1
|
Kundu D, Acharya S, Wang S, Cao Y, Kim HJ, Cheong JH, Kim KM. Roles of metabotropic signaling of nicotine receptors in the development and maintenance of nicotine reward through regulation of dopamine D 3 receptor expression. J Neurochem 2025; 169:e16271. [PMID: 39696743 DOI: 10.1111/jnc.16271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/03/2024] [Accepted: 11/11/2024] [Indexed: 12/20/2024]
Abstract
The α4β2 nicotinic acetylcholine receptor (nAChR), an ionophore, has been suggested to signal through metabotropic pathways and interact with other receptor families, such as dopamine receptors. In this study, the interaction between α4β2 nAChR and dopamine receptors was investigated through in vivo and in vitro studies. Nicotine exposure in adolescent rats is known to induce a sustained increase in nicotine's rewarding effects which was assessed by conditioned place preference (CPP) assay. The expression levels of α4β2 nAChR and dopamine D2/D3 receptors (D2R, D3R) increased after nicotine treatment. To determine which of these two dopamine receptors was increased by nicotine treatment, a newly developed ligand with high selectivity for D3R was used in the radioligand binding assay. Although the expression of both α4β2 nAChR and D3R was enhanced by nicotine exposure during adolescence, only the elevated level of D3R persisted into adulthood. In experiments conducted on mice, D3R knockout mice showed significantly lower CPP scores in adulthood compared to wild-type mice. Cellular studies showed that an increase in D3R expression was attributed to enhanced D3R promoter activity, regulated by a signaling cascade composed of Src, Syk, PKC, and NF-κB. These results demonstrate that the metabotropic signaling pathway is involved in the interaction between α4β2 nAChR and D3R, and also suggest how nicotine reward initiated in adolescence could relapse after a long abstinence period. Given the significance of adolescent nicotine exposure on nicotine addiction, this study is thought to offer a novel mechanistic perspective for understanding nicotine reward and relapse.
Collapse
Affiliation(s)
- Dooti Kundu
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Srijan Acharya
- St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Shujie Wang
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Yongkai Cao
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Hee Jin Kim
- College of Pharmacy, Sahmyook University, Seoul, Republic of Korea
| | - Jae Hoon Cheong
- College of Pharmacy, Jeonbuk National University, Jeonju, Republic of Korea
| | - Kyeong-Man Kim
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
2
|
Jalaiei A, Asadi MR, Daneshmandpour Y, Rezazadeh M, Ghafouri-Fard S. Clinical, molecular, physiologic, and therapeutic feature of patients with CHRNA4 and CHRNB2 deficiency: A systematic review. J Neurochem 2025; 169:e16200. [PMID: 39193833 DOI: 10.1111/jnc.16200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/03/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024]
Abstract
The α4β2 nAChRs are crucial ion channels that control neurotransmitter release and play a role in various physiologic and pathologic processes. CHRNA4 encodes the α4-nAChRs, while CHRNB2 encodes the β2-nAChRs. Recent studies have found different variants of α4β2-nAChRs in individuals with conditions such as AD, ADHD, ALS, PD, and brain abnormalities. We conducted a scoping review following a six-stage methodology structure and adhering to PRISMA guidelines. We systematically reviewed articles using relevant keywords up to October 2, 2023. In this summary, we cover the clinical symptoms reported, the genes and protein structure of CHRNA4 and CHRNB2, mutations in these genes, inheritance patterns, the functional impact of mutations and polymorphisms in CHRNA4 and CHRNB2, and the epidemiology of these diseases. Recent research indicates that nAChRs may play a significant role in neurodegenerative disorders, possibly impacting neuronal function through yet undiscovered regulatory pathways. Studying how nAChRs interact with disease-related aggregates in neurodegenerative conditions may lead to new treatment options for these disorders.
Collapse
Affiliation(s)
- Abbas Jalaiei
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Asadi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Daneshmandpour
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Rezazadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Rodríguez-Carlos A, Gonzalez-Muniz OE, Ramirez-Ledesma MG, Rivas-Santiago B. Effect of Nicotine on Pulmonary Pathogenic Bacteria. Curr Microbiol 2024; 81:450. [PMID: 39514085 DOI: 10.1007/s00284-024-03977-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Exposure to cigarette smoke significantly enhances susceptibility to bacterial infections by inducing physiological and structural alterations, including immune system dysregulation. This exposure also augments bacterial virulence including biofilm formation, leading to severe infectious diseases and antibiotic resistance. Notably, cigarette smoke exposure increases the incidence of pneumonia by up to 2.5-fold and tuberculosis by up to 4.1-fold. Nicotine, a primary constituent of cigarette smoke, has been extensively characterized for its immunomodulatory effects. However, despite the wealth of knowledge on nicotine's impact on the host immune response, there is a paucity of data regarding its direct effects on various pulmonary pathogens. In the present review, we discuss the main findings in this field.
Collapse
Affiliation(s)
- Adrián Rodríguez-Carlos
- Biomedical Research Unit Zacatecas-IMSS, Instituto Mexicano del Seguro Social, Interior de La Alameda #45, Zacatecas, Mexico
| | - Oscar E Gonzalez-Muniz
- Biomedical Research Unit Zacatecas-IMSS, Instituto Mexicano del Seguro Social, Interior de La Alameda #45, Zacatecas, Mexico
| | - Maria G Ramirez-Ledesma
- Departamento de Neurobiología Celular y Molecular, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico
| | - Bruno Rivas-Santiago
- Biomedical Research Unit Zacatecas-IMSS, Instituto Mexicano del Seguro Social, Interior de La Alameda #45, Zacatecas, Mexico.
| |
Collapse
|
4
|
Cao Y, Sun J, Wang X, Zhang X, Tian H, Huang L, Huang Z, Zhang Y, Zhang J, Li L, Zhou S. The double-edged nature of nicotine: toxicities and therapeutic potentials. Front Pharmacol 2024; 15:1427314. [PMID: 39206262 PMCID: PMC11350241 DOI: 10.3389/fphar.2024.1427314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Nicotine is the primary addictive component of cigarette smoke and is associated with various smoking-related diseases. However, recent research has revealed its broader cognitive-enhancing and anti-inflammatory properties, suggesting its potential therapeutic applications in several conditions. This review aims to examine the double-edged nature of nicotine, encompassing its positive and negative effects. We provide a concise overview of the physiochemical properties and pharmacology of nicotine, including insights into nicotine receptors. Therefore, the article is divided into two main sections: toxicity and therapeutic potential. We comprehensively explored nicotine-related diseases, focusing on specific signaling pathways and the underlying mechanisms that contribute to its effects. Furthermore, we addressed the current research challenges and future development perspectives. This review aims to inspire future researchers to explore the full medical potential of nicotine, which holds significant promise for the clinical management of specific diseases.
Collapse
Affiliation(s)
- Yun Cao
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| | - Jiali Sun
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China
| | - Xiaofeng Wang
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| | - Xiaoyu Zhang
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| | - Huijuan Tian
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| | - Lingling Huang
- Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Ze Huang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China
| | - Yaping Zhang
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
- Key Laboratory of Aerosol Analysis Regulation and Biological Effects of Anhui Province, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| | - Jin Zhang
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| | - Lin Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China
| | - Shun Zhou
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
- Key Laboratory of Aerosol Analysis Regulation and Biological Effects of Anhui Province, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| |
Collapse
|
5
|
da Silva Barbirato D, de Melo Vasconcelos AF, Dantas de Moraes SL, Pellizzer EP, do Egito Vasconcelos BC. Analgesic potential of transdermal nicotine patch in surgery: a systematic review and meta-analysis of randomised placebo-controlled trials. Eur J Clin Pharmacol 2023; 79:589-607. [PMID: 36947193 DOI: 10.1007/s00228-023-03475-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/09/2023] [Indexed: 03/23/2023]
Abstract
OBJECTIVES We aimed (1) to systematically review the efficacy of transdermal nicotine patches (NP) for postoperative analgesia, (2) to establish the current quality of evidence and assist clinical decision-making on the subject, and (3) to identify methodological limitations and the need for more well-designed studies. MATERIALS AND METHODS We searched six electronic databases, protocol records, and other sources without date or language restriction until March 2022. To develop the search strategy, we formulated a clinical question by using the PICOD method. Eligibility criteria included randomised placebo-controlled trials on the analgesic potential of NP for surgical procedures. This systematic review followed the PRISMA 2020 statement, and we registered the protocol in PROSPERO (#CRD42020205956). RESULTS We included 10 randomised placebo-controlled trials (535 patients). The NP administered before induction of anaesthesia and at beginning of surgery reduced the pain immediately after surgery (-0.38; 95% confidence interval [CI]: -0.73 to -0.02), and 6 h (-0.34; 95% CI: -0.68 to -0.01), 12 h (-0.43; 95% CI: -0.71 to -0.15) and 24 h (-0.35; 95%CI: -0.59 to -0.10) after surgery, compared with the placebo patch (PP) group. Sensitivity testing suggests that opioid use could underestimate NP analgesia. Late demand for the first analgesic and consumption of rescue analgesics tended to be lower in the NP group. CONCLUSIONS The current findings suggest, with low certainty of evidence, the analgesic potential of NP for surgical procedures. CLINICAL RELEVANCE Perioperative use of NP significantly improved postoperative pain, even when opioids were administered or prescribed. Nevertheless, the clinical relevance should be interpreted with caution, owing to the effect sizes of the summary measures and methodological issues. The analgesic potential of NP as an adjuvant therapy to regulate pain and acute inflammation may offer certain clinical advantages, thus warranting further investigation.
Collapse
Affiliation(s)
- Davi da Silva Barbirato
- Division of Oral and Maxillofacial Surgery, Dental School, University of Pernambuco (UPE), Arnóbio Marques St., 310, Recife, PE, 50100-130, Brazil
| | | | | | - Eduardo Piza Pellizzer
- Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Belmiro Cavalcanti do Egito Vasconcelos
- Division of Oral and Maxillofacial Surgery, Dental School, University of Pernambuco (UPE), Arnóbio Marques St., 310, Recife, PE, 50100-130, Brazil.
- Oral and Maxillofacial Surgery at Hospital da Restauração, Recife, PE, Brazil.
| |
Collapse
|
6
|
Paramonov AS, Shulepko MA, Makhonin AM, Bychkov ML, Kulbatskii DS, Chernikov AM, Myshkin MY, Shabelnikov SV, Shenkarev ZO, Kirpichnikov MP, Lyukmanova EN. New Three-Finger Protein from Starfish Asteria rubens Shares Structure and Pharmacology with Human Brain Neuromodulator Lynx2. Mar Drugs 2022; 20:md20080503. [PMID: 36005506 PMCID: PMC9410279 DOI: 10.3390/md20080503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Three-finger proteins (TFPs) are small proteins with characteristic three-finger β-structural fold stabilized by the system of conserved disulfide bonds. These proteins have been found in organisms from different taxonomic groups and perform various important regulatory functions or act as components of snake venoms. Recently, four TFPs (Lystars 1–4) with unknown function were identified in the coelomic fluid proteome of starfish A. rubens. Here we analyzed the genomes of A. rubens and A. planci starfishes and predicted additional five and six proteins containing three-finger domains, respectively. One of them, named Lystar5, is expressed in A. rubens coelomocytes and has sequence homology to the human brain neuromodulator Lynx2. The three-finger structure of Lystar5 close to the structure of Lynx2 was confirmed by NMR. Similar to Lynx2, Lystar5 negatively modulated α4β2 nicotinic acetylcholine receptors (nAChRs) expressed in X. laevis oocytes. Incubation with Lystar5 decreased the expression of acetylcholine esterase and α4 and α7 nAChR subunits in the hippocampal neurons. In summary, for the first time we reported modulator of the cholinergic system in starfish.
Collapse
Affiliation(s)
- Alexander S. Paramonov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 119997 Moscow, Russia; (A.S.P.); (M.A.S.); (A.M.M.); (M.L.B.); (D.S.K.); (A.M.C.); (M.Y.M.); (Z.O.S.); (M.P.K.)
| | - Mikhail A. Shulepko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 119997 Moscow, Russia; (A.S.P.); (M.A.S.); (A.M.M.); (M.L.B.); (D.S.K.); (A.M.C.); (M.Y.M.); (Z.O.S.); (M.P.K.)
| | - Alexey M. Makhonin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 119997 Moscow, Russia; (A.S.P.); (M.A.S.); (A.M.M.); (M.L.B.); (D.S.K.); (A.M.C.); (M.Y.M.); (Z.O.S.); (M.P.K.)
- AI Centre, National Research University Higher School of Economics, Myasnitskaya Str. 20, 101000 Moscow, Russia
| | - Maxim L. Bychkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 119997 Moscow, Russia; (A.S.P.); (M.A.S.); (A.M.M.); (M.L.B.); (D.S.K.); (A.M.C.); (M.Y.M.); (Z.O.S.); (M.P.K.)
| | - Dmitrii S. Kulbatskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 119997 Moscow, Russia; (A.S.P.); (M.A.S.); (A.M.M.); (M.L.B.); (D.S.K.); (A.M.C.); (M.Y.M.); (Z.O.S.); (M.P.K.)
| | - Andrey M. Chernikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 119997 Moscow, Russia; (A.S.P.); (M.A.S.); (A.M.M.); (M.L.B.); (D.S.K.); (A.M.C.); (M.Y.M.); (Z.O.S.); (M.P.K.)
- Interdisciplinary Scientific and Educational School of Moscow University “Molecular Technologies of the Living Systems and Synthetic Biology”, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 119234 Moscow, Russia
| | - Mikhail Yu. Myshkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 119997 Moscow, Russia; (A.S.P.); (M.A.S.); (A.M.M.); (M.L.B.); (D.S.K.); (A.M.C.); (M.Y.M.); (Z.O.S.); (M.P.K.)
| | - Sergey V. Shabelnikov
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Prospect 4, 194064 St. Petersburg, Russia;
| | - Zakhar O. Shenkarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 119997 Moscow, Russia; (A.S.P.); (M.A.S.); (A.M.M.); (M.L.B.); (D.S.K.); (A.M.C.); (M.Y.M.); (Z.O.S.); (M.P.K.)
- Moscow Institute of Physics and Technology, State University, Institutskiy Per. 9, 141701 Moscow, Russia
| | - Mikhail P. Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 119997 Moscow, Russia; (A.S.P.); (M.A.S.); (A.M.M.); (M.L.B.); (D.S.K.); (A.M.C.); (M.Y.M.); (Z.O.S.); (M.P.K.)
- Interdisciplinary Scientific and Educational School of Moscow University “Molecular Technologies of the Living Systems and Synthetic Biology”, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 119234 Moscow, Russia
| | - Ekaterina N. Lyukmanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 119997 Moscow, Russia; (A.S.P.); (M.A.S.); (A.M.M.); (M.L.B.); (D.S.K.); (A.M.C.); (M.Y.M.); (Z.O.S.); (M.P.K.)
- Interdisciplinary Scientific and Educational School of Moscow University “Molecular Technologies of the Living Systems and Synthetic Biology”, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 119234 Moscow, Russia
- Moscow Institute of Physics and Technology, State University, Institutskiy Per. 9, 141701 Moscow, Russia
- Correspondence:
| |
Collapse
|
7
|
Hollenhorst MI, Krasteva-Christ G. Nicotinic Acetylcholine Receptors in the Respiratory Tract. Molecules 2021; 26:6097. [PMID: 34684676 PMCID: PMC8539672 DOI: 10.3390/molecules26206097] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 02/07/2023] Open
Abstract
Nicotinic acetylcholine receptors (nAChR) are widely distributed in neuronal and non-neuronal tissues, where they play diverse physiological roles. In this review, we highlight the recent findings regarding the role of nAChR in the respiratory tract with a special focus on the involvement of nAChR in the regulation of multiple processes in health and disease. We discuss the role of nAChR in mucociliary clearance, inflammation, and infection and in airway diseases such as asthma, chronic obstructive pulmonary disease, and cancer. The subtype diversity of nAChR enables differential regulation, making them a suitable pharmaceutical target in many diseases. The stimulation of the α3β4 nAChR could be beneficial in diseases accompanied by impaired mucociliary clearance, and the anti-inflammatory effect due to an α7 nAChR stimulation could alleviate symptoms in diseases with chronic inflammation such as chronic obstructive pulmonary disease and asthma, while the inhibition of the α5 nAChR could potentially be applied in non-small cell lung cancer treatment. However, while clinical studies targeting nAChR in the airways are still lacking, we suggest that more detailed research into this topic and possible pharmaceutical applications could represent a valuable tool to alleviate the symptoms of diverse airway diseases.
Collapse
|
8
|
Nicotine Improves Survivability, Hypotension, and Impaired Adenosinergic Renal Vasodilations in Endotoxic Rats: Role of α7-nAChRs/HO-1 Pathway. Shock 2021; 53:503-513. [PMID: 31135706 DOI: 10.1097/shk.0000000000001384] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The nicotinic/cholinergic antiinflammatory pathway protects against acute kidney injury and other end-organ damages induced by endotoxemia. In this study, we tested the hypothesis that functional α7-nAChRs/heme oxygenase-1 (HO-1) pathway is imperative for the nicotine counteraction of hemodynamic and renovascular dysfunction caused by acute endotoxemia in rats. Renal vasodilations were induced by cumulative bolus injections of acetylcholine (ACh, 0.01 nmol-7.29 nmol) or ethylcarboxamidoadenosine (NECA, adenosine receptor agonist, 1.6 nmol-100 nmol) in isolated phenylephrine-preconstricted perfused kidneys. The data showed that 6-h treatment with lipopolysaccharide (LPS, 5 mg/kg i.p.) decreased systolic blood pressure and renal vasodilations caused by NECA but not Ach. The endotoxic insult also increased the mortality rate and elevated serum urea and creatinine. These LPS effects were sex-unrelated, except hypotension, and enhanced mortality which were more evident in male rodents, and abrogated after co-administration of nicotine (0.5, 1 mg/kg and 2 mg/kg) in a dose-dependent fashion. The advantageous effects of nicotine on NECA vasodilations, survivability, and kidney biomarkers in endotoxic male rats disappeared upon concurrent exposure to methyllycaconitine citrate (α7-nAChR blocker) or zinc protoporphyrin (HO-1 inhibitor) and were reproduced after treatment with bilirubin, but not hemin (HO-1 inducer) or tricarbonyldichlororuthenium (II) dimer (carbon monoxide-releasing molecule). Together, current biochemical and pharmacological evidence suggests key roles for α7-nAChRs and the bilirubin byproduct of the HO-1 signaling in the nicotine counteraction of renal dysfunction and reduced adenosinergic renal vasodilator capacity in endotoxic rats.
Collapse
|
9
|
Miramontes CV, Rodríguez-Carlos A, Marin-Luévano SP, Trejo Martínez LA, de Haro Acosta J, Enciso-Moreno JA, Rivas-Santiago B. Nicotine promotes the intracellular growth of Mycobacterium tuberculosis in epithelial cells. Tuberculosis (Edinb) 2020; 127:102026. [PMID: 33262029 DOI: 10.1016/j.tube.2020.102026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/13/2020] [Accepted: 11/10/2020] [Indexed: 10/22/2022]
Abstract
Several epidemiological studies have identified the cigarette smoke as a risk factor for the infection and development of tuberculosis. Nicotine is considered the main immunomodulatory molecule of the cigarette. In the present study, we evaluated the effect of nicotine in the growth of M. tuberculosis. Lung epithelial cells and macrophages were infected with M. tuberculosis and/or treated with nicotine. The results show that nicotine increased the growth of M. tuberculosis mainly in type II pneumocytes (T2P) but not in airway basal epithelial cells nor macrophages. Further, it was observed that nicotine decreased the production of β-defensin-2, β-defensin-3, and the cathelicidin LL-37 in all the evaluated cells at 24 and 72 h post-infection. The modulation of the expression of antimicrobial peptides appears to be partially mediated by the nicotinic acetylcholine receptor α7 since the blockade of this receptor partially reverted the production of antimicrobial peptides. In summary, it was found that nicotine decreases the production of HBD-2, HBD-3, and LL-37 in T2P during the infection with M. tuberculosis promoting its intracellular growth.
Collapse
Affiliation(s)
- Claudia Valdez Miramontes
- Medical Research Unit-Zacatecas. Mexican Institute for Social Security- IMSS, Zacatecas, Mexico; Center for Research in Health Sciences and Biomedicine Autonomous University of San Luis Potosí, Mexico
| | - Adrián Rodríguez-Carlos
- Medical Research Unit-Zacatecas. Mexican Institute for Social Security- IMSS, Zacatecas, Mexico
| | - Sara P Marin-Luévano
- Medical Research Unit-Zacatecas. Mexican Institute for Social Security- IMSS, Zacatecas, Mexico
| | - Luis A Trejo Martínez
- Medical Research Unit-Zacatecas. Mexican Institute for Social Security- IMSS, Zacatecas, Mexico
| | - Jeny de Haro Acosta
- Medical Research Unit-Zacatecas. Mexican Institute for Social Security- IMSS, Zacatecas, Mexico
| | - José A Enciso-Moreno
- Medical Research Unit-Zacatecas. Mexican Institute for Social Security- IMSS, Zacatecas, Mexico
| | - Bruno Rivas-Santiago
- Medical Research Unit-Zacatecas. Mexican Institute for Social Security- IMSS, Zacatecas, Mexico.
| |
Collapse
|
10
|
Kumar P, Scholze P, Fronius M, Krasteva-Christ G, Hollenhorst MI. Nicotine stimulates ion transport via metabotropic β4 subunit containing nicotinic ACh receptors. Br J Pharmacol 2020; 177:5595-5608. [PMID: 32959891 PMCID: PMC7707097 DOI: 10.1111/bph.15270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/25/2020] [Accepted: 09/11/2020] [Indexed: 12/16/2022] Open
Abstract
Background and Purpose Mucociliary clearance is an innate immune process of the airways, essential for removal of respiratory pathogens. It depends on ciliary beat and ion and fluid homeostasis of the epithelium. We have shown that nicotinic ACh receptors (nAChRs) activate ion transport in mouse tracheal epithelium. Yet the receptor subtypes and signalling pathways involved remained unknown. Experimental Approach Transepithelial short circuit currents (ISC) of freshly isolated mouse tracheae were recorded using the Ussing chamber technique. Changes in [Ca2+]i were studied on freshly dissociated mouse tracheal epithelial cells. Key Results Apical application of the nAChR agonist nicotine transiently increased ISC. The nicotine effect was abolished by the nAChR antagonist mecamylamine. α‐Bungarotoxin (α7 antagonist) had no effect. The agonists epibatidine (α3β2, α4β2, α4β4 and α3β4) and A‐85380 (α4β2 and α3β4) increased ISC. The antagonists dihydro‐β‐erythroidine (α4β2, α3β2, α4β4 and α3β4), α‐conotoxin MII (α3β2) and α‐conotoxin PnIA (α3β2) reduced the nicotine effect. Nicotine‐ and epibatidine‐induced currents were unaltered in β2−/−mice, but in β4−/− mice no increase was observed. In the presence of thapsigargin (endoplasmatic reticulum Ca2+‐ATPase inhibitor) or the ryanodine receptor antagonists JTV‐519 and dantrolene there was a reduction in the nicotine‐effect, indicating involvement of Ca2+ release from intracellular stores. Additionally, the PKA inhibitor H‐89 and the TMEM16A (Ca2+‐activated chloride channel) inhibitor T16Ainh‐A01 significantly reduced the nicotine‐effect. Conclusion and Implications α3β4 nAChRs are responsible for the nicotine‐induced current changes via Ca2+ release from intracellular stores, PKA and ryanodine receptor activation. These nAChRs might be possible targets to stimulate chloride transport via TMEM16A.
Collapse
Affiliation(s)
- Praveen Kumar
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
| | - Petra Scholze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Martin Fronius
- Department of Physiology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
11
|
Effectiveness of nicotine patch for the control of pain, oedema, and trismus following third molar surgery: a randomized clinical trial. Int J Oral Maxillofac Surg 2020; 49:1508-1517. [DOI: 10.1016/j.ijom.2019.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 08/14/2019] [Accepted: 08/22/2019] [Indexed: 01/17/2023]
|
12
|
α7 nAChRs expressed on antigen presenting cells are insensitive to the conventional antagonists α-bungarotoxin and methyllycaconitine. Int Immunopharmacol 2020; 81:106276. [PMID: 32044666 DOI: 10.1016/j.intimp.2020.106276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 11/22/2022]
Abstract
Expression of α7 nicotinic acetylcholine receptors (nAChRs) on antigen presenting cells (APCs), such as macrophages and dendritic cells, is now well established. We have shown that GTS-21, a selective α7 nAChR agonist, downregulates APC-dependent CD4+ T cell differentiation into regulatory T cells (Tregs) and effector Th1, Th2 and Th17 cells by inhibiting antigen processing, thereby interfering with antigen presentation. α7 nAChRs on Jurkat human leukemic T cells require functional T cell receptors (TCRs)/CD3 and leukocyte-specific tyrosine kinase to mediate nicotine-induced Ca2+-signaling via Ca2+ release from intracellular stores, and are insensitive to two conventional α7 nAChR antagonists, α-bungarotoxin (α-BTX) and methyllycaconitine (MLA). We investigated the effects of GTS-21, α-BTX and MLA on ovalbumin (OVA)-induced Th cytokine release from spleen cells isolated from OVA-specific TCR transgenic DO11.10 mice. We found that: (1) GTS-21 dose-dependently suppresses OVA-induced IFN-γ, IL-4 and IL-17 release, but neither α-BTX nor MLA alone affected the OVA-induced cytokine release. (2) Neither α-BTX nor MLA abolished the suppressive effects of GTS-21 on IFN-γ and IL-17 release from OVA-activated DO11.10 spleen cells. (3) GTS-21 significantly suppressed OVA-induced APC-dependent CD4+ T cell differentiation into Tregs. Neither MLA nor mecamylamine, a non-specific nAChR antagonist, abolished the suppressive effect of GTS-21 on Treg differentiation. These results suggest that α7 nAChRs on APCs involved in cytokine synthesis and T cell differentiation are insensitive to the conventional α7 nAChR antagonists, α-BTX and MLA, and that α7 nAChRs on APCs differ pharmacologically from those in neurons.
Collapse
|
13
|
Wedn AM, El-Gowilly SM, El-Mas MM. The α7-nAChR/heme oxygenase-1/carbon monoxide pathway mediates the nicotine counteraction of renal inflammation and vasoconstrictor hyporeactivity in endotoxic male rats. Inflamm Res 2020; 69:217-231. [DOI: 10.1007/s00011-019-01309-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/07/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022] Open
|
14
|
Valdez-Miramontes CE, Trejo Martínez LA, Torres-Juárez F, Rodríguez Carlos A, Marin-Luévano SP, de Haro-Acosta JP, Enciso-Moreno JA, Rivas-Santiago B. Nicotine modulates molecules of the innate immune response in epithelial cells and macrophages during infection with M. tuberculosis. Clin Exp Immunol 2019; 199:230-243. [PMID: 31631328 DOI: 10.1111/cei.13388] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2019] [Indexed: 01/12/2023] Open
Abstract
Smoking increases susceptibility to becoming infected with and developing tuberculosis. Among the components of cigarette smoke, nicotine has been identified as the main immunomodulatory molecule; however, its effect on the innate immune system is unknown. In the present study, the effect of nicotine on molecules of the innate immune system was evaluated. Lung epithelial cells and macrophages were infected with Mycobacterium tuberculosis (Mtb) and/or treated with nicotine. The results show that nicotine alone decreases the expression of the Toll-like receptors (TLR)-2, TLR-4 and NOD-2 in all three cell types, as well as the production of the SP-D surfactant protein in type II pneumocytes. Moreover, it was observed that nicotine decreases the production of interleukin (IL)-6 and C-C chemokine ligand (CCL)5 during Mtb infection in epithelial cells (EpCs), whereas in macrophages derived from human monocytes (MDMs) there is a decrease in IL-8, IL-6, tumor necrosis factor (TNF)-α, IL-10, CCL2, C-X-C chemokine ligand (CXCL)9 and CXCL10 only during infection with Mtb. Although modulation of the expression of cytokines and chemokines appears to be partially mediated by the nicotinic acetylcholine receptor α7, blocking this receptor found no effect on the expression of receptors and SP-D. In summary, it was found that nicotine modulates the expression of innate immunity molecules necessary for the defense against tuberculosis.
Collapse
Affiliation(s)
- C E Valdez-Miramontes
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico.,Research Center in Health Sciences and Biomedicine, San Luis Potosí, México
| | - L A Trejo Martínez
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| | - F Torres-Juárez
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico.,Research Center in Health Sciences and Biomedicine, San Luis Potosí, México
| | - A Rodríguez Carlos
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico.,Research Center in Health Sciences and Biomedicine, San Luis Potosí, México
| | - S P Marin-Luévano
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico.,Research Center in Health Sciences and Biomedicine, San Luis Potosí, México
| | - J P de Haro-Acosta
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| | - J A Enciso-Moreno
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| | - B Rivas-Santiago
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| |
Collapse
|
15
|
Wedn AM, El-Gowilly SM, El-Mas MM. Nicotine reverses the enhanced renal vasodilator capacity in endotoxic rats: Role of α7/α4β2 nAChRs and HSP70. Pharmacol Rep 2019; 71:782-793. [PMID: 31377559 DOI: 10.1016/j.pharep.2019.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/10/2019] [Accepted: 04/13/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND Nicotine alleviates renal inflammation and injury induced by endotoxemia. This study investigated (i) the nicotine modulation of hemodynamic and renal vasodilatory responses to endotoxemia in rats, and (ii) roles of α7 or α4β2-nAChRs and related HSP70/TNFα/iNOS signaling in the interaction. METHODS Endotoxemia was induced by ip lipopolysaccharide (5 mg/kg/day, for 2 days) and changes in systolic blood pressure and vasodilator responsiveness of isolated perfused kidney to acetylcholine or 5'-N-ethylcarboxamidoadenosine (NECA, adenosine receptor agonist) were evaluated. RESULTS Lipopolysaccharide had no effect on serum creatinine, reduced blood pressure, and increased renal vasodilations induced by acetylcholine or NECA in male and female preparations. Immunohistochemical analyses showed that lipopolysaccharide reduced renal HSP70 expression, but increased α7-nAChRs, α4β2-nAChRs and iNOS expressions. The co-administration of aminoguanidine (iNOS inhibitor), pentoxifylline (TNFα inhibitor), or nicotine attenuated lipopolysaccharide mediation of renal vasodilations and elevations in α7/α4β2-nAChR and iNOS expressions. Nicotine also reversed the downregulating effect of lipopolysaccharide on HSP70 expression. α7-nAChRs (methyllycaconitine citrate, MLA) or α4β2-nAChRs (dihydro-β-erythroidine, DHβE) blockade potentiated the lipopolysaccharide enhancement of renal vasodilations, and abolished the depressant effect of nicotine on lipopolysaccharide responses. A similar abolition of nicotine effects was seen after HSP70 inhibition by quercetin. Alternatively, lipopolysaccharide hypotension was eliminated in rats treated with DHβE/nicotine or quercetin/nicotine regimen in contrast to no effect for nicotine alone or combined with MLA. CONCLUSIONS These findings establish that nicotine offsets lipopolysaccharide facilitation of renal vasodilations possibly through a crosstalk between HSP70 and nAChRs of the α7 and α4β2 types.
Collapse
Affiliation(s)
- Abdalla M Wedn
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Sahar M El-Gowilly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
16
|
Huang TH, Lin YW, Huang CP, Chen JM, Hsieh CL. Short-term auricular electrical stimulation rapidly elevated cortical blood flow and promoted the expression of nicotinic acetylcholine receptor α4 in the 2 vessel occlusion rats model. J Biomed Sci 2019; 26:36. [PMID: 31078140 PMCID: PMC6511660 DOI: 10.1186/s12929-019-0526-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 04/23/2019] [Indexed: 01/14/2023] Open
Abstract
Background Vascular dementia is the second dementing illness after Alzheimer’s disease and caused by reduced blood flow to the brain, and affects cognitive abilities. Our previous study found that auricular electrical stimulation (ES) improved motor and learning impairment, and this phenomenon related with nicotinic acetylcholine receptor (nAChR) expressed cells. However, the underlying mechanism was not clear. In the present study, we investigated the effects of auricular ES on cortical blood flow (CBF) and acetylcholine (ACh) - nAChRs expressed cells. Methods Vascular dementia rat animal model was established by permanent occlusions of common carotid arteries with 6–0 nylon suture filament. At 21 day after surgery, motor impairment was confirmed by rotarod test. 15-Hz auricular ES were applied to the ears for 20 min and CBF was recorded at the mean time. The brains were immediately dissected for immunohistochemical stain and western blot analysis. Results Our results showed that 15-Hz auricular ES rapidly elevated CBF in the middle cerebral artery. The numbers of nAChR α4 immuno-positive cells and western blot levels were significally increased by 15-Hz auricular ES in the hippocampal CA2 output cortex. The numbers of choline acetyltransferase (ChAT) – a key enzyme for biosynthesis of ACh – immuno-positive cells and western blot levels had no significant differences. Conclusions The present data suggested that the 15-Hz auricular ES for 20 min rapidly elevated cortical blood flow, promoted the expression of nAChR α4, and would be beneficial for the treatment of Alzheimer type and vascular type dementia.
Collapse
Affiliation(s)
- Tai-Hsiang Huang
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Yi-Wen Lin
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, 40402, Taiwan
| | - Chun-Ping Huang
- Chinese Medicine Research Center, China Medical University, Taichung, 40402, Taiwan
| | - Jing-Ming Chen
- Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University, New Taipei City, 510, Taiwan
| | - Ching-Liang Hsieh
- Chinese Medicine Research Center, China Medical University, Taichung, 40402, Taiwan. .,Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, 91 Hsueh-Shih Road, Taichung, 40402, Taiwan. .,Department of Chinese Medicine, China Medical University Hospital, Taichung, 40447, Taiwan. .,Research Center for Chinese Medicine and Acupuncture, China Medical Univeristy, Taichung, 40402, Taiwan.
| |
Collapse
|
17
|
Garg BK, Loring RH. GTS-21 has cell-specific anti-inflammatory effects independent of α7 nicotinic acetylcholine receptors. PLoS One 2019; 14:e0214942. [PMID: 30947238 PMCID: PMC6448884 DOI: 10.1371/journal.pone.0214942] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/22/2019] [Indexed: 12/15/2022] Open
Abstract
α7 Nicotinic acetylcholine receptors (nAChRs) reportedly reduce inflammation by blocking effects of the important pro-inflammatory transcription factor, nuclear factor kappa-light chain-enhancer of B cells (NFκB). The α7 nAChR partial agonist GTS-21 reduces secretion of pro-inflammatory cytokines including interleukin-6 (IL6) and tumor-necrosis factor (TNF) in models of endotoxemia and sepsis, and its anti-inflammatory effects are widely ascribed to α7 nAChR activation. However, mechanistic details of α7 nAChR involvement in GTS-21 effects on inflammatory pathways remain unclear. Here, we investigate how GTS-21 acts in two cell systems including the non-immune rat pituitary cell line GH4C1 expressing an NFκB-driven reporter gene and cytokine secretion by ex vivo cultures of primary mouse macrophages activated by lipopolysaccharide (LPS). GTS-21 does not change TNF-stimulated NFκB signaling in GH4C1 cells expressing rat α7 nAChRs, suggesting that GTS-21 requires additional unidentified factors besides α7 nAChR expression to allow anti-inflammatory effects in these cells. In contrast, GTS-21 dose-dependently suppresses LPS-induced IL6 and TNF secretion in primary mouse macrophages endogenously expressing α7 nAChRs. GTS-21 also blocks TNF-induced phosphorylation of NFκB inhibitor alpha (IκBα), an important intermediary in NFκB signaling. However, α7 antagonists methyllycaconitine and α-bungarotoxin only partially reverse GTS-21 blockade of IL6 and TNF secretion. Further, GTS-21 significantly inhibited LPS-induced IL6 and TNF secretion in macrophages isolated from knockout mice lacking α7 nAChRs. These data indicate that even though a discrete component of the anti-inflammatory effects of GTS-21 requires expression of α7 nAChRs in macrophages, GTS-21 also has anti-inflammatory effects independent of these receptors depending on the cellular context.
Collapse
Affiliation(s)
- Brijesh K. Garg
- Department of Pharmaceutical Science, Northeastern University, Boston, Massachusetts, United States of America
| | - Ralph H. Loring
- Department of Pharmaceutical Science, Northeastern University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
18
|
Wu D, Wen X, Wang Y, Han X, Wang S, Shen M, Fan S, Zhuang J, Zhang Z, Shan Q, Li M, Hu B, Sun C, Lu J, Chen G, Zheng Y. Retracted
: Effect of microRNA‐186 on oxidative stress injury of neuron by targeting interleukin 2 through the janus kinase‐signal transducer and activator of transcription pathway in a rat model of Alzheimer’s disease. J Cell Physiol 2018; 233:9488-9502. [DOI: 10.1002/jcp.26843] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 05/10/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Dong‐Mei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science Jiangsu Normal University Xuzhou China
- College of Health Sciences Jiangsu Normal University Xuzhou Jiangsu China
| | - Xin Wen
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science Jiangsu Normal University Xuzhou China
- College of Health Sciences Jiangsu Normal University Xuzhou Jiangsu China
| | - Yong‐Jian Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science Jiangsu Normal University Xuzhou China
- College of Health Sciences Jiangsu Normal University Xuzhou Jiangsu China
| | - Xin‐Rui Han
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science Jiangsu Normal University Xuzhou China
- College of Health Sciences Jiangsu Normal University Xuzhou Jiangsu China
| | - Shan Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science Jiangsu Normal University Xuzhou China
- College of Health Sciences Jiangsu Normal University Xuzhou Jiangsu China
| | - Min Shen
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science Jiangsu Normal University Xuzhou China
- College of Health Sciences Jiangsu Normal University Xuzhou Jiangsu China
| | - Shao‐Hua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science Jiangsu Normal University Xuzhou China
- College of Health Sciences Jiangsu Normal University Xuzhou Jiangsu China
| | - Juan Zhuang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science Jiangsu Normal University Xuzhou China
- School of Environment Science and Spatial Informatics China University of Mining and Technology Xuzhou China
- Jiangsu Key Laboratory for Eco‐Agricultural Biotechnology Around Hongze Lake, School of Life Sciences Huaiyin Normal University Huaian China
| | - Zi‐Feng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science Jiangsu Normal University Xuzhou China
- College of Health Sciences Jiangsu Normal University Xuzhou Jiangsu China
| | - Qun Shan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science Jiangsu Normal University Xuzhou China
- College of Health Sciences Jiangsu Normal University Xuzhou Jiangsu China
| | - Meng‐Qiu Li
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science Jiangsu Normal University Xuzhou China
- College of Health Sciences Jiangsu Normal University Xuzhou Jiangsu China
| | - Bin Hu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science Jiangsu Normal University Xuzhou China
- College of Health Sciences Jiangsu Normal University Xuzhou Jiangsu China
| | - Chun‐Hui Sun
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science Jiangsu Normal University Xuzhou China
- College of Health Sciences Jiangsu Normal University Xuzhou Jiangsu China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science Jiangsu Normal University Xuzhou China
- College of Health Sciences Jiangsu Normal University Xuzhou Jiangsu China
| | - Gui‐Quan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center Nanjing University Nanjing China
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center Nanjing University Nanjing China
| | - Yuan‐Lin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science Jiangsu Normal University Xuzhou China
- College of Health Sciences Jiangsu Normal University Xuzhou Jiangsu China
| |
Collapse
|
19
|
Grandi A, Zini I, Flammini L, Cantoni AM, Vivo V, Ballabeni V, Barocelli E, Bertoni S. α 7 Nicotinic Agonist AR-R17779 Protects Mice against 2,4,6-Trinitrobenzene Sulfonic Acid-Induced Colitis in a Spleen-Dependent Way. Front Pharmacol 2017; 8:809. [PMID: 29167641 PMCID: PMC5682330 DOI: 10.3389/fphar.2017.00809] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/26/2017] [Indexed: 12/26/2022] Open
Abstract
The existence of a cholinergic anti-inflammatory pathway negatively modulating the inflammatory and immune responses in various clinical conditions and experimental models has long been postulated. In particular, the protective involvement of the vagus nerve and of nicotinic Ach receptors (nAChRs) has been proposed in intestinal inflammation and repeatedly investigated in DSS- and TNBS-induced colitis. However, the role of α7 nAChRs stimulation is still controversial and the potential contribution of α4β2 nAChRs has never been explored in this experimental condition. Our aims were therefore to pharmacologically investigate the role played by both α7 and α4β2 nAChRs in the modulation of the local and systemic inflammatory responses activated in TNBS-induced colitis in mice and to assess the involvement of the spleen in nicotinic responses. To this end, TNBS-exposed mice were sub-acutely treated with various subcutaneous doses of highly selective agonists (AR-R17779 and TC-2403) and antagonists (methyllycaconitine and dihydro-β-erythroidine) of α7 and α4β2 nAChRs, respectively, or with sulfasalazine 50 mg/kg per os and clinical and inflammatory responses were evaluated by means of biochemical, histological and flow cytometry assays. α4β2 ligands evoked weak and contradictory effects, while α7 nAChR agonist AR-R17779 emerged as the most beneficial treatment, able to attenuate several local markers of colitis severity and to revert the rise in splenic T-cells and in colonic inflammatory cytokines levels induced by haptenization. After splenectomy, AR-R17779 lost its protective effects, demonstrating for the first time that, in TNBS-model of experimental colitis, the anti-inflammatory effect of exogenous α7 nAChR stimulation is strictly spleen-dependent. Our findings showed that the selective α7 nAChRs agonist AR-R17779 exerted beneficial effects in a model of intestinal inflammation characterized by activation of the adaptive immune system and that the spleen is essential to mediate this cholinergic protection.
Collapse
Affiliation(s)
- Andrea Grandi
- Food and Drug Department, University of Parma, Parma, Italy
| | - Irene Zini
- Food and Drug Department, University of Parma, Parma, Italy
| | - Lisa Flammini
- Food and Drug Department, University of Parma, Parma, Italy
| | - Anna M. Cantoni
- Department of Veterinary Sciences, University of Parma, Parma, Italy
| | - Valentina Vivo
- Food and Drug Department, University of Parma, Parma, Italy
| | | | | | - Simona Bertoni
- Food and Drug Department, University of Parma, Parma, Italy
| |
Collapse
|
20
|
Chronic Nicotine Mitigates Aberrant Inhibitory Motor Learning Induced by Motor Experience under Dopamine Deficiency. J Neurosci 2017; 36:5228-40. [PMID: 27170121 DOI: 10.1523/jneurosci.2754-15.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 03/26/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Although dopamine receptor antagonism has long been associated with impairments in motor performance, more recent studies have shown that dopamine D2 receptor (D2R) antagonism, paired with a motor task, not only impairs motor performance concomitant with the pharmacodynamics of the drug, but also impairs future motor performance once antagonism has been relieved. We have termed this phenomenon "aberrant motor learning" and have suggested that it may contribute to motor symptoms in movement disorders such as Parkinson's disease (PD). Here, we show that chronic nicotine (cNIC), but not acute nicotine, treatment mitigates the acquisition of D2R-antagonist-induced aberrant motor learning in mice. Although cNIC mitigates D2R-mediated aberrant motor learning, cNIC has no effect on D1R-mediated motor learning. β2-containing nicotinic receptors in dopamine neurons likely mediate the protective effect of cNIC against aberrant motor learning, because selective deletion of β2 nicotinic subunits in dopamine neurons reduced D2R-mediated aberrant motor learning. Finally, both cNIC treatment and β2 subunit deletion blunted postsynaptic responses to D2R antagonism. These results suggest that a chronic decrease in function or a downregulation of β2-containing nicotinic receptors protects the striatal network against aberrant plasticity and aberrant motor learning induced by motor experience under dopamine deficiency. SIGNIFICANCE STATEMENT Increasingly, aberrant plasticity and aberrant learning are recognized as contributing to the development and progression of movement disorders. Here, we show that chronic nicotine (cNIC) treatment or specific deletion of β2 nicotinic receptor subunits in dopamine neurons mitigates aberrant motor learning induced by dopamine D2 receptor (D2R) blockade in mice. Moreover, both manipulations also reduced striatal dopamine release and blunt postsynaptic responses to D2R antagonists. These results suggest that chronic downregulation of function and/or receptor expression of β2-containing nicotinic receptors alters presynaptic and postsynaptic striatal signaling to protect against aberrant motor learning. Moreover, these results suggest that cNIC treatment may alleviate motor symptoms and/or delay the deterioration of motor function in movement disorders by blocking aberrant motor learning.
Collapse
|
21
|
Dopamine D3 and acetylcholine nicotinic receptor heteromerization in midbrain dopamine neurons: Relevance for neuroplasticity. Eur Neuropsychopharmacol 2017; 27:313-324. [PMID: 28187919 DOI: 10.1016/j.euroneuro.2017.01.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/07/2017] [Accepted: 01/28/2017] [Indexed: 11/22/2022]
Abstract
Activation of nicotinic acetylcholine receptors (nAChR) promotes the morphological remodeling of cultured dopamine (DA) neurons, an effect requiring functional DA D3 receptors (D3R). The aim of this study was to investigate the mechanisms mediating D3R-nAChR cross-talk in the modulation of DA neuron structural plasticity. By using bioluminescence resonance energy transfer2 (BRET2) and proximity ligation assay (PLA), evidence for the existence of D3R-nAChR heteromers has been obtained. In particular, BRET2 showed that the D3R directly and specifically interacts with the β2 subunit of the nAChR. The D3R-nAChR complex was also identified in cultured DA neurons and in mouse Substantia Nigra/Ventral Tegmental Area by PLA. Cell permeable interfering peptides, containing highly charged amino acid sequences from the third intracellular loop of D3R (TAT-D3R) or the second intracellular loop of the β2 subunit (TAT-β2), were developed. Both peptides, but not their scrambled counterparts, significantly reduced the BRET2 signal generated by D3R-GFP2 and β2-Rluc. Similarly, the PLA signal was undetectable in DA neurons exposed to the interfering peptides. Moreover, interfering peptides abolished the neurotrophic effects of nicotine on DA neurons. Taken together these data first demonstrate that a D3R-nAChR heteromer is present in DA neurons and represents the functional unit mediating the neurotrophic effects of nicotine.
Collapse
|
22
|
Harwani SC, Ratcliff J, Sutterwala FS, Ballas ZK, Meyerholz DK, Chapleau MW, Abboud FM. Nicotine Mediates CD161a+ Renal Macrophage Infiltration and Premature Hypertension in the Spontaneously Hypertensive Rat. Circ Res 2016; 119:1101-1115. [PMID: 27660287 PMCID: PMC5085865 DOI: 10.1161/circresaha.116.309402] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/22/2016] [Indexed: 02/06/2023]
Abstract
RATIONALE Renal inflammation contributes to the pathophysiology of hypertension. CD161a+ immune cells are dominant in the (SHR) spontaneously hypertensive rat and expand in response to nicotinic cholinergic activation. OBJECTIVE We aimed to phenotype CD161a+ immune cells in prehypertensive SHR after cholinergic activation with nicotine and determine if these cells are involved in renal inflammation and the development of hypertension. METHODS AND RESULTS Studies used young SHR and WKY (Wistar-Kyoto) rats. Splenocytes and bone marrow cells were exposed to nicotine ex vivo, and nicotine was infused in vivo. Blood pressures, kidney, serum, and urine were obtained. Flow cytometry, Luminex/ELISA, immunohistochemistry, confocal microscopy, and Western blot were used. Nicotinic cholinergic activation induced proliferation of CD161a+/CD68+ macrophages in SHR-derived splenocytes, their renal infiltration, and premature hypertension in SHR. These changes were associated with increased renal expression of MCP-1 (monocyte chemoattractant protein-1) and VLA-4 (very-late antigen-4). LLT1 (lectin-like transcript 1), the ligand for CD161a, was overexpressed in SHR kidney, whereas vascular cellular and intracellular adhesion molecules were similar to those in WKY. Inflammatory cytokines were elevated in SHR kidney and urine after nicotine infusion. Nicotine-mediated renal macrophage infiltration/inflammation was enhanced in denervated kidneys, not explained by angiotensin II levels or expression of angiotensin type-1/2 receptors. Moreover, expression of the anti-inflammatory α7-nAChR (α7-nicotinic acetylcholine receptor) was similar in young SHR and WKY rats. CONCLUSIONS A novel, inherited nicotinic cholinergic inflammatory effect exists in young SHR, measured by expansion of CD161a+/CD68+ macrophages. This leads to renal inflammation and premature hypertension, which may be partially explained by increased renal expression of LLT-1, MCP-1, and VLA-4.
Collapse
MESH Headings
- Age of Onset
- Angiotensin II/metabolism
- Animals
- Antigens, CD/analysis
- Antigens, Differentiation, Myelomonocytic/analysis
- Cell Movement/drug effects
- Cells, Cultured
- Chemokine CCL2/biosynthesis
- Chemokine CCL2/genetics
- Cytokines/biosynthesis
- Cytokines/genetics
- Denervation
- Gene Expression Regulation/drug effects
- Hypertension/etiology
- Hypertension/genetics
- Hypertension/metabolism
- Hypertension/pathology
- Hypertension, Renal/etiology
- Hypertension, Renal/genetics
- Hypertension, Renal/metabolism
- Hypertension, Renal/pathology
- Immunophenotyping
- Integrin alpha4beta1/biosynthesis
- Integrin alpha4beta1/genetics
- Kidney/innervation
- Kidney/pathology
- Lectins/biosynthesis
- Lectins/genetics
- Macrophages/classification
- Macrophages/drug effects
- Macrophages/pathology
- Male
- NK Cell Lectin-Like Receptor Subfamily B/analysis
- Nephritis/chemically induced
- Nephritis/physiopathology
- Nicotine/pharmacology
- Nicotine/toxicity
- Norepinephrine/metabolism
- Prehypertension/etiology
- Prehypertension/genetics
- Prehypertension/pathology
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Receptor, Angiotensin, Type 1/biosynthesis
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 2/biosynthesis
- Receptor, Angiotensin, Type 2/genetics
- alpha7 Nicotinic Acetylcholine Receptor/biosynthesis
- alpha7 Nicotinic Acetylcholine Receptor/genetics
Collapse
Affiliation(s)
- Sailesh C Harwani
- From the Department of Internal Medicine (S.C.H., J.R., F.S.S., Z.K.B., M.W.C., F.M.A.), Departments of Molecular Physiology and Biophysics (M.W.C., F.M.A.), and Veterans Affairs Medical Center (F.S.S., Z.K.B., M.W.C.), Iowa City; and Department of Pathology (D.K.M.), Inflammation Program, Department of Internal Medicine (F.S.S.), Center for Immunology and Immune Mediated Diseases (S.C.H., F.S.S., F.M.A.), and Abboud Cardiovascular Research Center (S.C.H., J.R., M.W.C., F.M.A.), University of Iowa Carver College of Medicine, Iowa City.
| | - Jason Ratcliff
- From the Department of Internal Medicine (S.C.H., J.R., F.S.S., Z.K.B., M.W.C., F.M.A.), Departments of Molecular Physiology and Biophysics (M.W.C., F.M.A.), and Veterans Affairs Medical Center (F.S.S., Z.K.B., M.W.C.), Iowa City; and Department of Pathology (D.K.M.), Inflammation Program, Department of Internal Medicine (F.S.S.), Center for Immunology and Immune Mediated Diseases (S.C.H., F.S.S., F.M.A.), and Abboud Cardiovascular Research Center (S.C.H., J.R., M.W.C., F.M.A.), University of Iowa Carver College of Medicine, Iowa City
| | - Fayyaz S Sutterwala
- From the Department of Internal Medicine (S.C.H., J.R., F.S.S., Z.K.B., M.W.C., F.M.A.), Departments of Molecular Physiology and Biophysics (M.W.C., F.M.A.), and Veterans Affairs Medical Center (F.S.S., Z.K.B., M.W.C.), Iowa City; and Department of Pathology (D.K.M.), Inflammation Program, Department of Internal Medicine (F.S.S.), Center for Immunology and Immune Mediated Diseases (S.C.H., F.S.S., F.M.A.), and Abboud Cardiovascular Research Center (S.C.H., J.R., M.W.C., F.M.A.), University of Iowa Carver College of Medicine, Iowa City
| | - Zuhair K Ballas
- From the Department of Internal Medicine (S.C.H., J.R., F.S.S., Z.K.B., M.W.C., F.M.A.), Departments of Molecular Physiology and Biophysics (M.W.C., F.M.A.), and Veterans Affairs Medical Center (F.S.S., Z.K.B., M.W.C.), Iowa City; and Department of Pathology (D.K.M.), Inflammation Program, Department of Internal Medicine (F.S.S.), Center for Immunology and Immune Mediated Diseases (S.C.H., F.S.S., F.M.A.), and Abboud Cardiovascular Research Center (S.C.H., J.R., M.W.C., F.M.A.), University of Iowa Carver College of Medicine, Iowa City
| | - David K Meyerholz
- From the Department of Internal Medicine (S.C.H., J.R., F.S.S., Z.K.B., M.W.C., F.M.A.), Departments of Molecular Physiology and Biophysics (M.W.C., F.M.A.), and Veterans Affairs Medical Center (F.S.S., Z.K.B., M.W.C.), Iowa City; and Department of Pathology (D.K.M.), Inflammation Program, Department of Internal Medicine (F.S.S.), Center for Immunology and Immune Mediated Diseases (S.C.H., F.S.S., F.M.A.), and Abboud Cardiovascular Research Center (S.C.H., J.R., M.W.C., F.M.A.), University of Iowa Carver College of Medicine, Iowa City
| | - Mark W Chapleau
- From the Department of Internal Medicine (S.C.H., J.R., F.S.S., Z.K.B., M.W.C., F.M.A.), Departments of Molecular Physiology and Biophysics (M.W.C., F.M.A.), and Veterans Affairs Medical Center (F.S.S., Z.K.B., M.W.C.), Iowa City; and Department of Pathology (D.K.M.), Inflammation Program, Department of Internal Medicine (F.S.S.), Center for Immunology and Immune Mediated Diseases (S.C.H., F.S.S., F.M.A.), and Abboud Cardiovascular Research Center (S.C.H., J.R., M.W.C., F.M.A.), University of Iowa Carver College of Medicine, Iowa City
| | - Francois M Abboud
- From the Department of Internal Medicine (S.C.H., J.R., F.S.S., Z.K.B., M.W.C., F.M.A.), Departments of Molecular Physiology and Biophysics (M.W.C., F.M.A.), and Veterans Affairs Medical Center (F.S.S., Z.K.B., M.W.C.), Iowa City; and Department of Pathology (D.K.M.), Inflammation Program, Department of Internal Medicine (F.S.S.), Center for Immunology and Immune Mediated Diseases (S.C.H., F.S.S., F.M.A.), and Abboud Cardiovascular Research Center (S.C.H., J.R., M.W.C., F.M.A.), University of Iowa Carver College of Medicine, Iowa City
| |
Collapse
|
23
|
Effects of ASM-024, a modulator of acetylcholine receptor function, on airway responsiveness and allergen-induced responses in patients with mild asthma. Can Respir J 2016; 22:230-4. [PMID: 26252534 DOI: 10.1155/2015/832865] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVES To evaluate the safety, tolerability and clinical activity of ASM-024, a new cholinergic compound with dual nicotinic and muscarinic activity, in mild allergic asthma. METHODS The present study involved 24 stable, mild allergic asthmatic subjects. In a cross-over design, ASM-024 (50 mg or 200 mg) or placebo were administered once daily by nebulization over three periods of nine consecutive days separated by a three-week washout. The effect of each treatment on the forced expiratory volume in 1 s (FEV1), provocative concentration of methacholine causing a 20% decline in FEV1 (PC20), early and late asthmatic responses, and allergen-induced inflammation were measured. RESULTS Seventeen subjects completed the study. During treatment with ASM-024 at 50 mg or 200 mg, the PC20 value increased respectively from a mean (± SD) 2.56±3.86 mg/mL to 4.11 mg/mL (P=0.007), and from 3.12±4.37 mg/mL to 5.23 mg/mL (P=0.005) (no change with placebo). On day 7 (day preceding allergen challenge), postdosing FEV1 increased by 2.0% with 50 mg (P=0.005) and 1.9% with 200 mg (P=0.008) (placebo -1.1%). ASM-24 had no inhibitory effect on early and late asthmatic responses, nor on sputum eosinophil or neutrophil levels. ASM-024 induced no serious adverse events, but caused cough in 22% and 48% of the subjects with 50 mg and 200 mg, respectively, compared with 10% who were on placebo. CONCLUSIONS ASM-024 did not inhibit allergen-induced asthmatic response and related airway inflammation, but reduced methacholine airway responsiveness and slightly improved lung function. The mechanism by which ASM-024 improves these outcomes requires further study.
Collapse
|
24
|
Yang EJ, Lee W, Song KS, Bae JS. Ameliorative effect of a rarely occurring C-methylrotenoid on HMGB1-induced septic responses in vitro and in vivo. Biochem Pharmacol 2016; 110-111:58-70. [DOI: 10.1016/j.bcp.2016.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/12/2016] [Indexed: 10/21/2022]
|
25
|
Rogers SW, Gahring LC. Upregulation of Nicotinic Acetylcholine Receptor alph4+beta2 through a Ligand-Independent PI3Kbeta Mechanism That Is Enhanced by TNFalpha and the Jak2/p38Mapk Pathways. PLoS One 2015; 10:e0143319. [PMID: 26619345 PMCID: PMC4664291 DOI: 10.1371/journal.pone.0143319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 11/03/2015] [Indexed: 11/17/2022] Open
Abstract
High affinity nicotine-binding sites in the mammalian brain are neuronal nicotinic acetylcholine receptors (nAChR) assembled from at least alpha4 and beta2 subunits into pentameric ion channels. When exposed to ligands such as nicotine, these receptors respond by undergoing upregulation, a correlate of nicotine addiction. Upregulation can be measured using HEK293 (293) cells that stably express alpha4 and beta2 subunits using quantification of [3H]epibatidine ([3H]Eb) binding to measure mature receptors. Treatment of these cells with choline also produces upregulation through a hemicholinium3 (HC3)-sensitive (choline kinase) and an HC3-insensitive pathway which are both independent of the mechanism used by nicotine for upregulation. In both cases, upregulation is significantly enhanced by the pro-inflammatory cytokine tumor necrosis factor alpha (TNFα) which signals through its receptor Tnfr1 to activate p38Mapk. Here we report that the inhibition of class1 phosphoinositide 3-kinases isoform PI3Kbeta using the selective antagonist PI828 is alone sufficient to produce upregulation and enhance both nicotine and choline HC3-sensitive mediated upregulation. Further, these processes are impacted upon by an AG-490 sensitive Jak2-associated pathway. Both PI3Kbeta (negative) and Jak2 (positive) modulation of upregulation converge through p38Mapk and both overlap with TNFalpha enhancement of this process. Upregulation through the PI3Kbeta pathway did not require Akt. Collectively these findings support upregulation of endogenous alpha4beta2 as a balance among cellular signaling networks that are highly responsive to multiple environmental, inflammatory and metabolic agents. The findings also suggest how illness and metabolic stress could alter the expression of this important nicotinic receptor and novel avenues to intercede in modifying its expression.
Collapse
Affiliation(s)
- Scott W Rogers
- Salt Lake City Veteran's Administration Geriatric Research, Education and Clinical Center, Salt Lake City, Utah, 84148, United States of America.,Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah, 84132, United States of America
| | - Lorise C Gahring
- Salt Lake City Veteran's Administration Geriatric Research, Education and Clinical Center, Salt Lake City, Utah, 84148, United States of America.,Department of Internal Medicine, Division of Geriatrics, University of Utah School of Medicine, Salt Lake City, Utah, 84132, United States of America
| |
Collapse
|
26
|
Jaikhan P, Boonyarat C, Arunrungvichian K, Taylor P, Vajragupta O. Design and Synthesis of Nicotinic Acetylcholine Receptor Antagonists and their Effect on Cognitive Impairment. Chem Biol Drug Des 2015; 87:39-56. [DOI: 10.1111/cbdd.12627] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/03/2015] [Accepted: 07/15/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Pattaporn Jaikhan
- Center of Excellence for Innovation in Drug Design and Discovery; Faculty of Pharmacy; Mahidol University; 447 Sri-Ayudya Road Bangkok 10400 Thailand
| | - Chantana Boonyarat
- Department of Pharmaceutical Chemistry; Faculty of Pharmaceutical Science; KhonKaen University; KhonKaen 4000 Thailand
| | - Kuntarat Arunrungvichian
- Center of Excellence for Innovation in Drug Design and Discovery; Faculty of Pharmacy; Mahidol University; 447 Sri-Ayudya Road Bangkok 10400 Thailand
- Department of Pharmacology; Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California; San Diego 9500 Gilman Drive La Jolla CA 92093-0657 USA
| | - Palmer Taylor
- Department of Pharmacology; Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California; San Diego 9500 Gilman Drive La Jolla CA 92093-0657 USA
| | - Opa Vajragupta
- Center of Excellence for Innovation in Drug Design and Discovery; Faculty of Pharmacy; Mahidol University; 447 Sri-Ayudya Road Bangkok 10400 Thailand
| |
Collapse
|
27
|
Watson BM, Oliveria JP, Nusca GM, Smith SG, Beaudin S, Dua B, Watson RM, Assayag EI, Cormier YF, Sehmi R, Gauvreau GM. Inhibition of allergen-induced basophil activation by ASM-024, a nicotinic receptor ligand. Int Arch Allergy Immunol 2015; 165:255-64. [PMID: 25660404 DOI: 10.1159/000370068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 11/21/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Nicotinic acetylcholine receptors (nAChRs) were identified on eosinophils and shown to regulate inflammatory responses, but nAChR expression on basophils has not been explored yet. OBJECTIVE We investigated surface receptor expression of nAChR α4, α7 and α1/α3/α5 subunits on basophils. Furthermore, we examined the effects of ASM-024, a synthetic nicotinic ligand, on in vitro anti-IgE and in vivo allergen-induced basophil activation. METHODS Basophils were enriched from the peripheral blood of allergic donors and the expression of nAChR subunits and muscarinic receptors was determined. Purified basophils were stimulated with anti-IgE in the presence of ASM-024 with or without muscarinic or nicotinic antagonists for the measurement of CD203c expression and histamine release. The effect of 9 days of treatment with 50 and 200 mg ASM-024 on basophil CD203c expression was examined in the blood of mild allergic asthmatics before and after allergen inhalation challenge. RESULTS nAChR α4, α7 and α1/α3/α5 receptor subunit expression was detected on basophils. Stimulation of basophils with anti-IgE increased CD203c expression and histamine release, which was inhibited by ASM-024 (10(-5) to 10(-)(3) M, p < 0.05). The effect of ASM-024 was reversed in the presence of muscarinic and nicotinic antagonists. In subjects with mild asthma, ASM-024 inhalation significantly inhibited basophil CD203c expression measured 24 h after allergen challenge (p = 0.03). CONCLUSION This study shows that ASM-024 inhibits IgE- and allergen-induced basophil activation through both nicotinic and muscarinic receptors, and suggests that ASM-024 may be an efficacious agent for modulating allergic asthma responses.
Collapse
|
28
|
Bronchodilatory and anti-inflammatory effects of ASM-024, a nicotinic receptor ligand, developed for the treatment of asthma. PLoS One 2014; 9:e86091. [PMID: 24465890 PMCID: PMC3899211 DOI: 10.1371/journal.pone.0086091] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/10/2013] [Indexed: 12/15/2022] Open
Abstract
Conventional asthma and COPD treatments include the use of bronchodilators, mainly β2-adrenergic agonists, muscarinic receptor antagonists and corticosteroids or leukotriene antagonists as anti-inflammatory agents. These active drugs are administered either separately or given as a fixed-dose combination medication into a single inhaler. ASM-024, a homopiperazinium compound, derived from the structural modification of diphenylmethylpiperazinium (DMPP), has been developed to offer an alternative mechanism of action that could provide symptomatic control through combined anti-inflammatory and bronchodilator properties in a single entity. A dose-dependent inhibition of cellular inflammation in bronchoalveolar lavage fluid was observed in ovalbumin-sensitized mice, subsequently treated for 3 days by nose-only exposure with aerosolized ASM-024 at doses up to 3.8 mg/kg (ED50 = 0.03 mg/kg). The methacholine ED250 values indicated that airway hyperresponsivenness (AHR) to methacholine decreased following ASM-024 administration by inhalation at a dose of 1.5 mg/kg, with a value of 0.145±0.032 mg/kg for ASM 024-treated group as compared to 0.088±0.023 mg/kg for untreated mice. In in vitro isometric studies, ASM-024 elicited dose-dependent relaxation of isolated mouse tracheal, human, and dog bronchial preparations contracted with methacholine and guinea pig tracheas contracted with histamine. ASM-024 showed also a dose and time dependant protective effect on methacholine-induced contraction. Overall, with its combined anti-inflammatory, bronchodilating and bronchoprotective properties, ASM-024 may represent a new class of drugs with a novel pharmacological approach that could prove useful for the chronic maintenance treatment of asthma and, possibly, COPD.
Collapse
|
29
|
Schmeltz LR, Blevins TC, Aronoff SL, Ozer K, Leffert JD, Goldberg MA, Horowitz BS, Bertenshaw RH, Troya P, Cohen AE, Lanier RK, Wright C. Anatabine supplementation decreases thyroglobulin antibodies in patients with chronic lymphocytic autoimmune (Hashimoto's) thyroiditis: a randomized controlled clinical trial. J Clin Endocrinol Metab 2014; 99:E137-42. [PMID: 24178792 PMCID: PMC3928963 DOI: 10.1210/jc.2013-2951] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
CONTEXT Hashimoto's thyroiditis is less prevalent in tobacco smokers. Anatabine, an alkaloid found in Solanaceae plants including tobacco, has been reported to ameliorate a mouse model of Hashimoto's thyroiditis. OBJECTIVE The effects of anatabine in patients with Hashimoto's thyroiditis were studied. DESIGN, SETTING, PATIENTS, AND INTERVENTION This was a double-blind, randomized, placebo-controlled multisite study. A total of 146 patients (70 treated with anatabine and 76 with placebo) completed the study. Approximately 50% of patients in each group were taking levothyroxine. Anatabine lozenges (9-24 mg/d) or placebo, each containing vitamins A and D3, were administered orally 3 times a day for 3 months. MAIN OUTCOME MEASURES Serum thyroperoxidase antibody (TPOAb) and thyroglobulin antibody (TgAb) levels were assessed. Safety was assessed through adverse events, clinical laboratory evaluations, and vital sign measurements. RESULTS Anatabine-treated patients had a significant reduction in absolute serum TgAb levels from baseline by study end relative to those receiving placebo (P=.027); however, there were no significant changes or differences in treatment group means for TPOAb or TgAb levels. Mean±SD TgAb values decreased by 46.2±101.1 and 3.9±83.9 World Health Organization units for the anatabine and placebo groups, respectively. Significantly more patients had a >20% drop in TgAb levels in the anatabine than placebo group (P=.023). Overall, the anatabine supplement was safe and well tolerated, although significantly (P<.05) more patients in the anatabine group reported adverse events. CONCLUSIONS These results demonstrate an immunological effect of anatabine on TgAb levels. Further studies are warranted to determine the longer-term effects and possible actions of anatabine on the course of Hashimoto's thyroiditis.
Collapse
Affiliation(s)
- Lowell R Schmeltz
- Associated Endocrinologists, PC (L.R.S.), West Bloomfield, Michigan 48322; Texas Diabetes and Endocrinology (T.C.B.), Austin, Texas 78731; Endocrine Associates of Dallas (S.L.A.), Dallas, Texas 75231; Texas Diabetes and Endocrinology (K.O.), Round Rock, Texas 78681; North Texas Endocrine Center (J.D.L.), Dallas, Texas 75231; New Jersey Physicians, LLC (M.A.G.), Clifton, New Jersey 07012; Metabolic Research Institute, Inc (B.S.H.), West Palm Beach, Florida 33401; Diabetes and Endocrine Associates (R.H.B.), La Grange, Illinois 60525; Bay Area Endocrinology Associates, LLC (P.T.), Tampa, Florida 33614; and Rock Creek Pharmaceuticals, Inc (A.E.C., R.K.L., C.W.), Gloucester, Massachusetts 01930
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Tarras SL, Diebel LN, Liberati DM, Ginnebaugh K. Pharmacologic stimulation of the nicotinic anti-inflammatory pathway modulates gut and lung injury after hypoxia-reoxygenation injury. Surgery 2013; 154:841-7; discussion 847-8. [PMID: 24074423 DOI: 10.1016/j.surg.2013.07.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 07/19/2013] [Indexed: 10/26/2022]
Abstract
PURPOSE Pre-injury vagal nerve stimulation protects against gut and lung injury after experimental hemorrhagic shock (HS). This likely occurs via the cholinergic anti-inflammatory pathway and the α7 nicotinic acetylcholine receptor (α7nAChR). We hypothesized that, in an in vitro model, either nicotine or a selective α7nAChR agonist (AR-R17779) would modulate intestinal and pulmonary effects of gut ischemia-reperfusion after hypoxic insult. METHODS Confluent HT29 intestinal epithelial cells were co-cultured with Escherichia coli. Cell cultures were subjected to 21% (control) or 5% O2 (hypoxia) for 90 minutes followed by reoxygenation (H/R). HT29 cells were treated with nicotine or AR-R17779 before or immediately after hypoxic insult. From the HT29 cell culture supernatants, tumor necrosis factor-α and interleukin-6 levels were quantitated. Confluent pulmonary microvascular epithelial cells (HMVEC) were co-cultured with HT29 supernatants and permeability and intercellular adhesion molecule-1 expression were determined. RESULTS In post H/R insult treatments with the receptor agonist, cytokine levels in HT29 cells were reduced to control levels. In HMVEC experiments, a protective effect was seen with treatment post H/R injury. Disruption of HT29 actin microfilaments was demonstrated after H/R insult and was abrogated by both agonists. CONCLUSION Post-insult pharmacologic stimulation seems to mimic the protective effects of pre-HS vagal nerve stimulation seen in animal studies.
Collapse
|
31
|
Nicotine attenuates activation of tissue resident macrophages in the mouse stomach through the β2 nicotinic acetylcholine receptor. PLoS One 2013; 8:e79264. [PMID: 24223920 PMCID: PMC3815157 DOI: 10.1371/journal.pone.0079264] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 09/26/2013] [Indexed: 01/20/2023] Open
Abstract
Background The cholinergic anti-inflammatory pathway is an endogenous mechanism by which the autonomic nervous system attenuates macrophage activation via nicotinic acetylcholine receptors (nAChR). This concept has however not been demonstrated at a cellular level in intact tissue. To this end, we have studied the effect of nicotine on the activation of resident macrophages in a mouse stomach preparation by means of calcium imaging. Methods Calcium transients ([Ca2+]i) in resident macrophages were recorded in a mouse stomach preparation containing myenteric plexus and muscle layers by Fluo-4. Activation of macrophages was achieved by focal puff administration of ATP. The effects of nicotine on activation of macrophages were evaluated and the nAChR involved was pharmacologically characterized. The proximity of cholinergic nerves to macrophages was quantified by confocal microscopy. Expression of β2 and α7 nAChR was evaluated by β2 immunohistochemistry and fluorophore-tagged α-bungarotoxin. Results In 83% of macrophages cholinergic varicose nerve fibers were detected at distances <900nm. The ATP induced [Ca2+]i increase was significantly inhibited in 65% or 55% of macrophages by 100µM or 10µM nicotine, respectively. This inhibitory effect was reversed by the β2 nAChR preferring antagonist dihydro-β-eryhtroidine but not by hexamethonium (non-selective nAChR-antagonist), mecamylamine (α3β4 nAChR-preferring antagonist), α-bungarotoxin or methyllycaconitine (both α7 nAChR-preferring antagonist). Macrophages in the stomach express β2 but not α7 nAChR at protein level, while those in the intestine express both receptor subunits. Conclusion This study is the first insitu demonstration of an inhibition of macrophage activation by nicotine suggesting functional signaling between cholinergic neurons and macrophages in the stomach. The data suggest that the β2 subunit of the nAChR is critically involved in the nicotine-induced inhibition of these resident macrophages.
Collapse
|
32
|
Safieh-Garabedian B, Oz M, Bey RM, Shamaa F, Ashoor A, El-Agnaf OM, Saadé NE. Involvement of the α7-nicotinic acetylcholine receptors in the anti-inflammatory action of the thymulin-related peptide (PAT). Neuroscience 2013; 250:455-66. [PMID: 23880090 DOI: 10.1016/j.neuroscience.2013.07.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/11/2013] [Accepted: 07/14/2013] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND PURPOSE Peptide analog of thymulin (PAT) has been shown to have anti-hyperalgesic and anti-inflammatory properties in animal models of inflammation. Recent reports suggest that the peripheral cholinergic system has an anti-inflammatory role mediated by α7-nicotinic acetylcholine receptor (α7-nAChR). Our aim is to investigate whether the action of PAT is mediated, via the cholinergic pathway. EXPERIMENTAL APPROACH The anti-hyperalgesic and anti-inflammatory action of PAT was assessed in rat models of inflammatory nociceptive hyperactivity (carrageenan and endotoxin) and in a mice air-pouch model for localized inflammation, respectively; the possible attenuation of PAT's effects by pretreatment with the α7-nAchR specific antagonist methyllycaconitine citrate (MLA) was also investigated. In another series of experiments, using two electrode recordings, the effect of PAT on the α7-nAChRs, expressed in Xenopus Oocytes, was also determined. KEY RESULTS Administration of PAT reversed inflammatory nociceptive hyperactivity and cold and tactile hyperactivity in rats. This effect was partially or totally prevented by MLA, as assessed by different behavioral pain tests. Treatment with PAT also reduced the alteration of cytokines and NGF levels by carrageenan injection in the mouse air pouch model; this effect was partially antagonized by MLA. Electrophysiological recording demonstrated that PAT significantly potentiated the α7-nAchR expressed in Xenopus Oocytes. These effects were not observed when a control peptide, with a reverse sequence (rPAT), was utilized. CONCLUSIONS AND IMPLICATIONS The behavioral and electrophysiological observations described in this report demonstrate that PAT mediates, at least partially, its anti-inflammatory action by potentiating the α7-nAChR. These results indicate that PAT has a potential for new therapeutic applications as anti-inflammatory and analgesic agent.
Collapse
Affiliation(s)
- B Safieh-Garabedian
- Department of Natural Sciences and Public Health, Zayed University, Abu Dhabi, United Arab Emirates.
| | | | | | | | | | | | | |
Collapse
|
33
|
Nirogi R, Goura V, Abraham R, Jayarajan P. α4β2* neuronal nicotinic receptor ligands (agonist, partial agonist and positive allosteric modulators) as therapeutic prospects for pain. Eur J Pharmacol 2013; 712:22-9. [PMID: 23660369 DOI: 10.1016/j.ejphar.2013.04.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 04/15/2013] [Accepted: 04/18/2013] [Indexed: 01/31/2023]
Abstract
α4β2* neuronal nicotinic acetylcholine receptor are ligand-gated ion channels and widely expressed throughout the central and peripheral nervous system. α4β2* neuronal nicotinic acetylcholine receptor play crucial role in pain signaling via modulation of multiple neurotransmitters like acetylcholine, dopamine, γ-amino butyric acid (GABA) and norepinephrine. Both spinal and supraspinal pathways are involved in the mechanisms by which α4β2* neuronal nicotinic acetylcholine receptor ligands modulate the neuropathic and inflammatory pain. Selective α4β2* neuronal nicotinic acetylcholine receptor ligands are being developed for the treatment of neuropathic and inflammatory pain as they show considerable efficacy in a wide range of preclinical pain models. Agonists/partial agonists of α4β2* neuronal nicotinic acetylcholine receptor show efficacy in animal models of pain and their anti-nociceptive properties are blocked by nicotinic antagonists. Positive allosteric modulators are being developed with the aim to increase the potency or therapeutic window of agonists/partial agonists. Accumulating evidences suggest that anti-nociceptive effects of nicotinic acetylcholine receptor ligands may not be mediated solely by α4β2* neuronal nicotinic acetylcholine receptor. We have also reviewed the stage of clinical development of various α4β2* neuronal nicotinic acetylcholine receptor ligands.
Collapse
Affiliation(s)
- Ramakrishna Nirogi
- In-Vivo Pharmacology, Discovery Research, Suven Life Sciences Ltd., Serene Chambers, Road No. 5, Avenue-7, Banjara Hills, Hyderabad 500034, India.
| | | | | | | |
Collapse
|
34
|
Quik M, Campos C, Bordia T, Strachan JP, Zhang J, McIntosh JM, Letchworth S, Jordan K. α4β2 Nicotinic receptors play a role in the nAChR-mediated decline in L-dopa-induced dyskinesias in parkinsonian rats. Neuropharmacology 2013; 71:191-203. [PMID: 23583932 DOI: 10.1016/j.neuropharm.2013.03.038] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 03/25/2013] [Accepted: 03/28/2013] [Indexed: 12/26/2022]
Abstract
L-Dopa-induced dyskinesias are a serious long-term side effect of dopamine replacement therapy for Parkinson's disease for which there are few treatment options. Our previous studies showed that nicotine decreased l-dopa-induced abnormal involuntary movements (AIMs). Subsequent work with knockout mice demonstrated that α6β2* nicotinic receptors (nAChRs) play a key role. The present experiments were done to determine if α4β2* nAChRs are also involved in l-dopa-induced dyskinesias. To approach this, we took advantage of the finding that α6β2* nAChRs are predominantly present on striatal dopaminergic nerve terminals, while a significant population of α4β2* nAChRs are located on other neurons. Thus, a severe dopaminergic lesion would cause a major loss in α6β2*, but not α4β2* nAChRs. Experiments were therefore done in which rats were unilaterally lesioned with 6-hydroxydopamine, at a dose that led to severe nigrostriatal damage. The dopamine transporter, a dopamine nerve terminal marker, was decreased by >99%. This lesion also decreased striatal α6β2* nAChRs by 97%, while α4β2* nAChRs were reduced by only 12% compared to control. A series of β2* nAChR compounds, including TC-2696, TI-10165, TC-8831, TC-10600 and sazetidine reduced l-dopa-induced AIMs in these rats by 23-32%. TC-2696, TI-10165, TC-8831 were also tested for parkinsonism, with no effect on this behavior. Tolerance did not develop with up to 3 months of treatment. Since α4α5β2 nAChRs are also predominantly on striatal dopamine terminals, these data suggest that drugs targeting α4β2 nAChRs may reduce l-dopa-induced dyskinesias in late stage Parkinson's disease.
Collapse
Affiliation(s)
- Maryka Quik
- Center for Health Sciences, SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Paris D, Beaulieu-Abdelahad D, Mullan M, Ait-Ghezala G, Mathura V, Bachmeier C, Crawford F, Mullan MJ. Amelioration of experimental autoimmune encephalomyelitis by anatabine. PLoS One 2013; 8:e55392. [PMID: 23383175 PMCID: PMC3559544 DOI: 10.1371/journal.pone.0055392] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 12/19/2012] [Indexed: 12/04/2022] Open
Abstract
Anatabine, a naturally occurring alkaloid, is becoming a commonly used human food supplement, taken for its claimed anti-inflammatory properties although this has not yet been reported in human clinical trials. We have previously shown that anatabine does display certain anti-inflammatory properties and readily crosses the blood-brain barrier suggesting it could represent an important compound for mitigating neuro-inflammatory conditions. The present study was designed to determine whether anatabine had beneficial effects on the development of experimental autoimmune encephalomyelitis (EAE) in mice and to precisely determine its underlying mechanism of action in this mouse model of multiple sclerosis (MS). We found that orally administered anatabine markedly suppressed neurological deficits associated with EAE. Analyses of cytokine production in the periphery of the animals revealed that anatabine significantly reduced Th1 and Th17 cytokines known to contribute to the development of EAE. Anatabine appears to significantly suppress STAT3 and p65 NFκB phosphorylation in the spleen and the brain of EAE mice. These two transcription factors regulate a large array of inflammatory genes including cytokines suggesting a mechanism by which anatabine antagonizes pro-inflammatory cytokine production. Additionally, we found that anatabine alleviated the infiltration of macrophages/microglia and astrogliosis and significantly prevented demyelination in the spinal cord of EAE mice. Altogether our data suggest that anatabine may be effective in the treatment of MS and should be piloted in clinical trials.
Collapse
Affiliation(s)
- Daniel Paris
- Roskamp Institute, Sarasota, Florida, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Guo J, Kim D, Gao J, Kurtyka C, Chen H, Yu C, Wu D, Mittal A, Beg AA, Chellappan SP, Haura EB, Cheng JQ. IKBKE is induced by STAT3 and tobacco carcinogen and determines chemosensitivity in non-small cell lung cancer. Oncogene 2013; 32:151-9. [PMID: 22330135 PMCID: PMC4109158 DOI: 10.1038/onc.2012.39] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Revised: 01/01/2012] [Accepted: 01/13/2012] [Indexed: 12/14/2022]
Abstract
Serine/threonine kinase IKBKE is a newly identified oncogene; however, its regulation remains elusive. Here, we provide evidence that IKBKE is a downstream target of signal transducer and activator of transcription 3 (STAT3) and that tobacco components induce IKBKE expression through STAT3. Ectopic expression of constitutively active STAT3 increased IKBKE mRNA and protein levels, whereas inhibition of STAT3 reduced IKBKE expression. Furthermore, expression levels of IKBKE are significantly associated with STAT3 activation and tobacco use history in non-small cell lung cancer (NSCLC) patients examined. In addition, we show induction of IKBKE by two components of cigarette smoke, nicotine and nicotine-derived nitrosamine ketone (NNK). Upon exposure to nicotine or NNK, cells express high levels of IKBKE protein and mRNA, which are largely abrogated by inhibition of STAT3. Characterization of the IKBKE promoter revealed two STAT3-response elements. The IKBKE promoter directly bound to STAT3 and responded to nicotine and NNK stimulation. Notably, enforcing expression of IKBKE induces chemoresistance, whereas knockdown of IKBKE not only sensitizes NSCLC cells to chemotherapy but also abrogates STAT3- and nicotine-induced cell survival. These data indicate for the first time that IKBKE is a direct target of STAT3 and is induced by tobacco carcinogens through STAT3 pathway. In addition, our study also suggests that IKBKE is an important therapeutic target and could have a pivotal role in tobacco-associated lung carcinogenesis.
Collapse
Affiliation(s)
- J Guo
- Department of Molecular Oncology, H Lee Moffitt Cancer Center, Tampa, FL, USA
| | - D Kim
- Department of Molecular Oncology, H Lee Moffitt Cancer Center, Tampa, FL, USA
| | - J Gao
- Department of Molecular Oncology, H Lee Moffitt Cancer Center, Tampa, FL, USA
| | - C Kurtyka
- Department of Molecular Oncology, H Lee Moffitt Cancer Center, Tampa, FL, USA
| | - H Chen
- Department of Molecular Oncology, H Lee Moffitt Cancer Center, Tampa, FL, USA
| | - C Yu
- Department of Molecular Oncology, H Lee Moffitt Cancer Center, Tampa, FL, USA
| | - D Wu
- Department of Molecular Oncology, H Lee Moffitt Cancer Center, Tampa, FL, USA
| | - A Mittal
- Department of Molecular Oncology, H Lee Moffitt Cancer Center, Tampa, FL, USA
| | - AA Beg
- Department of Immunology, H Lee Moffitt Cancer Center, Tampa, FL, USA
| | - SP Chellappan
- Department of Tumor Biology, H Lee Moffitt Cancer Center, Tampa, FL, USA
| | - EB Haura
- Department of Thoracic Oncology, H Lee Moffitt Cancer Center, Tampa, FL, USA
| | - JQ Cheng
- Department of Molecular Oncology, H Lee Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
37
|
Paris D, Beaulieu-Abdelahad D, Abdullah L, Bachmeier C, Ait-Ghezala G, Reed J, Verma M, Crawford F, Mullan M. Anti-inflammatory activity of anatabine via inhibition of STAT3 phosphorylation. Eur J Pharmacol 2013. [DOI: 10.1016/j.ejphar.2012.11.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
38
|
Nicotinic acetylcholine receptors: From basic science to therapeutics. Pharmacol Ther 2013; 137:22-54. [DOI: 10.1016/j.pharmthera.2012.08.012] [Citation(s) in RCA: 382] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 08/20/2012] [Indexed: 12/14/2022]
|
39
|
Kiguchi N, Kobayashi Y, Maeda T, Tominaga S, Nakamura J, Fukazawa Y, Ozaki M, Kishioka S. Activation of nicotinic acetylcholine receptors on bone marrow-derived cells relieves neuropathic pain accompanied by peripheral neuroinflammation. Neurochem Int 2012; 61:1212-9. [PMID: 22989685 DOI: 10.1016/j.neuint.2012.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/31/2012] [Accepted: 09/01/2012] [Indexed: 01/21/2023]
Abstract
Emerging evidence indicates that chronic neuroinflammation plays a pivotal role in neuropathic pain. We explored whether activation of the nicotinic acetylcholine receptor (nAChRs) pathway on peripheral immune cells improves neuropathic pain. Mice were subjected to partial sciatic nerve ligation (PSL). Enhanced green fluorescent protein (EGFP)-chimeric mice were generated by transplantation of EGFP(+) bone marrow (BM) cells from EGFP-transgenic mice into wild-type mice. EGFP(+) BM-derived cells infiltrated the injured sciatic nerve (SCN) of EGFP-chimeric mice, and these cells were found to be F4/80(+) macrophages and Ly6G(+) neutrophils. The protein expression of nAChR subunit α4 and α7 were up-regulated in the injured SCN. Increased α4 and α7 subunits were localized on both BM-derived macrophages and neutrophils. When nicotine (20nmol) was perineurally administered once a day for 4days (days 0-3), PSL-induced tactile allodynia and thermal hyperalgesia were significantly prevented. Relieving effects of nicotine on neuropathic pain were reversed by co-administration of mecamylamine (20nmol), a non-selective antagonist for nAChRs. PSL-induced up-regulation of inflammatory cytokines and chemokines was suppressed by perineural administration of nicotine. Taken together, the expression of α4β2 and α7 subtypes of nAChRs may be increased on circulating macrophages and neutrophils in injured peripheral nerves. Activation of nAChRs on immune cells may relieve neuropathic pain accompanied by the suppression of neuroinflammation.
Collapse
Affiliation(s)
- Norikazu Kiguchi
- Department of Pharmacology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-0012, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Thomsen MS, Mikkelsen JD. The α7 nicotinic acetylcholine receptor ligands methyllycaconitine, NS6740 and GTS-21 reduce lipopolysaccharide-induced TNF-α release from microglia. J Neuroimmunol 2012; 251:65-72. [PMID: 22884467 DOI: 10.1016/j.jneuroim.2012.07.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 07/09/2012] [Accepted: 07/18/2012] [Indexed: 12/11/2022]
Abstract
The anti-inflammatory properties of, particularly the α7, nicotinic acetylcholine receptors (nAChRs) in the peripheral immune system are well documented. There are also reports of anti-inflammatory actions of nicotine in the CNS, but it is unclear, whether this is due to activation or inhibition of nAChRs. Here we investigate the mechanisms behind α7 nAChR-mediated modulation of TNF-α release. We show that α7 nAChR agonists or positive allosteric modulators do not affect LPS-induced release of the pro-inflammatory cytokine TNF-α from cultured microglia. This suggests that classical activation of, i.e. ion-flux through, the α7 nAChR does not reduce TNF-α release from activated microglia. Contrarily, the α7 nAChR antagonist methyllycaconitine and the weak (<10%) agonist NS6740 reduced LPS-induced TNF-α release, indicating that α7 nAChR antagonism conveys anti-inflammatory properties on microglia. The effect of methyllycaconitine or NS6740 was not due to changes in MAPK signaling. These results suggest that the anti-inflammatory effects of nicotine seen in vivo are not due to classical activation of the α7 nAChR, and further suggest that antagonism of α7 nAChRs may reduce neuroinflammation.
Collapse
Affiliation(s)
- Morten S Thomsen
- Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark.
| | | |
Collapse
|
41
|
Quik M, Perez XA, Bordia T. Nicotine as a potential neuroprotective agent for Parkinson's disease. Mov Disord 2012; 27:947-57. [PMID: 22693036 DOI: 10.1002/mds.25028] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 03/13/2012] [Accepted: 04/08/2012] [Indexed: 02/06/2023] Open
Abstract
Converging research efforts suggest that nicotine and other drugs that act at nicotinic acetylcholine receptors (nAChRs) may be beneficial in the management of Parkinson's disease. This idea initially stemmed from the results of epidemiological studies that demonstrated that smoking is associated with a decreased incidence of Parkinson's disease. The subsequent finding that nicotine administration protected against nigrostriatal damage in parkinsonian animal models led to the idea that nicotine in tobacco products may contribute to this apparent protective action. Nicotine most likely exerts its effects by interacting at nAChRs. Accumulating research indicates that multiple subtypes containing nAChRs, including α4β2, α6β2, and/or α7, may be involved. Stimulation of nAChRs initially activates various intracellular transduction pathways primarily via alterations in calcium signaling. Consequent adaptations in immune responsiveness and trophic factors may ultimately mediate nicotine's ability to reduce/halt the neuronal damage that arises in Parkinson's disease. In addition to a potential neuroprotective action, nicotine also has antidepressant properties and improves attention/cognition. Altogether, these findings suggest that nicotine and nAChR drugs represent promising therapeutic agents for the management of Parkinson's disease.
Collapse
Affiliation(s)
- Maryka Quik
- Center for Health Sciences, SRI International, Menlo Park, California, USA.
| | | | | |
Collapse
|
42
|
Investigations into nicotinic Stat3 signaling using a luciferase reporter plasmid. Biochem Pharmacol 2011. [DOI: 10.1016/j.bcp.2011.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Chi F, Wang L, Zheng X, Wu CH, Jong A, Sheard MA, Shi W, Huang SH. Meningitic Escherichia coli K1 penetration and neutrophil transmigration across the blood-brain barrier are modulated by alpha7 nicotinic receptor. PLoS One 2011; 6:e25016. [PMID: 21966399 PMCID: PMC3178609 DOI: 10.1371/journal.pone.0025016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 08/22/2011] [Indexed: 11/19/2022] Open
Abstract
Alpha7 nicotinic acetylcholine receptor (nAChR), an essential regulator of inflammation, is abundantly expressed in hippocampal neurons, which are vulnerable to bacterial meningitis. However, it is unknown whether α7 nAChR contributes to the regulation of these events. In this report, an aggravating role of α7 nAChR in host defense against meningitic E. coli infection was demonstrated by using α7-deficient (α7(-/-)) mouse brain microvascular endothelial cells (BMEC) and animal model systems. As shown in our in vitro and in vivo studies, E. coli K1 invasion and polymorphonuclear neutrophil (PMN) transmigration across the blood-brain barrier (BBB) were significantly reduced in α7(-/-) BMEC and α7(-/-) mice. Stimulation by nicotine was abolished in the α7(-/-) cells and animals. The same blocking effect was achieved by methyllycaconitine (α7 antagonist). The tight junction molecules occludin and ZO-1 were significantly reduced in the brain cortex of wildtype mice infected with E. coli and treated with nicotine, compared to α7(-/-) cells and animals. Decreased neuronal injury in the hippocampal dentate gyrus was observed in α7(-/-) mice with meningitis. Proinflammatory cytokines (IL-1β, IL-6, TNFα, MCP-1, MIP-1alpha, and RANTES) and adhesion molecules (CD44 and ICAM-1) were significantly reduced in the cerebrospinal fluids of the α7(-/-) mice with E. coli meningitis. Furthermore, α7 nAChR is the major calcium channel for nicotine- and E. coli K1-increased intracellular calcium concentrations of mouse BMEC. Taken together, our data suggest that α7 nAChR plays a detrimental role in the host defense against meningitic infection by modulation of pathogen invasion, PMN recruitment, calcium signaling and neuronal inflammation.
Collapse
Affiliation(s)
- Feng Chi
- Department of Pediatrics, Saban Research Institute, University of Southern California, Childrens Hospital Los Angeles, Los Angeles, California, United States of America
| | - Lin Wang
- Department of Pediatrics, Saban Research Institute, University of Southern California, Childrens Hospital Los Angeles, Los Angeles, California, United States of America
- Department of Histology and Embryology, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Xueye Zheng
- Department of Pediatrics, Saban Research Institute, University of Southern California, Childrens Hospital Los Angeles, Los Angeles, California, United States of America
| | - Chun-Hua Wu
- Department of Pediatrics, Saban Research Institute, University of Southern California, Childrens Hospital Los Angeles, Los Angeles, California, United States of America
| | - Ambrose Jong
- Department of Pediatrics, Saban Research Institute, University of Southern California, Childrens Hospital Los Angeles, Los Angeles, California, United States of America
| | - Michael A. Sheard
- Department of Pediatrics, Saban Research Institute, University of Southern California, Childrens Hospital Los Angeles, Los Angeles, California, United States of America
| | - Wei Shi
- Department of Pediatrics, Saban Research Institute, University of Southern California, Childrens Hospital Los Angeles, Los Angeles, California, United States of America
| | - Sheng-He Huang
- Department of Pediatrics, Saban Research Institute, University of Southern California, Childrens Hospital Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
44
|
Brégeon F, Xeridat F, Andreotti N, Lepidi H, Delpierre S, Roch A, Ravailhe S, Jammes Y, Steinberg JG. Activation of nicotinic cholinergic receptors prevents ventilator-induced lung injury in rats. PLoS One 2011; 6:e22386. [PMID: 21857926 PMCID: PMC3152549 DOI: 10.1371/journal.pone.0022386] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 06/20/2011] [Indexed: 01/14/2023] Open
Abstract
Respiratory distress syndrome is responsible for 40 to 60 percent mortality. An over mortality of about 10 percent could result from additional lung injury and inflammation due to the life-support mechanical ventilation, which stretches the lung. It has been recently demonstrated, in vitro, that pharmacological activation of the alpha 7 nicotinic receptors (α7-nAChR) could down regulate intracellular mediators involved in lung cell inflammatory response to stretch. Our aim was to test in vivo the protective effect of the pharmacological activation of the α7-nAChR against ventilator-induced lung injury (VILI). Anesthetized rats were ventilated for two hours with a high stretch ventilation mode delivering a stroke volume large enough to generate 25-cmH2O airway pressure, and randomly assigned to four groups: pretreated with parenteral injection of saline or specific agonist of the α7-nAChR (PNU-282987), or submitted to bilateral vagus nerve electrostimulation while pre-treated or not with the α7-nAChR antagonist methyllycaconitine (MLA). Controls ventilated with a conventional stroke volume of 10 mL/kg gave reference data. Physiological indices (compliance of the respiratory system, lung weight, blood oxygenation, arterial blood pressure) and lung contents of inflammatory mediators (IL-6 measured by ELISA, substance P assessed using HPLC) were severely impaired after two hours of high stretch ventilation (sham group). Vagal stimulation was able to maintain the respiratory parameters close to those obtained in Controls and reduced lung inflammation except when associated to nicotinic receptor blockade (MLA), suggesting the involvement of α7-nAChR in vagally-mediated protection against VILI. Pharmacological pre-treatment with PNU-282987 strongly decreased lung injury and lung IL-6 and substance P contents, and nearly abolished the increase in plasmatic IL-6 levels. Pathological examination of the lungs confirmed the physiological differences observed between the groups. In conclusion, these data suggest that the stimulation of α7-nAChR is able to attenuate VILI in rats.
Collapse
Affiliation(s)
- Fabienne Brégeon
- UMR MD2 P2COE, Institut Fédératif de Recherche Jean-Roche, Faculté de Médecine, Université de la Méditerranée Aix-Marseille II and Explorations Fonctionnelles Respiratoires de l' Hôpital Nord, Assistance Publique-Hôpitaux de Marseille, Marseille, France.
| | | | | | | | | | | | | | | | | |
Collapse
|