1
|
Rullo L, Morosini C, Lacorte A, Cristani M, Coluzzi F, Candeletti S, Romualdi P. Opioid system and related ligands: from the past to future perspectives. JOURNAL OF ANESTHESIA, ANALGESIA AND CRITICAL CARE 2024; 4:70. [PMID: 39390585 PMCID: PMC11468104 DOI: 10.1186/s44158-024-00201-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024]
Abstract
Chronic pain is a pathological condition affecting about 30% of population. It represents a relevant social-health issue worldwide, and it is considered a significant source of human suffering and disability, strongly affecting patients' quality of life. Despite several pharmacological strategies to guarantee an adequate pain management have been proposed over the years, opioids still represent one of the primary choices for treating moderate-to-severe pain in both cancer and non-cancer patients. However, chronic use of opioids often leads to numerous side effects, including respiratory depression, constipation, analgesic tolerance, and opioid-induced hyperalgesia (OIH), which can strongly limit their use. Given the fundamental role of opioid system in pain relief, this review provides a general overview about the main actors (endogenous opioid peptides and receptors) involved in its modulation. Furthermore, this review explores the action and the limitations of conventional clinically used opioids and describes the efficacy and safety profile of some promising analgesic compounds. A deeper understanding of the molecular mechanisms behind both analgesic effects and adverse events could advance knowledge in this field, thus improving chronic pain treatment.
Collapse
Affiliation(s)
- Laura Rullo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Irnerio 48, Bologna, 40126, Italy
| | - Camilla Morosini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Irnerio 48, Bologna, 40126, Italy
| | - Antonio Lacorte
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Irnerio 48, Bologna, 40126, Italy
| | - Marco Cristani
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Irnerio 48, Bologna, 40126, Italy
| | - Flaminia Coluzzi
- Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, Rome, Italy
- Unit of Anaesthesia, Intensive Care and Pain Medicine, Sant'Andrea University Hospital, Rome, Italy
| | - Sanzio Candeletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Irnerio 48, Bologna, 40126, Italy
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Irnerio 48, Bologna, 40126, Italy.
| |
Collapse
|
2
|
Niu N, Miao H, Ren H. Transcriptome Analysis of Myocardial Ischemic-Hypoxic Injury in Rats and Hypoxic H9C2 Cells. ESC Heart Fail 2024. [PMID: 39010664 DOI: 10.1002/ehf2.14903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 04/18/2024] [Accepted: 05/24/2024] [Indexed: 07/17/2024] Open
Abstract
AIMS This study aimed to address inconsistencies in results between the H9C2 myocardial hypoxia (MH) cell line and myocardial infarction (MI) rat models used in MI research. We identified differentially expressed genes (DEGs) and underlying molecular mechanisms using RNA sequencing technology. METHODS RNA sequencing was used to analyse DEGs in MI rat tissues and H9C2 cells exposed to hypoxia for 24 h. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to identify key biological processes and pathways. Weighted correlation network analysis [weighted gene co-expression network analysis (WGCNA)] was used to construct gene co-expression networks, and hub genes were compared with published MI datasets [Gene Expression Omnibus (GEO)] for target identification. RESULTS GO analysis revealed enrichment of immune inflammation and mitochondrial respiration processes among 5139 DEGs in MI tissues and 2531 in H9C2 cells. KEGG analysis identified 537 overlapping genes associated with metabolism and oxidative stress pathways. Cross-analyses using the published GSE35088 and GSE47495 datasets identified 40 and 16 overlapping genes, respectively, with nine genes overlapping across all datasets and our models. WGCNA identified a key module in the MI model enriched for mRNA processing and protein binding. GO analysis revealed enrichment of mRNA processing, protein binding and mitochondrial respiratory chain complex I assembly in MI and H9C2 MH models. Five relevant hub genes were identified via a cross-analysis between the 92 hub genes that showed a common expression trend in both models. CONCLUSIONS This study reveals both shared and distinct transcriptomic responses in the MI and H9C2 models, highlighting the importance of model selection for studying myocardial ischaemia and hypoxia.
Collapse
Affiliation(s)
- Nan Niu
- Department of Cardiovascular Medicine, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Huangtai Miao
- Coronary Heart Disease Center,Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hongmei Ren
- Department of Cardiovascular Medicine, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| |
Collapse
|
3
|
Agborbesong E, Bissler J, Li X. Liquid Biopsy at the Frontier of Kidney Diseases: Application of Exosomes in Diagnostics and Therapeutics. Genes (Basel) 2023; 14:1367. [PMID: 37510273 PMCID: PMC10379367 DOI: 10.3390/genes14071367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/08/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
In the era of precision medicine, liquid biopsy techniques, especially the use of urine analysis, represent a paradigm shift in the identification of biomarkers, with considerable implications for clinical practice in the field of nephrology. In kidney diseases, the use of this non-invasive tool to identify specific and sensitive biomarkers other than plasma creatinine and the glomerular filtration rate is becoming crucial for the diagnosis and assessment of a patient's condition. In recent years, studies have drawn attention to the importance of exosomes for diagnostic and therapeutic purposes in kidney diseases. Exosomes are nano-sized extracellular vesicles with a lipid bilayer structure, composed of a variety of biologically active substances. In the context of kidney diseases, studies have demonstrated that exosomes are valuable carriers of information and are delivery vectors, rendering them appealing candidates as biomarkers and drug delivery vehicles with beneficial therapeutic outcomes for kidney diseases. This review summarizes the applications of exosomes in kidney diseases, emphasizing the current biomarkers of renal diseases identified from urinary exosomes and the therapeutic applications of exosomes with reference to drug delivery and immunomodulation. Finally, we discuss the challenges encountered when using exosomes for therapeutic purposes and how these may affect its clinical applications.
Collapse
Affiliation(s)
- Ewud Agborbesong
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - John Bissler
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN 38105, USA
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN 38105, USA
- Pediatric Medicine Department, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
4
|
Sánchez-Zavaleta R, Ávalos-Fuentes JA, González-Hernández AV, Recillas-Morales S, Paz-Bermúdez FJ, Leyva-Gómez G, Cortés H, Florán B. Presynaptic nigral GPR55 receptors stimulate [ 3 H]-GABA release through [ 3 H]-cAMP production and PKA activation and promote motor behavior. Synapse 2022; 76:e22246. [PMID: 35831708 DOI: 10.1002/syn.22246] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/16/2022] [Accepted: 07/05/2022] [Indexed: 11/09/2022]
Abstract
Striatal medium-sized spiny neurons express mRNA and protein of GPR55 receptors that stimulate neurotransmitter release; thus, GPR55 could be sent to nigral striatal projections, where it might modulate GABA release and motor behavior. Here we study the presence of GPR55 receptors at striato-nigral terminals, their modulation of GABA release, their signaling pathway, and their effect on motor activity. By double immunohistochemistry, we found the colocation of GPR55 protein and substance P in the dorsal striatum. In slices of the rat substantia nigra, the GPR55 agonists LPI and O-1602 stimulated [3 H]-GABA release induced by high K+ depolarization in a dose-dependent manner. The antagonists CID16020046 and cannabidiol prevented agonist stimulation in a dose-dependent way. The effect of GPR55 on nigral [3 H]-GABA release was prevented by lesion of the striatum with kainic acid, which was accompanied by a decrement of GPR55 protein in nigral synaptosomes, indicating the presynaptic location of receptors. The depletion of internal Ca2+ stores with thapsigargin did not prevent the effect of LPI on [3 H]-GABA release, but the remotion or chelation of external calcium did. Blockade of Gi, Gs, PLC, PKC, or dopamine D1 receptor signaling proteins did not prevent the effect of GPR55 on release. However, the activation of GPR55 stimulated [3 H]-cAMP accumulation and PKA activity. Intranigral unilateral injection of LPI induces contralateral turning. This turning was prevented by CID16020046, cannabidiol, and bicuculline but not by SCH 23390. Our data indicate that presynaptic GPR55 receptors stimulate [3 H]-GABA release at striato-nigral terminals through [3 H]-cAMP production and stimulate motor behavior. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Rodolfo Sánchez-Zavaleta
- Departamento de Fisiología, Biofísica y Neurociencias. Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México
| | - José Arturo Ávalos-Fuentes
- Departamento de Fisiología, Biofísica y Neurociencias. Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México
| | - Antonio Valentín González-Hernández
- Departamento de Fisiología, Biofísica y Neurociencias. Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México
| | | | - Francisco Javier Paz-Bermúdez
- Departamento de Fisiología, Biofísica y Neurociencias. Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, México
| | - Benjamín Florán
- Departamento de Fisiología, Biofísica y Neurociencias. Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México
| |
Collapse
|
5
|
Allostatic Changes in the cAMP System Drive Opioid-Induced Adaptation in Striatal Dopamine Signaling. Cell Rep 2020; 29:946-960.e2. [PMID: 31644915 PMCID: PMC6871051 DOI: 10.1016/j.celrep.2019.09.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/29/2019] [Accepted: 09/12/2019] [Indexed: 01/06/2023] Open
Abstract
Opioids are powerful addictive agents that alter dopaminergic influence
on reward signaling in medium spiny neurons (MSNs) of the nucleus accumbens.
Repeated opioid exposure triggers adaptive changes, shifting reward valuation to
the allostatic state underlying tolerance. However, the cellular substrates and
molecular logic underlying such allostatic changes are not well understood.
Here, we report that the plasticity of dopamine-induced cyclic AMP (cAMP)
signaling in MSNs serves as a cellular substrate for drug-induced allostatic
adjustments. By recording cAMP responses to optically evoked dopamine in brain
slices from mice subjected to various opioid exposure paradigms, we define
profound neuronal-type-specific adaptations. We find that opioid exposure pivots
the initial hyper-responsiveness of D1-MSNs toward D2-MSN dominance as
dependence escalates. Presynaptic dopamine transporters and postsynaptic
phosphodiesterases critically enable cell-specific adjustments of cAMP that
control the balance between opponent D1-MSN and D2-MSN channels. We propose a
quantitative model of opioid-induced allostatic adjustments in cAMP signal
strength that balances circuit activity. Muntean et al. examine how opioid exposure influences cyclic AMP (cAMP)
responses to dopamine in striatal medium spiny neurons (MSNs). They describe
allostatic adaptations in the processing of dopaminergic signals by D1-MSN and
D2-MSN populations as opioid administration progresses from acute exposure to
chronic use, and they define molecular elements contributing to the process.
Collapse
|
6
|
Vural A, Lanier SM. Intersection of two key signal integrators in the cell: activator of G-protein signaling 3 and dishevelled-2. J Cell Sci 2020; 133:jcs247908. [PMID: 32737219 PMCID: PMC7490517 DOI: 10.1242/jcs.247908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/23/2020] [Indexed: 10/23/2022] Open
Abstract
Activator of G-protein signaling 3 (AGS3, encoded by GPSM1) was discovered as a one of several receptor-independent activators of G-protein signaling, which are postulated to provide a platform for divergence between canonical and noncanonical G-protein signaling pathways. Similarly, Dishevelled (DVL) proteins serve as a point of divergence for β-catenin-dependent and -independent signaling pathways involving the family of Frizzled (FZD) ligands and cell-surface WNT receptors. We recently discovered the apparent regulated localization of dishevelled-2 (DVL2) and AGS3 to distinct cellular puncta, suggesting that the two proteins interact as part of various cell signaling systems. To address this hypothesis, we asked the following questions: (1) do AGS3 signaling pathways influence the activation of β-catenin (CTNNB1)-regulated transcription through the WNT-Frizzled-Dishevelled axis, and (2) is the AGS3 and DVL2 interaction regulated? The interaction of AGS3 and DVL2 was regulated by protein phosphorylation, subcellular distribution, and a cell-surface G-protein-coupled receptor. These data, and the commonality of functional system impacts observed for AGS3 and DVL2, suggest that the AGS3-DVL2 complex presents an unexpected path for functional integration within the cell.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Ali Vural
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Stephen M Lanier
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
7
|
Wagner KM, Gomes A, McReynolds CB, Hammock BD. Soluble Epoxide Hydrolase Regulation of Lipid Mediators Limits Pain. Neurotherapeutics 2020; 17:900-916. [PMID: 32875445 PMCID: PMC7609775 DOI: 10.1007/s13311-020-00916-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The role of lipids in pain signaling is well established and built on decades of knowledge about the pain and inflammation produced by prostaglandin and leukotriene metabolites of cyclooxygenase and lipoxygenase metabolism, respectively. The analgesic properties of other lipid metabolites are more recently coming to light. Lipid metabolites have been observed to act directly at ion channels and G protein-coupled receptors on nociceptive neurons as well as act indirectly at cellular membranes. Cytochrome P450 metabolism of specifically long-chain fatty acids forms epoxide metabolites, the epoxy-fatty acids (EpFA). The biological role of these metabolites has been found to mediate analgesia in several types of pain pathology. EpFA act through a variety of direct and indirect mechanisms to limit pain and inflammation including nuclear receptor agonism, limiting endoplasmic reticulum stress and blocking mitochondrial dysfunction. Small molecule inhibitors of the soluble epoxide hydrolase can stabilize the EpFA in vivo, and this approach has demonstrated relief in preclinical modeled pain pathology. Moreover, the ability to block neuroinflammation extends the potential benefit of targeting soluble epoxide hydrolase to maintain EpFA for neuroprotection in neurodegenerative disease.
Collapse
Affiliation(s)
- Karen M Wagner
- Department of Entomology and Nematology and University of California Davis Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis, California, 95616, USA
| | - Aldrin Gomes
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California, USA
| | - Cindy B McReynolds
- Department of Entomology and Nematology and University of California Davis Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis, California, 95616, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology and University of California Davis Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis, California, 95616, USA.
| |
Collapse
|
8
|
Cao DN, Shi JJ, Wu N, Li J. Modulation of miR-139-5p on chronic morphine-induced, naloxone-precipitated cAMP overshoot in vitro. Metab Brain Dis 2018; 33:1501-1508. [PMID: 29916183 DOI: 10.1007/s11011-018-0257-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/28/2018] [Indexed: 10/14/2022]
Abstract
Chronic exposure to morphine can produce tolerance, dependence and addiction, but the underlying neurobiological basis is still incompletely understood. c-Jun, as an important component of the activator protein-1 transcription factor, is supposed to take part in regulating gene expression in AC/cAMP/PKA signaling. MicroRNA (miRNA) has emerged as a critical regulator of neuronal functions. Although a number of miRNAs have been reported to regulate the μ-opioid receptor expression, there has been no report about miRNAs to regulate chronic morphine-induced, naloxone-precipitated cAMP overshoot. Our results showed that chronic morphine pretreatment induced naloxone-precipitated cAMP overshoot in concentration- and time-dependent manners in HEK 293/μ cells. Chronic morphine pretreatment alone elevated both c-Jun protein and miR-139-5p expression levels, while dramatically artificial elevation of miR-139-5p inhibited c-Jun at the translational level. Furthermore, dramatically artificial upregulation of intracellular miR-139-5p limited chronic morphine-induced, naloxone-precipitated cAMP overshoot. These findings suggested that miR-139-5p was involved in regulating chronic morphine-induced, naloxone-precipitated cAMP overshoot in a negative feedback manner through its target c-Jun, which extends our understanding of neurobiological mechanisms underlying morphine dependence and addiction.
Collapse
Affiliation(s)
- Dan-Ni Cao
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Jing-Jing Shi
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Ning Wu
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China.
| | - Jin Li
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China.
| |
Collapse
|
9
|
Keri KC, Regner KR, Dall AT, Park F. Urinary exosomal expression of activator of G protein signaling 3 in polycystic kidney disease. BMC Res Notes 2018; 11:359. [PMID: 29880041 PMCID: PMC5992714 DOI: 10.1186/s13104-018-3467-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/01/2018] [Indexed: 11/19/2022] Open
Abstract
Objective PKD is a genetic disease that is characterized by abnormally proliferative epithelial cells in the kidney and liver. Urinary exosomes have been previously examined as a source of unique proteins that may be used to diagnose and monitor the progression of PKD. Previous studies by our group have shown that AGS3, which is a receptor-independent regulator G-proteins, was markedly upregulated in RTECs during kidney injury including PKD. In this study, our goal was to determine whether AGS3 could be measured in exosomes using animals and humans with PKD. Results In our study, urinary exosomes were isolated from PCK rats and the control Sprague–Dawley (SD) rats. AGS3 expression was significantly increased (P < 0.05) in PKD versus SD rats at 16 weeks of age. This increase was detectable in a time-dependent manner from 8 weeks of age and peaked at ~ 16–20 weeks (length of study). Similarly, in exosomes from human urine samples with PKD, AGS3 expression was significantly increased (P < 0.05) compared to healthy human controls where AGS3 was largely undetectable. In conclusion, the detection of AGS3 in urinary exosomes may be a novel biomarker for PKD, and provide new insight into the biology of tubular epithelial cell function during cystic disease progression.
Collapse
Affiliation(s)
- Krishna C Keri
- Department of Medicine, Division of Nephrology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Kevin R Regner
- Department of Medicine, Division of Nephrology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Aaron T Dall
- Department of Medicine, Division of Nephrology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Frank Park
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center College of Pharmacy, 881 Madison Ave, Rm 442, Memphis, TN, 38163, USA
| |
Collapse
|
10
|
Dessauer CW, Watts VJ, Ostrom RS, Conti M, Dove S, Seifert R. International Union of Basic and Clinical Pharmacology. CI. Structures and Small Molecule Modulators of Mammalian Adenylyl Cyclases. Pharmacol Rev 2017; 69:93-139. [PMID: 28255005 PMCID: PMC5394921 DOI: 10.1124/pr.116.013078] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adenylyl cyclases (ACs) generate the second messenger cAMP from ATP. Mammalian cells express nine transmembrane AC (mAC) isoforms (AC1-9) and a soluble AC (sAC, also referred to as AC10). This review will largely focus on mACs. mACs are activated by the G-protein Gαs and regulated by multiple mechanisms. mACs are differentially expressed in tissues and regulate numerous and diverse cell functions. mACs localize in distinct membrane compartments and form signaling complexes. sAC is activated by bicarbonate with physiologic roles first described in testis. Crystal structures of the catalytic core of a hybrid mAC and sAC are available. These structures provide detailed insights into the catalytic mechanism and constitute the basis for the development of isoform-selective activators and inhibitors. Although potent competitive and noncompetitive mAC inhibitors are available, it is challenging to obtain compounds with high isoform selectivity due to the conservation of the catalytic core. Accordingly, caution must be exerted with the interpretation of intact-cell studies. The development of isoform-selective activators, the plant diterpene forskolin being the starting compound, has been equally challenging. There is no known endogenous ligand for the forskolin binding site. Recently, development of selective sAC inhibitors was reported. An emerging field is the association of AC gene polymorphisms with human diseases. For example, mutations in the AC5 gene (ADCY5) cause hyperkinetic extrapyramidal motor disorders. Overall, in contrast to the guanylyl cyclase field, our understanding of the (patho)physiology of AC isoforms and the development of clinically useful drugs targeting ACs is still in its infancy.
Collapse
Affiliation(s)
- Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Val J Watts
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Rennolds S Ostrom
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Marco Conti
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Stefan Dove
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Roland Seifert
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| |
Collapse
|
11
|
Zhang H, Jia D, Wang Y, Qu L, Wang X, Song J, Heng L, Gao G. Enhanced ability of TRPV1 channels in regulating glutamatergic transmission after repeated morphine exposure in the nucleus accumbens of rat. Brain Res 2017; 1660:47-57. [PMID: 28188777 DOI: 10.1016/j.brainres.2017.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/12/2017] [Accepted: 02/02/2017] [Indexed: 01/27/2023]
Abstract
Glutamatergic projections to nucleus accumbens (NAc) drive drug-seeking behaviors during opioids withdrawal. Modulating glutamatergic neurotransmission provides a novel pharmacotherapeutic avenue for treatment of opioids dependence. Great deals of researches have verified that transient receptor potential vanilloid 1 (TRPV1) channels alters synaptic transmitter release and regulate neural plasticity. In the present study, whole-cell patch clamp recordings were adopted to examine the activity of TRPV1 Channels in regulating glutamate-mediated excitatory postsynaptic currents (EPSCs) in NAc of rat during morphine withdrawal for 3days and 3weeks. The data showed that the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) and the amplitudes of evoked excitatory postsynaptic currents (eEPSCs) were increased during morphine withdrawal after applied with capsaicin (TRPV1 agonist). Capsaicin decreased the paired pulse ratio (PPR) and increased sEPSCs frequency but not their amplitudes suggesting a presynaptic locus of action during morphine withdrawal. All these effects were fully blocked by the TRPV1 antagonist Capsazepine. Additionally, In the presence of AM251 (CB1 receptor antagonist), depolarization-induced release of endogenous cannabinoids activated TRPV1 channels to enhance glutamatergic neurotransmission during morphine withdrawal. The functional enhancement of TRPV1 Channels in facilitating glutamatergic transmission was not recorded in dorsal striatum. Our findings demonstrate the ability of TRPV1 in regulating excitatory glutamatergic transmission is enhanced during morphine withdrawal in NAc, which would deepen our understanding of glutamatergic modulation during opioids withdrawal.
Collapse
Affiliation(s)
- Haitao Zhang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, PR China
| | - Dong Jia
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, PR China
| | - Yuan Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, PR China
| | - Liang Qu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, PR China
| | - Xuelian Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, PR China
| | - Jian Song
- Department of Neurosurgery, Wuhan General Hospital, Wuhan, Hubei, PR China
| | - Lijun Heng
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, PR China.
| | - Guodong Gao
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, PR China.
| |
Collapse
|
12
|
García-Pardo MP, Roger-Sanchez C, Rodríguez-Arias M, Miñarro J, Aguilar MA. Pharmacological modulation of protein kinases as a new approach to treat addiction to cocaine and opiates. Eur J Pharmacol 2016; 781:10-24. [DOI: 10.1016/j.ejphar.2016.03.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/28/2016] [Accepted: 03/31/2016] [Indexed: 12/13/2022]
|
13
|
Cozzoli DK, Courson J, Rostock C, Campbell RR, Wroten MG, McGregor H, Caruana AL, Miller BW, Hu JH, Zhang PW, Xiao B, Worley PF, Crabbe JC, Finn DA, Szumlinski KK. Protein Kinase C Epsilon Activity in the Nucleus Accumbens and Central Nucleus of the Amygdala Mediates Binge Alcohol Consumption. Biol Psychiatry 2016; 79:443-51. [PMID: 25861702 PMCID: PMC4561036 DOI: 10.1016/j.biopsych.2015.01.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 01/09/2015] [Accepted: 01/20/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Protein kinase C epsilon (PKCε) is emerging as a potential target for the development of pharmacotherapies to treat alcohol use disorders, yet little is known regarding how a history of a highly prevalent form of drinking, binge alcohol intake, influences enzyme priming or the functional relevance of kinase activity for excessive alcohol intake. METHODS Immunoblotting was employed on tissue from subregions of the nucleus accumbens (NAc) and the amygdala to examine both idiopathic and binge drinking-induced changes in constitutive PKCε priming. The functional relevance of PKCε translocation for binge drinking and determination of potential upstream signaling pathways involved were investigated using neuropharmacologic approaches within the context of two distinct binge drinking procedures, drinking in the dark and scheduled high alcohol consumption. RESULTS Binge alcohol drinking elevated p(Ser729)-PKCε levels in both the NAc and the central nucleus of the amygdala (CeA). Moreover, immunoblotting studies of selectively bred and transgenic mouse lines revealed a positive correlation between the propensity to binge drink alcohol and constitutive p(Ser729)-PKCε levels in the NAc and CeA. Finally, neuropharmacologic inhibition of PKCε translocation within both regions reduced binge alcohol consumption in a manner requiring intact group 1 metabotropic glutamate receptors, Homer2, phospholipase C, and/or phosphotidylinositide-3 kinase function. CONCLUSIONS Taken together, these data indicate that PKCε signaling in both the NAc and CeA is a major contributor to binge alcohol drinking and to the genetic propensity to consume excessive amounts of alcohol.
Collapse
Affiliation(s)
- Debra K. Cozzoli
- Department of Psychological and Brain Sciences and the Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106-9660, U.S.A,Department of Behavioral Neuroscience, Oregon Health & Science University and Portland Alcohol Research Center, VA Portland Healthcare System, Portland, OR 97239, U.S.A
| | - Justin Courson
- Department of Psychological and Brain Sciences and the Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106-9660, U.S.A
| | - Charlotte Rostock
- Department of Psychological and Brain Sciences and the Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106-9660, U.S.A
| | - Rianne R. Campbell
- Department of Psychological and Brain Sciences and the Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106-9660, U.S.A
| | - Melissa G. Wroten
- Department of Psychological and Brain Sciences and the Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106-9660, U.S.A
| | - Hadley McGregor
- Department of Psychological and Brain Sciences and the Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106-9660, U.S.A
| | - Amanda L. Caruana
- Department of Psychological and Brain Sciences and the Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106-9660, U.S.A
| | - Bailey W. Miller
- Department of Psychological and Brain Sciences and the Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106-9660, U.S.A
| | - Jia-Hua Hu
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, U.S.A
| | - Ping Wu Zhang
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, U.S.A
| | - Bo Xiao
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, U.S.A
| | - Paul F. Worley
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, U.S.A
| | - John C. Crabbe
- Department of Behavioral Neuroscience, Oregon Health & Science University and Portland Alcohol Research Center, VA Portland Healthcare System, Portland, OR 97239, U.S.A
| | - Deborah A. Finn
- Department of Behavioral Neuroscience, Oregon Health & Science University and Portland Alcohol Research Center, VA Portland Healthcare System, Portland, OR 97239, U.S.A
| | - Karen K. Szumlinski
- Department of Psychological and Brain Sciences and the Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106-9660, U.S.A
| |
Collapse
|
14
|
Vural A, Al-Khodor S, Cheung GYC, Shi CS, Srinivasan L, McQuiston TJ, Hwang IY, Yeh AJ, Blumer JB, Briken V, Williamson PR, Otto M, Fraser IDC, Kehrl JH. Activator of G-Protein Signaling 3-Induced Lysosomal Biogenesis Limits Macrophage Intracellular Bacterial Infection. THE JOURNAL OF IMMUNOLOGY 2015; 196:846-56. [PMID: 26667172 DOI: 10.4049/jimmunol.1501595] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/14/2015] [Indexed: 01/08/2023]
Abstract
Many intracellular pathogens cause disease by subverting macrophage innate immune defense mechanisms. Intracellular pathogens actively avoid delivery to or directly target lysosomes, the major intracellular degradative organelle. In this article, we demonstrate that activator of G-protein signaling 3 (AGS3), an LPS-inducible protein in macrophages, affects both lysosomal biogenesis and activity. AGS3 binds the Gi family of G proteins via its G-protein regulatory (GoLoco) motif, stabilizing the Gα subunit in its GDP-bound conformation. Elevated AGS3 levels in macrophages limited the activity of the mammalian target of rapamycin pathway, a sensor of cellular nutritional status. This triggered the nuclear translocation of transcription factor EB, a known activator of lysosomal gene transcription. In contrast, AGS3-deficient macrophages had increased mammalian target of rapamycin activity, reduced transcription factor EB activity, and a lower lysosomal mass. High levels of AGS3 in macrophages enhanced their resistance to infection by Burkholderia cenocepacia J2315, Mycobacterium tuberculosis, and methicillin-resistant Staphylococcus aureus, whereas AGS3-deficient macrophages were more susceptible. We conclude that LPS priming increases AGS3 levels, which enhances lysosomal function and increases the capacity of macrophages to eliminate intracellular pathogens.
Collapse
Affiliation(s)
- Ali Vural
- B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Souhaila Al-Khodor
- Signaling Systems Unit, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Gordon Y C Cheung
- Pathogen Molecular Genetics Section, Laboratory of Human Bacterial Pathogenesis, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Chong-Shan Shi
- B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Lalitha Srinivasan
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Travis J McQuiston
- Translational Mycology Unit, Laboratory of Clinical Infectious Disease, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Il-Young Hwang
- B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Anthony J Yeh
- Pathogen Molecular Genetics Section, Laboratory of Human Bacterial Pathogenesis, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Joe B Blumer
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Peter R Williamson
- Translational Mycology Unit, Laboratory of Clinical Infectious Disease, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Human Bacterial Pathogenesis, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Iain D C Fraser
- Signaling Systems Unit, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - John H Kehrl
- B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
15
|
Abstract
Activator of G-protein signaling 3 (AGS3) is an accessory protein that functions to regulate the activation status of heterotrimeric G-protein subunits. To date, however, the downstream signaling pathways regulated by AGS3 remain to be fully elucidated, particularly in renal epithelial cells. In the present study, normal rat kidney (NRK-52E) proximal tubular epithelial cells were genetically modified to regulate the expression of AGS3 to investigate its role on MAPK and mTOR signaling to control epithelial cell number. Knockdown of endogenous AGS3 protein was associated with a reduced phosphorylated form of ERK5 and increased apoptosis as determined by elevated cleaved caspase-3. In the presence of the ERK5 inhibitor, BIX02189, a significant 2-fold change (P < 0.05) in G2/M transition state was detected compared to control conditions. Neither of the other MAPK, ERK1/2 or p38 MAPK, nor another pro-survival pathway, mTOR, was significantly altered by the changes in AGS3 protein levels in the renal epithelial cells. The selective ERK5 inhibitor, BIX02189, was found to dose-dependently reduce NRK cell number by up to 41% (P < 0.05) compared to control cells. In summary, these findings demonstrated that cell viability was regulated by AGS3 and was associated with ERK5 activation in renal epithelial cells.
Collapse
|
16
|
Anderson EM, Reeves T, Kapernaros K, Neubert JK, Caudle RM. Phosphorylation of the N-methyl-d-aspartate receptor is increased in the nucleus accumbens during both acute and extended morphine withdrawal. J Pharmacol Exp Ther 2015; 355:496-505. [PMID: 26377910 DOI: 10.1124/jpet.115.227629] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/08/2015] [Indexed: 11/22/2022] Open
Abstract
Opioid withdrawal causes a dysphoric state that can lead to complications in pain patients and can propagate use in drug abusers and addicts. Opioid withdrawal changes the activity of neurons in the nucleus accumbens, an area rich in both opioid-binding mu opioid receptors and glutamate-binding NMDA receptors. Because the accumbens is an area important for reward and aversion, plastic changes in this area during withdrawal could alter future behaviors in animals. We discovered an increase in phosphorylation of serine 897 in the NR1 subunit of the NMDA receptor (pNR1) during acute morphine withdrawal. This serine can be phosphorylated by protein kinase A (PKA) and dephosphorylated by calcineurin. We next demonstrated that this increased pNR1 change is associated with an increase in NR1 surface expression. NR1 surface expression and pNR1 levels during acute withdrawal were both reduced by the NMDA receptor antagonist MK-801 (dizocilpine hydrogen maleate) and the PKA inhibitor H-89(N-[2-[[3-(4-bromophenyl)-2-propenyl]amino]ethyl]-5-isoquinolinesulfonamide dihydrochloride hydrate). We also found that pNR1 levels remained high after an extended morphine withdrawal period of 2 months, correlated with reward-seeking behavior for palatable food, and were associated with a decrease in accumbal calcineurin levels. These data suggest that NR1 phosphorylation changes during the acute withdrawal phase can be long lasting and may reflect a permanent change in NMDA receptors in the accumbens. These altered NMDA receptors in the accumbens could play a role in long-lasting behaviors associated with reward and opioid use.
Collapse
Affiliation(s)
- Ethan M Anderson
- Department of Oral and Maxillofacial Surgery, University of Florida College of Dentistry, Gainesville, Florida (E.M.A., R.M.C.); Department of Neuroscience, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, Florida (E.M.A., R.M.C.); University of Florida, Gainesville, Florida (T.R., K.K.); and UF College of Dentistry, Department of Orthodontics, Gainesville, Florida (J.K.N.)
| | - Turi Reeves
- Department of Oral and Maxillofacial Surgery, University of Florida College of Dentistry, Gainesville, Florida (E.M.A., R.M.C.); Department of Neuroscience, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, Florida (E.M.A., R.M.C.); University of Florida, Gainesville, Florida (T.R., K.K.); and UF College of Dentistry, Department of Orthodontics, Gainesville, Florida (J.K.N.)
| | - Katherine Kapernaros
- Department of Oral and Maxillofacial Surgery, University of Florida College of Dentistry, Gainesville, Florida (E.M.A., R.M.C.); Department of Neuroscience, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, Florida (E.M.A., R.M.C.); University of Florida, Gainesville, Florida (T.R., K.K.); and UF College of Dentistry, Department of Orthodontics, Gainesville, Florida (J.K.N.)
| | - John K Neubert
- Department of Oral and Maxillofacial Surgery, University of Florida College of Dentistry, Gainesville, Florida (E.M.A., R.M.C.); Department of Neuroscience, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, Florida (E.M.A., R.M.C.); University of Florida, Gainesville, Florida (T.R., K.K.); and UF College of Dentistry, Department of Orthodontics, Gainesville, Florida (J.K.N.)
| | - Robert M Caudle
- Department of Oral and Maxillofacial Surgery, University of Florida College of Dentistry, Gainesville, Florida (E.M.A., R.M.C.); Department of Neuroscience, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, Florida (E.M.A., R.M.C.); University of Florida, Gainesville, Florida (T.R., K.K.); and UF College of Dentistry, Department of Orthodontics, Gainesville, Florida (J.K.N.)
| |
Collapse
|
17
|
Brust TF, Conley JM, Watts VJ. Gα(i/o)-coupled receptor-mediated sensitization of adenylyl cyclase: 40 years later. Eur J Pharmacol 2015; 763:223-32. [PMID: 25981304 DOI: 10.1016/j.ejphar.2015.05.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/02/2015] [Accepted: 05/11/2015] [Indexed: 12/20/2022]
Abstract
Heterologous sensitization of adenylyl cyclase (also referred to as superactivation, sensitization, or supersensitization of adenylyl cyclase) is a cellular adaptive response first described 40 years ago in the laboratory of Dr. Marshall Nirenberg. This apparently paradoxical cellular response occurs following persistent activation of Gαi/o-coupled receptors and causes marked enhancement in the activity of adenylyl cyclases, thereby increasing cAMP production. Since our last review in 2005, significant progress in the field has led to a better understanding of the relevance of, and the cellular biochemical processes that occur during the development and expression of heterologous sensitization. In this review we will discuss the recent advancements in the field and the mechanistic hypotheses on heterologous sensitization.
Collapse
Affiliation(s)
- Tarsis F Brust
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Jason M Conley
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Val J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA.
| |
Collapse
|
18
|
Buchta WC, Riegel AC. Chronic cocaine disrupts mesocortical learning mechanisms. Brain Res 2015; 1628:88-103. [PMID: 25704202 DOI: 10.1016/j.brainres.2015.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/28/2015] [Accepted: 02/01/2015] [Indexed: 01/06/2023]
Abstract
The addictive power of drugs of abuse such as cocaine comes from their ability to hijack natural reward and plasticity mechanisms mediated by dopamine signaling in the brain. Reward learning involves burst firing of midbrain dopamine neurons in response to rewards and cues predictive of reward. The resulting release of dopamine in terminal regions is thought to act as a teaching signaling to areas such as the prefrontal cortex and striatum. In this review, we posit that a pool of extrasynaptic dopaminergic D1-like receptors activated in response to dopamine neuron burst firing serve to enable synaptic plasticity in the prefrontal cortex in response to rewards and their cues. We propose that disruptions in these mechanisms following chronic cocaine use contribute to addiction pathology, in part due to the unique architecture of the mesocortical pathway. By blocking dopamine reuptake in the cortex, cocaine elevates dopamine signaling at these extrasynaptic receptors, prolonging D1-receptor activation and the subsequent activation of intracellular signaling cascades, and thus inducing long-lasting maladaptive plasticity. These cellular adaptations may account for many of the changes in cortical function observed in drug addicts, including an enduring vulnerability to relapse. Therefore, understanding and targeting these neuroadaptations may provide cognitive benefits and help prevent relapse in human drug addicts.
Collapse
Affiliation(s)
- William C Buchta
- Neurobiology of Addiction Research Center (NARC), Medical University of South Carolina, Charleston, SC 29425, USA
| | - Arthur C Riegel
- Neurobiology of Addiction Research Center (NARC), Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
19
|
Shi H, Ren H, Yang X, Zhu H, Yao L, Hang Q, Mao H, Huang Y, Zhang J, Wang Y. Overexpression of activator of G-protein signaling 3 decreases the proliferation of esophageal squamous cell carcinoma. Pathol Res Pract 2015; 211:449-55. [PMID: 25812748 DOI: 10.1016/j.prp.2014.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 11/01/2014] [Accepted: 12/08/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND Activator of G-protein Signaling 3 (AGS3, also known as GPSM1), is related to cell cycle progression. We investigated the expression of AGS3 in human esophageal squamous cell carcinoma (ESCC) and the therapeutic effect of chemotherapy drugs. METHODS Immunohistochemistry and Western blot analysis were performed for AGS3 in 85ESCC samples. The data were correlated with clinicopathological features. The univariate and multivariate survival analyses were also performed to determine its prognostic significance. The effect of overexpression of AGS3 on proliferation of esophageal carcinoma TE1 cells was analyzed by serum starvation. RESULTS AGS3 was down regulated in ESCC as compared with the adjacent normal tissue. Low expression of AGS3 was associated with tumor grade (P=0.002), and AGS3 was negatively correlated with proliferation marker Ki-67 (P<0.01). Univariate analysis showed that AGS3 expression did have a remarkable prediction for poor prognosis (P=0.004), while in vitro, the expression of AGS3 was down regulated with release from serum starvation of TE1 cells. CONCLUSIONS This study shows that AGS3 is an important regulator of ESCC proliferation.
Collapse
Affiliation(s)
- Hui Shi
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, PR China
| | - Hanru Ren
- Department of Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, PR China
| | - Xiaojing Yang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Jiangsu 226001, PR China; Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, PR China
| | - Hongzhen Zhu
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Jiangsu 226001, PR China
| | - Li Yao
- Department of Immunology, Medical College, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Qinglei Hang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Jiangsu 226001, PR China
| | - Hui Mao
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Jiangsu 226001, PR China
| | - Yuejiao Huang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Jiangsu 226001, PR China
| | - Jianguo Zhang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, PR China.
| | - Yuchan Wang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Jiangsu 226001, PR China; Department of Pathogen and Immunology, Medical College, Nantong University, Nantong 226001, Jiangsu, PR China.
| |
Collapse
|
20
|
Abstract
Heterotrimeric G proteins play a crucial role in regulating signal processing to maintain normal cellular homeostasis, and subtle perturbations in its activity can potentially lead to the pathogenesis of renal disorders or diseases. Cell-surface receptors and accessory proteins, which normally modify and organize the coupling of individual G protein subunits, contribute to the regulation of heterotrimeric G protein activity and their convergence and/or divergence of downstream signaling initiated by effector systems. Activators of G protein signaling (AGS) are a family of accessory proteins that intervene at multiple distinct points during the activation-inactivation cycle of G proteins, even in the absence of receptor stimulation. Perturbations in the expression of individual AGS proteins have been reported to modulate signal transduction pathways in a wide array of diseases and disorders within the brain, heart, immune system, and more recently, the kidney. This review will provide an overview of the expression profile, localization, and putative biologic role of the AGS family in the context of normal and diseased states of the kidney.
Collapse
Affiliation(s)
- Frank Park
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
21
|
Tse MK, Morris CJ, Zhang M, Wong YH. Activator of G protein signaling 3 forms a complex with resistance to inhibitors of cholinesterase-8A without promoting nucleotide exchange on Gα(i3). Mol Cell Biochem 2014; 401:27-38. [PMID: 25480567 DOI: 10.1007/s11010-014-2289-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 11/26/2014] [Indexed: 01/04/2023]
Abstract
Activator of G protein signaling 3 (AGS3) is a guanine nucleotide dissociation inhibitor (GDI) which stabilizes the Gα(i/o) subunits as an AGS3/Gα(i/o)-GDP complex. It has recently been demonstrated in reconstitution experiments that the AGS3/Gα(i/o)-GDP complex may act as a substrate of resistance to inhibitors of cholinesterase 8A (Ric-8A), a guanine exchange factor (GEF) for heterotrimeric Gα proteins. Since the ability of Ric-8A to activate Gα(i/o) subunits that are bound to AGS3 in a cellular environment has not been confirmed, we thus examined the effect of Ric-8A on cAMP accumulation in HEK293 cells expressing different forms of AGS3 and Gα(i3). Co-immunoprecipitation assays indicate that full-length AGS3 and its N- and C-terminal truncated mutants can interact with Ric-8A in HEK293 cells. Yeast two-hybrid assay further confirmed that Ric-8A can directly bind to AGS3S, a short form of AGS3 which is endogenously expressed in heart. However, Ric-8A failed to facilitate Gα(i)-induced suppression of adenylyl cyclase, suggesting that it may not serve as a GEF for AGS3/Gα(i/o)-GDP complex in a cellular environment.
Collapse
Affiliation(s)
- Man K Tse
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | | | | |
Collapse
|
22
|
ZióŁkowska B, Gieryk A, Solecki W, PrzewŁocki R. Temporal and anatomic patterns of immediate-early gene expression in the forebrain of C57BL/6 and DBA/2 mice after morphine administration. Neuroscience 2014; 284:107-124. [PMID: 25290009 DOI: 10.1016/j.neuroscience.2014.09.069] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 09/03/2014] [Accepted: 09/03/2014] [Indexed: 10/24/2022]
Abstract
Although morphine was previously reported to produce an instant induction of c-fos in the striatum, our recent studies have demonstrated that the expression of numerous immediate early genes (IEGs) is significantly elevated at delayed time-points (several hours) after morphine administration. To better dissect the time-course of opioid-produced IEG induction, we used in situ hybridization to examine the expression of the IEGs c-fos, zif268 and arc in the mouse forebrain at several time-points after acute morphine injection. To link drug-produced behavioral changes with the activity of specific neuronal complexes, this study was performed comparatively in the C57BL/6 and DBA/2 mouse strains, which differ markedly in their locomotor responses to opioids and opioid reward. Our study demonstrates that morphine produces two episodes of IEG induction, which are separate in time (30 min vs. 4-6 h) and which have different neuroanatomic distribution. At 30 min, one or more IEGs were induced in circumscribed subregions of the dorsal striatum (dStr) and of the nucleus accumbens (NAc) shell, as well as in the lateral septum. The observed inter-strain differences in IEG expression at 30 min support earlier proposals that activation of the dorsomedial striatum may mediate morphine-elicited locomotor stimulation (both effects were present only in the C57BL/6 strain). In contrast, NAc shell activation does not appear to be linked to morphine-elicited changes in locomotor behavior. The second IEG induction (of arc and of zif268) was more widespread, involving most of the dStr and the cortex. The second IEG induction peaked earlier in the DBA/2 mice than in the C57BL/6 mice (4 h compared with 6 h) and displayed no apparent relation to locomotor behavior. This delayed episode of IEG activation, which has largely been overlooked thus far, may contribute to the development of long-term effects of opioids such as tolerance, dependence and/or addiction.
Collapse
Affiliation(s)
- B ZióŁkowska
- Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland.
| | - A Gieryk
- Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - W Solecki
- Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Łojasiewicza 4, 30-348 Kraków, Poland
| | - R PrzewŁocki
- Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Łojasiewicza 4, 30-348 Kraków, Poland
| |
Collapse
|
23
|
Branham-O'Connor M, Robichaux WG, Zhang XK, Cho H, Kehrl JH, Lanier SM, Blumer JB. Defective chemokine signal integration in leukocytes lacking activator of G protein signaling 3 (AGS3). J Biol Chem 2014; 289:10738-10747. [PMID: 24573680 DOI: 10.1074/jbc.m113.515031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activator of G-protein signaling 3 (AGS3, gene name G-protein signaling modulator-1, Gpsm1), an accessory protein for G-protein signaling, has functional roles in the kidney and CNS. Here we show that AGS3 is expressed in spleen, thymus, and bone marrow-derived dendritic cells, and is up-regulated upon leukocyte activation. We explored the role of AGS3 in immune cell function by characterizing chemokine receptor signaling in leukocytes from mice lacking AGS3. No obvious differences in lymphocyte subsets were observed. Interestingly, however, AGS3-null B and T lymphocytes and bone marrow-derived dendritic cells exhibited significant chemotactic defects as well as reductions in chemokine-stimulated calcium mobilization and altered ERK and Akt activation. These studies indicate a role for AGS3 in the regulation of G-protein signaling in the immune system, providing unexpected venues for the potential development of therapeutic agents that modulate immune function by targeting these regulatory mechanisms.
Collapse
Affiliation(s)
- Melissa Branham-O'Connor
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425
| | - William G Robichaux
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Xian-Kui Zhang
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Hyeseon Cho
- B-cell Section, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - John H Kehrl
- B-cell Section, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Stephen M Lanier
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Joe B Blumer
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425.
| |
Collapse
|
24
|
Singh V, Raghuwanshi SK, Smith N, Rivers EJ, Richardson RM. G Protein-coupled receptor kinase-6 interacts with activator of G protein signaling-3 to regulate CXCR2-mediated cellular functions. THE JOURNAL OF IMMUNOLOGY 2014; 192:2186-94. [PMID: 24510965 DOI: 10.4049/jimmunol.1301875] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The IL-8 (CXCL8) receptors CXCR1 and CXCR2 couple to Gαi to induce leukocyte recruitment and activation at sites of inflammation. We recently showed that CXCR1 couples predominantly to the G protein-coupled receptor kinase (GRK)2, whereas CXCR2 interacts with GRK6 to regulate cellular responses. In addition to G protein-coupled receptors, GRKs displayed a more diverse protein/protein interaction in cells. In this study, we sought to identify GRK6 binding partner(s) that may influence CXCL8 activities, using RBL-2H3 cells stably expressing CXCR1 (RBL-CXCR1) or CXCR2 (RBL-CXCR2), as well as human and murine neutrophils. Our data demonstrated that, upon CXCR2 activation, GRK6 interacts with activator of G protein signaling (AGS)3 and Gαi2 to form a GRK6/AGS3/Gαi2 complex. This complex is time dependent and peaked at 2-3 min postactivation. GTPγS pretreatment blocked GRK6/AGS3/Gαi2 formation, suggesting that this assembly depends on G protein activation. Surprisingly, CXCR2 activation induced AGS3 phosphorylation in a PKC-dependent, but GRK6-independent, fashion. Overexpression of AGS3 in RBL-CXCR2 significantly inhibited CXCL8-induced Ca(2+) mobilization, phosphoinositide hydrolysis, and chemotaxis. In contrast, short hairpin RNA inhibition of AGS3 enhanced CXCL8-induced Ca(2+) mobilization, receptor resistance to desensitization, and recycling to the cell surface, with no effect on receptor internalization. Interestingly, RBL-CXCR2-AGS3(-/-) cells displayed a significant increase in CXCR2 expression on the cell surface but decreased ERK1/2 and P38 MAPK activation. Taken together, these results indicate that GRK6 complexes with AGS3-Gαi2 to regulate CXCR2-mediated leukocyte functions at different levels, including downstream effector activation, receptor trafficking, and expression at the cell membrane.
Collapse
Affiliation(s)
- Vandana Singh
- Department of Biology, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707
| | | | | | | | | |
Collapse
|
25
|
Conley JM, Brust TF, Xu R, Burris KD, Watts VJ. Drug-induced sensitization of adenylyl cyclase: assay streamlining and miniaturization for small molecule and siRNA screening applications. J Vis Exp 2014:e51218. [PMID: 24514897 DOI: 10.3791/51218] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Sensitization of adenylyl cyclase (AC) signaling has been implicated in a variety of neuropsychiatric and neurologic disorders including substance abuse and Parkinson's disease. Acute activation of Gαi/o-linked receptors inhibits AC activity, whereas persistent activation of these receptors results in heterologous sensitization of AC and increased levels of intracellular cAMP. Previous studies have demonstrated that this enhancement of AC responsiveness is observed both in vitro and in vivo following the chronic activation of several types of Gαi/o-linked receptors including D2 dopamine and μ opioid receptors. Although heterologous sensitization of AC was first reported four decades ago, the mechanism(s) that underlie this phenomenon remain largely unknown. The lack of mechanistic data presumably reflects the complexity involved with this adaptive response, suggesting that nonbiased approaches could aid in identifying the molecular pathways involved in heterologous sensitization of AC. Previous studies have implicated kinase and Gbγ signaling as overlapping components that regulate the heterologous sensitization of AC. To identify unique and additional overlapping targets associated with sensitization of AC, the development and validation of a scalable cAMP sensitization assay is required for greater throughput. Previous approaches to study sensitization are generally cumbersome involving continuous cell culture maintenance as well as a complex methodology for measuring cAMP accumulation that involves multiple wash steps. Thus, the development of a robust cell-based assay that can be used for high throughput screening (HTS) in a 384 well format would facilitate future studies. Using two D2 dopamine receptor cellular models (i.e. CHO-D2L and HEK-AC6/D2L), we have converted our 48-well sensitization assay (>20 steps 4-5 days) to a five-step, single day assay in 384-well format. This new format is amenable to small molecule screening, and we demonstrate that this assay design can also be readily used for reverse transfection of siRNA in anticipation of targeted siRNA library screening.
Collapse
Affiliation(s)
- Jason M Conley
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University
| | | | | | | | | |
Collapse
|
26
|
Seyedi SY, Salehi F, Payandemehr B, Hossein S, Hosseini-Zare MS, Nassireslami E, Yazdi BB, Sharifzadeh M. Dual effect of cAMP agonist on ameliorative function of PKA inhibitor in morphine-dependent mice. Fundam Clin Pharmacol 2013; 28:445-54. [PMID: 24033391 DOI: 10.1111/fcp.12045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 06/24/2013] [Accepted: 07/08/2013] [Indexed: 12/15/2022]
Abstract
The present study shows interactive effects of bucladesine (db-cAMP) as a cyclic adenosine monophosphate (cAMP) agonist and H-89 as a protein kinase A (PKA) inhibitor on naloxone-induced withdrawal signs in morphine-dependent mice. Animals were treated subcutaneously with morphine thrice daily with doses progressively increased from 50 to 125 mg/kg. A last dose of morphine (50 mg/kg) was administered on the 4th day. Several withdrawal signs were precipitated by intraperitoneal (i.p.) administration of naloxone (5 mg/kg). Different doses of bucladesine (50, 100, 200 nm/mouse) and H-89 (0.05, 0.5, 1, 5 mg/kg) were administered (i.p.) 60 min before naloxone injection. In combination groups, bucladesine was injected 15 min before H-89 injection. Single administration of H-89 (0.5, 1, 5 mg/kg) and bucladesine (50, 100 nm/mouse) significantly attenuated prominent behavioral signs of morphine withdrawal. Lower doses of bucladesine (50, 100 nm/mouse) in combination with H-89 (0.05 mg/kg) increased the inhibitory effects of H-89 on withdrawal signs while in high dose (200 nm/mouse) decreased the ameliorative function of H-89 (0.05 mg/kg) in morphine-dependent animals. It is concluded that H-89 and bucladesine could affect morphine withdrawal syndrome via possible interaction with cyclic nucleotide messengering systems, protein kinase A signaling pathways, and modified related neurotransmitters.
Collapse
Affiliation(s)
- Seyedeh Y Seyedi
- Department of Pharmacology and Toxicology, Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, PO Box 14155-6451, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Conley JM, Watts VJ. Differential effects of AGS3 expression on D(2L) dopamine receptor-mediated adenylyl cyclase signaling. Cell Mol Neurobiol 2013; 33:551-8. [PMID: 23504261 PMCID: PMC3628818 DOI: 10.1007/s10571-013-9925-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/09/2013] [Indexed: 12/01/2022]
Abstract
Activator of G protein signaling 3 (AGS3) binds Gα(i) subunits in the GDP-bound state, implicating AGS3 as an important regulator of Gα(i)-linked receptor (e.g., D2 dopamine and μ-opioid) signaling. We examined the ability of AGS3 to modulate recombinant adenylyl cyclase (AC) type 1 and 2 signaling in HEK293 cells following both acute and persistent activation of the D(2L) dopamine receptor (D(2L)DR). AGS3 expression modestly enhanced the potency of acute quinpirole-induced D(2L)DR modulation of AC1 or AC2 activity. AGS3 also promoted desensitization of D(2L)DR-mediated inhibition of AC1, whereas desensitization of D(2L)DR-mediated AC2 activation was significantly attenuated. Additionally, AGS3 reduced D(2L)DR-mediated sensitization of AC1 and AC2. These data suggest that AGS3 is involved in altering G protein signaling in a complex fashion that is effector-specific and dependent on the duration of receptor activation.
Collapse
Affiliation(s)
- Jason M. Conley
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Val J. Watts
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
28
|
Mura E, Govoni S, Racchi M, Carossa V, Ranzani GN, Allegri M, van Schaik RH. Consequences of the 118A>G polymorphism in the OPRM1 gene: translation from bench to bedside? J Pain Res 2013; 6:331-53. [PMID: 23658496 PMCID: PMC3645947 DOI: 10.2147/jpr.s42040] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The 118A>G single nucleotide polymorphism (SNP) in the μ-opioid receptor (OPRM1) gene has been the most described variant in pharmacogenetic studies regarding opioid drugs. Despite evidence for an altered biological function encoded by this variant, this knowledge is not yet utilized clinically. The aim of the present review was to collect and discuss the available information on the 118A>G SNP in the OPRM1 gene, at the molecular level and in its clinical manifestations. In vitro biochemical and molecular assays have shown that the variant receptor has higher binding affinity for β-endorphins, that it has altered signal transduction cascade, and that it has a lower expression compared with wild-type OPRM1. Studies using animal models for 118A>G have revealed a double effect of the variant receptor, with an apparent gain of function with respect to the response to endogenous opioids but a loss of function with exogenous administered opioid drugs. Although patients with this variant have shown a lower pain threshold and a higher drug consumption in order to achieve the analgesic effect, clinical experiences have demonstrated that patients carrying the variant allele are not affected by the increased opioid consumption in terms of side effects.
Collapse
Affiliation(s)
- Elisa Mura
- Department of Drug Sciences, Centre of Excellence in Applied Biology, University of Pavia, Pavia, Italy
| | | | | | | | | | | | | |
Collapse
|
29
|
Wang W, Li Q, Zou F, Yu Z, Wang Y, Lu T, Hu T, Cui G. Increased expression of AGS3 in rat brain cortex after traumatic brain injury. J Neurosci Res 2013; 91:726-36. [DOI: 10.1002/jnr.23195] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 11/18/2012] [Accepted: 11/28/2012] [Indexed: 11/05/2022]
|
30
|
G-protein signaling modulator 1 deficiency accelerates cystic disease in an orthologous mouse model of autosomal dominant polycystic kidney disease. Proc Natl Acad Sci U S A 2012; 109:21462-7. [PMID: 23236168 DOI: 10.1073/pnas.1216830110] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Polycystic kidney diseases are the most common genetic diseases that affect the kidney. There remains a paucity of information regarding mechanisms by which G proteins are regulated in the context of polycystic kidney disease to promote abnormal epithelial cell expansion and cystogenesis. In this study, we describe a functional role for the accessory protein, G-protein signaling modulator 1 (GPSM1), also known as activator of G-protein signaling 3, to act as a modulator of cyst progression in an orthologous mouse model of autosomal dominant polycystic kidney disease (ADPKD). A complete loss of Gpsm1 in the Pkd1(V/V) mouse model of ADPKD, which displays a hypomorphic phenotype of polycystin-1, demonstrated increased cyst progression and reduced renal function compared with age-matched cystic Gpsm1(+/+) and Gpsm1(+/-) mice. Electrophysiological studies identified a role by which GPSM1 increased heteromeric polycystin-1/polycystin-2 ion channel activity via Gβγ subunits. In summary, the present study demonstrates an important role for GPSM1 in controlling the dynamics of cyst progression in an orthologous mouse model of ADPKD and presents a therapeutic target for drug development in the treatment of this costly disease.
Collapse
|
31
|
Xie K, Masuho I, Brand C, Dessauer CW, Martemyanov KA. The complex of G protein regulator RGS9-2 and Gβ(5) controls sensitization and signaling kinetics of type 5 adenylyl cyclase in the striatum. Sci Signal 2012; 5:ra63. [PMID: 22932702 DOI: 10.1126/scisignal.2002922] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Multiple neurotransmitter systems in the striatum converge to regulate the excitability of striatal neurons by activating several heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) that signal to the type 5 adenylyl cyclase (AC5), the key effector enzyme that produces the intracellular second messenger cyclic adenosine monophosphate (cAMP). Plasticity of cAMP signaling in the striatum is thought to play an essential role in the development of drug addiction. We showed that the complex of the ninth regulator of G protein signaling (RGS9-2) with the G protein β subunit (Gβ(5)) critically controlled signaling from dopamine and opioid GPCRs to AC5 in the striatum. RGS9-2/Gβ(5) directly interacted with and suppressed the basal activity of AC5. In addition, the RGS9-2/Gβ(5) complex attenuated the stimulatory action of Gβγ on AC5 by facilitating the GTPase (guanosine triphosphatase) activity of Gα(o), thus promoting the formation of the inactive heterotrimer and inhibiting Gβγ. Furthermore, by increasing the deactivation rate of Gα(i), RGS9-2/Gβ(5) facilitated the recovery of AC5 from inhibition. Mice lacking RGS9 showed increased cAMP production and, upon withdrawal from opioid administration, enhanced sensitization of AC5. Our findings establish RGS9-2/Gβ(5) complexes as regulators of three key aspects of cAMP signaling: basal activity, sensitization, and temporal kinetics of AC5, thus highlighting the role of this complex in regulating both inhibitory and stimulatory GPCRs that shape cAMP signaling in the striatum.
Collapse
Affiliation(s)
- Keqiang Xie
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | | | | | | |
Collapse
|
32
|
Akula KK, Kulkarni SK. Adenosinergic system: an assorted approach to therapeutics for drug addiction. FUTURE NEUROLOGY 2012. [DOI: 10.2217/fnl.12.19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adenosine is an endogenous purine nucleoside and it is extensively present in the brain. It exerts several metabolic and neuromodulatory roles in the body. Adenosine also acts as an important messenger molecule for extracellular signaling and shows a homeostatic neuromodulatory function at the synaptic level. Extracellular adenosine exerts a wide variety of biological actions through four cell surface G-protein-coupled receptor subtypes, namely A1, A2A, A2B and A3 adenosine receptors. The extracellular levels of adenosine have been found to be enhanced in several neuropathological conditions, including drug addiction, and thus a neuroprotective role of adenosine was perceived by various experimental studies. The aversive withdrawal symptoms emanating from drug discontinuation provokes rebound drug intake patterns. In addition, alteration of neurotransmitter(s) release and changes in receptor expression contribute to the behavioral changes of drug withdrawal. Furthermore, the abuse of major drugs such as alcohol and opioids are reported to modulate extracellular adenosine levels. In this context, the neuromodulatory functions of adenosine would be valuable if projected to the clinical applications and thus, an increasing attention is currently given to the functional role of adenosine in human addictive disorders. This review will focus on recent clinical and experimental studies that reveal the actions of adenosine and related ligands in drug addiction and various drug-withdrawal syndromes. The evidence and reports provided in this review highlight the looming therapeutic potential of purinergic drugs, with a hope that new therapeutic interventions based on the adenosinergic concept will emerge in the coming years for the management of drug withdrawal syndrome.
Collapse
Affiliation(s)
- Kiran Kumar Akula
- R.S. Dow Neurobiology Laboratories, Legacy Research, 1225 NE 2nd Avenue, Portland, OR 97232, USA
| | - SK Kulkarni
- Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh-160014, India
| |
Collapse
|
33
|
Blumer JB, Oner SS, Lanier SM. Group II activators of G-protein signalling and proteins containing a G-protein regulatory motif. Acta Physiol (Oxf) 2012; 204:202-18. [PMID: 21615707 DOI: 10.1111/j.1748-1716.2011.02327.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Beyond the core triad of receptor, Gαβγ and effector, there are multiple accessory proteins that provide alternative modes of signal input and regulatory adaptability to G-protein signalling systems. Such accessory proteins may segregate a signalling complex to microdomains of the cell, regulate the basal activity, efficiency and specificity of signal propagation and/or serve as alternative binding partners for Gα or Gβγ independent of the classical heterotrimeric Gαβγ complex. The latter concept led to the postulate that Gα and Gβγ regulate intracellular events distinct from their role as transducers for cell surface seven-transmembrane span receptors. One general class of such accessory proteins is defined by AGS proteins or activators of G-protein signalling that refer to mammalian cDNAs identified in a specific yeast-based functional screen. The discovery of AGS proteins and related entities revealed a number of unexpected mechanisms for regulation of G-protein signalling systems and expanded functional roles for this important signalling system.
Collapse
Affiliation(s)
- J B Blumer
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, 29425, USA
| | | | | |
Collapse
|
34
|
Xie K, Martemyanov KA. Control of striatal signaling by g protein regulators. Front Neuroanat 2011; 5:49. [PMID: 21852966 PMCID: PMC3151604 DOI: 10.3389/fnana.2011.00049] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Accepted: 07/23/2011] [Indexed: 12/03/2022] Open
Abstract
Signaling via heterotrimeric G proteins plays a crucial role in modulating the responses of striatal neurons that ultimately shape core behaviors mediated by the basal ganglia circuitry, such as reward valuation, habit formation, and movement coordination. Activation of G protein-coupled receptors (GPCRs) by extracellular signals activates heterotrimeric G proteins by promoting the binding of GTP to their α subunits. G proteins exert their effects by influencing the activity of key effector proteins in this region, including ion channels, second messenger enzymes, and protein kinases. Striatal neurons express a staggering number of GPCRs whose activation results in the engagement of downstream signaling pathways and cellular responses with unique profiles but common molecular mechanisms. Studies over the last decade have revealed that the extent and duration of GPCR signaling are controlled by a conserved protein family named regulator of G protein signaling (RGS). RGS proteins accelerate GTP hydrolysis by the α subunits of G proteins, thus promoting deactivation of GPCR signaling. In this review, we discuss the progress made in understanding the roles of RGS proteins in controlling striatal G protein signaling and providing integration and selectivity of signal transmission. We review evidence on the formation of a macromolecular complex between RGS proteins and other components of striatal signaling pathways, their molecular regulatory mechanisms and impacts on GPCR signaling in the striatum obtained from biochemical studies and experiments involving genetic mouse models. Special emphasis is placed on RGS9-2, a member of the RGS family that is highly enriched in the striatum and plays critical roles in drug addiction and motor control.
Collapse
Affiliation(s)
- Keqiang Xie
- The Scripps Research Institute Jupiter, FL, USA
| | | |
Collapse
|
35
|
Werner K, Schwede F, Genieser HG, Geiger J, Butt E. Quantification of cAMP and cGMP analogs in intact cells: pitfalls in enzyme immunoassays for cyclic nucleotides. Naunyn Schmiedebergs Arch Pharmacol 2011; 384:169-76. [PMID: 21713381 PMCID: PMC3145891 DOI: 10.1007/s00210-011-0662-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 06/08/2011] [Indexed: 11/28/2022]
Abstract
Immunoassays are routinely used as research tools to measure intracellular cAMP and cGMP concentrations. Ideally, this application requires antibodies with high sensitivity and specificity. The present work evaluates the cross-reactivity of commercially available cyclic nucleotide analogs with two non-radioactive and one radioactive cAMP and cGMP immunoassay. Most of the tested cyclic nucleotide analogs showed low degree competition with the antibodies; however, with Rp-cAMPS, 8-Br-cGMP and 8-pCPT-cGMP, a strong cross-reactivity with the corresponding cAMP and cGMP, respectively, immunoassays was observed. The determined EIA-binding constants enabled the measurement of the intracellular cyclic nucleotide concentrations and revealed a time- and lipophilicity-dependent cell membrane permeability of the compounds in the range of 10–30% of the extracellular applied concentration, thus allowing a more accurate prediction of the intracellular analog levels in a given experiment.
Collapse
Affiliation(s)
- Katharina Werner
- Institute for Clinical Biochemistry and Pathobiochemistry, University of Wuerzburg, Grombuehlstrasse 12, Wuerzburg, Germany
| | | | | | | | | |
Collapse
|
36
|
Xia M, Guo V, Huang R, Shahane SA, Austin CP, Nirenberg M, Sharma SK. Inhibition of morphine-induced cAMP overshoot: a cell-based assay model in a high-throughput format. Cell Mol Neurobiol 2011; 31:901-7. [PMID: 21598037 DOI: 10.1007/s10571-011-9689-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 04/05/2011] [Indexed: 11/24/2022]
Abstract
Opiates are not only potent analgesics but also drugs of abuse mainly because they produce euphoria. Chronic use of opiates results in the development of tolerance and dependence. Dr Marshall Nirenberg's group at the National Institutes of Health (NIH) was the first to use a cellular model system of Neuroblastoma × Glioma hybrid cells (NG108-15) to study morphine addiction. They showed that opiates affect adenylyl cyclase (AC) by two opposing mechanisms mediated by the opiate receptor. Although the cellular mechanisms that cause addiction are not yet completely understood, the most observed correlative biochemical adaptation is the upregulation of AC. This model also provides the opportunity to look for compounds which could dissociate the acute effect of opiates from the delayed response, upregulation of AC, and thus lead to the discovery of non-addictive drugs. To identify small molecule compounds that can inhibit morphine-induced cAMP overshoot, we have validated and optimized a cell-based assay in a high throughput format that measures cellular cAMP production after morphine withdrawal. The assay performed well in the 1536-well plate format. The LOPAC library of 1,280 compounds was screened in this assay on a quantitative high-throughput screening (qHTS) platform. A group of compounds that can inhibit morphine-induced cAMP overshoot were identified. The most potent compounds are eight naloxone-related compounds, including levallorphan tartrate, naloxonazine dihydrochloride, naloxone hydrochloride, naltrexone hydrochloride, and naltriben methanesulfonate. The qHTS approach we used in this study will be useful in identifying novel inhibitors of morphine induced addiction from a larger scale screening.
Collapse
Affiliation(s)
- Menghang Xia
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Regner KR, Nozu K, Lanier SM, Blumer JB, Avner ED, Sweeney WE, Park F. Loss of activator of G-protein signaling 3 impairs renal tubular regeneration following acute kidney injury in rodents. FASEB J 2011; 25:1844-55. [PMID: 21343176 DOI: 10.1096/fj.10-169797] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The intracellular mechanisms underlying renal tubular epithelial cell proliferation and tubular repair following ischemia-reperfusion injury (IRI) remain poorly understood. In this report, we demonstrate that activator of G-protein signaling 3 (AGS3), an unconventional receptor-independent regulator of heterotrimeric G-protein function, influences renal tubular regeneration following IRI. In rat kidneys exposed to IRI, there was a temporal induction in renal AGS3 protein expression that peaked 72 h after reperfusion and corresponded to the repair and recovery phase following ischemic injury. Renal AGS3 expression was localized predominantly to the recovering outer medullary proximal tubular cells and was highly coexpressed with Ki-67, a marker of cell proliferation. Kidneys from mice deficient in the expression of AGS3 exhibited impaired renal tubular recovery 7 d following IRI compared to wild-type AGS3-expressing mice. Mechanistically, genetic knockdown of endogenous AGS3 mRNA and protein in renal tubular epithelial cells reduced cell proliferation in vitro. Similar reductions in renal tubular epithelial cell proliferation were observed following incubation with gallein, a selective inhibitor of Gβγ subunit activity, and lentiviral overexpression of the carboxyl-terminus of G-protein-coupled receptor kinase 2 (GRK2ct), a scavenger of Gβγ subunits. In summary, these data suggest that AGS3 acts through a novel receptor-independent mechanism to facilitate renal tubular epithelial cell proliferation and renal tubular regeneration.
Collapse
Affiliation(s)
- Kevin R Regner
- Division of Nephrology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Uys JD, Reissner KJ. Glutamatergic Neuroplasticity in Cocaine Addiction. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 98:367-400. [DOI: 10.1016/b978-0-12-385506-0.00009-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
39
|
Abstract
This paper is the 32nd consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2009 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| |
Collapse
|
40
|
Abstract
Drug addiction is marked by continued drug-seeking behavior despite deleterious consequences and a heightened propensity to relapse not withstanding long, drug-free periods. The enduring nature of addiction has been hypothesized to arise from perturbations in intracellular signaling, gene expression, and brain circuitry induced by substance abuse. Ameliorating some of these aberrations should abate behavioral and neurochemical markers associated with an 'addiction phenotype'. This review summarizes data showing that protein expression and signaling through the nonreceptor activator of G-protein signaling 3 (AGS3) are altered by commonly abused substances in rat and in in-vitro addiction models. AGS3 structure and function are unrelated to the more broadly studied regulator of G-protein signaling family. Thus, the unique role of AGS3 is the focus of this review. Intriguingly, AGS3 protein changes persist into drug abstinence. Accordingly, studies probing the role of AGS3 in the neurochemistry of drug-seeking behavior and relapse are studied in detail. To illuminate this study, AGS3 structure, cellular localization, and function are covered so that an idealized AGS3-targeted pharmacotherapy can be proposed.
Collapse
Affiliation(s)
- Michael Scott Bowers
- Department of Psychiatry, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA.
| |
Collapse
|
41
|
Oner SS, An N, Vural A, Breton B, Bouvier M, Blumer JB, Lanier SM. Regulation of the AGS3·G{alpha}i signaling complex by a seven-transmembrane span receptor. J Biol Chem 2010; 285:33949-58. [PMID: 20716524 DOI: 10.1074/jbc.m110.138073] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
G-protein signaling modulators (GPSM) play diverse functional roles through their interaction with G-protein subunits. AGS3 (GPSM1) contains four G-protein regulatory motifs (GPR) that directly bind Gα(i) free of Gβγ providing an unusual scaffold for the "G-switch" and signaling complexes, but the mechanism by which signals track into this scaffold are not well understood. We report the regulation of the AGS3·Gα(i) signaling module by a cell surface, seven-transmembrane receptor. AGS3 and Gα(i1) tagged with Renilla luciferase or yellow fluorescent protein expressed in mammalian cells exhibited saturable, specific bioluminescence resonance energy transfer indicating complex formation in the cell. Activation of α(2)-adrenergic receptors or μ-opioid receptors reduced AGS3-RLuc·Gα(i1)-YFP energy transfer by over 30%. The agonist-mediated effects were inhibited by pertussis toxin and co-expression of RGS4, but were not altered by Gβγ sequestration with the carboxyl terminus of GRK2. Gα(i)-dependent and agonist-sensitive bioluminescence resonance energy transfer was also observed between AGS3 and cell-surface receptors typically coupled to Gα(i) and/or Gα(o) indicating that AGS3 is part of a larger signaling complex. Upon receptor activation, AGS3 reversibly dissociates from this complex at the cell cortex. Receptor coupling to both Gαβγ and GPR-Gα(i) offer additional flexibility for systems to respond and adapt to challenges and orchestrate complex behaviors.
Collapse
Affiliation(s)
- Sukru Sadik Oner
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Nadella R, Blumer JB, Jia G, Kwon M, Akbulut T, Qian F, Sedlic F, Wakatsuki T, Sweeney WE, Wilson PD, Lanier SM, Park F. Activator of G protein signaling 3 promotes epithelial cell proliferation in PKD. J Am Soc Nephrol 2010; 21:1275-80. [PMID: 20488951 DOI: 10.1681/asn.2009121224] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The activation of heterotrimeric G protein signaling is a key feature in the pathophysiology of polycystic kidney diseases (PKD). In this study, we report abnormal overexpression of activator of G protein signaling 3 (AGS3), a receptor-independent regulator of heterotrimeric G proteins, in rodents and humans with both autosomal recessive and autosomal dominant PKD. Increased AGS3 expression correlated with kidney size, which is an index of severity of cystic kidney disease. AGS3 expression localized exclusively to distal tubular segments in both normal and cystic kidneys. Short hairpin RNA-induced knockdown of endogenous AGS3 protein significantly reduced proliferation of cystic renal epithelial cells by 26 +/- 2% (P < 0.001) compared with vehicle-treated and control short hairpin RNA-expressing epithelial cells. In summary, this study suggests a relationship between aberrantly increased AGS3 expression in renal tubular epithelia affected by PKD and epithelial cell proliferation. AGS3 may play a receptor-independent role to regulate Galpha subunit function and control epithelial cell function in PKD.
Collapse
Affiliation(s)
- Rama Nadella
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Identification of a deubiquitinating enzyme as a novel AGS3-interacting protein. PLoS One 2010; 5:e9725. [PMID: 20305814 PMCID: PMC2840025 DOI: 10.1371/journal.pone.0009725] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 02/22/2010] [Indexed: 11/19/2022] Open
Abstract
Activator of G protein Signaling 3 (AGS3) is a receptor-independent G protein activator that has been implicated in multiple biological events such as brain development, neuroplasticity and addiction, cardiac function, Golgi structure/function, macroautophagy and metabolism. However, how AGS3 is regulated is little known. We demonstrate here that AGS3 interacts with a ubiquitin specific protease USP9x, and this interaction is at least partially mediated through the C-terminal G protein regulatory domain of AGS3. Knockdown of USP9x causes a moderate reduction in the level of AGS3. In contrast, overexpression of either USP9x or its deubiquitinating domain UCH increases the amount of AGS3, whereas expression of the mutant UCH domain that lacks deubiquitinating activity does not have the same effect. As previously observed in AGS3 knockdown cells, the localization of several marker proteins of the late Golgi compartments is disturbed in cells depleted of USP9x. Taken together, our study suggests that USP9x can modulate the level of a subpopulation of AGS3, and this modulation plays a role in regulating the structure of the late Golgi compartments. Finally, we have found that levels of AGS3 and USP9x are co-regulated in the prefrontal cortex of rats withdrawn from repeated cocaine treatment. In conjunction with the above data, this observation indicates a potential role of USP9X in the regulation of the AGS3 level during cocaine-induced neuroplasticity.
Collapse
|
44
|
Vural A, Oner S, An N, Simon V, Ma D, Blumer JB, Lanier SM. Distribution of activator of G-protein signaling 3 within the aggresomal pathway: role of specific residues in the tetratricopeptide repeat domain and differential regulation by the AGS3 binding partners Gi(alpha) and mammalian inscuteable. Mol Cell Biol 2010; 30:1528-40. [PMID: 20065032 PMCID: PMC2832490 DOI: 10.1128/mcb.01018-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Revised: 09/10/2009] [Accepted: 12/30/2009] [Indexed: 11/20/2022] Open
Abstract
AGS3, a receptor-independent activator of G-protein signaling, is involved in unexpected functional diversity for G-protein signaling systems. AGS3 has seven tetratricopeptide (TPR) motifs upstream of four G-protein regulatory (GPR) motifs that serve as docking sites for Gialpha-GDP. The positioning of AGS3 within the cell and the intramolecular dynamics between different domains of the proteins are likely key determinants of their ability to influence G-protein signaling. We report that AGS3 enters into the aggresome pathway and that distribution of the protein is regulated by the AGS3 binding partners Gialpha and mammalian Inscuteable (mInsc). Gialpha rescues AGS3 from the aggresome, whereas mInsc augments the aggresome-like distribution of AGS3. The distribution of AGS3 to the aggresome is dependent upon the TPR domain, and it is accelerated by disruption of the TPR organizational structure or introduction of a nonsynonymous single-nucleotide polymorphism. These data present AGS3, G-proteins, and mInsc as candidate proteins involved in regulating cellular stress associated with protein-processing pathologies.
Collapse
Affiliation(s)
- Ali Vural
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106
| | - Sadik Oner
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106
| | - Ningfei An
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106
| | - Violaine Simon
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106
| | - Dzwokai Ma
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106
| | - Joe B. Blumer
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106
| | - Stephen M. Lanier
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106
| |
Collapse
|