CsA, and NFAT2 knockdown using RNAi. These data indicate that in conditions relevant to epidermal wound healing, LPA induces SOCE and NFAT activation through Orai1 channels and promotes cell migration through a calcineurin/NFAT2-dependent pathway.
Collapse
|
39
|
Billington CK, Hall IP. Novel cAMP signalling paradigms: therapeutic implications for airway disease. Br J Pharmacol 2012; 166:401-10. [PMID: 22013890 DOI: 10.1111/j.1476-5381.2011.01719.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Since its discovery over 50 years ago, cAMP has been the archetypal second messenger introducing students to the concept of cell signalling at the simplest level. As explored in this review, however, there are many more facets to cAMP signalling than the path from Gs-coupled receptor to adenylyl cyclase (AC) to cAMP to PKA to biological effect. After a brief description of this canonical cAMP signalling pathway, a snapshot is provided of the novel paradigms of cAMP signalling. As in the airway the cAMP pathway relays the major bronchorelaxant signal and as such is the target for frontline therapy for asthma and COPD, particular emphasis is given to airway disease and therapy. Areas discussed include biased agonism, continued signalling following internalization, modulation of cAMP by AC, control of cAMP degradation, cAMP and calcium crosstalk, Epac-mediated signalling and finally the implications of altered genotypes will be considered. LINKED ARTICLES This article is part of a themed section on Novel cAMP Signalling Paradigms. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.166.issue-2.
Collapse
Affiliation(s)
- Charlotte K Billington
- Division of Therapeutics and Molecular Medicine, Nottingham Respiratory Biomedical Research Unit, The University of Nottingham, Nottingham, UK.
| | | |
Collapse
|
40
|
Organization of cAMP signalling microdomains for optimal regulation by Ca2+ entry. Biochem Soc Trans 2012; 40:246-50. [PMID: 22260699 DOI: 10.1042/bst20110613] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cross-talk between cAMP and Ca2+ signalling pathways plays a critical role in cellular homoeostasis. Several AC (adenylate cyclase) isoforms, catalysing the production of cAMP from ATP, display sensitivity to submicromolar changes in intracellular Ca2+ and, as a consequence, are key sites for Ca2+ and cAMP interplay. Interestingly, these Ca2+-regulated ACs are not equally responsive to equivalent Ca2+ rises within the cell, but display a remarkable selectivity for regulation by SOCE (store-operated Ca2+ entry). Over the years, considerable efforts at investigating this phenomenon have provided indirect evidence of an intimate association between Ca2+-sensitive AC isoforms and sites of SOCE. Now, recent identification of the molecular components of SOCE [namely STIM1 (stromal interaction molecule 1) and Orai1], coupled with significant advances in the generation of high-resolution targeted biosensors for Ca2+ and cAMP, have provided the first detailed insight into the organization of the cellular microdomains associated with Ca2+-regulated ACs. In the present review, I summarize the findings that have helped to provide our most definitive understanding of the selective regulation of cAMP signalling by SOCE.
Collapse
|
41
|
Willoughby D, Everett KL, Halls ML, Pacheco J, Skroblin P, Vaca L, Klussmann E, Cooper DMF. Direct binding between Orai1 and AC8 mediates dynamic interplay between Ca2+ and cAMP signaling. Sci Signal 2012; 5:ra29. [PMID: 22494970 DOI: 10.1126/scisignal.2002299] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The interplay between calcium ion (Ca(2+)) and cyclic adenosine monophosphate (cAMP) signaling underlies crucial aspects of cell homeostasis. The membrane-bound Ca(2+)-regulated adenylyl cyclases (ACs) are pivotal points of this integration. These enzymes display high selectivity for Ca(2+) entry arising from the activation of store-operated Ca(2+) (SOC) channels, and they have been proposed to functionally colocalize with SOC channels to reinforce crosstalk between the two signaling pathways. Using a multidisciplinary approach, we have identified a direct interaction between the amino termini of Ca(2+)-stimulated AC8 and Orai1, the pore component of SOC channels. High-resolution biosensors targeted to the AC8 and Orai1 microdomains revealed that this protein-protein interaction is responsible for coordinating subcellular changes in both Ca(2+) and cAMP. The demonstration that Orai1 functions as an integral component of a highly organized signaling complex to coordinate Ca(2+) and cAMP signals underscores how SOC channels can be recruited to maximize the efficiency of the interplay between these two ubiquitous signaling pathways.
Collapse
Affiliation(s)
- Debbie Willoughby
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Ayling LJ, Briddon SJ, Halls ML, Hammond GRV, Vaca L, Pacheco J, Hill SJ, Cooper DMF. Adenylyl cyclase AC8 directly controls its micro-environment by recruiting the actin cytoskeleton in a cholesterol-rich milieu. J Cell Sci 2012; 125:869-86. [PMID: 22399809 DOI: 10.1242/jcs.091090] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The central and pervasive influence of cAMP on cellular functions underscores the value of stringent control of the organization of adenylyl cyclases (ACs) in the plasma membrane. Biochemical data suggest that ACs reside in membrane rafts and could compartmentalize intermediary scaffolding proteins and associated regulatory elements. However, little is known about the organization or regulation of the dynamic behaviour of ACs in a cellular context. The present study examines these issues, using confocal image analysis of various AC8 constructs, combined with fluorescence recovery after photobleaching and fluorescence correlation spectroscopy. These studies reveal that AC8, through its N-terminus, enhances the cortical actin signal at the plasma membrane; an interaction that was confirmed by GST pull-down and immunoprecipitation experiments. AC8 also associates dynamically with lipid rafts; the direct association of AC8 with sterols was confirmed in Förster resonance energy transfer experiments. Disruption of the actin cytoskeleton and lipid rafts indicates that AC8 tracks along the cytoskeleton in a cholesterol-enriched domain, and the cAMP that it produces contributes to sculpting the actin cytoskeleton. Thus, an adenylyl cyclase is shown not just to act as a scaffold, but also to actively orchestrate its own micro-environment, by associating with the cytoskeleton and controlling the association by producing cAMP, to yield a highly organized signalling hub.
Collapse
Affiliation(s)
- Laura J Ayling
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Structure, regulation and biophysics of I(CRAC), STIM/Orai1. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:383-410. [PMID: 22453951 DOI: 10.1007/978-94-007-2888-2_16] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ca(2+) release activated Ca(2+) (CRAC) channels mediate robust Ca(2+) influx when the endoplasmic reticulum Ca(2+) stores are depleted. This essential process for T-cell activation as well as degranulation of mast cells involves the Ca(2+) sensor STIM1, located in the endoplasmic reticulum and the Ca(2+) selective Orai1 channel in the plasma membrane. Our review describes the CRAC signaling pathway, the activation of which is initiated by a drop in the endoplasmic Ca(2+) level sensed by STIM1. This in term induces multimerisation and puncta-formation of STIM1 proteins is followed by their coupling to and activation of Orai channels. Consequently Ca(2+) entry is triggered through the Orai pore into the cytosol with subsequent closure of the channel by Ca(2+)-dependent inactivation. We will portray a mechanistic view of the events coupling STIM1 to Orai activation based on their structure and biophysics.
Collapse
|
44
|
Balghi H, Robert R, Rappaz B, Zhang X, Wohlhuter-Haddad A, Evagelidis A, Luo Y, Goepp J, Ferraro P, Roméo P, Trebak M, Wiseman PW, Thomas DY, Hanrahan JW. Enhanced Ca2+ entry due to Orai1 plasma membrane insertion increases IL-8 secretion by cystic fibrosis airways. FASEB J 2011; 25:4274-91. [PMID: 21873556 DOI: 10.1096/fj.11-187682] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cystic fibrosis (CF) is caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR). The most common mutation, ΔF508, causes retention of CFTR in the endoplasmic reticulum (ER). Some CF abnormalities can be explained by altered Ca(2+) homeostasis, although it remains unknown how CFTR influences calcium signaling. This study examined the novel hypothesis that store-operated calcium entry (SOCE) through Orai1 is abnormal in CF. The significance of Orai1-mediated SOCE for increased interleukin-8 (IL-8) expression in CF was also investigated. CF and non-CF human airway epithelial cell line and primary cells (obtained at lung transplantation) were used in Ca(2+) imaging, electrophysiology, and fluorescence imaging experiments to explore differences in Orai1 function in CF vs. non-CF cells. Protein expression and localization was assessed by Western blots, cell surface biotinylation, ELISA, and image correlation spectroscopy (ICS). We show here that store-operated Ca(2+) entry (SOCE) is elevated in CF human airway epithelial cells (hAECs; ≈ 1.8- and ≈ 2.5-fold for total Ca(2+)(i) increase and Ca(2+) influx rate, respectively, and ≈ 2-fold increase in the I(CRAC) current) and is caused by increased exocytotic insertion (≈ 2-fold) of Orai1 channels into the plasma membrane, which is normalized by rescue of ΔF508-CFTR trafficking to the cell surface. Augmented SOCE in CF cells is a major factor leading to increased IL-8 secretion (≈ 2-fold). CFTR normally down-regulates the Orai1/stromal interaction molecule 1 (STIM1) complex, and loss of this inhibition due to the absence of CFTR at the plasma membrane helps to explain the potentiated inflammatory response in CF cells.
Collapse
Affiliation(s)
- Haouaria Balghi
- Department of Physiology, McGill University, Montréal, Québec, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Cross-talk between calcium and protein kinase A in the regulation of cell migration. Curr Opin Cell Biol 2011; 23:554-61. [PMID: 21665456 DOI: 10.1016/j.ceb.2011.05.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 05/16/2011] [Accepted: 05/17/2011] [Indexed: 12/31/2022]
Abstract
Calcium (Ca(2+)) and the cAMP-dependent protein kinase (PKA) are pleiotropic cellular regulators and both exert powerful, diverse effects on cytoskeletal dynamics, cell adhesion, and cell migration. Localization, by A-kinase-anchoring proteins (AKAPs), of PKA activity to the protrusive leading edge, integrins, and other regulators of cytoskeletal dynamics has emerged as an important facet of its role in cell migration. Additional recent work has firmly established the importance of Ca(2+) influx through mechanosensitive transient receptor potential (TRP) channels and through store-operated Ca(2+) entry (SOCE) in cell migration. Finally, there is considerable evidence showing that these mechanisms of Ca(2+) influx and PKA regulation intersect--and often interact--and thus may work in concert to translate complex extracellular cues into the intracellular biochemical anisotropy required for directional cell migration.
Collapse
|
46
|
Differential roles for STIM1 and STIM2 in store-operated calcium entry in rat neurons. PLoS One 2011; 6:e19285. [PMID: 21541286 PMCID: PMC3082561 DOI: 10.1371/journal.pone.0019285] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 03/25/2011] [Indexed: 01/11/2023] Open
Abstract
The interaction between Ca2+ sensors STIM1 and STIM2 and
Ca2+ channel-forming protein ORAI1 is a crucial element of
store-operated calcium entry (SOCE) in non-excitable cells. However, the
molecular mechanism of SOCE in neurons remains unclear. We addressed this issue
by establishing the presence and function of STIM proteins. Real-time polymerase
chain reaction from cortical neurons showed that these cells contain significant
amounts of Stim1 and Stim2 mRNA. Thapsigargin
(TG) treatment increased the amount of both endogenous STIM proteins in neuronal
membrane fractions. The number of YFP-STIM1/ORAI1 and YFP-STIM2/ORAI1 complexes
was also enhanced by such treatment. The differences observed in the number of
STIM1 and STIM2 complexes under SOCE conditions and the differential sensitivity
to SOCE inhibitors suggest their distinct roles. Endoplasmic reticulum (ER)
store depletion by TG enhanced intracellular Ca2+ levels in
loaded with Fura-2 neurons transfected with YFP-STIM1 and ORAI1, but not with
YFP-STIM2 and ORAI1, which correlated well with the number of complexes formed.
Moreover, the SOCE inhibitors ML-9 and 2-APB reduced Ca2+ influx
in neurons expressing YFP-STIM1/ORAI1 but produced no effect in cells
transfected with YFP-STIM2/ORAI1. Moreover, in neurons transfected with
YFP-STIM2/ORAI1, the increase in constitutive calcium entry was greater than
with YFP-STIM1/ORAI1. Our data indicate that both STIM proteins are involved in
calcium homeostasis in neurons. STIM1 mainly activates SOCE, whereas STIM2
regulates resting Ca2+ levels in the ER and Ca2+
leakage with the additional involvement of STIM1.
Collapse
|
47
|
Sayner SL, Balczon R, Frank DW, Cooper DMF, Stevens T. Filamin A is a phosphorylation target of membrane but not cytosolic adenylyl cyclase activity. Am J Physiol Lung Cell Mol Physiol 2011; 301:L117-24. [PMID: 21478251 DOI: 10.1152/ajplung.00417.2009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Transmembrane adenylyl cyclase (AC) generates a cAMP pool within the subplasma membrane compartment that strengthens the endothelial cell barrier. This cAMP signal is steered toward effectors that promote junctional integrity and is inactivated before it accesses microtubules, where the cAMP signal causes phosphorylation of tau, leading to microtubule disassembly and barrier disruption. During infection, Pseudomonas aeruginosa uses a type III secretion system to inject a soluble AC, ExoY, into the cytosol of pulmonary microvascular endothelial cells. ExoY generates a cAMP signal that disrupts the endothelial cell barrier. We tested the hypothesis that this ExoY-dependent cAMP signal causes phosphorylation of tau, without inducing phosphorylation of membrane effectors that strengthen endothelial barrier function. To approach this hypothesis, we first discerned the membrane compartment in which endogenous transmembrane AC6 resides. AC6 was resolved in caveolin-rich lipid raft fractions with calcium channel proteins and the cell adhesion molecules N-cadherin, E-cadherin, and activated leukocyte adhesion molecule. VE-cadherin was excluded from the caveolin-rich fractions and was detected in the bulk plasma membrane fractions. The actin binding protein, filamin A, was detected in all membrane fractions. Isoproterenol activation of ACs promoted filamin phosphorylation, whereas thrombin inhibition of AC6 reduced filamin phosphorylation within the membrane fraction. In contrast, ExoY produced a cAMP signal that did not cause filamin phosphorylation yet induced tau phosphorylation. Hence, our data indicate that cAMP signals are strictly compartmentalized; whereas cAMP emanating from transmembrane ACs activates barrier-enhancing targets, such as filamin, cAMP emanating from soluble ACs activates barrier-disrupting targets, such as tau.
Collapse
Affiliation(s)
- Sarah L Sayner
- Department of Cell Biology and Neuroscience, University of South Alabama, Mobile, Alabama 36688, USA.
| | | | | | | | | |
Collapse
|
48
|
Abstract
Interplay between the signaling pathways of the intracellular second messengers, cAMP and Ca(2+), has vital consequences for numerous essential physiological processes. Although cAMP can impact on Ca(2+)-homeostasis at many levels, Ca(2+) either directly, or indirectly (via calmodulin [CaM], CaM-binding proteins, protein kinase C [PKC] or Gβγ subunits) may also regulate cAMP synthesis. Here, we have evaluated the evidence for regulation of adenylyl cyclases (ACs) by Ca(2+)-signaling pathways, with an emphasis on verification of this regulation in a physiological context. The effects of compartmentalization and protein signaling complexes on the regulation of AC activity by Ca(2+)-signaling pathways are also addressed. Major gaps are apparent in the interactions that have been assumed, revealing a need to comprehensively clarify the effects of Ca(2+) signaling on individual ACs, so that the important ramifications of this critical interplay between Ca(2+) and cAMP are fully appreciated.
Collapse
Affiliation(s)
- Michelle L Halls
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, United Kingdom
| | | |
Collapse
|
49
|
Kuszczak I, Samson SE, Pande J, Shen DQ, Grover AK. Sodium-calcium exchanger and lipid rafts in pig coronary artery smooth muscle. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:589-96. [PMID: 21130729 DOI: 10.1016/j.bbamem.2010.11.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Revised: 11/11/2010] [Accepted: 11/23/2010] [Indexed: 10/18/2022]
Abstract
Pig coronary artery smooth muscle expresses, among many other proteins, Na+-Ca²+-exchanger NCX1 and sarcoplasmic reticulum Ca²+ pump SERCA2. NCX1 has been proposed to play a role in refilling the sarcoplasmic reticulum Ca²+ pool suggesting a functional linkage between the two proteins. We hypothesized that this functional linkage may require close apposition of SERCA2 and NCX1 involving regions of plasma membrane like lipid rafts. Lipid rafts are specialized membrane microdomains that appear as platforms to co-localize proteins. To determine the distribution of NCX1, SERCA2 and lipid rafts, we isolated microsomes from the smooth muscle tissue, treated them with non-ionic detergent and obtained fractions of different densities by sucrose density gradient centrifugal flotation. We examined the distribution of NCX1; SERCA2; non-lipid raft plasma membrane marker transferrin receptor protein; lipid raft markers caveolin-1, flotillin-2, prion protein, GM1-gangliosides and cholesterol; and cytoskeletal markers clathrin, actin and myosin. Distribution of markers identified two subsets of lipid rafts that differ in their components. One subset is rich in caveolin-1 and flotillin-2 and the other in GM1-gangliosides, prion protein and cholesterol. NCX1 distribution correlated strongly with SERCA2, caveolin-1 and flotillin-2, less strongly with the other membrane markers and negatively with the cytoskeletal markers. These experiments were repeated with a non-detergent method of treating microsomes with sonication at high pH and similar results were obtained. These observations are consistent with the observed functional linkage between NCX1 and SERCA2 and suggest a role for NCX1 in supplying Ca²+ for refilling the sarcoplasmic reticulum.
Collapse
Affiliation(s)
- Iwona Kuszczak
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | |
Collapse
|
50
|
Ca2+ signaling by plant Arabidopsis thaliana Pep peptides depends on AtPepR1, a receptor with guanylyl cyclase activity, and cGMP-activated Ca2+ channels. Proc Natl Acad Sci U S A 2010; 107:21193-8. [PMID: 21088220 DOI: 10.1073/pnas.1000191107] [Citation(s) in RCA: 197] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A family of peptide signaling molecules (AtPeps) and their plasma membrane receptor AtPepR1 are known to act in pathogen-defense signaling cascades in plants. Little is currently known about the molecular mechanisms that link these signaling peptides and their receptor, a leucine-rich repeat receptor-like kinase, to downstream pathogen-defense responses. We identify some cellular activities of these molecules that provide the context for a model for their action in signaling cascades. AtPeps activate plasma membrane inwardly conducting Ca(2+) permeable channels in mesophyll cells, resulting in cytosolic Ca(2+) elevation. This activity is dependent on their receptor as well as a cyclic nucleotide-gated channel (CNGC2). We also show that the leucine-rich repeat receptor-like kinase receptor AtPepR1 has guanylyl cyclase activity, generating cGMP from GTP, and that cGMP can activate CNGC2-dependent cytosolic Ca(2+) elevation. AtPep-dependent expression of pathogen-defense genes (PDF1.2, MPK3, and WRKY33) is mediated by the Ca(2+) signaling pathway associated with AtPep peptides and their receptor. The work presented here indicates that extracellular AtPeps, which can act as danger-associated molecular patterns, signal by interaction with their receptor, AtPepR1, a plasma membrane protein that can generate cGMP. Downstream from AtPep and AtPepR1 in a signaling cascade, the cGMP-activated channel CNGC2 is involved in AtPep- and AtPepR1-dependent inward Ca(2+) conductance and resulting cytosolic Ca(2+) elevation. The signaling cascade initiated by AtPeps leads to expression of pathogen-defense genes in a Ca(2+)-dependent manner.
Collapse
|