1
|
Machine learning and structure-based modeling for the prediction of UDP-glucuronosyltransferase inhibition. iScience 2022; 25:105290. [PMID: 36304105 PMCID: PMC9593791 DOI: 10.1016/j.isci.2022.105290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/05/2022] [Accepted: 10/03/2022] [Indexed: 11/23/2022] Open
Abstract
UDP-glucuronosyltransferases (UGTs) are responsible for 35% of the phase II drug metabolism. In this study, we focused on UGT1A1, which is a key UGT isoform. Strong inhibition of UGT1A1 may trigger adverse drug/herb-drug interactions, or result in disorders of endobiotic metabolism. Most of the current machine learning methods predicting the inhibition of drug metabolizing enzymes neglect protein structure and dynamics, both being essential for the recognition of various substrates and inhibitors. We performed molecular dynamics simulations on a homology model of the human UGT1A1 structure containing both the cofactor- (UDP-glucuronic acid) and substrate-binding domains to explore UGT conformational changes. Then, we created models for the prediction of UGT1A1 inhibitors by integrating information on UGT1A1 structure and dynamics, interactions with diverse ligands, and machine learning. These models can be helpful for further prediction of drug-drug interactions of drug candidates and safety treatments. UGTs are responsible for 35% of the phase II drug metabolism reactions We created machine learning models for prediction of UGT1A1 inhibitors Our simulations suggested key residues of UGT1A1 involved in the substrate binding
Collapse
|
2
|
Miyauchi Y, Takechi S, Ishii Y. Functional Interaction between Cytochrome P450 and UDP-Glucuronosyltransferase on the Endoplasmic Reticulum Membrane: One of Post-translational Factors Which Possibly Contributes to Their Inter-Individual Differences. Biol Pharm Bull 2021; 44:1635-1644. [PMID: 34719641 DOI: 10.1248/bpb.b21-00286] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytochrome P450 (P450) and uridine 5'-diphosphate (UDP)-glucuronosyltransferase (UGT) catalyze oxidation and glucuronidation in drug metabolism, respectively. It is believed that P450 and UGT work separately because they perform distinct reactions and exhibit opposite membrane topologies on the endoplasmic reticulum (ER). However, given that some chemicals are sequentially metabolized by P450 and UGT, it is reasonable to consider that the enzymes may interact and work cooperatively. Previous research by our team detected protein-protein interactions between P450 and UGT by analyzing solubilized rat liver microsomes with P450-immobilized affinity column chromatography. Although P450 and UGT have been known to form homo- and hetero-oligomers, this is the first report indicating a P450-UGT association. Based on our previous study, we focused on the P450-UGT interaction and reported lines of evidence that the P450-UGT association is a functional protein-protein interaction that can alter the enzymatic capabilities, including enhancement or suppression of the activities of P450 and UGT, helping UGT to acquire novel regioselectivity, and inhibiting substrate binding to P450. Biochemical and molecular bioscientific approaches suggested that P450 and UGT interact with each other at their internal hydrophobic domains in the ER membrane. Furthermore, several in vivo studies have reported the presence of a functional P450-UGT association under physiological conditions. The P450-UGT interaction is expected to function as a novel post-translational factor for inter-individual differences in the drug-metabolizing enzymes.
Collapse
Affiliation(s)
- Yuu Miyauchi
- Laboratory of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Sojo University.,Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Shinji Takechi
- Laboratory of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Sojo University
| | - Yuji Ishii
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University.,Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University
| |
Collapse
|
3
|
Osborne MJ, Rahardjo AK, Volpon L, Borden KLB. 1H, 13C and 15N chemical shift assignments of the C-terminal domain of human UDP-Glucuronosyltransferase 2B7 (UGT2B7-C). BIOMOLECULAR NMR ASSIGNMENTS 2021; 15:323-328. [PMID: 33870481 PMCID: PMC8549657 DOI: 10.1007/s12104-021-10024-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/10/2021] [Indexed: 06/02/2023]
Abstract
The human UDP-glucuronosyltransferase (UGT) family of enzymes catalyze the covalent addition of glucuronic acid to a wide range of compounds, generally rendering them inactive. Although important for clearance of environmental toxins and metabolites, UGT activation can lead to inappropriate glucuronidation of therapeutics underlying drug resistance. Indeed, 50% of medications are glucuronidated. To better understand this mode of resistance, we studied the UGT2B7 enzyme associated with glucuronidation of cancer drugs such as Tamoxifen and Sorafenib. We report 1H, 13C and 15N backbone (> 90%) and side-chain assignments (~ 78% completeness according to CYANA) for the C-terminal domain of UGT2B7 (UGT2B7-C). Given the biomedical importance of this family of enzymes, our assignments will provide a key tool for improving understanding of the biochemical basis for substrate selectivity and other aspects of enzyme activity. This in turn will inform on drug design to overcome UGT-related drug resistance.
Collapse
Affiliation(s)
- Michael J Osborne
- Department of Pathology and Cell Biology, Institute of Research in Immunology and Cancer (IRIC), Université de Montréal, Pavillion Marcelle-Coutu, Chemin Polytechnique, Montreal, QC, Canada
| | - Amanda K Rahardjo
- Department of Pathology and Cell Biology, Institute of Research in Immunology and Cancer (IRIC), Université de Montréal, Pavillion Marcelle-Coutu, Chemin Polytechnique, Montreal, QC, Canada
| | - Laurent Volpon
- Department of Pathology and Cell Biology, Institute of Research in Immunology and Cancer (IRIC), Université de Montréal, Pavillion Marcelle-Coutu, Chemin Polytechnique, Montreal, QC, Canada
| | - Katherine L B Borden
- Department of Pathology and Cell Biology, Institute of Research in Immunology and Cancer (IRIC), Université de Montréal, Pavillion Marcelle-Coutu, Chemin Polytechnique, Montreal, QC, Canada.
| |
Collapse
|
4
|
Öeren M, Walton PJ, Hunt PA, Ponting DJ, Segall MD. Predicting reactivity to drug metabolism: beyond P450s-modelling FMOs and UGTs. J Comput Aided Mol Des 2020; 35:541-555. [PMID: 32533369 DOI: 10.1007/s10822-020-00321-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/07/2020] [Indexed: 11/28/2022]
Abstract
We present a study based on density functional theory calculations to explore the rate limiting steps of product formation for oxidation by Flavin-containing Monooxygenase (FMO) and glucuronidation by the UDP-glucuronosyltransferase (UGT) family of enzymes. FMOs are responsible for the modification phase of metabolism of a wide diversity of drugs, working in conjunction with Cytochrome P450 (CYP) family of enzymes, and UGTs are the most important class of drug conjugation enzymes. Reactivity calculations are important for prediction of metabolism by CYPs and reactivity alone explains around 70-85% of the experimentally observed sites of metabolism within CYP substrates. In the current work we extend this approach to propose model systems which can be used to calculate the activation energies, i.e. reactivity, for the rate-limiting steps for both FMO oxidation and glucuronidation of potential sites of metabolism. These results are validated by comparison with the experimentally observed reaction rates and sites of metabolism, indicating that the presented models are suitable to provide the basis of a reactivity component within generalizable models to predict either FMO or UGT metabolism.
Collapse
Affiliation(s)
- Mario Öeren
- Optibrium Limited, Cambridge Innovation Park, Denny End Road, Cambridge, CB25 9PB, UK.
| | - Peter J Walton
- Optibrium Limited, Cambridge Innovation Park, Denny End Road, Cambridge, CB25 9PB, UK.,School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Peter A Hunt
- Optibrium Limited, Cambridge Innovation Park, Denny End Road, Cambridge, CB25 9PB, UK
| | - David J Ponting
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, LS11 5PS, UK
| | - Matthew D Segall
- Optibrium Limited, Cambridge Innovation Park, Denny End Road, Cambridge, CB25 9PB, UK
| |
Collapse
|
5
|
Establishment of the experimental procedure for prediction of conjugation capacity in mutant UGT1A1. PLoS One 2019; 14:e0225244. [PMID: 31730632 PMCID: PMC6857941 DOI: 10.1371/journal.pone.0225244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/31/2019] [Indexed: 12/28/2022] Open
Abstract
UDP-glucuronosyltransferase 1A1 (UGT1A1) is an enzyme that is found in the endoplasmic reticulum membrane and can reportedly have a large number of amino acid substitutions that result in the reduction of glucuronidation capacity. For example, adverse drug reactions when patients receive CPT-11 (irinotecan) such as in cancer chemotherapy are caused by amino acid substitutions in UGT1A1. We previously found that the extent of the docking when the hydroxyl residue of bilirubin was oriented toward UDP-glucuronic acid correlated with in vitro conjugation capacity. In this study, we analyzed the conformation of mutant UGT1A1s by means of structural optimization with water and lipid bilayers instead of the optimization in vacuo that we used in our previous study. We then derived a mathematical model that can predict the conjugation capacities of mutant UGT1A1s by using results of substrate docking in silico and results of in vitro analysis of glucuronidation of acetaminophen and 17β-estradiol by UGT1A1s. This experimental procedure showed that the in silico conjugation capacities of other mutant UGT1A1s with bilirubin or SN-38 were similar to reported in vitro conjugation capacities. Our results suggest that this experimental procedure described herein can correctly predict the conjugation capacities of mutant UGT1A1s and any substrate.
Collapse
|
6
|
Miyauchi Y, Tanaka Y, Nagata K, Yamazoe Y, Mackenzie PI, Yamada H, Ishii Y. UDP-Glucuronosyltransferase (UGT)-mediated attenuations of cytochrome P450 3A4 activity: UGT isoform-dependent mechanism of suppression. Br J Pharmacol 2019; 177:1077-1089. [PMID: 31660580 DOI: 10.1111/bph.14900] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 09/19/2019] [Accepted: 09/28/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND AND PURPOSE Cytochrome P450 (CYP, P450) 3A4 is involved in the metabolism of 50% of drugs and its catalytic activity in vivo is not explained only by hepatic expression levels. We previously demonstrated that UDP-glucuronosyltransferase (UGT) 2B7 suppressed CYP3A4 activity through an interaction. In the present study, we target UGT1A9 as another candidate modulator of CYP3A4. EXPERIMENTAL APPROACH We prepared co-expressed enzymes using the baculovirus-insect cell expression system and compared CYP3A4 activity in the presence and absence of UGT1A9. Wistar rats were treated with dexamethasone and liver microsomes were used to elucidate the role of CYP3A-UGT1A interactions. KEY RESULTS UGT1A9 and UGT2B7 interacted with and suppressed CYP3A4. Kinetic analyses showed that both of the UGTs significantly reduced Vmax of CYP3A4 activity. In addition, C-terminal truncated mutants of UGT1A9 and UGT2B7 still retained the suppressive capacity. Dexamethasone treatment induced hepatic CYP3As and UGT1As at different magnitudes. Turnover of CYP3A was enhanced about twofold by this treatment. CONCLUSION AND IMPLICATIONS The changes of kinetic parameters suggested that UGT1A9 suppressed CYP3A4 activity with almost the same mechanism as UGT2B7. The luminal domain of UGTs contains the suppressive interaction site(s), whereas the C-terminal domain may contribute to modulating suppression in a UGT isoform-specific manner. CYP3A-UGT1A interaction seemed to be disturbed by dexamethasone treatment and the suppression was partially cancelled. CYP3A4-UGT interactions would help to better understand the causes of inter/intra-individual differences in CYP3A4 activity.
Collapse
Affiliation(s)
- Yuu Miyauchi
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.,Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshitaka Tanaka
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Kiyoshi Nagata
- Department of Environmental and Health Science, School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yasushi Yamazoe
- Food Safety Commission, Cabinet Office, Government of Japan, Tokyo, Japan
| | - Peter I Mackenzie
- Department of Clinical Pharmacology, Flinders Medical Centre and Flinders University, Adelaide, SA, Australia
| | - Hideyuki Yamada
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuji Ishii
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
7
|
Zubaida B, Cheema HA, Hashmi MA, Naeem M. Spectrum of UGT1A1 variants in Pakistani children affected with inherited unconjugated hyperbilirubinemias. Clin Biochem 2019; 69:30-35. [PMID: 31145902 DOI: 10.1016/j.clinbiochem.2019.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 05/23/2019] [Accepted: 05/25/2019] [Indexed: 11/25/2022]
Abstract
Inherited unconjugated hyperbilirubinemias are a group of disorders characterized by increased levels of serum unconjugated bilirubin and arise because of the imbalance between its production and elimination from the body. It includes Crigler-Najjar syndrome and Gilbert syndrome. Crigler-Najjar syndrome type 1 represents the extreme severe end of the spectrum with complete absence of hepatic bilirubin uridine diphosphoglucuronate glucuronosyltransferase (UGT1A1). Crigler-Najjar syndrome type 2 patients have intermediate levels of bilirubin owing to incomplete deficiency of UGT1A1, and Gilbert syndrome lies at the extreme mild end of the spectrum with only slightly raised bilirubin level. Here, we present spectrum of UGT1A1 genetic variants in 25 Pakistani children from 23 unrelated families affected with persistent unconjugated hyperbilirubinemias. The promoter region, coding exons and splice junctions of the UGT1A1 were PCR amplified and subjected to Sanger sequencing. Eleven sequence variants were identified underlying disease phenotype including a novel c.582delC variant. Overall, c.622_625dupCAGC was the most frequent variant followed by c.1021C>T found in Crigler-Najjar syndrome type 1 patients. The evaluation of promoter polymorphism A(TA)nTAA in the affected children and their families further supported the body of evidence that the A(TA)7TAA allele could enhance the effect of other structural variants in Crigler-Najjar syndrome patients. To our knowledge, this is the first comprehensive study on molecular genetics of persistent unconjugated hyperbilirubinemias from Pakistan. This study expands the spectrum of UGT1A1 variants and should help in improved clinical diagnosis, genetic counseling and prenatal diagnosis of the affected families.
Collapse
Affiliation(s)
- Bibi Zubaida
- Medical Genetics Research Laboratory, Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Huma Arshad Cheema
- Department of Pediatric Gastroenterology, The Children's Hospital and the Institute of Child Health, Lahore, Pakistan
| | - Muhammad Almas Hashmi
- Department of Pediatric Gastroenterology, The Children's Hospital and the Institute of Child Health, Lahore, Pakistan
| | - Muhammad Naeem
- Medical Genetics Research Laboratory, Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
8
|
Lv X, Xia Y, Finel M, Wu J, Ge G, Yang L. Recent progress and challenges in screening and characterization of UGT1A1 inhibitors. Acta Pharm Sin B 2019; 9:258-278. [PMID: 30972276 PMCID: PMC6437557 DOI: 10.1016/j.apsb.2018.09.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/16/2018] [Accepted: 08/27/2018] [Indexed: 02/07/2023] Open
Abstract
Uridine-diphosphate glucuronosyltransferase 1A1 (UGT1A1) is an important conjugative enzyme in mammals that is responsible for the conjugation and detoxification of both endogenous and xenobiotic compounds. Strong inhibition of UGT1A1 may trigger adverse drug/herb-drug interactions, or result in metabolic disorders of endobiotic metabolism. Therefore, both the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA) have recommended assaying the inhibitory potential of drugs under development on the human UGT1A1 prior to approval. This review focuses on the significance, progress and challenges in discovery and characterization of UGT1A1 inhibitors. Recent advances in the development of UGT1A1 probes and their application for screening UGT1A1 inhibitors are summarized and discussed in this review for the first time. Furthermore, a long list of UGT1A1 inhibitors, including information on their inhibition potency, inhibition mode, and affinity, has been prepared and analyzed. Challenges and future directions in this field are highlighted in the final section. The information and knowledge that are presented in this review provide guidance for rational use of drugs/herbs in order to avoid the occurrence of adverse effects via UGT1A1 inhibition, as well as presenting methods for rapid screening and characterization of UGT1A1 inhibitors and for facilitating investigations on UGT1A1-ligand interactions.
Collapse
|
9
|
Osborne MJ, Coutinho de Oliveira L, Volpon L, Zahreddine HA, Borden KLB. Overcoming Drug Resistance through the Development of Selective Inhibitors of UDP-Glucuronosyltransferase Enzymes. J Mol Biol 2018; 431:258-272. [PMID: 30428301 DOI: 10.1016/j.jmb.2018.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/18/2018] [Accepted: 11/05/2018] [Indexed: 12/26/2022]
Abstract
Drug resistance is a major cause of cancer-related mortality. Glucuronidation of drugs via elevation of UDP-glucuronosyltransferases (UGT1As) correlates with clinical resistance. The nine UGT1A family members have broad substrate specificities attributed to their variable N-terminal domains and share a common C-terminal domain. Development of UGT1As as pharmacological targets has been hampered by toxicity of pan-UGT inhibitors and by difficulty in isolating pure N-terminal domains or full-length proteins. Here, we developed a strategy to target selected UGT1As which exploited the biochemical tractability of the C-domain and its ability to allosterically communicate with the catalytic site. By combining NMR fragment screening with in vitro glucuronidation assays, we identified inhibitors selective for UGT1A4. Significantly, these compounds selectively restored sensitivity in resistant cancer cells only for substrates of the targeted UGT1A. This strategy represents a crucial first step toward developing compounds to overcome unwanted glucuronidation thereby reversing resistance in patients.
Collapse
Affiliation(s)
- Michael J Osborne
- Institute of Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, Université de Montréal, Pavilion Marcelle-Coutu, Chemin Polytechnique, Montreal, QC, Canada
| | - Luciana Coutinho de Oliveira
- Institute of Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, Université de Montréal, Pavilion Marcelle-Coutu, Chemin Polytechnique, Montreal, QC, Canada
| | - Laurent Volpon
- Institute of Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, Université de Montréal, Pavilion Marcelle-Coutu, Chemin Polytechnique, Montreal, QC, Canada
| | - Hiba Ahmad Zahreddine
- Institute of Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, Université de Montréal, Pavilion Marcelle-Coutu, Chemin Polytechnique, Montreal, QC, Canada
| | - Katherine L B Borden
- Institute of Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, Université de Montréal, Pavilion Marcelle-Coutu, Chemin Polytechnique, Montreal, QC, Canada.
| |
Collapse
|
10
|
Elfar W, Järvinen E, Ji W, Mosorin J, Sega AG, Iuga AC, Lobritto SJ, Konstantino M, Chan A, Finel M, Lakhani SA. A Novel Pathogenic UGT1A1 Variant in a Sudanese Child with Type 1 Crigler-Najjar Syndrome. Drug Metab Dispos 2018; 47:45-48. [PMID: 30385458 DOI: 10.1124/dmd.118.084368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/24/2018] [Indexed: 11/22/2022] Open
Abstract
Uridine diphosphate glucuronosyltransferases (UGTs) are key enzymes responsible for the body's ability to process a variety of endogenous and exogenous compounds. Significant gains in understanding UGT function have come from the analysis of variants seen in patients. We cared for a Sudanese child who showed clinical features of type 1 Crigler-Najjar syndrome (CN-1), namely severe unconjugated hyperbilirubinemia leading to liver transplantation. CN-1 is an autosomal recessive disorder caused by damaging mutations in the gene for UGT1A1, the hepatic enzyme responsible for bilirubin conjugation in humans. Clinical genetic testing was unable to identify a known pathogenic UGT1A1 mutation in this child. Instead, a novel homozygous variant resulting in an in-frame deletion, p.Val275del, was noted. Sanger sequencing demonstrated that this variant segregated with the disease phenotype in this family. We further performed functional testing using recombinantly expressed UGT1A1 with and without the patient variant, demonstrating that p.Val275del results in a complete lack of glucuronidation activity, a hallmark of CN-1. Sequence analysis of this region shows a high degree of conservation across all known catalytically active human UGTs, further suggesting that it plays a key role in the enzymatic function of UGTs. Finally, we note that the patient's ethnicity likely played a role in his variant being previously undescribed and advocate for greater diversity and inclusion in genomic medicine.
Collapse
Affiliation(s)
- Walaa Elfar
- Department of Pediatrics, Milton S. Hershey Penn State Medical Center, Hershey, Pennsylvania (W.E.); Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, Finland (E.J., J.M., M.F.); Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut (W.J., A.G.S., M.K., S.A.L.); Departments of Pathology and Cell Biology (A.C.I.) and Surgery (S.J.L.), Columbia University Medical Center, New York, New York; and Department of Pediatrics, University of Rochester Medical Center, Rochester, New York (A.C.)
| | - Erkka Järvinen
- Department of Pediatrics, Milton S. Hershey Penn State Medical Center, Hershey, Pennsylvania (W.E.); Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, Finland (E.J., J.M., M.F.); Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut (W.J., A.G.S., M.K., S.A.L.); Departments of Pathology and Cell Biology (A.C.I.) and Surgery (S.J.L.), Columbia University Medical Center, New York, New York; and Department of Pediatrics, University of Rochester Medical Center, Rochester, New York (A.C.)
| | - Weizhen Ji
- Department of Pediatrics, Milton S. Hershey Penn State Medical Center, Hershey, Pennsylvania (W.E.); Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, Finland (E.J., J.M., M.F.); Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut (W.J., A.G.S., M.K., S.A.L.); Departments of Pathology and Cell Biology (A.C.I.) and Surgery (S.J.L.), Columbia University Medical Center, New York, New York; and Department of Pediatrics, University of Rochester Medical Center, Rochester, New York (A.C.)
| | - Johanna Mosorin
- Department of Pediatrics, Milton S. Hershey Penn State Medical Center, Hershey, Pennsylvania (W.E.); Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, Finland (E.J., J.M., M.F.); Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut (W.J., A.G.S., M.K., S.A.L.); Departments of Pathology and Cell Biology (A.C.I.) and Surgery (S.J.L.), Columbia University Medical Center, New York, New York; and Department of Pediatrics, University of Rochester Medical Center, Rochester, New York (A.C.)
| | - Annalisa G Sega
- Department of Pediatrics, Milton S. Hershey Penn State Medical Center, Hershey, Pennsylvania (W.E.); Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, Finland (E.J., J.M., M.F.); Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut (W.J., A.G.S., M.K., S.A.L.); Departments of Pathology and Cell Biology (A.C.I.) and Surgery (S.J.L.), Columbia University Medical Center, New York, New York; and Department of Pediatrics, University of Rochester Medical Center, Rochester, New York (A.C.)
| | - Alina C Iuga
- Department of Pediatrics, Milton S. Hershey Penn State Medical Center, Hershey, Pennsylvania (W.E.); Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, Finland (E.J., J.M., M.F.); Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut (W.J., A.G.S., M.K., S.A.L.); Departments of Pathology and Cell Biology (A.C.I.) and Surgery (S.J.L.), Columbia University Medical Center, New York, New York; and Department of Pediatrics, University of Rochester Medical Center, Rochester, New York (A.C.)
| | - Steven J Lobritto
- Department of Pediatrics, Milton S. Hershey Penn State Medical Center, Hershey, Pennsylvania (W.E.); Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, Finland (E.J., J.M., M.F.); Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut (W.J., A.G.S., M.K., S.A.L.); Departments of Pathology and Cell Biology (A.C.I.) and Surgery (S.J.L.), Columbia University Medical Center, New York, New York; and Department of Pediatrics, University of Rochester Medical Center, Rochester, New York (A.C.)
| | - Monica Konstantino
- Department of Pediatrics, Milton S. Hershey Penn State Medical Center, Hershey, Pennsylvania (W.E.); Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, Finland (E.J., J.M., M.F.); Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut (W.J., A.G.S., M.K., S.A.L.); Departments of Pathology and Cell Biology (A.C.I.) and Surgery (S.J.L.), Columbia University Medical Center, New York, New York; and Department of Pediatrics, University of Rochester Medical Center, Rochester, New York (A.C.)
| | - Albert Chan
- Department of Pediatrics, Milton S. Hershey Penn State Medical Center, Hershey, Pennsylvania (W.E.); Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, Finland (E.J., J.M., M.F.); Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut (W.J., A.G.S., M.K., S.A.L.); Departments of Pathology and Cell Biology (A.C.I.) and Surgery (S.J.L.), Columbia University Medical Center, New York, New York; and Department of Pediatrics, University of Rochester Medical Center, Rochester, New York (A.C.)
| | - Moshe Finel
- Department of Pediatrics, Milton S. Hershey Penn State Medical Center, Hershey, Pennsylvania (W.E.); Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, Finland (E.J., J.M., M.F.); Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut (W.J., A.G.S., M.K., S.A.L.); Departments of Pathology and Cell Biology (A.C.I.) and Surgery (S.J.L.), Columbia University Medical Center, New York, New York; and Department of Pediatrics, University of Rochester Medical Center, Rochester, New York (A.C.)
| | - Saquib A Lakhani
- Department of Pediatrics, Milton S. Hershey Penn State Medical Center, Hershey, Pennsylvania (W.E.); Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, Finland (E.J., J.M., M.F.); Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut (W.J., A.G.S., M.K., S.A.L.); Departments of Pathology and Cell Biology (A.C.I.) and Surgery (S.J.L.), Columbia University Medical Center, New York, New York; and Department of Pediatrics, University of Rochester Medical Center, Rochester, New York (A.C.)
| |
Collapse
|
11
|
Lv X, Zhang JB, Hou J, Dou TY, Ge GB, Hu WZ, Yang L. Chemical Probes for Human UDP-Glucuronosyltransferases: A Comprehensive Review. Biotechnol J 2018; 14:e1800002. [PMID: 30192065 DOI: 10.1002/biot.201800002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/19/2018] [Indexed: 01/11/2023]
Abstract
UGTs play crucial roles in the metabolism and detoxification of both endogenous and xenobiotic compounds. The key roles of UGTs in human health have garnered great interest in the design and development of specific probes for human UGTs. However, in contrast to other human enzymes, the probe substrates for human UGTs are rarely reported, owing to the highly overlapping substrate specificities of UGTs and the lack of the integrated crystal structures of UGTs. Over the past decades, many efforts are made to develop specific probe substrates for UGTs and use them in both basic research and drug discovery. This review focuses on recent progress in the development of probe substrates for UGTs and their biomedical applications. A long list of chemical probes for UGTs, including non-fluorescent and fluorescent probes along with their structural information and kinetic parameters, are prepared and analyzed. Additionally, challenges and future directions in this field are highlighted in the final section. All information and knowledge presented in this review provide practical tools/methods for measuring UGT activities in complex biological samples, which will be very helpful for rapid screening and characterization of UGT modulators, and for exploring the relevance of UGT enzymes to human diseases.
Collapse
Affiliation(s)
- Xia Lv
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, 116600, China.,Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | | | - Jie Hou
- Dalian Medical University, Dalian, 116044, China
| | - Tong-Yi Dou
- School of Life Science and Medicine, Dalian University of Technology, Panjin, 124221, China
| | - Guang-Bo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wen-Zhong Hu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, 116600, China
| | - Ling Yang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
12
|
Stalke A, Skawran B, Auber B, Illig T, Schlegelberger B, Junge N, Goldschmidt I, Leiskau C, von Neuhoff N, Baumann U, Pfister ED. Diagnosis of monogenic liver diseases in childhood by next-generation sequencing. Clin Genet 2017; 93:665-670. [PMID: 28776642 DOI: 10.1111/cge.13120] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/18/2017] [Accepted: 07/29/2017] [Indexed: 12/13/2022]
Abstract
Next-generation sequencing (NGS) has opened up novel diagnostic opportunities for children with unidentified, but suspected inherited diseases. We describe our single-center experience with NGS diagnostics in standard clinical scenarios in pediatric hepatology. We investigated 135 children with suspected inherited hepatopathies, where initially no causative pathogenic variant had been identified, with an amplicon-based NGS panel of 21 genes associated with acute and chronic hepatopathies. In 23 of these patients, we detected pathogenic or likely pathogenic variants in 10 different genes. We present 6 novel variants. A total of 14 of these patients presented with the characteristic phenotype of the related hepatopathy. Nine patients showed only few or atypical clinical symptoms or presented with additional signs. In another 13 out of 135 cases, we detected variants of unknown significance (VUS) in 9 different genes. Only 2 of these patients showed characteristic phenotypes conclusive with the detected variants, whereas 11 patients showed unspecific or atypical phenotypes. Our multi-gene panel is a fast and comprehensive tool to diagnose inherited pediatric hepatopathies. We also illustrate the challenge of dealing with genetic variants and highlight arising clinical questions, especially in patients with atypical phenotypes.
Collapse
Affiliation(s)
- A Stalke
- Department of Kidney, Liver and Metabolic Disease, Division of Pediatric Gastroenterology and Hepatology, Hannover Medical School, Hannover, Germany.,Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - B Skawran
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - B Auber
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - T Illig
- Department of Human Genetics, Hannover Medical School, Hannover, Germany.,Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | - B Schlegelberger
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - N Junge
- Department of Kidney, Liver and Metabolic Disease, Division of Pediatric Gastroenterology and Hepatology, Hannover Medical School, Hannover, Germany
| | - I Goldschmidt
- Department of Kidney, Liver and Metabolic Disease, Division of Pediatric Gastroenterology and Hepatology, Hannover Medical School, Hannover, Germany
| | - C Leiskau
- Department of Kidney, Liver and Metabolic Disease, Division of Pediatric Gastroenterology and Hepatology, Hannover Medical School, Hannover, Germany
| | - N von Neuhoff
- Department of Human Genetics, Hannover Medical School, Hannover, Germany.,Clinic for Pediatrics III, Essen University Hospital, Essen, Germany
| | - U Baumann
- Department of Kidney, Liver and Metabolic Disease, Division of Pediatric Gastroenterology and Hepatology, Hannover Medical School, Hannover, Germany
| | - E-D Pfister
- Department of Kidney, Liver and Metabolic Disease, Division of Pediatric Gastroenterology and Hepatology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
13
|
The regioselective glucuronidation of morphine by dimerized human UGT2B7, 1A1, 1A9 and their allelic variants. Acta Pharmacol Sin 2017; 38:1184-1194. [PMID: 28552915 DOI: 10.1038/aps.2016.157] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 11/14/2016] [Indexed: 12/21/2022] Open
Abstract
Uridine diphosphate-glucuronosyltransferase (UGT) 2B7 is expressed mostly in the human liver, lung and kidney and can transfer endogenous glucuronide group into its substrate and impact the pharmacological effects of several drugs such as estriol, AZT and morphine. UGT2B7 and its allelic variants can dimerize with the homologous enzymes UGT1A1 and UGT1A9, as well as their allelic variants, and then change their enzymatic activities in the process of substrate catalysis. The current study was designed to identify this mechanism using morphine as the substrate of UGT2B7. Single-recombinant allozymes, including UGT2B7*1 (wild type), UGT2B7*71S (A71S, 211G>T), UGT2B7*2 (H268Y, 802C>T), UGT2B7*5 (D398N, 1192G>A), and double-recombinant allozymes formed by the dimerization of UGT1A9*1 (wild type), UGT1A9*2 (C3Y, 8G>A), UGT1A9*3 (M33T, 98T>C), UGT1A9*5 (D256N, 766G>A), UGT1A1 (wild type) with its splice variant UGT1A1b were established and incubated with morphine in vitro. Each sample was analyzed with HPLC-MS/MS. All enzyme kinetic parameters were then measured and analyzed. From the results, the production ratio of its aberrant metabolism and subsequent metabolites, morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G), changes regioselectively. Double-recombinant allozymes exhibit stronger enzymatic activity catalyzing morphine than the single-recombinant alloyzymes. Compared to UGT2B7*1, UGT2B7*2 singles or doubles have lower Km values for M3G and M6G, whereas UGT2B7*5 allozymes perform opposite effects. The double allozymes of UGT1A9*2 or UGT1A9*5 with UGT2B7 tend to produce M6G. Interestingly, the majority of single or double allozymes significantly reduce the ratio of M3G to M6G. The UGT1A9*2-UGT2B7*1 double enzyme has the lowest M3G:M6G ratio, reflecting that more M6G would form in morphine glucuronide metabolism. This study demonstrates that UGT2B7 common SNPs and their dimers with UGT1A1 and UGT1A9 and their allelic variants can regioselectively affect the generation of two metabolites of morphine via altering the CLint ratios of M3G to M6G. These results may predict the effectiveness of morphine antinociception in individualized opioid treatment.
Collapse
|
14
|
Yuan LM, Gao ZZ, Sun HY, Qian SN, Xiao YS, Sun LL, Zeng S. Inter-isoform Hetero-dimerization of Human UDP-Glucuronosyltransferases (UGTs) 1A1, 1A9, and 2B7 and Impacts on Glucuronidation Activity. Sci Rep 2016; 6:34450. [PMID: 27857056 PMCID: PMC5114717 DOI: 10.1038/srep34450] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/13/2016] [Indexed: 11/24/2022] Open
Abstract
Human UDP-glucuronosyltransferases (UGTs) play a pivotal role in phase II metabolism by catalyzing the glucuronidation of endobiotics and xenobiotics. The catalytic activities of UGTs are highly impacted by both genetic polymorphisms and oligomerization. The present study aimed to assess the inter-isoform hetero-dimerization of UGT1A1, 1A9, and 2B7, including the wild type (1A1*1, 1A9*1, and 2B7*1) and the naturally occurring (1A1*1b, 1A9*2/*3/*5, and 2B7*71S/*2/*5) variants. The related enzymes were double expressed in Bac-to-Bac systems. The fluorescence resonance energy transfer (FRET) technique and co-immunoprecipitation (Co-IP) revealed stable hetero-dimerization of UGT1A1, 1A9, and 2B7 allozymes. Variable FRET efficiencies and donor-acceptor distances suggested that genetic polymorphisms resulted in altered affinities to the target protein. In addition, the metabolic activities of UGTs were differentially altered upon hetero-dimerization via double expression systems. Moreover, protein interactions also changed the regioselectivity of UGT1A9 for querectin glucuronidation. These findings provide in-depth understanding of human UGT dimerization as well as clues for complicated UGT dependent metabolism in humans.
Collapse
Affiliation(s)
- Ling-Min Yuan
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhang-Zhao Gao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hong-Ying Sun
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Sai-Nan Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yong-Sheng Xiao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lian-Li Sun
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
15
|
Fujiwara R, Yokoi T, Nakajima M. Structure and Protein-Protein Interactions of Human UDP-Glucuronosyltransferases. Front Pharmacol 2016; 7:388. [PMID: 27822186 PMCID: PMC5075577 DOI: 10.3389/fphar.2016.00388] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/05/2016] [Indexed: 12/11/2022] Open
Abstract
Mammalian UDP-glucuronosyltransferases (UGTs) catalyze the transfer of glucuronic acid from UDP-glucuronic acid to various xenobiotics and endobiotics. Since UGTs comprise rate-limiting enzymes for metabolism of various compounds, co-administration of UGT-inhibiting drugs and genetic deficiency of UGT genes can cause an increased blood concentration of these compounds. During the last few decades, extensive efforts have been made to advance the understanding of gene structure, function, substrate specificity, and inhibition/induction properties of UGTs. However, molecular mechanisms and physiological importance of the oligomerization and protein–protein interactions of UGTs are still largely unknown. While three-dimensional structures of human UGTs can be useful to reveal the details of oligomerization and protein–protein interactions of UGTs, little is known about the protein structures of human UGTs due to the difficulty in solving crystal structures of membrane-bound proteins. Meanwhile, soluble forms of plant and bacterial UGTs as well as a partial domain of human UGT2B7 have been crystallized and enabled us to predict three-dimensional structures of human UGTs using a homology-modeling technique. The homology-modeled structures of human UGTs do not only provide the detailed information about substrate binding or substrate specificity in human UGTs, but also contribute with unique knowledge on oligomerization and protein–protein interactions of UGTs. Furthermore, various in vitro approaches indicate that UGT-mediated glucuronidation is involved in cell death, apoptosis, and oxidative stress as well. In the present review article, recent understandings of UGT protein structures as well as physiological importance of the oligomerization and protein–protein interactions of human UGTs are discussed.
Collapse
Affiliation(s)
- Ryoichi Fujiwara
- Department of Pharmaceutics, School of Pharmacy, Kitasato University Tokyo, Japan
| | - Tsuyoshi Yokoi
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine Nagoya, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University Kanazawa, Japan
| |
Collapse
|
16
|
Wang M, Yang G, He Y, Xu B, Zeng M, Ge S, Yin T, Gao S, Hu M. Establishment and use of new MDCK II cells overexpressing both UGT1A1 and MRP2 to characterize flavonoid metabolism via the glucuronidation pathway. Mol Nutr Food Res 2016; 60:1967-83. [PMID: 26833852 DOI: 10.1002/mnfr.201500321] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 11/23/2015] [Accepted: 01/12/2016] [Indexed: 11/06/2022]
Abstract
SCOPE The purpose of this study is to characterize how overexpression of an efflux transporter and an UDP-glucuronosyltransferase (UGT) affects the cellular kinetics of glucuronidation processes. METHODS AND RESULTS A new MDCK II cell line overexpressing both MRP2 and UGT1A1 (MDCKII-UGT1A1/MRP2 cells) was developed and used to determine how overexpression of an efflux transporter affects the kinetics of cellular flavonoid glucuronide production. The results showed that most model flavonoids (from a total of 13) were mainly metabolized into glucuronides in the MDCKII-UGT1A1/MRP2 cells and the glucuronides were rapidly excreted. Flavonoids with three or fewer hydroxyl group at 7, 3' or 6 hydroxyl group were also metabolized into sulfates. Mechanistic studies using 7-hydroxylflavone showed that its glucuronide was mainly (90%) effluxed by BCRP with a small (10%) but significant contribution from MRP2. Maximal velocity of glucuronide production MDCK-MRP2/UGT1A1 cells showed a fairly good correlation (R(2) >0.8) with those derived using UGT1A1 microsomes, but other kinetic parameters (e.g., Km ) did not correlate. CONCLUSION Overexpression of a second efficient efflux transporter did not significantly change the fact that BCRP is the dominant transporter for flavonoid glucuronide nor did it diminish the influence of the efflux transporter as the "gate keeper" of glucuronidation process.
Collapse
Affiliation(s)
- Meifang Wang
- Hubei University of Medicine and University-Affiliated Taihe Hospital, Shiyan, China.,Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Guangyi Yang
- Hubei University of Medicine and University-Affiliated Taihe Hospital, Shiyan, China.,Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA.,Hubei Provincial Technology and Research Center for Comprehensive Development of Medicinal Herbs, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yu He
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Beibei Xu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Min Zeng
- Hubei University of Medicine and University-Affiliated Taihe Hospital, Shiyan, China.,Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Shufan Ge
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Taijun Yin
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Song Gao
- Hubei University of Medicine and University-Affiliated Taihe Hospital, Shiyan, China.,Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Ming Hu
- Hubei University of Medicine and University-Affiliated Taihe Hospital, Shiyan, China. .,Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA.
| |
Collapse
|
17
|
Di Meo F, Fabre G, Berka K, Ossman T, Chantemargue B, Paloncýová M, Marquet P, Otyepka M, Trouillas P. In silico pharmacology: Drug membrane partitioning and crossing. Pharmacol Res 2016; 111:471-486. [PMID: 27378566 DOI: 10.1016/j.phrs.2016.06.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/30/2016] [Accepted: 06/30/2016] [Indexed: 01/09/2023]
Abstract
Over the past decade, molecular dynamics (MD) simulations have become particularly powerful to rationalize drug insertion and partitioning in lipid bilayers. MD simulations efficiently support experimental evidences, with a comprehensive understanding of molecular interactions driving insertion and crossing. Prediction of drug partitioning is discussed with respect to drug families (anesthetics; β-blockers; non-steroidal anti-inflammatory drugs; antioxidants; antiviral drugs; antimicrobial peptides). To accurately evaluate passive permeation coefficients turned out to be a complex theoretical challenge; however the recent methodological developments based on biased MD simulations are particularly promising. Particular attention is paid to membrane composition (e.g., presence of cholesterol), which influences drug partitioning and permeation. Recent studies concerning in silico models of membrane proteins involved in drug transport (influx and efflux) are also reported here. These studies have allowed gaining insight in drug efflux by, e.g., ABC transporters at an atomic resolution, explicitly accounting for the mandatory forces induced by the surrounded lipid bilayer. Large-scale conformational changes were thoroughly analyzed.
Collapse
Affiliation(s)
- Florent Di Meo
- INSERM UMR 850, Univ. Limoges, Faculty of Pharmacy, 2 rue du Dr Marcland, F-87025, Limoges, France
| | - Gabin Fabre
- LCSN, Univ. Limoges, Faculty of Pharmacy, 2 rue du Dr Marcland, F-87025, Limoges, France
| | - Karel Berka
- Regional Centre for Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky̿ University, Olomouc, Czech Republic
| | - Tahani Ossman
- INSERM UMR 850, Univ. Limoges, Faculty of Pharmacy, 2 rue du Dr Marcland, F-87025, Limoges, France
| | - Benjamin Chantemargue
- INSERM UMR 850, Univ. Limoges, Faculty of Pharmacy, 2 rue du Dr Marcland, F-87025, Limoges, France; Regional Centre for Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky̿ University, Olomouc, Czech Republic
| | - Markéta Paloncýová
- Regional Centre for Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky̿ University, Olomouc, Czech Republic
| | - Pierre Marquet
- INSERM UMR 850, Univ. Limoges, Faculty of Pharmacy, 2 rue du Dr Marcland, F-87025, Limoges, France
| | - Michal Otyepka
- Regional Centre for Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky̿ University, Olomouc, Czech Republic
| | - Patrick Trouillas
- INSERM UMR 850, Univ. Limoges, Faculty of Pharmacy, 2 rue du Dr Marcland, F-87025, Limoges, France; Regional Centre for Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky̿ University, Olomouc, Czech Republic.
| |
Collapse
|
18
|
Patil VM, Das S, Balasubramanian K. Quantum Chemical and Docking Insights into Bioavailability Enhancement of Curcumin by Piperine in Pepper. J Phys Chem A 2016; 120:3643-53. [PMID: 27111639 DOI: 10.1021/acs.jpca.6b01434] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We combine quantum chemical and molecular docking techniques to provide new insights into how piperine molecule in various forms of pepper enhances bioavailability of a number of drugs including curcumin in turmeric for which it increases its bioavailability by a 20-fold. We have carried out docking studies of quantum chemically optimized piperine structure binding to curcumin, CYP3A4 in cytochrome P450, p-Glycoprotein and UDP-glucuronosyltransferase (UGT), the enzyme responsible for glucuronosylation, which increases the solubility of curcumin. All of these studies establish that piperine binds to multiple sites on the enzymes and also intercalates with curcumin forming a hydrogen bonded complex with curcumin. The conjugated network of double bonds and the presence of multiple charge centers of piperine offer optimal binding sites for piperine to bind to enzymes such as UDP-GDH, UGT, and CYP3A4. Piperine competes for curcumin's intermolecular hydrogen bonding and its stacking propensity by hydrogen bonding with enolic proton of curcumin. This facilitates its metabolic transport, thereby increasing its bioavailability both through intercalation into curcumin layers through intermolecular hydrogen bonding, and by inhibiting enzymes that cause glucuronosylation of curcumin.
Collapse
Affiliation(s)
- Vaishali M Patil
- School of Pharmacy, Bharat Institute of Technology , Partapur, Meerut 250 103, Uttar Pradesh, India
| | - Sukanya Das
- Discipline of Pharmacology, School of Medicine, The University of Adelaide , Adelaide, South Australia 5005, Australia
| | - Krishnan Balasubramanian
- School of Molecular Sciences, Arizona State University , Tempe, Arizona 85287-1604, United States
| |
Collapse
|
19
|
Dimerization of human uridine diphosphate glucuronosyltransferase allozymes 1A1 and 1A9 alters their quercetin glucuronidation activities. Sci Rep 2016; 6:23763. [PMID: 27025983 PMCID: PMC4837415 DOI: 10.1038/srep23763] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/26/2016] [Indexed: 11/08/2022] Open
Abstract
Uridine diphosphate glucuronosyltransferase 1A (UGT1A) is a major phase II drug-metabolism enzyme superfamily involved in the glucuronidation of endobiotics and xenobiotics in humans. Many polymorphisms in UGT1A genes are reported to inhibit or decrease UGT1A activity. In this study, two UGT1A1 allozymes, UGT1A1 wild-type and a splice mutant, as well as UGT1A9 wild-type and its three UGT1A9 allozymes, UGT1A9*2(C3Y), UGT1A9*3(M33T), and UGT1A9*5(D256N) were single- or double-expressed in a Bac-to-Bac expression system. Dimerization of UGT1A1 or UGT1A9 allozymes was observed via fluorescence resonance energy transfer (FRET) and co-immunoprecipitation analysis. SNPs of UGT1A altered the ability of protein-protein interaction, resulting in differential FRET efficiencies and donor-acceptor r distances. Dimerization changed the chemical regioselectivity, substrate-binding affinity, and enzymatic activity of UGT1A1 and UGT1A9 in glucuronidation of quercetin. These findings provide molecular insights into the consequences of homozygous and heterozygous UGT1A1 and UGT1A9 allozymes expression on quercetin glucuronidation.
Collapse
|
20
|
Bock KW. The UDP-glycosyltransferase (UGT) superfamily expressed in humans, insects and plants: Animalplant arms-race and co-evolution. Biochem Pharmacol 2016; 99:11-7. [DOI: 10.1016/j.bcp.2015.10.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/01/2015] [Indexed: 01/24/2023]
|
21
|
Ronke C, Dannemann M, Halbwax M, Fischer A, Helmschrodt C, Brügel M, André C, Atencia R, Mugisha L, Scholz M, Ceglarek U, Thiery J, Pääbo S, Prüfer K, Kelso J. Lineage-Specific Changes in Biomarkers in Great Apes and Humans. PLoS One 2015; 10:e0134548. [PMID: 26247603 PMCID: PMC4527672 DOI: 10.1371/journal.pone.0134548] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 07/10/2015] [Indexed: 12/15/2022] Open
Abstract
Although human biomedical and physiological information is readily available, such information for great apes is limited. We analyzed clinical chemical biomarkers in serum samples from 277 wild- and captive-born great apes and from 312 healthy human volunteers as well as from 20 rhesus macaques. For each individual, we determined a maximum of 33 markers of heart, liver, kidney, thyroid and pancreas function, hemoglobin and lipid metabolism and one marker of inflammation. We identified biomarkers that show differences between humans and the great apes in their average level or activity. Using the rhesus macaques as an outgroup, we identified human-specific differences in the levels of bilirubin, cholinesterase and lactate dehydrogenase, and bonobo-specific differences in the level of apolipoprotein A-I. For the remaining twenty-nine biomarkers there was no evidence for lineage-specific differences. In fact, we find that many biomarkers show differences between individuals of the same species in different environments. Of the four lineage-specific biomarkers, only bilirubin showed no differences between wild- and captive-born great apes. We show that the major factor explaining the human-specific difference in bilirubin levels may be genetic. There are human-specific changes in the sequence of the promoter and the protein-coding sequence of uridine diphosphoglucuronosyltransferase 1 (UGT1A1), the enzyme that transforms bilirubin and toxic plant compounds into water-soluble, excretable metabolites. Experimental evidence that UGT1A1 is down-regulated in the human liver suggests that changes in the promoter may be responsible for the human-specific increase in bilirubin. We speculate that since cooking reduces toxic plant compounds, consumption of cooked foods, which is specific to humans, may have resulted in relaxed constraint on UGT1A1 which has in turn led to higher serum levels of bilirubin in humans.
Collapse
Affiliation(s)
- Claudius Ronke
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
- * E-mail:
| | - Michael Dannemann
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Michel Halbwax
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Anne Fischer
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Christin Helmschrodt
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Mathias Brügel
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Claudine André
- Lola Ya Bonobo Sanctuary, “Petites Chutes de la Lukaya,” Kinshasa, Democratic Republic of Congo
| | - Rebeca Atencia
- Réserve Naturelle Sanctuaire à Chimpanzés de Tchimpounga, Jane Goodall Institute, Pointe-Noire, Republic of Congo
| | - Lawrence Mugisha
- Conservation & Ecosystem Health Alliance (CEHA), Kampala, Uganda
- College of Veterinary Medicine, Animal Resources & Biosecurity, Makerere University, Kampala, Uganda
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Uta Ceglarek
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Joachim Thiery
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Svante Pääbo
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Kay Prüfer
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Janet Kelso
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
22
|
Tripathi SP, Prajapati R, Verma N, Sangamwar AT. Predicting substrate selectivity between UGT1A9 and UGT1A10 using molecular modelling and molecular dynamics approach. MOLECULAR SIMULATION 2015. [DOI: 10.1080/08927022.2015.1044451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
23
|
Oussalah A, Bosco P, Anello G, Spada R, Guéant-Rodriguez RM, Chery C, Rouyer P, Josse T, Romano A, Elia M, Bronowicki JP, Guéant JL. Exome-Wide Association Study Identifies New Low-Frequency and Rare UGT1A1 Coding Variants and UGT1A6 Coding Variants Influencing Serum Bilirubin in Elderly Subjects: A Strobe Compliant Article. Medicine (Baltimore) 2015; 94:e925. [PMID: 26039129 PMCID: PMC4616369 DOI: 10.1097/md.0000000000000925] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Genome-wide association studies (GWASs) have identified loci contributing to total serum bilirubin level. However, no exome-wide approaches have been performed to address this question. Using exome-wide approach, we assessed the influence of protein-coding variants on unconjugated, conjugated, and total serum bilirubin levels in a well-characterized cohort of 773 ambulatory elderly subjects from Italy. Coding variants were replicated in 227 elderly subjects from the same area. We identified 4 missense rare (minor allele frequency, MAF < 0.5%) and low-frequency (MAF, 0.5%-5%) coding variants located in the first exon of the UGT1A1 gene, which encodes for the substrate-binding domain (rs4148323 [MAF = 0.06%; p.Gly71Arg], rs144398951 [MAF = 0.06%; p.Ile215Val], rs35003977 [MAF = 0.78%; p.Val225Gly], and rs57307513 [MAF = 0.06%; p.Ser250Pro]). These variants were in strong linkage disequilibrium with 3 intronic UGT1A1 variants (rs887829, rs4148325, rs6742078), which were significantly associated with total bilirubin level (P = 2.34 × 10(-34), P = 7.02 × 10(-34), and P = 8.27 × 10(-34)), as well as unconjugated, and conjugated bilirubin levels. We also identified UGT1A6 variants in association with total (rs6759892, p.Ser7Ala, P = 1.98 × 10(-26); rs2070959, p.Thr181Ala, P = 2.87 × 10(-27); and rs1105879, p.Arg184Ser, P = 3.27 × 10(-29)), unconjugated, and conjugated bilirubin levels. All UGT1A1 intronic variants (rs887829, rs6742078, and rs4148325) and UGT1A6 coding variants (rs6759892, rs2070959, and rs1105879) were significantly associated with gallstone-related cholecystectomy risk. The UGT1A6 variant rs2070959 (p.Thr181Ala) was associated with the highest risk of gallstone-related cholecystectomy (OR, 4.58; 95% CI, 1.58-13.28; P = 3.21 × 10(-3)). Using an exome-wide approach we identified coding variants on UGT1A1 and UGT1A6 genes in association with serum bilirubin level and hyperbilirubinemia risk in elderly subjects. UGT1A1 intronic single-nucleotide polymorphisms (SNPs) (rs6742078, rs887829, rs4148324) serve as proxy markers for the low-frequency and rare UGT1A1 variants, thereby providing mechanistic explanation to the relationship between UGT1A1 intronic SNPs and the UGT1A1 enzyme activity. UGT1A1 and UGT1A6 variants might be potentially associated with gallstone-related cholecystectomy risk.
Collapse
Affiliation(s)
- Abderrahim Oussalah
- From the Inserm, NGERE - Nutrition, Genetics, and Environmental Risk Exposure (AO, R-MG-R, CC, PR, J-PB, J-LG); Faculty of Medicine of Nancy, University of Lorraine (AO, R-MG-R, CC, J-PB, J-LG); University Hospital of Nancy, Department of Molecular Medicine and Personalized Therapeutics, Department of Biochemistry, Molecular Biology, Nutrition, and Metabolism (AO, R-MG-R, CC, TJ, J-LG); Reference Centre for Inherited Metabolic Diseases (ORPHA67872), Vandoeuvre-lès-Nancy, France (AO, R-MG-R, CC, TJ, J-LG); IRCCS, Oasi Maria SS-Institute for Research on Mental Retardation, Troina (PB, GA, RS, AR, ME); Department of Internal Medicine and Geriatrics, UCSC, CI Columbus, Roma, Italy (AR); and Department of Gastroenterology and Hepatology, University Hospital of Nancy, Vandoeuvre-lès-Nancy, France (J-PB)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ghemtio L, Soikkeli A, Yliperttula M, Hirvonen J, Finel M, Xhaard H. SVM Classification and CoMSIA Modeling of UGT1A6 Interacting Molecules. J Chem Inf Model 2014; 54:1011-26. [DOI: 10.1021/ci400577a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Leo Ghemtio
- Centre for Drug Research, ‡Division of Pharmaceutical Technology, §Division of Biopharmaceutics
and Pharmacokinetics, and ∥Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland
| | - Anne Soikkeli
- Centre for Drug Research, ‡Division of Pharmaceutical Technology, §Division of Biopharmaceutics
and Pharmacokinetics, and ∥Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland
| | - Marjo Yliperttula
- Centre for Drug Research, ‡Division of Pharmaceutical Technology, §Division of Biopharmaceutics
and Pharmacokinetics, and ∥Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland
| | - Jouni Hirvonen
- Centre for Drug Research, ‡Division of Pharmaceutical Technology, §Division of Biopharmaceutics
and Pharmacokinetics, and ∥Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland
| | - Moshe Finel
- Centre for Drug Research, ‡Division of Pharmaceutical Technology, §Division of Biopharmaceutics
and Pharmacokinetics, and ∥Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland
| | - Henri Xhaard
- Centre for Drug Research, ‡Division of Pharmaceutical Technology, §Division of Biopharmaceutics
and Pharmacokinetics, and ∥Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland
| |
Collapse
|
25
|
Wei Y, Wu B, Jiang W, Yin T, Jia X, Basu S, Yang G, Hu M. Revolving door action of breast cancer resistance protein (BCRP) facilitates or controls the efflux of flavone glucuronides from UGT1A9-overexpressing HeLa cells. Mol Pharm 2013; 10:1736-50. [PMID: 23402418 DOI: 10.1021/mp300562q] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cellular production of flavonoid glucuronides requires the action of both UDP-glucuronosyltransferases (UGT) and efflux transporters since glucuronides are too hydrophilic to diffuse across the cellular membrane. We determined the kinetics of efflux of 13 flavonoid glucuronides using the newly developed HeLa-UGT1A9 cells and correlated them with kinetic parameters derived using expressed UGT1A9. The results indicated that, among the seven monohydroxylflavones (HFs), there was moderately good correlation (r(2) ≥ 0.65) between the fraction metabolized (fmet) derived from HeLa-UGT1A9 cells and CLint derived from the UGT1A9-mediated metabolism. However, there was weak or no correlation between these two parameters for six dihydroxylflavones (DHFs). Furthermore, there was weak or no correlation between various kinetic parameters (Km, Vmax, or CLint) for the efflux and the metabolism regardless of whether we were using seven HFs, six DHFs, or a combination thereof. Instead, the cellular excretion of many flavonoid glucuronides appears to be controlled by the efflux transporter, and the poor affinity of glucuronide to the efflux transporter resulted in major intracellular accumulation of glucuronides to a level that is above the dosing concentration of its aglycone. Hence, the efflux transporters appear to act as the "Revolving Door" to control the cellular excretion of glucuronides. In conclusion, the determination of a flavonoid's susceptibility to glucuronidation must be based on both its susceptibility to glucuronidation by the enzyme and resulting glucuronide's affinity to the relevant efflux transporters, which act as the "Revolving Door(s)" to facilitate or control its removal from the cells.
Collapse
Affiliation(s)
- Yingjie Wei
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, 100 Shizi Street, Nanjing 210028, China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Tripathi SP, Bhadauriya A, Patil A, Sangamwar AT. Substrate selectivity of human intestinal UDP-glucuronosyltransferases (UGTs): in silico and in vitro insights. Drug Metab Rev 2013; 45:231-52. [PMID: 23461702 DOI: 10.3109/03602532.2013.767345] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The current drug development process aims to produce safe, effective drugs within a reasonable time and at a reasonable cost. Phase II metabolism (glucuronidation) can affect drug action and pharmacokinetics to a considerable extent and so its studies and prediction at initial stages of drug development are very imperative. Extensive glucuronidation is an obstacle to oral bioavailability because the first-pass glucuronidation [or premature clearance by UDP-glucuronosyltransferases (UGTs)] of orally administered agents frequently results in poor oral bioavailability and lack of efficacy. Modeling of new chemical entities/drugs for UGTs and their kinetic data can be useful in understanding the binding patterns to be used in the design of better molecules. This review concentrates on first-pass glucuronidation by intestinal UGTs, including their topology, expression profile, and pharmacogenomics. In addition, recent advances are discussed with respect to substrate selectivity at the binding pocket, structural requirements, and mechanism of enzyme actions.
Collapse
Affiliation(s)
- Satya Prakash Tripathi
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Punjab, India
| | | | | | | |
Collapse
|
27
|
Bushey RT, Lazarus P. Identification and functional characterization of a novel UDP-glucuronosyltransferase 2A1 splice variant: potential importance in tobacco-related cancer susceptibility. J Pharmacol Exp Ther 2012; 343:712-24. [PMID: 22984225 PMCID: PMC3500542 DOI: 10.1124/jpet.112.198770] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 09/12/2012] [Indexed: 12/13/2022] Open
Abstract
UDP-glucuronosyltransferase (UGT) 2A1 is a respiratory and aerodigestive tract-expressing phase II detoxifying enzyme that metabolizes various xenobiotics including polycyclic aromatic hydrocarbons (PAHs). In the present study, a novel exon 3 deletion splice variant was identified for UGT2A1 (UGT2A1Δexon3). As determined by reverse transcription-polymerase chain reaction (PCR), UGT2A1Δexon3 was shown to be expressed in various tissues including lung, trachea, larynx, tonsil, and colon. The ratio of UGT2A1Δexon3/wild-type UGT2A1 expression was highest in colon (0.79 ± 0.08) and lung (0.42 ± 0.12) as determined by real-time PCR; an antibody specific to UGT2A1 showed splice variant protein (UGT2A1_i2) to wild-type protein (UGT2A1_i1) ratios in the range of 0.5 to 0.9 in these tissues. Using ultra-pressure liquid chromatography, we found that homogenates prepared from UGT2A1_i2-overexpressing human embryonic kidney 293 cells exhibited no glucuronidation activity against PAHs, including benzo[a]pyrene-7,8-dihydrodiol (B[a]P-7,8-diol). An inducible in vitro system was created to determine the effect of UGT2A1_i2 expression on UGT2A1_i1 activity. Increasing UGT2A1_i2 levels resulted in a significant (p < 0.01) decrease in the UGT2A1_i1 V(max) against 1-hydroxy (OH)-pyrene, 3-OH-benzo[a]pyrene, and B[a]P-7,8-diol; no significant changes in K(M) were observed for any of the three substrates. Coimmunoprecipitation experiments suggested the formation of UGT2A1_i1 and UGT2A1_i2 hetero-oligomers and UGT2A1_i1 homo-oligomers; coexpression of UGT2A1_i1 or UGT2A1_i2 with other UGT1A or UGT2B enzymes caused no change in UGT1A or UGT2B glucuronidation activity. These data suggest that a novel UGT2A1 splice variant regulates UGT2A1-mediated glucuronidation activity via UGT2A1-specific protein-protein interactions, and expression of this variant could play an important role in the detoxification of carcinogens within target tissues for tobacco carcinogenesis.
Collapse
Affiliation(s)
- Ryan T Bushey
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | | |
Collapse
|
28
|
Korprasertthaworn P, Rowland A, Lewis BC, Mackenzie PI, Yoovathaworn K, Miners JO. Effects of amino acid substitutions at positions 33 and 37 on UDP-glucuronosyltransferase 1A9 (UGT1A9) activity and substrate selectivity. Biochem Pharmacol 2012; 84:1511-21. [DOI: 10.1016/j.bcp.2012.08.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 08/29/2012] [Accepted: 08/29/2012] [Indexed: 10/27/2022]
|
29
|
Wu B, Wang X, Zhang S, Hu M. Accurate prediction of glucuronidation of structurally diverse phenolics by human UGT1A9 using combined experimental and in silico approaches. Pharm Res 2012; 29:1544-61. [PMID: 22302521 DOI: 10.1007/s11095-012-0666-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 01/03/2012] [Indexed: 11/26/2022]
Abstract
PURPOSE Catalytic selectivity of human UGT1A9, an important membrane-bound enzyme catalyzing glucuronidation of xenobiotics, was determined experimentally using 145 phenolics and analyzed by 3D-QSAR methods. METHODS Catalytic efficiency of UGT1A9 was determined by kinetic profiling. Quantitative structure activity relationships were analyzed using CoMFA and CoMSIA techniques. Molecular alignment of substrate structures was made by superimposing the glucuronidation site and its adjacent aromatic ring to achieve maximal steric overlap. For a substrate with multiple active glucuronidation sites, each site was considered a separate substrate. RESULTS 3D-QSAR analyses produced statistically reliable models with good predictive power (CoMFA: q2 = 0.548, r2 = 0.949, r pred 2 = 0.775; CoMSIA: q2 = 0.579, r2 = 0.876, r pred 2 = 0.700). Contour coefficient maps were applied to elucidate structural features among substrates that are responsible for selectivity differences. Contour coefficient maps were overlaid in the catalytic pocket of a homology model of UGT1A9, enabling identification of the UGT1A9 catalytic pocket with a high degree of confidence. CONCLUSION CoMFA/CoMSIA models can predict substrate selectivity and in vitro clearance of UGT1A9. Our findings also provide a possible molecular basis for understanding UGT1A9 functions and substrate selectivity.
Collapse
Affiliation(s)
- Baojian Wu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 1441 Moursund St., Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
30
|
Uchihashi S, Nishikawa M, Sakaki T, Ikushiro SI. The critical role of amino acid residue at position 117 of mouse UDP-glucuronosyltransfererase 1a6a and 1a6b in resveratrol glucuronidation. J Biochem 2012; 152:331-40. [DOI: 10.1093/jb/mvs078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
31
|
Yang J, Cai L, Huang H, Liu B, Wu Q. Genetic variations and haplotype diversity of the UGT1 gene cluster in the Chinese population. PLoS One 2012; 7:e33988. [PMID: 22514612 PMCID: PMC3325998 DOI: 10.1371/journal.pone.0033988] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 02/24/2012] [Indexed: 12/22/2022] Open
Abstract
Vertebrates require tremendous molecular diversity to defend against numerous small hydrophobic chemicals. UDP-glucuronosyltransferases (UGTs) are a large family of detoxification enzymes that glucuronidate xenobiotics and endobiotics, facilitating their excretion from the body. The UGT1 gene cluster contains a tandem array of variable first exons, each preceded by a specific promoter, and a common set of downstream constant exons, similar to the genomic organization of the protocadherin (Pcdh), immunoglobulin, and T-cell receptor gene clusters. To assist pharmacogenomics studies in Chinese, we sequenced nine first exons, promoter and intronic regions, and five common exons of the UGT1 gene cluster in a population sample of 253 unrelated Chinese individuals. We identified 101 polymorphisms and found 15 novel SNPs. We then computed allele frequencies for each polymorphism and reconstructed their linkage disequilibrium (LD) map. The UGT1 cluster can be divided into five linkage blocks: Block 9 (UGT1A9), Block 9/7/6 (UGT1A9, UGT1A7, and UGT1A6), Block 5 (UGT1A5), Block 4/3 (UGT1A4 and UGT1A3), and Block 3′ UTR. Furthermore, we inferred haplotypes and selected their tagSNPs. Finally, comparing our data with those of three other populations of the HapMap project revealed ethnic specificity of the UGT1 genetic diversity in Chinese. These findings have important implications for future molecular genetic studies of the UGT1 gene cluster as well as for personalized medical therapies in Chinese.
Collapse
Affiliation(s)
- Jing Yang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Center for Comparative Biomedicine, Institute of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Cai
- Key Laboratory of Systems Biomedicine (Ministry of Education), Center for Comparative Biomedicine, Institute of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haiyan Huang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Center for Comparative Biomedicine, Institute of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bingya Liu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Center for Comparative Biomedicine, Institute of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Wu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Center for Comparative Biomedicine, Institute of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- * E-mail:
| |
Collapse
|
32
|
Höglund C, Sneitz N, Radominska-Pandya A, Laakonen L, Finel M. Phenylalanine 93 of the human UGT1A10 plays a major role in the interactions of the enzyme with estrogens. Steroids 2011; 76:1465-73. [PMID: 21846474 PMCID: PMC3188330 DOI: 10.1016/j.steroids.2011.07.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 07/28/2011] [Accepted: 07/29/2011] [Indexed: 10/17/2022]
Abstract
Little is currently known about the substrate binding site of the human UDP-glucuronosyltransferases (UGTs) and the structural elements that affect their complex substrate selectivity. In order to further understand and extend our earlier findings with phenylalanines 90 and 93 of UGT1A10, we have replaced each of them with Gly, Ala, Val, Leu, Ile or Tyr, and tested the activity of the resulting 12 mutants toward eight different substrates. Apart from scopoletin glucuronidation, the F90 mutants other than F90L were nearly inactive, while the F93 mutants' activity was strongly substrate dependent. Hence, F93L displayed high entacapone and 1-naphthol glucuronidation rates, whereas F93G, which was nearly inactive in entacapone glucuronidation, was highly active toward estradiol, estriol and even ethinylestradiol, a synthetic estrogen that is a poor substrate for the wild-type UGT1A10. Kinetic analyses of 4-nitrophenol, estradiol and ethinylestradiol glucuronidation by the mutants that catalyzed the respective reactions at considerable rates, revealed increased K(m) values for 4-nitrophenol and estradiol in all the mutants, whilst the K(m) values of F93G and F93A for ethinylestradiol were lower than in control UGT1A10. Based on the activity results and a new molecular model of UGT1A10, it is suggested that both F90 and F93 are located in a surface helix at the far end of the substrate binding site. Nevertheless, only F93 directly affects the selectivity of UGT1A10 toward large and rigid estrogens, particularly those with substitutions at the D ring. The effects of F93 mutations on the glucuronidation of smaller or less rigid substrates are indirect, however.
Collapse
Affiliation(s)
- Camilla Höglund
- Centre for Drug Research, Faculty of Pharmacy, P.O. Box 56 (Viikinkaari 5), FI-00014 University of Helsinki, Finland
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, P.O. Box 56 (Viikinkaari 5), FI-00014 University of Helsinki, Finland
| | - Nina Sneitz
- Centre for Drug Research, Faculty of Pharmacy, P.O. Box 56 (Viikinkaari 5), FI-00014 University of Helsinki, Finland
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, P.O. Box 56 (Viikinkaari 5), FI-00014 University of Helsinki, Finland
| | - Anna Radominska-Pandya
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA (A.R.-P.)
| | - Liisa Laakonen
- Centre for Drug Research, Faculty of Pharmacy, P.O. Box 56 (Viikinkaari 5), FI-00014 University of Helsinki, Finland
| | - Moshe Finel
- Centre for Drug Research, Faculty of Pharmacy, P.O. Box 56 (Viikinkaari 5), FI-00014 University of Helsinki, Finland
| |
Collapse
|
33
|
Sneitz N, Krishnan K, Covey DF, Finel M. Glucuronidation of the steroid enantiomers ent-17β-estradiol, ent-androsterone and ent-etiocholanolone by the human UDP-glucuronosyltransferases. J Steroid Biochem Mol Biol 2011; 127:282-8. [PMID: 21899827 PMCID: PMC3234363 DOI: 10.1016/j.jsbmb.2011.08.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 07/29/2011] [Accepted: 08/16/2011] [Indexed: 11/22/2022]
Abstract
Steroids enantiomers are interesting compounds for detailed exploration of drug metabolizing enzymes, such as the UDP-glucuronosyltransferases (UGTs). We have now studied the glucuronidation of the enantiomers of estradiol, androsterone and etiocholanolone by the 19 human UGTs of subfamilies 1A, 2A and 2B. The results reveal that the pattern of human UGTs of subfamily 2B that glucuronidate ent-17β-estradiol, particularly 2B15 and 2B17, resembles the glucuronidation of epiestradiol (17α-estradiol) rather than 17β-estradiol, the main physiological estrogen. The UGTs of subfamilies 1A and 2A exhibit higher degree of regioselectivity than enantioselectivity in the conjugation of these estradiols, regardless of whether the activity is primarily toward the non-chiral site, 3-OH (UGT1A1, UGT1A3, UGT1A7, UGT1A8 and, above all, UGT1A10), or the 17-OH (UGT1A4). In the cases of etiocholanolone and androsterone, glucuronidation of the ent-androgens, like the conjugation of the natural androgens, is mainly catalyzed by UGTs of subfamilies 2A and 2B. Nevertheless, the glucuronidation of ent-etiocholanolone and ent-androsterone by both UGT2B7 and UGT2B17 differs considerably from their respective activity toward the corresponding endogenous androgens, whereas UGT2A1-catalyzed conjugation is much less affected by the stereochemistry differences. Kinetic analyses reveal that the K(m) value of UGT2A1 for ent-estradiol is much higher than the corresponding value in the other two high activity enzymes, UGT1A10 and UGT2B7. Taken together, the results highlight large enantioselectivity differences between individual UGTs, particularly those of subfamily 2B.
Collapse
Affiliation(s)
- Nina Sneitz
- Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, Finland
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, Finland
| | - Kathiresan Krishnan
- Department of Developmental Biology, Washington University in St. Louis, School of Medicine, 660 S. Euclid Ave., St. Louis, Missouri, 63110, USA
| | - Douglas F. Covey
- Department of Developmental Biology, Washington University in St. Louis, School of Medicine, 660 S. Euclid Ave., St. Louis, Missouri, 63110, USA
| | - Moshe Finel
- Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, Finland
| |
Collapse
|
34
|
Court MH, Zhang X, Ding X, Yee KK, Hesse LM, Finel M. Quantitative distribution of mRNAs encoding the 19 human UDP-glucuronosyltransferase enzymes in 26 adult and 3 fetal tissues. Xenobiotica 2011; 42:266-77. [DOI: 10.3109/00498254.2011.618954] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
35
|
Wu B, Kulkarni K, Basu S, Zhang S, Hu M. First-pass metabolism via UDP-glucuronosyltransferase: a barrier to oral bioavailability of phenolics. J Pharm Sci 2011; 100:3655-81. [PMID: 21484808 DOI: 10.1002/jps.22568] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 03/10/2011] [Accepted: 03/10/2011] [Indexed: 12/11/2022]
Abstract
Glucuronidation mediated by UDP-glucuronosyltransferases (UGTs) is a significant metabolic pathway that facilitates efficient elimination of numerous endobiotics and xenobiotics, including phenolics. UGT genetic deficiency and polymorphisms or inhibition of glucuronidation by concomitant use of drugs are associated with inherited physiological disorders or drug-induced toxicities. Moreover, extensive glucuronidation can be a barrier to oral bioavailability as the first-pass glucuronidation (or premature clearance by UGTs) of orally administered agents usually results in the poor oral bioavailability and lack of efficacies. This review focused on the first-pass glucuronidation of phenolics including natural polyphenols and pharmaceuticals. The complexity of UGT-mediated metabolism of phenolics is highlighted with species-, gender-, organ- and isoform-dependent specificity, as well as functional compensation between UGT1A and 2B subfamily. In addition, recent advances are discussed with respect to the mechanisms of enzymatic actions, including the important properties such as binding pocket size and phosphorylation requirements.
Collapse
Affiliation(s)
- Baojian Wu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
36
|
Regioselective glucuronidation of flavonols by six human UGT1A isoforms. Pharm Res 2011; 28:1905-18. [PMID: 21472492 DOI: 10.1007/s11095-011-0418-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 03/04/2011] [Indexed: 10/18/2022]
Abstract
PURPOSE Glucuronidation is a major barrier to flavonoid bioavailability; understanding its regiospecificity and reaction kinetics would greatly enhance our ability to model and predict flavonoid disposition. We aimed to determine the regioselective glucuronidation of four model flavonols using six expressed human UGT1A isoforms (UGT1A1, 1A3, 1A7, 1A8, 1A9, 1A10). METHODS In vitro reaction kinetic profiles of six UGT1A-mediated metabolism of four flavonols (all with 7-OH group) were characterized; kinetic parameters (K(m), V(max) and CL(int) = V(max)/K(m)) were determined. RESULTS UGT1A1 and 1A3 regioselectively metabolized the 7-OH group, whereas UGT1A7, 1A8, 1A9 and 1A10 preferred to glucuronidate the 3-OH group. UGT1A1 and 1A9 were the most efficient conjugating enzymes with K(m) values of ≤1 μM and relative catalytic efficiency ratios of ≥5.5. Glucuronidation by UGT1As displayed surprisingly strong substrate inhibition. In particular, K(si) values (substrate inhibition constant) were less than 5.4 μM for UGT1A1-mediated metabolism. CONCLUSION UGT1A isoforms displayed distinct positional preferences between 3-OH and 7-OH of flavonols. Differentiated kinetic properties between 3-O- and 7-O- glucuronidation suggested that (at least) two distinct binding modes within the catalytic domain were possible. The existence of multiple binding modes should provide better "expert" knowledge to model and predict UGT1A-mediated glucuronidation.
Collapse
|
37
|
Bushey RT, Chen G, Blevins-Primeau AS, Krzeminski J, Amin S, Lazarus P. Characterization of UDP-glucuronosyltransferase 2A1 (UGT2A1) variants and their potential role in tobacco carcinogenesis. Pharmacogenet Genomics 2011; 21:55-65. [PMID: 21164388 PMCID: PMC3019304 DOI: 10.1097/fpc.0b013e328341db05] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To examine UGT2A1 expression in human tissues, determine its glucuronidation activity against tobacco carcinogens, and assess the potential functional role of UGT2A1 missense single nucleotide polymorphisms on UGT2A1 enzyme activity. METHODS Reverse transcription polymerase chain reaction and real time polymerase chain reaction were used to assess UGT2A1 gene expression in various human tissues. A glucuronidation assay measured by reverse phase ultra-performance liquid chromatography was used to determine UGT2A1 activity. RESULTS UGT2A1 was expressed in aerodigestive tract tissues including trachea, larynx, tonsil, lung, and colon; no expression was observed in breast, whole brain, pancreas, prostate, kidney, liver, or esophagus. UGT2A1 exhibited highest expression in the lung, followed by trachea >tonsil >larynx >colon >olfactory tissue. Cell homogenates prepared from wildtype UGT2A1(75Lys308Gly) overexpressing HEK293 cells showed significant glucuronidation activity against a variety of polycyclic aromatic hydrocarbons including, 1-hydroxy-benzo(a)pyrene, benzo(a)pyrene-7,8-diol, and 5-methylchrysene-1,2-diol. No activity was observed in UGT2A1 overexpressing cell homogenate against substrates that form N-glucuronides, such as 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), nicotine, or N-OH-2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (N-OH PhIP). A significant (P<0.05) decrease (approximately 25%) in glucuronidation activity (Vmax/KM) was observed against all polycyclic aromatic hydrocarbons substrates for the UGT2A1(75Lys308Gly) variant compared with homogenates from wildtype UGT2A1(75Lys308Gly); no activity was observed for cell homogenates overexpressing the UGT2A1 variant for all substrates tested. CONCLUSION These data suggest that UGT2A1 is an important detoxification enzyme in the metabolism of polycyclic aromatic hydrocarbons within target tissues for tobacco carcinogens and functional polymorphisms in UGT2A1 may play a role in tobacco-related cancer risk.
Collapse
Affiliation(s)
- Ryan T. Bushey
- Molecular Epidemiology and Cancer Control Program, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
- Department of Pharmacology, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Gang Chen
- Molecular Epidemiology and Cancer Control Program, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
- Department of Public Health Sciences, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Andrea S. Blevins-Primeau
- Molecular Epidemiology and Cancer Control Program, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
- Department of Pharmacology, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Jacek Krzeminski
- Chemical Carcinogenesis and Chemoprevention Program, Penn State Cancer Institute, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
- Department of Pharmacology, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Shantu Amin
- Chemical Carcinogenesis and Chemoprevention Program, Penn State Cancer Institute, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
- Department of Pharmacology, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Philip Lazarus
- Molecular Epidemiology and Cancer Control Program, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
- Department of Pharmacology, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
- Department of Public Health Sciences, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| |
Collapse
|
38
|
Wu B, Morrow JK, Singh R, Zhang S, Hu M. Three-dimensional quantitative structure-activity relationship studies on UGT1A9-mediated 3-O-glucuronidation of natural flavonols using a pharmacophore-based comparative molecular field analysis model. J Pharmacol Exp Ther 2010; 336:403-13. [PMID: 21068207 DOI: 10.1124/jpet.110.175356] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glucuronidation is often recognized as one of the rate-determining factors that limit the bioavailability of flavonols. Hence, design and synthesis of more bioavailable flavonols would benefit from the establishment of predictive models of glucuronidation using kinetic parameters [e.g., K(m), V(max), intrinsic clearance (CL(int)) = V(max)/K(m)] derived for flavonols. This article aims to construct position (3-OH)-specific comparative molecular field analysis (CoMFA) models to describe UDP-glucuronosyltransferase (UGT) 1A9-mediated glucuronidation of flavonols, which can be used to design poor UGT1A9 substrates. The kinetics of recombinant UGT1A9-mediated 3-O-glucuronidation of 30 flavonols was characterized, and kinetic parameters (K(m), V(max), CL(int)) were obtained. The observed K(m), V(max), and CL(int) values of 3-O-glucuronidation ranged from 0.04 to 0.68 μM, 0.04 to 12.95 nmol/mg/min, and 0.06 to 109.60 ml/mg/min, respectively. To model UGT1A9-mediated glucuronidation, 30 flavonols were split into the training (23 compounds) and test (7 compounds) sets. These flavonols were then aligned by mapping the flavonols to specific common feature pharmacophores, which were used to construct CoMFA models of V(max) and CL(int), respectively. The derived CoMFA models possessed good internal and external consistency and showed statistical significance and substantive predictive abilities (V(max) model: q(2) = 0.738, r(2) = 0.976, r(pred)(2) = 0.735; CL(int) model: q(2) = 0.561, r(2) = 0.938, r(pred)(2) = 0.630). The contour maps derived from CoMFA modeling clearly indicate structural characteristics associated with rapid or slow 3-O-glucuronidation. In conclusion, the approach of coupling CoMFA analysis with a pharmacophore-based structural alignment is viable for constructing a predictive model for regiospecific glucuronidation rates of flavonols by UGT1A9.
Collapse
Affiliation(s)
- Baojian Wu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
39
|
Takaoka Y, Ohta M, Takeuchi A, Miura K, Matsuo M, Sakaeda T, Sugano A, Nishio H. Ligand orientation governs conjugation capacity of UDP-glucuronosyltransferase 1A1. J Biochem 2010; 148:25-8. [PMID: 20435641 DOI: 10.1093/jb/mvq048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
UDP-glucuronosyltransferase 1A1 (UGT1A1) is an endoplasmic reticulum membrane protein that catalyses glucuronidation. Mutant UGT1A1 possesses a different conjugation capacity, and the molecular mechanisms regulating these conjugation reactions are as yet unclear. To elucidate these molecular mechanisms, we simulated and analysed the glucuronidation of wild-type UGT1A1 and six UGT1A1 mutants, with bilirubin as the substrate. We found that only the orientation of the substrates correlated with the conjugation capacity in in vitro experiments. Inasmuch as glucuronidation is an intermolecular rearrangement reaction, we find that the conjugation reaction proceeds only when the hydroxyl group of the substrate is oriented towards the coenzyme, which allows the proton transfer to occur.
Collapse
Affiliation(s)
- Yutaka Takaoka
- Division of Applied Genome Science and Bioinformatics, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| | | | | | | | | | | | | | | |
Collapse
|