1
|
An K, Zhu X, Bai C. The Nature of Functional Features of Different Classes of G-Protein-Coupled Receptors. BIOLOGY 2022; 11:1839. [PMID: 36552350 PMCID: PMC9775959 DOI: 10.3390/biology11121839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
G-protein-coupled receptors (GPCRs) are a critical family in the human proteome and are involved in various physiological processes. They are also the most important drug target, with approximately 30% of approved drugs acting on such receptors. The members of the family are divided into six classes based on their structural and functional characteristics. Understanding their structural-functional relationships will benefit us in future drug development. In this article, we investigate the features of protein function, structure, and energy that describe the dynamics of the GPCR activation process between different families. GPCRs straddle the cell membrane and transduce signals from outside the membrane into the cell. During the process, the conformational change in GPCRs that is activated by the binding of signal molecules is essential. During the binding process, different types of signal molecules result in different signal transfer efficiencies. Therefore, the GPCR classes show a variety of structures and activation processes. Based on the experimental crystal structures, we modeled the activation process of the β2 adrenergic receptor (β2AR), glucagon receptor (GCGR), and metabotropic glutamate receptor 2 (mGluR2), which represent class A, B, and C GPCRs, respectively. We calculated their activation free-energy landscapes and analyzed the structure-energy-function relationship. The results show a consistent picture of the activation mechanisms between different types of GPCRs. This could also provide us a way to understand other signal transduction proteins.
Collapse
Affiliation(s)
- Ke An
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Xiaohong Zhu
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Chen Bai
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
- Chenzhu (MoMeD) Biotechnology Co., Ltd., Hangzhou 310005, China
| |
Collapse
|
2
|
Zhao L, He X, Jiang H, Cheng X. Computational characterization of transducer recognition of β2 adrenergic receptor. Biochem Biophys Res Commun 2022; 592:67-73. [DOI: 10.1016/j.bbrc.2022.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 11/02/2022]
|
3
|
Chaudhary PK, Kim S. The GRKs Reactome: Role in Cell Biology and Pathology. Int J Mol Sci 2021; 22:ijms22073375. [PMID: 33806057 PMCID: PMC8036551 DOI: 10.3390/ijms22073375] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
G protein-coupled receptor kinases (GRKs) are protein kinases that function in concert with arrestins in the regulation of a diverse class of G protein-coupled receptors (GPCRs) signaling. Although GRKs and arrestins are key participants in the regulation of GPCR cascades, the complex regulatory mechanisms of GRK expression, its alternation, and their function are not thoroughly understood. Several studies together with the work from our lab in recent years have revealed the critical role of these kinases in various physiological and pathophysiological processes, including cardiovascular biology, inflammation and immunity, neurodegeneration, thrombosis, and hemostasis. A comprehensive understanding of the mechanisms underlying functional interactions with multiple receptor proteins and how these interactions take part in the development of various pathobiological processes may give rise to novel diagnostic and therapeutic strategies. In this review, we summarize the current research linking the role of GRKs to various aspects of cell biology, pathology, and therapeutics, with a particular focus on thrombosis and hemostasis.
Collapse
|
4
|
Ippolito M, Benovic JL. Biased agonism at β-adrenergic receptors. Cell Signal 2020; 80:109905. [PMID: 33385503 DOI: 10.1016/j.cellsig.2020.109905] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/10/2020] [Accepted: 12/27/2020] [Indexed: 12/19/2022]
Abstract
The β-adrenergic receptors (βARs) include three subtypes, β1, β2 and β3. These receptors are widely expressed and regulate numerous physiological processes including cardiovascular and metabolic functions and airway tone. The βARs are also important targets in the treatment of many diseases including hypertension, heart failure and asthma. In some cases, the use of current βAR ligands to treat a disease is suboptimal and can lead to severe side effects. One strategy to potentially improve such treatments is the development of biased agonists that selectively regulate a subset of βAR signaling pathways and responses. Here we discuss the compounds identified to date that preferentially activate a Gs- or β-arrestin-mediated signaling pathway through βARs. Mechanistic insight on how these compounds bias signaling sheds light on the potential development of even more selective compounds that should have increased utility in treating disease.
Collapse
Affiliation(s)
- Michael Ippolito
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States of America.
| |
Collapse
|
5
|
Littmann T, Buschauer A, Bernhardt G. Split luciferase-based assay for simultaneous analyses of the ligand concentration- and time-dependent recruitment of β-arrestin2. Anal Biochem 2019; 573:8-16. [PMID: 30853375 DOI: 10.1016/j.ab.2019.02.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 12/17/2022]
Abstract
Functional selectivity of agonists has gained increasing interest in G protein-coupled receptor (GPCR) research, e.g. due to expectations of drugs with reduced adverse effects. Different agonist-dependent GPCR conformations are conceived to selectively activate a balanced or imbalanced intracellular signalling response, involving e.g. different Gα subtypes, Gβγ-subunits and β-arrestins. To discriminate between the different signalling pathways (bias), sensitive techniques are needed that do not interfere with signalling. We applied split luciferase complementation to the GPCR/β-arrestin2 interaction and thoroughly analysed the influence of its implementation on intracellular signalling. This led to an assay enabling the functional characterization of ligands at the hH1R, the hM1,5R and the hNTS1R in live HEK293T cells. As demonstrated at the hM1,5R, the assay was sensitive enough to identify iperoxo as a superagonist. Time-dependent analyses of the recruitment of β-arrestin2 became possible, allowing the identification of class A and class B GPCRs, due to the differential duration of their interaction with β-arrestin2 and their recycling to the cell membrane. The developed β-arrestin2 recruitment assay, which provides concentration- and time-dependent information on the interaction between GPCRs and β-arrestin2 upon stimulation of the receptor, should be broadly applicable and of high value for the analysis of agonist bias.
Collapse
Affiliation(s)
- Timo Littmann
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany.
| | - Armin Buschauer
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| | - Günther Bernhardt
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany.
| |
Collapse
|
6
|
Pytka K, Głuch-Lutwin M, Żmudzka E, Sałaciak K, Siwek A, Niemczyk K, Walczak M, Smolik M, Olczyk A, Gałuszka A, Śmieja J, Filipek B, Sapa J, Kołaczkowski M, Pańczyk K, Waszkielewicz A, Marona H. HBK-17, a 5-HT 1A Receptor Ligand With Anxiolytic-Like Activity, Preferentially Activates ß-Arrestin Signaling. Front Pharmacol 2018; 9:1146. [PMID: 30410441 PMCID: PMC6209770 DOI: 10.3389/fphar.2018.01146] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/21/2018] [Indexed: 12/14/2022] Open
Abstract
Numerous studies have proven that both stimulation and blockade of 5-HT1A and the blockade of 5-HT7 receptors might cause the anxiolytic-like effects. Biased agonists selectively activate specific signaling pathways. Therefore, they might offer novel treatment strategies. In this study, we investigated the anxiolytic-like activity, as well as the possible mechanism of action of 1-[(2,5-dimethylphenoxy)propyl]-4-(2-methoxyphenyl)piperazine hydrochloride (HBK-17). In our previous experiments, HBK-17 showed high affinity for 5-HT1A and 5-HT7 receptors and antidepressant-like properties. We performed the four plate test and the elevated plus maze test to determine anxiolytic-like activity. Toward a better understanding of the pharmacological properties of HBK-17 we used various functional assays to determine its intrinsic activity at 5-HT1A, 5-HT2A, 5-HT7, and D2 receptors and UHPLC-MS/MS method to evaluate its pharmacokinetic profile. We observed the anxiolytic-like activity of HBK-17 in both behavioral tests and the effect was reversed by the pretreatment with WAY-100635, which proves that 5-HT1A receptor activation was essential for the anxiolytic-like effect. Moreover, the compound moderately antagonized D2, weakly 5-HT7 and very weakly 5-HT2A receptors. We demonstrated that HBK-17 preferentially activated ß-arrestin signaling after binding to the 5-HT1A receptor. HBK-17 was rapidly absorbed after intraperitoneal administration and had a half-life of about 150 min. HBK-17 slightly penetrated the peripheral compartment and showed bioavailability of approximately 45%. The unique pharmacological profile of HBK-17 encourages further experiments to understand its mechanism of action fully.
Collapse
Affiliation(s)
- Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Monika Głuch-Lutwin
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Elżbieta Żmudzka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Kinga Sałaciak
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Katarzyna Niemczyk
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Maria Walczak
- Chair and Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Magdalena Smolik
- Chair and Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Adrian Olczyk
- Control and Robotics Group, Faculty of Automatic Control, Electronics and Computer Science, Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland
| | - Adam Gałuszka
- Control and Robotics Group, Faculty of Automatic Control, Electronics and Computer Science, Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland
| | - Jarosław Śmieja
- Systems Engineering Group, Faculty of Automatic Control, Electronics and Informatics, Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland
| | - Barbara Filipek
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Jacek Sapa
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Marcin Kołaczkowski
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Katarzyna Pańczyk
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Waszkielewicz
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Henryk Marona
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
7
|
Teoh JP, Bayoumi AS, Aonuma T, Xu Y, Johnson JA, Su H, Weintraub NL, Tang Y, Kim IM. β-arrestin-biased agonism of β-adrenergic receptor regulates Dicer-mediated microRNA maturation to promote cardioprotective signaling. J Mol Cell Cardiol 2018; 118:225-236. [PMID: 29627294 DOI: 10.1016/j.yjmcc.2018.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/28/2018] [Accepted: 04/02/2018] [Indexed: 12/20/2022]
Abstract
RATIONALE MicroRNAs (miRs) are small, non-coding RNAs that function to post-transcriptionally regulate target genes. First transcribed as primary miR transcripts (pri-miRs), they are enzymatically processed by Drosha into premature miRs (pre-miRs) and further cleaved by Dicer into mature miRs. Initially discovered to desensitize β-adrenergic receptor (βAR) signaling, β-arrestins are now well-appreciated to modulate multiple pathways independent of G protein signaling, a concept known as biased signaling. Using the β-arrestin-biased βAR ligand carvedilol, we previously showed that β-arrestin1 (not β-arrestin2)-biased β1AR (not β2AR) cardioprotective signaling stimulates Drosha-mediated processing of six miRs by forming a multi-protein nuclear complex, which includes β-arrestin1, the Drosha microprocessor complex and a single-stranded RNA binding protein hnRNPA1. OBJECTIVE Here, we investigate whether β-arrestin-mediated βAR signaling induced by carvedilol could regulate Dicer-mediated miR maturation in the cytoplasm and whether this novel mechanism promotes cardioprotective signaling. METHODS AND RESULTS In mouse hearts, carvedilol indeed upregulates three mature miRs, but not their pre-miRs and pri-miRs, in a β-arrestin 1- or 2-dependent manner. Interestingly, carvedilol-mediated activation of miR-466g or miR-532-5p, and miR-674 is dependent on β2ARs and β1ARs, respectively. Mechanistically, β-arrestin 1 or 2 regulates maturation of three newly identified βAR/β-arrestin-responsive miRs (β-miRs) by associating with the Dicer maturation RNase III enzyme on three pre-miRs of β-miRs. Myocardial cell approaches uncover that despite their distinct roles in different cell types, β-miRs act as gatekeepers of cardiac cell functions by repressing deleterious targets. CONCLUSIONS Our findings indicate a novel role for βAR-mediated β-arrestin signaling activated by carvedilol in Dicer-mediated miR maturation, which may be linked to its protective mechanisms.
Collapse
Affiliation(s)
- Jian-Peng Teoh
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Ahmed S Bayoumi
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Tatsuya Aonuma
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Yanyan Xu
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - John A Johnson
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA 30912, USA
| | - Huabo Su
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; Department of Pharmacology and Toxicology, Augusta University, Augusta, GA 30912, USA
| | - Neal L Weintraub
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; Department of Medicine, Augusta University, Augusta, GA 30912, USA
| | - Yaoliang Tang
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; Department of Medicine, Augusta University, Augusta, GA 30912, USA
| | - Il-Man Kim
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
8
|
Michel MC, Charlton SJ. Biased Agonism in Drug Discovery-Is It Too Soon to Choose a Path? Mol Pharmacol 2018; 93:259-265. [PMID: 29326242 DOI: 10.1124/mol.117.110890] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/01/2018] [Indexed: 12/13/2022] Open
Abstract
A single receptor can activate multiple signaling pathways that have distinct or even opposite effects on cell function. Biased agonists stabilize receptor conformations preferentially stimulating one of these pathways, and therefore allow a more targeted modulation of cell function and treatment of disease. Dedicated development of biased agonists has led to promising drug candidates in clinical development, such as the G protein-biased µ opioid receptor agonist oliceridine. However, leveraging the theoretical potential of biased agonism for drug discovery faces several challenges. Some of these challenges are technical, such as techniques for quantitative analysis of bias and development of suitable screening assays; others are more fundamental, such as the need to robustly identify in a very early phase which cell type harbors the cellular target of the drug candidate, which signaling pathway leads to the desired therapeutic effect, and how these pathways may be modulated in the disease to be treated. We conclude that biased agonism has potential mainly in the treatment of conditions with a well-understood pathophysiology; in contrast, it may increase effort and commercial risk under circumstances where the pathophysiology has been less well defined, as is the case with many highly innovative treatments.
Collapse
Affiliation(s)
- Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Life Sciences, University of Nottingham, Nottingham, United Kingdom (S.J.C.); and Excellerate Biosciences Ltd., MediCity, Nottingham, United Kingdom (S.J.C.)
| | - Steven J Charlton
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Life Sciences, University of Nottingham, Nottingham, United Kingdom (S.J.C.); and Excellerate Biosciences Ltd., MediCity, Nottingham, United Kingdom (S.J.C.)
| |
Collapse
|
9
|
Pera T, Deshpande DA, Ippolito M, Wang B, Gavrila A, Michael JV, Nayak AP, Tompkins E, Farrell E, Kroeze WK, Roth BL, Panettieri RA, Benovic JL, An SS, Dulin NO, Penn RB. Biased signaling of the proton-sensing receptor OGR1 by benzodiazepines. FASEB J 2018; 32:862-874. [PMID: 29042451 PMCID: PMC5888400 DOI: 10.1096/fj.201700555r] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/02/2017] [Indexed: 01/01/2023]
Abstract
GPCRs have diverse signaling capabilities, based on their ability to assume various conformations. Moreover, it is now appreciated that certain ligands can promote distinct receptor conformations and thereby bias signaling toward a specific pathway to differentially affect cell function. The recently deorphanized G protein-coupled receptor OGR1 [ovarian cancer G protein-coupled receptor 1 ( GPR68)] exhibits diverse signaling events when stimulated by reductions in extracellular pH. We recently demonstrated airway smooth muscle cells transduce multiple signaling events, reflecting a diverse capacity to couple to multiple G proteins. Moreover, we recently discovered that the benzodiazepine lorazepam, more commonly recognized as an agonist of the γ-aminobutyric acid A (GABAA) receptor, can function as an allosteric modulator of OGR1 and, similarly, can promote multiple signaling events. In this study, we demonstrated that different benzodiazepines exhibit a range of biases for OGR1, with sulazepam selectively activating the canonical Gs of the G protein signaling pathway, in heterologous expression systems, as well as in several primary cell types. These findings highlight the potential power of biased ligand pharmacology for manipulating receptor signaling qualitatively, to preferentially activate pathways that are therapeutically beneficial.-Pera, T., Deshpande, D. A., Ippolito, M., Wang, B., Gavrila, A., Michael, J. V., Nayak, A. P., Tompkins, E., Farrell, E., Kroeze, W. K., Roth, B. L., Panettieri, R. A. Jr Benovic, J. L., An, S. S., Dulin, N. O., Penn, R. B. Biased signaling of the proton-sensing receptor OGR1 by benzodiazepines.
Collapse
Affiliation(s)
- Tonio Pera
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Deepak A. Deshpande
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Michael Ippolito
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Bin Wang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Adelina Gavrila
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - James V. Michael
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Ajay P. Nayak
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Eric Tompkins
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Eleni Farrell
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Wesley K. Kroeze
- Department of Pharmacology, University of North Carolina, Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
- National Institute of Mental Health Psychoactive Drug Screening Program, School of Medicine, University of North Carolina, Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Bryan L. Roth
- Department of Pharmacology, University of North Carolina, Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
- National Institute of Mental Health Psychoactive Drug Screening Program, School of Medicine, University of North Carolina, Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Reynold A. Panettieri
- Rutgers Institute for Translational Medicine and Science, Child Health Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Jeffrey L. Benovic
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Steven S. An
- Department of Environmental Health and Engineering, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland, USA; and
| | - Nickolai O. Dulin
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois, USA
| | - Raymond B. Penn
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Onfroy L, Galandrin S, Pontier SM, Seguelas MH, N'Guyen D, Sénard JM, Galés C. G protein stoichiometry dictates biased agonism through distinct receptor-G protein partitioning. Sci Rep 2017; 7:7885. [PMID: 28801617 PMCID: PMC5554226 DOI: 10.1038/s41598-017-07392-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/26/2017] [Indexed: 12/22/2022] Open
Abstract
Biased agonism at G protein coupled receptors emerges as an opportunity for development of drugs with enhanced benefit/risk balance making biased ligand identification a priority. However, ligand biased signature, classically inferred from ligand activity across multiple pathways, displays high variability in recombinant systems. Functional assays usually necessity receptor/effector overexpression that should be controlled among assays to allow comparison but this calibration currently fails. Herein, we demonstrate that Gα expression level dictates the biased profiling of agonists and, to a lesser extent of β-blockers, in a Gα isoform- and receptor-specific way, depending on specific G protein activity in different membrane territories. These results have major therapeutic implications since they suggest that the ligand bias phenotype is not necessarily maintained in pathological cell background characterized by fluctuations in G protein expression. Thus, we recommend implementation of G protein stoichiometry as a new parameter in biased ligand screening programs.
Collapse
Affiliation(s)
- Lauriane Onfroy
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, U1048, Université de Toulouse, F-31432, Toulouse, France
| | - Ségolène Galandrin
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, U1048, Université de Toulouse, F-31432, Toulouse, France
| | | | - Marie-Hélène Seguelas
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, U1048, Université de Toulouse, F-31432, Toulouse, France
| | - Du N'Guyen
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, U1048, Université de Toulouse, F-31432, Toulouse, France
| | - Jean-Michel Sénard
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, U1048, Université de Toulouse, F-31432, Toulouse, France.,Service de Pharmacologie Clinique, Centre Hospitalier Universitaire de Toulouse, Faculté de Médecine, Université de Toulouse, F-31000, Toulouse, France
| | - Céline Galés
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, U1048, Université de Toulouse, F-31432, Toulouse, France.
| |
Collapse
|
11
|
Abstract
G protein-coupled receptors (GPCRs) are often pleiotropically linked to numerous cellular signaling mechanisms in cells, and it is now known that many agonists differentially activate some signaling pathways at the expense of others. The mechanism for this effect is the stabilization of different active receptor states by different agonists, and it leads to varying qualities of efficacy for different agonists. Agonist bias is a powerful mechanism to amplify beneficial signals and diminish harmful signals, and thus improve the overall profile of agonist ligands. This unit describes a method to quantify agonist bias with a scale that enables medicinal chemists to amplify or reduce these effects in new molecules. The method is based on the Black/Leff operational model and yields a statistical estimate of the confidence for bias measurements. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
12
|
Abstract
In the classical two-state model, G protein-coupled receptors (GPCRs) are considered to exist in equilibrium between an active and an inactive conformation. Thus, even at the resting state, some subpopulation of GPCRs is in the active state, which underlies the basal activity of the GPCRs. In this review, we discuss inverse agonists, which are defined as GPCR ligands that shift the equilibrium toward the inactive state and thereby suppress the basal activity. Theoretically, if constitutive activation plays an essential role in the pathogenesis of a disease, only inverse agonists, and not neutral antagonists, can reverse this pathophysiological activation. Although many pharmacological examples of inverse agonism have been identified, its clinical importance is still unclear and debated. Thus, even though inverse agonism of angiotensin receptor blockers (ARBs) has been discussed for more than 10 years, its clinical relevance remains to be completely clarified.
Collapse
Affiliation(s)
- Junichiro Sato
- Department of Endocrinology and Nephrology, The University of Tokyo School of Medicine, Tokyo 113-8655, Japan
| | | | | |
Collapse
|
13
|
Liao Y, Lu B, Ma Q, Wu G, Lai X, Zang J, Shi Y, Liu D, Han F, Zhou N. Human Neuropeptide S Receptor Is Activated via a Gαq Protein-biased Signaling Cascade by a Human Neuropeptide S Analog Lacking the C-terminal 10 Residues. J Biol Chem 2016; 291:7505-16. [PMID: 26865629 DOI: 10.1074/jbc.m115.704122] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Indexed: 12/11/2022] Open
Abstract
Human neuropeptide S (NPS) and its cognate receptor regulate important biological functions in the brain and have emerged as a future therapeutic target for treatment of a variety of neurological and psychiatric diseases. The human NPS (hNPS) receptor has been shown to dually couple to Gαs- and Gαq-dependent signaling pathways. The human NPS analog hNPS-(1-10), lacking 10 residues from the C terminus, has been shown to stimulate Ca(2+)mobilization in a manner comparable with full-length hNPSin vitrobut seems to fail to induce biological activityin vivo Here, results derived from a number of cell-based functional assays, including intracellular cAMP-response element (CRE)-driven luciferase activity, Ca(2+)mobilization, and ERK1/2 phosphorylation, show that hNPS-(1-10) preferentially activates Gαq-dependent Ca(2+)mobilization while exhibiting less activity in triggering Gαs-dependent CRE-driven luciferase activity. We further demonstrate that both Gαq- and Gαs-coupled signaling pathways contribute to full-length hNPS-mediated activation of ERK1/2, whereas hNPS-(1-10)-promoted ERK1/2 activation is completely inhibited by the Gαqinhibitor UBO-QIC but not by the PKA inhibitor H89. Moreover, the results of Ala-scanning mutagenesis of hNPS-(1-13) indicated that residues Lys(11)and Lys(12)are structurally crucial for the hNPS receptor to couple to Gαs-dependent signaling. In conclusion, our findings demonstrate that hNPS-(1-10) is a biased agonist favoring Gαq-dependent signaling. It may represent a valuable chemical probe for further investigation of the therapeutic potential of human NPS receptor-directed signalingin vivo.
Collapse
Affiliation(s)
- Yuan Liao
- From the Institute of Biochemistry, College of Life Sciences, and
| | - Bin Lu
- From the Institute of Biochemistry, College of Life Sciences, and
| | - Qiang Ma
- From the Institute of Biochemistry, College of Life Sciences, and
| | - Gang Wu
- the Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China and
| | - Xiangru Lai
- From the Institute of Biochemistry, College of Life Sciences, and
| | - Jiashu Zang
- From the Institute of Biochemistry, College of Life Sciences, and
| | - Ying Shi
- From the Institute of Biochemistry, College of Life Sciences, and
| | - Dongxiang Liu
- the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Feng Han
- the Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China and
| | - Naiming Zhou
- From the Institute of Biochemistry, College of Life Sciences, and
| |
Collapse
|
14
|
Karnik SS, Unal H, Kemp JR, Tirupula KC, Eguchi S, Vanderheyden PML, Thomas WG. International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin Receptors: Interpreters of Pathophysiological Angiotensinergic Stimuli [corrected]. Pharmacol Rev 2015; 67:754-819. [PMID: 26315714 PMCID: PMC4630565 DOI: 10.1124/pr.114.010454] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The renin angiotensin system (RAS) produced hormone peptides regulate many vital body functions. Dysfunctional signaling by receptors for RAS peptides leads to pathologic states. Nearly half of humanity today would likely benefit from modern drugs targeting these receptors. The receptors for RAS peptides consist of three G-protein-coupled receptors—the angiotensin II type 1 receptor (AT1 receptor), the angiotensin II type 2 receptor (AT2 receptor), the MAS receptor—and a type II trans-membrane zinc protein—the candidate angiotensin IV receptor (AngIV binding site). The prorenin receptor is a relatively new contender for consideration, but is not included here because the role of prorenin receptor as an independent endocrine mediator is presently unclear. The full spectrum of biologic characteristics of these receptors is still evolving, but there is evidence establishing unique roles of each receptor in cardiovascular, hemodynamic, neurologic, renal, and endothelial functions, as well as in cell proliferation, survival, matrix-cell interaction, and inflammation. Therapeutic agents targeted to these receptors are either in active use in clinical intervention of major common diseases or under evaluation for repurposing in many other disorders. Broad-spectrum influence these receptors produce in complex pathophysiological context in our body highlights their role as precise interpreters of distinctive angiotensinergic peptide cues. This review article summarizes findings published in the last 15 years on the structure, pharmacology, signaling, physiology, and disease states related to angiotensin receptors. We also discuss the challenges the pharmacologist presently faces in formally accepting newer members as established angiotensin receptors and emphasize necessary future developments.
Collapse
Affiliation(s)
- Sadashiva S Karnik
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Hamiyet Unal
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Jacqueline R Kemp
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Kalyan C Tirupula
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Satoru Eguchi
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Patrick M L Vanderheyden
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Walter G Thomas
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| |
Collapse
|
15
|
Carmichael CY, Wainford RD. Brain Gαi 2 -subunit proteins and the prevention of salt sensitive hypertension. Front Physiol 2015; 6:233. [PMID: 26347659 PMCID: PMC4541027 DOI: 10.3389/fphys.2015.00233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/03/2015] [Indexed: 12/19/2022] Open
Abstract
To counter the development of salt-sensitive hypertension, multiple brain G-protein-coupled receptor (GPCR) systems are activated to facilitate sympathoinhibition, sodium homeostasis, and normotension. Currently there is a paucity of knowledge regarding the role of down-stream GPCR-activated Gα-subunit proteins in these critically important physiological regulatory responses required for long-term blood pressure regulation. We have determined that brain Gαi2-proteins mediate natriuretic and sympathoinhibitory responses produced by acute pharmacological (exogenous central nociceptin/orphanin FQ receptor (NOP) and α2-adrenoceptor activation) and physiological challenges to sodium homeostasis (intravenous volume expansion and 1 M sodium load) in conscious Sprague–Dawley rats. We have demonstrated that in salt-resistant rat phenotypes, high dietary salt intake evokes site-specific up-regulation of hypothalamic paraventricular nucleus (PVN) Gαi2-proteins. Further, we established that PVN Gαi2 protein up-regulation prevents the development of renal nerve-dependent sympathetically mediated salt-sensitive hypertension in Sprague–Dawley and Dahl salt-resistant rats. Additionally, failure to up-regulate PVN Gαi2 proteins during high salt-intake contributes to the pathophysiology of Dahl salt-sensitive (DSS) hypertension. Collectively, our data demonstrate that brain, and likely PVN specific, Gαi2 protein pathways represent a central molecular pathway mediating sympathoinhibitory renal-nerve dependent responses evoked to maintain sodium homeostasis and a salt-resistant phenotype. Further, impairment of this endogenous “anti-hypertensive” mechanism contributes to the pathophysiology of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Casey Y Carmichael
- The Department of Pharmacology and Experimental Therapeutics, The Whitaker Cardiovascular Institute, Boston University School of Medicine Boston, MA, USA
| | - Richard D Wainford
- The Department of Pharmacology and Experimental Therapeutics, The Whitaker Cardiovascular Institute, Boston University School of Medicine Boston, MA, USA
| |
Collapse
|
16
|
Brancaccio D, Merlino F, Limatola A, Yousif AM, Gomez-Monterrey I, Campiglia P, Novellino E, Grieco P, Carotenuto A. An investigation into the origin of the biased agonism associated with the urotensin II receptor activation. J Pept Sci 2015; 21:392-9. [DOI: 10.1002/psc.2740] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/09/2014] [Accepted: 12/11/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Diego Brancaccio
- Department of Pharmacy; University of Naples ‘Federico II’; I-80131 Naples Italy
| | - Francesco Merlino
- Department of Pharmacy; University of Naples ‘Federico II’; I-80131 Naples Italy
| | - Antonio Limatola
- Department of Pharmacy; University of Naples ‘Federico II’; I-80131 Naples Italy
| | - Ali Munaim Yousif
- Department of Pharmacy; University of Naples ‘Federico II’; I-80131 Naples Italy
| | | | - Pietro Campiglia
- Department of Pharmacy; University of Salerno; I-84084 Fisciano Salerno Italy
| | - Ettore Novellino
- Department of Pharmacy; University of Naples ‘Federico II’; I-80131 Naples Italy
| | - Paolo Grieco
- Department of Pharmacy; University of Naples ‘Federico II’; I-80131 Naples Italy
- CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi University of Naples ‘Federico II’, DFM-Scarl; Institute of Biostructures and Bioimaging - CNR; 80134 Naples Italy
| | - Alfonso Carotenuto
- Department of Pharmacy; University of Naples ‘Federico II’; I-80131 Naples Italy
| |
Collapse
|
17
|
Abstract
G protein-coupled receptors (GPCRs) represent the largest class of drug targets. Ligand-directed functional selectivity or biased agonism opens new possibility for discovering GPCR drugs with better efficacy and safety profiles. However, quantification of ligand bias is challenging. Herein, we present five different label-free dynamic mass redistribution (DMR) approaches to assess ligand bias acting at the β2-adrenergic receptor (β2AR). Multiparametric analysis of the DMR agonist profiles reveals divergent pharmacology of a panel of β2AR agonists. DMR profiling using catechol as a conformational probe detects the presence of multiple conformations of the β2AR. DMR assays under microfluidics, together with chemical biology tools, discover ligand-directed desensitization of the receptor. DMR antagonist reverse assays manifest biased antagonism. DMR profiling using distinct probe-modulated cells detects the biased agonism in the context of self-referenced pharmacological activity map.
Collapse
|
18
|
Kotova PD, Sysoeva VY, Rogachevskaja OA, Bystrova MF, Kolesnikova AS, Tyurin-Kuzmin PA, Fadeeva JI, Tkachuk VA, Kolesnikov SS. Functional expression of adrenoreceptors in mesenchymal stromal cells derived from the human adipose tissue. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1899-908. [PMID: 24841820 DOI: 10.1016/j.bbamcr.2014.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 05/01/2014] [Accepted: 05/09/2014] [Indexed: 02/04/2023]
Abstract
Cultured mesenchymal stromal cells (MSCs) from different sources represent a heterogeneous population of proliferating non-differentiated cells that contains multipotent stem cells capable of originating a variety of mesenchymal cell lineages. Despite tremendous progress in MSC biology spurred by their therapeutic potential, current knowledge on receptor and signaling systems of MSCs is mediocre. Here we isolated MSCs from the human adipose tissue and assayed their responsivity to GPCR agonists with Ca(2+) imaging. As a whole, a MSC population exhibited functional heterogeneity. Although a variety of first messengers was capable of stimulating Ca(2+) signaling in MSCs, only a relatively small group of cells was specifically responsive to the particular GPCR agonist, including noradrenaline. RT-PCR and immunocytochemistry revealed expression of α1B-, α2A-, and β2-adrenoreceptors in MSCs. Their sensitivity to subtype-specific adrenergic agonists/antagonists and certain inhibitors of Ca(2+) signaling indicated that largely the α2A-isoform coupled to PLC endowed MSCs with sensitivity to noradrenaline. The all-or-nothing dose-dependence was characteristic of responsivity of robust adrenergic MSCs. Noradrenaline never elicited small or intermediate responses but initiated large and quite similar Ca(2+) transients at all concentrations above the threshold. The inhibitory analysis and Ca(2+) uncaging implicated Ca(2+)-induced Ca(2+) release (CICR) in shaping Ca(2+) signals elicited by noradrenaline. Evidence favored IP3 receptors as predominantly responsible for CICR. Based on the overall findings, we inferred that adrenergic transduction in MSCs includes two fundamentally different stages: noradrenaline initially triggers a local and relatively small Ca(2+) signal, which next stimulates CICR, thereby being converted into a global Ca(2+) signal.
Collapse
Affiliation(s)
- Polina D Kotova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Veronika Yu Sysoeva
- Department of Biochemistry and Molecular Medicine, Faculty of Basic Medicine, Lomonosov Moscow State University, Russia
| | - Olga A Rogachevskaja
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Marina F Bystrova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Alisa S Kolesnikova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Pyotr A Tyurin-Kuzmin
- Department of Biochemistry and Molecular Medicine, Faculty of Basic Medicine, Lomonosov Moscow State University, Russia
| | - Julia I Fadeeva
- Department of Biochemistry and Molecular Medicine, Faculty of Basic Medicine, Lomonosov Moscow State University, Russia
| | - Vsevolod A Tkachuk
- Department of Biochemistry and Molecular Medicine, Faculty of Basic Medicine, Lomonosov Moscow State University, Russia
| | - Stanislav S Kolesnikov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia.
| |
Collapse
|
19
|
Baker AJ. Adrenergic signaling in heart failure: a balance of toxic and protective effects. Pflugers Arch 2014; 466:1139-50. [PMID: 24623099 DOI: 10.1007/s00424-014-1491-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 02/24/2014] [Accepted: 02/26/2014] [Indexed: 10/25/2022]
Abstract
Heart failure with reduced ejection fraction involves activation of the sympathetic nervous system and chronic hyperactivation of the sympatho-adrenergic receptors (ARs) β-ARs and α1-ARs, which are thought to be cardiotoxic and worsen pathological remodeling and function. Concurrently, the failing heart manifests significant decreases in sympathetic nerve terminal density, decreased cardiac norepinephrine levels, and marked downregulation of β-AR abundance and signaling. Thus, a state of both feast and famine coexist with respect to the adrenergic state in heart failure. For the failing heart, the hyperadrenergic state is toxic. However, the role of hypoadrenergic mechanisms in the pathophysiology of heart failure is less clear. Cardiotoxic effects are known to arise from the β1-AR subtype, and use of β-AR blockers is a cornerstone of current heart failure therapy. However, cardioprotective effects arise from the β2-AR subtype that counteract hyperactive β1-AR signaling, but unfortunately, β2-AR cardioprotective signaling in heart failure is inhibited by β-AR blocker therapy. In contrast to current dogma, recent research shows β1-AR signaling can also be cardioprotective. Moreover, for some forms of heart failure, β2-AR signaling is cardiotoxic. Thus for both β-AR subtypes, there is a balance between cardiotoxic versus cardioprotective effects. In heart failure, stimulation of α1-ARs is widely thought to be cardiotoxic. However, also contrary to current dogma, recent research shows that α1-AR signaling is cardioprotective. Taken together, recent research identifies cardioprotective signaling arising from β1-AR, β2-AR, and α1-ARs. A goal for future therapies will to harness the protective effects of AR signaling while minimizing cardiotoxic effects. The trajectory of heart failure therapy changed radically from the previous and intuitive use of sympathetic agonists, which unfortunately resulted in greater mortality, to the current use of β-AR blockers, which initially seemed counterintuitive. As a cautionary note, if the slow adoption of beta-blocker therapy in heart failure is any guide, then new treatment strategies, especially counterintuitive therapies involving stimulating β-AR and α1-AR signaling, may take considerable time to develop and gain acceptance.
Collapse
Affiliation(s)
- Anthony J Baker
- Veterans Affairs Medical Center, San Francisco and Department of Medicine, University of California, Cardiology Division (111C), 4150 Clement St, San Francisco, CA, 94121, USA,
| |
Collapse
|
20
|
Affiliation(s)
- Fadia A. Kamal
- From The Heart Institute, Cincinnati Children’s Hospital Medical Center, OH
| | - Joshua G. Travers
- From The Heart Institute, Cincinnati Children’s Hospital Medical Center, OH
| | - Burns C. Blaxall
- From The Heart Institute, Cincinnati Children’s Hospital Medical Center, OH
| |
Collapse
|
21
|
Ferrie AM, Sun H, Zaytseva N, Fang Y. Divergent label-free cell phenotypic pharmacology of ligands at the overexpressed β₂-adrenergic receptors. Sci Rep 2014; 4:3828. [PMID: 24451999 PMCID: PMC3899747 DOI: 10.1038/srep03828] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 01/06/2014] [Indexed: 01/14/2023] Open
Abstract
We present subclone sensitive cell phenotypic pharmacology of ligands at the β2-adrenergic receptor (β2-AR) stably expressed in HEK-293 cells. The parental cell line was transfected with green fluorescent protein (GFP)-tagged β2-AR. Four stable subclones were established and used to profile a library of sixty-nine AR ligands. Dynamic mass redistribution (DMR) profiling resulted in a pharmacological activity map suggesting that HEK293 endogenously expresses functional Gi-coupled α2-AR and Gs-coupled β2-AR, and the label-free cell phenotypic activity of AR ligands are subclone dependent. Pathway deconvolution revealed that the DMR of epinephrine is originated mostly from the remodeling of actin microfilaments and adhesion complexes, to less extent from the microtubule networks and receptor trafficking, and certain agonists displayed different efficacy towards the cAMP-Epac pathway. We demonstrate that receptor signaling and ligand pharmacology is sensitive to the receptor expression level, and the organization of the receptor and its signaling circuitry.
Collapse
Affiliation(s)
- Ann M Ferrie
- 1] Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, NY 14831, United States of America [2]
| | - Haiyan Sun
- 1] Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, NY 14831, United States of America [2] [3]
| | - Natalya Zaytseva
- Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, NY 14831, United States of America
| | - Ye Fang
- Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, NY 14831, United States of America
| |
Collapse
|
22
|
Abstract
It is now established that agonists do not uniformly activate pleiotropic signaling mechanisms initiated by receptors but rather can bias signals according to the unique receptor conformations they stabilize. One of the important emerging signaling systems where this can occur is through β-arrestin. This chapter discusses biased signaling where emphasis or de-emphasis of β-arrestin signaling is postulated (or been shown) to be beneficial. The chapter specifically focuses on methods to quantify biased effects; these methods furnish scales that can be used in the process of optimizing biased agonism (and antagonism) for therapeutic benefit. Specifically, methods to derive ΔΔLog(τ/K A) or ΔΔLog(Relative Activity) values are described to do this.
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, 120 Mason Farm Road, Room 4042, Genetic Medicine Building, CB# 7365, Chapel Hill, NC, 27599-7365, USA,
| |
Collapse
|
23
|
Kim IM, Wang Y, Park KM, Tang Y, Teoh JP, Vinson J, Traynham CJ, Pironti G, Mao L, Su H, Johnson JA, Koch WJ, Rockman HA. β-arrestin1-biased β1-adrenergic receptor signaling regulates microRNA processing. Circ Res 2013; 114:833-44. [PMID: 24334028 DOI: 10.1161/circresaha.114.302766] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
RATIONALE MicroRNAs (miRs) are small, noncoding RNAs that function to post-transcriptionally regulate gene expression. First transcribed as long primary miR transcripts (pri-miRs), they are enzymatically processed in the nucleus by Drosha into hairpin intermediate miRs (pre-miRs) and further processed in the cytoplasm by Dicer into mature miRs where they regulate cellular processes after activation by a variety of signals such as those stimulated by β-adrenergic receptors (βARs). Initially discovered to desensitize βAR signaling, β-arrestins are now appreciated to transduce multiple effector pathways independent of G-protein-mediated second messenger accumulation, a concept known as biased signaling. We previously showed that the β-arrestin-biased βAR agonist, carvedilol, activates cellular pathways in the heart. OBJECTIVE Here, we tested whether carvedilol could activate β-arrestin-mediated miR maturation, thereby providing a novel potential mechanism for its cardioprotective effects. METHODS AND RESULTS In human cells and mouse hearts, carvedilol upregulates a subset of mature and pre-miRs, but not their pri-miRs, in β1AR-, G-protein-coupled receptor kinase 5/6-, and β-arrestin1-dependent manner. Mechanistically, β-arrestin1 regulates miR processing by forming a nuclear complex with hnRNPA1 and Drosha on pri-miRs. CONCLUSIONS Our findings indicate a novel function for β1AR-mediated β-arrestin1 signaling activated by carvedilol in miR biogenesis, which may be linked, in part, to its mechanism for cell survival.
Collapse
Affiliation(s)
- Il-Man Kim
- From Vascular Biology Center (I.K., Y.W., K.P., Y.T., J.T., H.S.), Department of Biochemistry and Molecular Biology (I.K.), Medical College of Georgia (I.K., J.V.), and Department of Pharmacology and Toxicology (H.S., J.A.J.), Georgia Regents University, Augusta, GA; Center for Translational Medicine (C.J.T., W.J.K.), and Department of Pharmacology (W.J.K.), Temple University School of Medicine, Philadelphia, PA; and Department of Medicine (G.P., L.M., H.A.R.), Cell Biology (H.A.R.), and Molecular Genetics (H.A.R.), Duke University Medical Center, Durham, NC
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Dünner N, Quezada C, Berndt FA, Cánovas J, Rojas CV. Angiotensin II signaling in human preadipose cells: participation of ERK1,2-dependent modulation of Akt. PLoS One 2013; 8:e75440. [PMID: 24098385 PMCID: PMC3788799 DOI: 10.1371/journal.pone.0075440] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 08/14/2013] [Indexed: 12/13/2022] Open
Abstract
The renin-angiotensin system expressed in adipose tissue has been implicated in the modulation of adipocyte formation, glucose metabolism, triglyceride accumulation, lipolysis, and the onset of the adverse metabolic consequences of obesity. As we investigated angiotensin II signal transduction mechanisms in human preadipose cells, an interplay of extracellular-signal-regulated kinases 1 and 2 (ERK1,2) and Akt/PKB became evident. Angiotensin II caused attenuation of phosphorylated Akt (p-Akt), at serine 473; the p-Akt/Akt ratio decreased to 0.5±0.2-fold the control value without angiotensin II (p<0.001). Here we report that the reduction of phosphorylated Akt associates with ERK1,2 activities. In the absence of angiotensin II, inhibition of ERK1,2 activation with U0126 or PD98059 resulted in a 2.1±0.5 (p<0.001) and 1.4±0.2-fold (p<0.05) increase in the p-Akt/Akt ratio, respectively. In addition, partial knockdown of ERK1 protein expression by the short hairpin RNA technique also raised phosphorylated Akt in these cells (the p-Akt/Akt ratio was 1.5±0.1-fold the corresponding control; p<0.05). Furthermore, inhibition of ERK1,2 activation with U0126 prevented the reduction of p-Akt/Akt by angiotensin II. An analogous effect was found on the phosphorylation status of Akt downstream effectors, the forkhead box (Fox) proteins O1 and O4. Altogether, these results indicate that angiotensin II signaling in human preadipose cells involves an ERK1,2-dependent attenuation of Akt activity, whose impact on the biological functions under its regulation is not fully understood.
Collapse
Affiliation(s)
- Natalia Dünner
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Carolina Quezada
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - F. Andrés Berndt
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - José Cánovas
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Cecilia V. Rojas
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Institute of Nutrition and Food Technology, Universidad de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
25
|
Chatenet D, Létourneau M, Nguyen QT, Doan ND, Dupuis J, Fournier A. Discovery of new antagonists aimed at discriminating UII and URP-mediated biological activities: insight into UII and URP receptor activation. Br J Pharmacol 2013; 168:807-21. [PMID: 22994258 DOI: 10.1111/j.1476-5381.2012.02217.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 08/15/2012] [Accepted: 08/27/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Recent evidence suggested that urotensin II (UII) and its paralog peptide UII-related peptide (URP) might exert common but also divergent physiological actions. Unfortunately, none of the existing antagonists were designed to discriminate specific UII- or URP-associated actions, and our understanding, on how these two endogenous peptides can trigger different, but also common responses, is limited. EXPERIMENTAL APPROACH Ex vivo rat and monkey aortic ring contraction as well as dissociation kinetics studies using transfected CHO cells expressing the human urotensin (UT) receptors were used in this study. KEY RESULTS Ex vivo rat and monkey aortic ring contraction studies revealed the propensity of [Pep(4)]URP to decrease the maximal response of human UII (hUII) without any significant change in potency, whereas no effect was noticeable on the URP-induced vasoconstriction. Dissociation experiments demonstrated the ability of [Pep(4)]URP to increase the dissociation rate of hUII, but not URP. Surprisingly, URP, an equipotent UII paralog, was also able to accelerate the dissociation rate of membrane-bound (125)I-hUII, whereas hUII had no noticeable effect on URP dissociation kinetics. Further experiments suggested that an interaction between the glutamic residue at position 1 of hUII and the UT receptor seems to be critical to induce conformational changes associated with agonistic activation. Finally, we demonstrated that the N-terminal domain of the rat UII isoform was able to act as a specific antagonist of the URP-associated actions. CONCLUSION Such compounds, that is [Pep(4)]URP and rUII(1-7), should prove to be useful as new pharmacological tools to decipher the specific role of UII and URP in vitro but also in vivo.
Collapse
Affiliation(s)
- D Chatenet
- Laboratoire d'études moléculaires et pharmacologiques des peptides, Université du Québec, INRS-Institut Armand-Frappier, Ville de Laval, QC, Canada.
| | | | | | | | | | | |
Collapse
|
26
|
Michel MC, Foster C, Brunner HR, Liu L. A systematic comparison of the properties of clinically used angiotensin II type 1 receptor antagonists. Pharmacol Rev 2013; 65:809-48. [PMID: 23487168 DOI: 10.1124/pr.112.007278] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Angiotensin II type 1 receptor antagonists (ARBs) have become an important drug class in the treatment of hypertension and heart failure and the protection from diabetic nephropathy. Eight ARBs are clinically available [azilsartan, candesartan, eprosartan, irbesartan, losartan, olmesartan, telmisartan, valsartan]. Azilsartan (in some countries), candesartan, and olmesartan are orally administered as prodrugs, whereas the blocking action of some is mediated through active metabolites. On the basis of their chemical structures, ARBs use different binding pockets in the receptor, which are associated with differences in dissociation times and, in most cases, apparently insurmountable antagonism. The physicochemical differences between ARBs also manifest in different tissue penetration, including passage through the blood-brain barrier. Differences in binding mode and tissue penetration are also associated with differences in pharmacokinetic profile, particularly duration of action. Although generally highly specific for angiotensin II type 1 receptors, some ARBs, particularly telmisartan, are partial agonists at peroxisome proliferator-activated receptor-γ. All of these properties are comprehensively reviewed in this article. Although there is general consensus that a continuous receptor blockade over a 24-hour period is desirable, the clinical relevance of other pharmacological differences between individual ARBs remains to be assessed.
Collapse
Affiliation(s)
- Martin C Michel
- Department of Clinical Development & Medical Affairs, Boehringer Ingelheim, 55216 Ingelheim, Germany.
| | | | | | | |
Collapse
|
27
|
Abstract
Heart failure (HF) is a vicious circle in which an original insult leading to mechanical cardiac dysfunction initiates multiple morphological, biochemical and molecular pathological alterations referred to as cardiac remodelling. Remodelling leads to further deterioration of cardiac function and functional reserve. Interrupting or reversing cardiac remodelling is a major therapeutic goal of HF therapies. The role of molecules and molecular pathways in cardiac remodelling and HF has been extensively studied. Multiple approaches are now used or investigated in HF therapy, including pharmacological therapy, device therapy, gene therapy, cell therapy and biological therapy targeting cytokines and growth factors. This review explores the molecular targets and molecular bases of current and prospective therapies in HF.
Collapse
Affiliation(s)
- Elie R Chemaly
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
28
|
Brueckner F, Piscitelli CL, Tsai CJ, Standfuss J, Deupi X, Schertler GFX. Structure of β-adrenergic receptors. Methods Enzymol 2013; 520:117-51. [PMID: 23332698 DOI: 10.1016/b978-0-12-391861-1.00006-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
β-Adrenergic receptors (βARs) control key physiological functions by transducing signals encoded in catecholamine hormones and neurotransmitters to activate intracellular signaling pathways. As members of the large family of G protein-coupled receptors (GPCRs), βARs have a seven-transmembrane helix topology and signal via G protein- and arrestin-dependent pathways. Until 2007, three-dimensional structural information of GPCRs activated by diffusible ligands, including βARs, was limited to homology models that used the related photoreceptor rhodopsin as a template. Over many years, several labs have developed strategies that have finally allowed the structures of the turkey β(1)AR and the human β(2)AR to be determined experimentally. The challenges to overcome included heterologous receptor overexpression, design of stabilized and crystallizable modified receptor constructs, ligand-affinity purification of active receptor and the development of novel techniques in crystallization and microcrystallography. The structures of βARs in complex with inverse agonists, antagonists, and agonists have revealed the binding mode of ligands with different efficacies, have allowed to obtain insights into ligand selectivity, and have provided better templates for drug design. Also, the structures of β(2)AR in complex with a G protein and a G protein-mimicking nanobody have provided important insights into the mechanism of receptor activation and G protein coupling. This chapter summarizes the strategies and methods that have been successfully applied to the structural studies of βARs. These are exemplified with detailed protocols toward the structure determination of stabilized turkey β(1)AR-ligand complexes. We also discuss the spectacular insights into adrenergic receptor function that were obtained from the structures.
Collapse
Affiliation(s)
- Florian Brueckner
- Laboratory of Biomolecular Research, Paul Scherrer Institut, Villigen PSI, Switzerland
| | | | | | | | | | | |
Collapse
|
29
|
Kamal FA, Travers JG, Blaxall BC. G protein-coupled receptor kinases in cardiovascular disease: why "where" matters. Trends Cardiovasc Med 2012; 22:213-9. [PMID: 23062971 DOI: 10.1016/j.tcm.2012.07.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cardiac function is mainly controlled by β-adrenergic receptors (β-ARs), members of the G protein-coupled receptor (GPCR) family. GPCR signaling and expression are tightly controlled by G protein-coupled receptor kinases (GRKs), which induce GPCR internalization and signal termination through phosphorylation. Reduced β-AR density and activity associated with elevated cardiac GRK expression and activity have been described in various cardiovascular diseases. Moreover, alterations in extracardiac GRKs have been observed in blood vessels, adrenal glands, kidneys, and fat cells. The broad tissue distribution of GPCRs and GRKs suggests that a keen appreciation of integrative physiology may drive future therapeutic development. In this review, we provide a brief summary of GRK isoforms, subcellular localization, and interacting partners that impinge directly or indirectly on the cardiovascular system. We also discuss GRK/GPCR interactions and their implications in cardiovascular pathophysiology.
Collapse
Affiliation(s)
- Fadia A Kamal
- The Heart Institute, Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | |
Collapse
|
30
|
Functional selectivity of adenosine A1 receptor ligands? Purinergic Signal 2012; 9:91-100. [PMID: 23054444 DOI: 10.1007/s11302-012-9334-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 09/10/2012] [Indexed: 02/06/2023] Open
Abstract
The concept of functional selectivity offers great potential for the development of drugs that selectively activate a specific intracellular signaling pathway. During the last few years, it has become possible to systematically analyse compound libraries on G protein-coupled receptors (GPCRs) for this 'biased' form of signaling. We screened over 800 compounds targeting the class of adenosine A(1) receptors using a β-arrestin-mediated signaling assay in U2OS cells as a G protein-independent readout for GPCR activation. A selection of compounds was further analysed in a G protein-mediated GTPγS assay. Additionally, receptor affinity of these compounds was determined in a radioligand binding assay with the agonist [(3)H]CCPA. Of all compounds tested, only LUF5589 9 might be considered as functionally selective for the G protein-dependent pathway, particularly in view of a likely overestimation of β-arrestin signaling in the U2OS cells. Altogether, our study shows that functionally selective ligands for the adenosine A(1) receptor are rare, if existing at all. A thorough analysis of biased signaling on other GPCRs also reveals that only very few compounds can be considered functionally selective. This might indicate that the concept of functional selectivity is less common than speculated.
Collapse
|
31
|
Kim KS, Abraham D, Williams B, Violin JD, Mao L, Rockman HA. β-Arrestin-biased AT1R stimulation promotes cell survival during acute cardiac injury. Am J Physiol Heart Circ Physiol 2012; 303:H1001-10. [PMID: 22886417 DOI: 10.1152/ajpheart.00475.2012] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Pharmacological blockade of the ANG II type 1 receptor (AT1R) is a common therapy for treatment of congestive heart failure and hypertension. Increasing evidence suggests that selective engagement of β-arrestin-mediated AT1R signaling, referred to as biased signaling, promotes cardioprotective signaling. Here, we tested the hypothesis that a β-arrestin-biased AT1R ligand TRV120023 would confer cardioprotection in response to acute cardiac injury compared with the traditional AT1R blocker (ARB), losartan. TRV120023 promotes cardiac contractility, assessed by pressure-volume loop analyses, while blocking the effects of endogenous ANG II. Compared with losartan, TRV120023 significantly activates MAPK and Akt signaling pathways. These hemodynamic and biochemical effects were lost in β-arrestin-2 knockout (KO) mice. In response to cardiac injury induced by ischemia reperfusion injury or mechanical stretch, pretreatment with TRV120023 significantly diminishes cell death compared with losartan, which did not appear to be cardioprotective. This cytoprotective effect was lost in β-arrestin-2 KO mice. The β-arrestin-biased AT1R ligand, TRV120023, has cardioprotective and functional properties in vivo, which are distinct from losartan. Our data suggest that this novel class of drugs may provide an advantage over conventional ARBs by supporting cardiac function and reducing cellular injury during acute cardiac injury.
Collapse
Affiliation(s)
- Ki-Seok Kim
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
32
|
Wainford RD, Kapusta DR. Functional selectivity of central Gα-subunit proteins in mediating the cardiovascular and renal excretory responses evoked by central α(2) -adrenoceptor activation in vivo. Br J Pharmacol 2012; 166:210-20. [PMID: 21895632 DOI: 10.1111/j.1476-5381.2011.01662.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND AND PURPOSE Activation of brain α(2) -adrenoceptors in conscious rodents decreases heart rate (HR) and mean arterial blood pressure (MAP) and increases urine output and urinary sodium excretion. In vitro, α(2) -adrenoceptor stimulation activates Gα(i(1-3)) , Gα(o) and Gα(s) -subunit protein-gated signal transduction pathways. Here we have investigated whether these same Gα-subunit protein-gated pathways mediate the cardiovascular and renal excretory responses to central α(2) -adrenoceptor activation in conscious Sprague-Dawley rats. EXPERIMENTAL APPROACH Rats were pre-treated by intracerebroventricular injection (i.c.v.) with an oligodeoxynucleotide (ODN) targeted to a Gα(i1) , Gα(i2) , Gα(i3) , Gα(o) , Gα(s) or a scrambled (SCR) ODN sequence (25 µg, 24 h). On the day of study, the α(2) -adrenoceptor agonist guanabenz (50 µg) or saline vehicle, was injected i.c.v. into ODN-pre-treated conscious rats. MAP and HR were recorded, and urine was collected for 150 min. KEY RESULTS In vehicle- and SCR ODN-pre-treated rats, i.c.v. guanabenz decreased MAP and HR, and produced marked diuretic and natriuretic responses. Selective ODN-mediated down-regulation of brain Gα(i2) -subunit proteins abolished the central guanabenz-induced hypotension and natriuresis. In contrast, following selective Gα(s) down-regulation, the characteristic hypotensive response to i.c.v. guanabenz was converted to an immediate increase in MAP. The bradycardic and diuretic responses to i.c.v. guanabenz were not blocked by pre-treatment with any ODN. CONCLUSIONS AND IMPLICATIONS There was functional selectivity of Gα(i2) and Gα(s) subunit protein-gated signal transduction pathways in mediating the hypotensive and natriuretic, but not bradycardic or diuretic, responses evoked by central α(2) -adrenoceptor activation in vivo.
Collapse
Affiliation(s)
- R D Wainford
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| | | |
Collapse
|
33
|
Doan ND, Nguyen TTM, Létourneau M, Turcotte K, Fournier A, Chatenet D. Biochemical and pharmacological characterization of nuclear urotensin-II binding sites in rat heart. Br J Pharmacol 2012; 166:243-57. [PMID: 22044114 DOI: 10.1111/j.1476-5381.2011.01710.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND AND PURPOSE During the past decade, a few GPCRs have been characterized at the nuclear membrane where they exert complementary physiological functions. In this study, we investigated (1) the presence of a functional urotensin-II (U-II) receptor (UT) in rat heart nuclear extracts and (2) the propensity of U-II and U-II-related peptide (URP) to cross the plasma membrane in a receptor-independent manner. EXPERIMENTAL APPROACH Biochemical and pharmacological methods including competitive binding assays, photoaffinity labelling, immunoblotting as well as de novo RNA synthesis were used to characterize the presence of functional UT receptors in rat heart nuclei. In addition, confocal microscopy and flow cytometry analysis were used to investigate the cellular uptake of fluorescent U-II and URP derivatives. KEY RESULTS The presence of specific U-II binding sites was demonstrated in rat heart nuclear extracts. Moreover, such subcellular localization was also observed in monkey heart extracts. In vitro transcription initiation assays on rat, freshly isolated, heart nuclei suggested that nuclear UT receptors are functional, and that U-II, but not URP, participates in nuclear UT-associated gene expression. Surprisingly, hU-II and URP efficiently crossed the plasma membrane in a receptor-independent mechanism involving endocytosis through caveolin-coated pits; this uptake of hU-II, but not that of URP, was dependent on extracellular pH. CONCLUSION Our results suggest that (1) U-II and URP can differentially modulate nuclear UT functions such as gene expression, and (2) both ligands can reach the internal cellular space through a receptor-independent mechanism.
Collapse
Affiliation(s)
- N D Doan
- Université du Québec, INRS - Institut Armand-Frappier, Ville de Laval, QC, Canada
| | | | | | | | | | | |
Collapse
|
34
|
Belmonte SL, Blaxall BC. Conducting the G-protein Coupled Receptor (GPCR) Signaling Symphony in Cardiovascular Diseases: New Therapeutic Approaches. ACTA ACUST UNITED AC 2012; 9:e85-e90. [PMID: 23162605 DOI: 10.1016/j.ddmod.2012.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
G protein-coupled receptors (GPCRs) are a virtually ubiquitous class of membrane-bound receptors, which functionally couple hormone or neurotransmitter signals to physiological responses. Dysregulation of GPCR signaling contributes to the pathophysiology of a host of cardiovascular disorders. Pharmacological agents targeting GPCRs have been established as therapeutic options for decades. Nevertheless, the persistent burden of cardiovascular diseases necessitates improved treatments. To that end, exciting drug development efforts have begun to focus on novel compounds that discriminately activate particular GPCR signaling pathways.
Collapse
Affiliation(s)
- Stephen L Belmonte
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | | |
Collapse
|
35
|
Mohan ML, Vasudevan NT, Gupta MK, Martelli EE, Naga Prasad SV. G-protein coupled receptor resensitization-appreciating the balancing act of receptor function. Curr Mol Pharmacol 2012:CMP-EPUB-20120530-2. [PMID: 22697395 PMCID: PMC4607669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 11/22/2011] [Accepted: 11/28/2011] [Indexed: 06/01/2023]
Abstract
G-protein coupled receptors (GPCRs) are seven transmembrane receptors that are pivotal regulators of cellular responses including vision, cardiac contractility, olfaction, and platelet activation. GPCRs have been a major target for drug discovery due to their role in regulating a broad range of physiological and pathological responses. GPCRs mediate these responses through a cyclical process of receptor activation (initiation of downstream signals), desensitization (inactivation that results in diminution of downstream signals), and resensitization (receptor reactivation for next wave of activation). Although these steps may be of equal importance in regulating receptor function, significant advances have been made in understanding activation and desensitization with limited effort towards resensitization. Inadequate importance has been given to resensitization due to the understanding that resensitization is a homeostasis maintaining process and is not acutely regulated. Evidence indicates that resensitization is a critical step in regulating GPCR function and may contribute towards receptor signaling and cellular responses. In light of these observations, it is imperative to discuss resensitization as a dynamic and mechanistic regulator of GPCR function. In this review we discuss components regulating GPCR function like activation, desensitization, and internalization with special emphasis on resensitization. Although we have used β-adrenergic receptor as a proto-type GPCR to discuss mechanisms regulating receptor function, other GPCRs are also described to put forth a view point on the universality of such mechanisms.
Collapse
Affiliation(s)
- Maradumane L Mohan
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, 44195.
| | | | | | | | | |
Collapse
|
36
|
Baker DG, Nievergelt CM, O'Connor DT. Biomarkers of PTSD: Neuropeptides and immune signaling. Neuropharmacology 2012; 62:663-73. [DOI: 10.1016/j.neuropharm.2011.02.027] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 02/23/2011] [Accepted: 02/27/2011] [Indexed: 02/07/2023]
|
37
|
Chatenet D, Nguyen TTM, Létourneau M, Fournier A. Update on the urotensinergic system: new trends in receptor localization, activation, and drug design. Front Endocrinol (Lausanne) 2012; 3:174. [PMID: 23293631 PMCID: PMC3533682 DOI: 10.3389/fendo.2012.00174] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 12/10/2012] [Indexed: 12/17/2022] Open
Abstract
The urotensinergic system plays central roles in the physiological regulation of major mammalian organ systems, including the cardiovascular system. As a matter of fact, this system has been linked to numerous pathophysiological states including atherosclerosis, heart failure, hypertension, diabetes as well as psychological, and neurological disorders. The delineation of the (patho)physiological roles of the urotensinergic system has been hampered by the absence of potent and selective antagonists for the urotensin II-receptor (UT). Thus, a more precise definition of the molecular functioning of the urotensinergic system, in normal conditions as well as in a pathological state is still critically needed. The recent discovery of nuclear UT within cardiomyocytes has highlighted the cellular complexity of this system and suggested that UT-associated biological responses are not only initiated at the cell surface but may result from the integration of extracellular and intracellular signaling pathways. Thus, such nuclear-localized receptors, regulating distinct signaling pathways, may represent new therapeutic targets. With the recent observation that urotensin II (UII) and urotensin II-related peptide (URP) exert different biological effects and the postulate that they could also have distinct pathophysiological roles in hypertension, it appears crucial to reassess the recognition process involving UII and URP with UT, and to push forward the development of new analogs of the UT system aimed at discriminating UII- and URP-mediated biological activities. The recent development of such compounds, i.e. urocontrin A and rUII(1-7), is certainly useful to decipher the specific roles of UII and URP in vitro and in vivo. Altogether, these studies, which provide important information regarding the pharmacology of the urotensinergic system and the conformational requirements for binding and activation, will ultimately lead to the development of potent and selective drugs.
Collapse
Affiliation(s)
- David Chatenet
- Laboratoire d'études moléculaires et pharmacologiques des peptides, INRS – Institut Armand-Frappier, Université du Québec, Ville de LavalQC, Canada
- Laboratoire International Associé Samuel de Champlain (INSERM/INRS-Université de Rouen)France
- *Correspondence: David Chatenet and Alain Fournier, Laboratoire d'études moléculaires et pharmacologiques des peptides, INRS – Institut Armand-Frappier, Université du Québec, 531 Boulevard des Prairies, Ville de Laval, QC H7V 1B7, Canada. e-mail: ;
| | - Thi-Tuyet M. Nguyen
- Laboratoire d'études moléculaires et pharmacologiques des peptides, INRS – Institut Armand-Frappier, Université du Québec, Ville de LavalQC, Canada
- Laboratoire International Associé Samuel de Champlain (INSERM/INRS-Université de Rouen)France
| | - Myriam Létourneau
- Laboratoire d'études moléculaires et pharmacologiques des peptides, INRS – Institut Armand-Frappier, Université du Québec, Ville de LavalQC, Canada
- Laboratoire International Associé Samuel de Champlain (INSERM/INRS-Université de Rouen)France
| | - Alain Fournier
- Laboratoire d'études moléculaires et pharmacologiques des peptides, INRS – Institut Armand-Frappier, Université du Québec, Ville de LavalQC, Canada
- Laboratoire International Associé Samuel de Champlain (INSERM/INRS-Université de Rouen)France
- *Correspondence: David Chatenet and Alain Fournier, Laboratoire d'études moléculaires et pharmacologiques des peptides, INRS – Institut Armand-Frappier, Université du Québec, 531 Boulevard des Prairies, Ville de Laval, QC H7V 1B7, Canada. e-mail: ;
| |
Collapse
|
38
|
Meier KE. Arrestins as signaling modulators: the plot thickens: focus on "Arrestins 2 and 3 differentially regulate ETA and P2Y2 receptor-mediated cell signaling and migration in arterial smooth muscle". Am J Physiol Cell Physiol 2011; 302:C721-2. [PMID: 22189554 DOI: 10.1152/ajpcell.00444.2011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
39
|
Zhang Y, Hong H, Myklejord DV, Cai W. Molecular imaging with SERS-active nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:3261-9. [PMID: 21932216 PMCID: PMC3228876 DOI: 10.1002/smll.201100597] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 07/11/2011] [Indexed: 05/17/2023]
Abstract
Raman spectroscopy has been explored for various biomedical applications (e.g., cancer diagnosis) because it can provide detailed information on the chemical composition of cells and tissues. For imaging applications, several variations of Raman spectroscopy have been developed to enhance its sensitivity. To date, a wide variety of molecular targets and biological events have been investigated using surface-enhanced Raman scattering (SERS)-active nanoparticles. The superb multiplexing capability of SERS-based Raman imaging, already successfully demonstrated in live animals, can be extremely powerful in future research where different agents can be attached to different Raman tags to enable the simultaneous interrogation of multiple biological events. Over the last several years, molecular imaging with SERS-active nanoparticles has advanced significantly and many pivotal proof-of-principle experiments have been successfully carried out. It is expected that SERS-based imaging will continue to be a dynamic research field over the next decade.
Collapse
Affiliation(s)
| | | | | | - Weibo Cai
- Requests for reprints: Weibo Cai, PhD, Departments of Radiology and Medical Physics, University of Wisconsin - Madison, Room 7137, 1111 Highland Ave, Madison, WI 53705-2275, USA. ; Fax: 1-608-265-0614; Tel: 1-608-262-1749
| |
Collapse
|
40
|
Abstract
The title of the proposed series of reviews is Translational Success Stories. The definition of "translation" according to Webster is, "an act, process, or instance of translating as a rendering of one language into another." In the context of this inaugural review, it is the translation of Tigerstedt's and Bergman's(1) discovery in 1898 of the vasoconstrictive effects of an extract of rabbit kidney to the treatment of heart failure. As recounted by Marks and Maxwell,(2) their discovery was heavily influenced by the original experiments of the French physiologist Brown-Séquard, who was the author of the doctrine that "many organs dispense substances into the blood which are not ordinary waste products, but have specific functions." They were also influenced by Bright's(3) original observation that linked kidney disease with hypertension with the observation that patients dying with contracted kidneys often exhibited a hard, full pulse and cardiac hypertrophy. However, from Tigerstedt's initial discovery, there was a long and arduous transformation of ideas and paradigms that eventually translated to clinical applications. Although the role of the renin-angiotensin system in the pathophysiology of hypertension and heart failure was suspected through the years, beneficial effects from its blockade were not realized until the early 1970s. Thus, this story starts with a short historical perspective that provides the reader some insight and appreciation into the long delay in translation.
Collapse
Affiliation(s)
- Louis J Dell'Italia
- Birmingham Veteran Affairs Medical Center, Department of Medicine, Division of Cardiovascular Disease, University Station, University of Alabama, Birmingham, USA.
| |
Collapse
|
41
|
Tilley DG. Functional relevance of biased signaling at the angiotensin II type 1 receptor. Endocr Metab Immune Disord Drug Targets 2011; 11:99-111. [PMID: 21476968 DOI: 10.2174/187153011795564133] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 02/07/2011] [Indexed: 01/04/2023]
Abstract
Angiotensin II type 1 receptor antagonists (AT1R blockers, or ARBs) are used commonly in the treatment of cardiovascular disorders such as heart failure and hypertension. Their clinical success arises from their ability to prevent deleterious Gα(q) protein activation downstream of AT1R, which leads to a decrease in morbidity and mortality. Recent studies have identified AT1R ligands that concurrently inhibit Gα(q) protein-dependent signaling and activate Gα(q) protein-independent/β-arrestin-dependent signaling downstream of AT1R, events that may actually improve cardiovascular performance more than conventional ARBs. The ability of such ligands to induce intracellular signaling events in an AT1R-β-arrestin-dependent manner while preventing AT1R-Gα(q) protein activity defines them as biased AT1R ligands. This mini-review will highlight recent studies that have defined biased signaling at the AT1R and discuss the possible clinical relevance of β-arrestin-biased AT1R ligands in the cardiovascular system.
Collapse
Affiliation(s)
- Douglas G Tilley
- Department of Pharmaceutical Sciences, Jefferson School of Pharmacy, Thomas Jefferson University, Philadelphia, PA 1917, USA.
| |
Collapse
|
42
|
Abstract
G protein-coupled receptors (GPCRs) represent the largest family of membrane receptors and are responsible for regulating a wide variety of physiological processes. This is accomplished via ligand binding to GPCRs, activating associated heterotrimeric G proteins and intracellular signaling pathways. G protein-coupled receptor kinases (GRKs), in concert with β-arrestins, classically desensitize receptor signal transduction, thus preventing hyperactivation of GPCR second-messenger cascades. As changes in GRK expression have featured prominently in many cardiovascular pathologies, including heart failure, myocardial infarction, hypertension, and cardiac hypertrophy, GRKs have been intensively studied as potential diagnostic or therapeutic targets. Herein, we review our evolving understanding of the role of GRKs in cardiovascular pathophysiology.
Collapse
Affiliation(s)
- Stephen L Belmonte
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | |
Collapse
|
43
|
Vaniotis G, Allen BG, Hébert TE. Nuclear GPCRs in cardiomyocytes: an insider's view of β-adrenergic receptor signaling. Am J Physiol Heart Circ Physiol 2011; 301:H1754-64. [PMID: 21890692 DOI: 10.1152/ajpheart.00657.2011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In recent years, we have come to appreciate the complexity of G protein-coupled receptor signaling in general and β-adrenergic receptor (β-AR) signaling in particular. Starting originally from three β-AR subtypes expressed in cardiomyocytes with relatively simple, linear signaling cascades, it is now clear that there are large receptor-based networks which provide a rich and diverse set of responses depending on their complement of signaling partners and the physiological state. More recently, it has become clear that subcellular localization of these signaling complexes also enriches the diversity of phenotypic outcomes. Here, we review our understanding of the signaling repertoire controlled by nuclear β-AR subtypes as well our understanding of the novel roles for G proteins themselves in the nucleus, with a special focus, where possible, on their effects in cardiomyocytes. Finally, we discuss the potential pathological implications of alterations in nuclear β-AR signaling.
Collapse
|
44
|
Verzijl D, IJzerman AP. Functional selectivity of adenosine receptor ligands. Purinergic Signal 2011; 7:171-92. [PMID: 21544511 PMCID: PMC3146648 DOI: 10.1007/s11302-011-9232-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 04/05/2011] [Indexed: 12/11/2022] Open
Abstract
Adenosine receptors are plasma membrane proteins that transduce an extracellular signal into the interior of the cell. Basically every mammalian cell expresses at least one of the four adenosine receptor subtypes. Recent insight in signal transduction cascades teaches us that the current classification of receptor ligands into agonists, antagonists, and inverse agonists relies very much on the experimental setup that was used. Upon activation of the receptors by the ubiquitous endogenous ligand adenosine they engage classical G protein-mediated pathways, resulting in production of second messengers and activation of kinases. Besides this well-described G protein-mediated signaling pathway, adenosine receptors activate scaffold proteins such as β-arrestins. Using innovative and sensitive experimental tools, it has been possible to detect ligands that preferentially stimulate the β-arrestin pathway over the G protein-mediated signal transduction route, or vice versa. This phenomenon is referred to as functional selectivity or biased signaling and implies that an antagonist for one pathway may be a full agonist for the other signaling route. Functional selectivity makes it necessary to redefine the functional properties of currently used adenosine receptor ligands and opens possibilities for new and more selective ligands. This review focuses on the current knowledge of functionally selective adenosine receptor ligands and on G protein-independent signaling of adenosine receptors through scaffold proteins.
Collapse
Affiliation(s)
- Dennis Verzijl
- Division of Medicinal Chemistry, Leiden/Amsterdam Center for Drug Research, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Ad P. IJzerman
- Division of Medicinal Chemistry, Leiden/Amsterdam Center for Drug Research, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
45
|
Kamal FA, Smrcka AV, Blaxall BC. Taking the heart failure battle inside the cell: small molecule targeting of Gβγ subunits. J Mol Cell Cardiol 2011; 51:462-7. [PMID: 21256851 DOI: 10.1016/j.yjmcc.2011.01.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Revised: 01/09/2011] [Accepted: 01/11/2011] [Indexed: 10/18/2022]
Abstract
Heart failure (HF) is devastating disease with poor prognosis. Elevated sympathetic nervous system activity and outflow, leading to pathologic attenuation and desensitization of β-adrenergic receptors (β-ARs) signaling and responsiveness, are salient characteristic of HF progression. These pathologic effects on β-AR signaling and HF progression occur in part due to Gβγ-mediated signaling, including recruitment of receptor desensitizing kinases such as G-protein coupled receptor (GPCR) kinase 2 (GRK2) and phosphoinositide 3-kinase (PI3K), which subsequently phosphorylate agonist occupied GPCRs. Additionally, chronic GPCR signaling signals chronically dissociated Gβγ subunits to interact with multiple effector molecules that activate various signaling cascades involved in HF pathophysiology. Importantly, targeting Gβγ signaling with large peptide inhibitors has proven a promising therapeutic paradigm in the treatment of HF. We recently described an approach to identify small molecule Gβγ inhibitors that selectively block particular Gβγ functions by specifically targeting a Gβγ protein-protein interaction "hot spot." Here we describe their effects on Gβγ downstream signaling pathways, including their role in HF pathophysiology. We suggest a promising therapeutic role for small molecule inhibition of pathologic Gβγ signaling in the treatment of HF. This article is part of a special issue entitled "Key Signaling Molecules in Hypertrophy and Heart Failure."
Collapse
Affiliation(s)
- Fadia A Kamal
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | | | | |
Collapse
|
46
|
Shenoy SK. β-arrestin-biased signaling by the β-adrenergic receptors. CURRENT TOPICS IN MEMBRANES 2011; 67:51-78. [PMID: 21771485 DOI: 10.1016/b978-0-12-384921-2.00003-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Sudha K Shenoy
- Departments of Medicine and Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|