1
|
Adornetto A, Laganà ML, Satriano A, Licastro E, Corasaniti MT, Bagetta G, Russo R. The Antidepressant Drug Amitriptyline Affects Human SH-SY5Y Neuroblastoma Cell Proliferation and Modulates Autophagy. Int J Mol Sci 2024; 25:10415. [PMID: 39408742 PMCID: PMC11476963 DOI: 10.3390/ijms251910415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Amitriptyline is a tricyclic antidepressant commonly used for depressive disorders and is prescribed off-label for several neurological conditions like neuropathic pain, migraines and anxiety. Besides their action on the reuptake of monoaminergic neurotransmitters, tricyclic antidepressants interact with several additional targets that may contribute to either therapeutic or adverse effects. Here, we investigated the effects of amitriptyline on proliferation and autophagy (i.e., an evolutionarily conserved catabolic pathway responsible for the degradation and recycling of cytoplasmic material) in human SH-SY5Y neuroblastoma cell cultures. The dose and time-dependent upregulation of the autophagy marker LC3II and the autophagy receptor p62, with the accumulation of LAMP1 positive compartments, were observed in SH-SY5Y cells exposed to the amitriptyline. These effects were accompanied by reduced cell viability and decreased clonogenic capacity, without a significant induction of apoptosis. Decrease viability and clonogenic activity were still observed in autophagy deficient Atg5-/- MEF and following pre-treatment of SH-SY5Y culture with the autophagy inhibitor chloroquine, suggesting that they were independent from autophagy modulation. Our findings demonstrate that amitriptyline acts on pathways crucial for cell and tissue homeostasis (i.e., autophagy and proliferation) and pose the basis for further studies on the potential therapeutic application of amitriptyline, as well as the consequences of its use for long-term treatments.
Collapse
Affiliation(s)
- Annagrazia Adornetto
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (A.A.); (G.B.)
| | - Maria Luisa Laganà
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (A.A.); (G.B.)
| | - Andrea Satriano
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (A.A.); (G.B.)
| | - Ester Licastro
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (A.A.); (G.B.)
| | - Maria Tiziana Corasaniti
- School of Hospital Pharmacy, Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Giacinto Bagetta
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (A.A.); (G.B.)
| | - Rossella Russo
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (A.A.); (G.B.)
| |
Collapse
|
2
|
Abady MM, Jeong JS, Kwon HJ, Assiri AM, Cho J, Saadeldin IM. The reprotoxic adverse side effects of neurogenic and neuroprotective drugs: current use of human organoid modeling as a potential alternative to preclinical models. Front Pharmacol 2024; 15:1412188. [PMID: 38948466 PMCID: PMC11211546 DOI: 10.3389/fphar.2024.1412188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/29/2024] [Indexed: 07/02/2024] Open
Abstract
The management of neurological disorders heavily relies on neurotherapeutic drugs, but notable concerns exist regarding their possible negative effects on reproductive health. Traditional preclinical models often fail to accurately predict reprotoxicity, highlighting the need for more physiologically relevant systems. Organoid models represent a promising approach for concurrently studying neurotoxicity and reprotoxicity, providing insights into the complex interplay between neurotherapeutic drugs and reproductive systems. Herein, we have examined the molecular mechanisms underlying neurotherapeutic drug-induced reprotoxicity and discussed experimental findings from case studies. Additionally, we explore the utility of organoid models in elucidating the reproductive complications of neurodrug exposure. Have discussed the principles of organoid models, highlighting their ability to recapitulate neurodevelopmental processes and simulate drug-induced toxicity in a controlled environment. Challenges and future perspectives in the field have been addressed with a focus on advancing organoid technologies to improve reprotoxicity assessment and enhance drug safety screening. This review underscores the importance of organoid models in unraveling the complex relationship between neurotherapeutic drugs and reproductive health.
Collapse
Affiliation(s)
- Mariam M. Abady
- Organic Metrology Group, Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon, Republic of Korea
- Department of Nutrition and Food Science, National Research Centre, Cairo, Egypt
| | - Ji-Seon Jeong
- Organic Metrology Group, Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon, Republic of Korea
| | - Ha-Jeong Kwon
- Organic Metrology Group, Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | - Abdullah M. Assiri
- Deperament of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Jongki Cho
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Islam M. Saadeldin
- Deperament of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Zhu C, Lu Y, Wang S, Song J, Ding Y, Wang Y, Dong C, Liu J, Qiu W, Qi W. Nortriptyline hydrochloride, a potential candidate for drug repurposing, inhibits gastric cancer by inducing oxidative stress by triggering the Keap1-Nrf2 pathway. Sci Rep 2024; 14:6050. [PMID: 38480798 PMCID: PMC10937941 DOI: 10.1038/s41598-024-56431-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/06/2024] [Indexed: 03/17/2024] Open
Abstract
Effective drugs for the treatment of gastric cancer (GC) are still lacking. Nortriptyline Hydrochloride (NTP), a commonly used antidepressant medication, has been demonstrated by numerous studies to have antitumor effects. This study first validated the ability of NTP to inhibit GC and preliminarily explored its underlying mechanism. To begin with, NTP inhibits the activity of AGS and HGC27 cells (Human-derived GC cells) in a dose-dependent manner, as well as proliferation, cell cycle, and migration. Moreover, NTP induces cell apoptosis by upregulating BAX, BAD, and c-PARP and downregulating PARP and Bcl-2 expression. Furthermore, the mechanism of cell death caused by NTP is closely related to oxidative stress. NTP increases intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) levels, decreasing the mitochondrial membrane potential (MMP) and inducing glucose (GSH) consumption. While the death of GC cells can be partially rescued by ROS inhibitor N-acetylcysteine (NAC). Mechanistically, NTP activates the Kelch-like ECH-associated protein (Keap1)-NF-E2-related factor 2 (Nrf2) pathway, which is an important pathway involved in oxidative stress. RNA sequencing and proteomics analysis further revealed molecular changes at the mRNA and protein levels and provided potential targets and pathways through differential gene expression analysis. In addition, NTP can inhibited tumor growth in nude mouse subcutaneous tumor models constructed respectively using AGS and MFC (mouse-derived GC cells), providing preliminary evidence of its effectiveness in vivo. In conclusion, our study demonstrated that NTP exhibits significant anti-GC activity and is anticipated to be a candidate for drug repurposing.
Collapse
Affiliation(s)
- Chunyang Zhu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yangyang Lu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shasha Wang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jialin Song
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yixin Ding
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Wang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chen Dong
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jiani Liu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wensheng Qiu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Weiwei Qi
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
4
|
Olmedo DA, Vasquez Y, Morán JA, De León EG, Caballero-George C, Solís PN. Understanding the Artemia Salina (Brine Shrimp) Test: Pharmacological Significance and Global Impact. Comb Chem High Throughput Screen 2024; 27:545-554. [PMID: 37403396 DOI: 10.2174/1386207326666230703095928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023]
Abstract
BACKGROUND The microplate benchtop brine shrimp test (BST) has been widely used for screening and bio-guided isolation of many active compounds, including natural products. Although the interpretation given to the results appears dissimilar, our findings suggest a correlation between positive results with a specific mechanism of action. OBJECTIVE This study aimed to evaluate drugs belonging to fifteen pharmacological categories having diverse mechanisms of action and carry out a bibliometric analysis of over 700 citations related to microwell BST. METHODS Test compounds were evaluated in a serial dilution on the microwell BST using healthy nauplii of Artemia salina and after 24 hrs of exposition, the number of alive and dead nauplii was determined, and the LC50 was estimated. A metric study regarding the citations of the BST miniaturized method, sorted by type of documents cited, contributing country, and interpretation of results was conducted on 706 selected citations found in Google Scholar. RESULTS Out of 206 drugs tested belonging to fifteen pharmacological categories, twenty-six showed LC50 values <100 μM, most of them belonging to the category of antineoplastic drugs; compounds with different therapeutical uses were found to be cytotoxic as well. A bibliometric analysis showed 706 documents citing the miniaturized BST; 78% of them belonged to academic laboratories from developing countries located on all continents, 63% interpreted their results as cytotoxic activity and 35% indicated general toxicity assessment. CONCLUSION BST is a simple, affordable, benchtop assay, capable of detecting cytotoxic drugs with specific mechanisms of action, such as protein synthesis inhibition, antimitotic, DNA binding, topoisomerase I inhibitors, and caspases cascade interfering drugs. The microwell BST is a technique that is used worldwide for the bio-guided isolation of cytotoxic compounds from different sources.
Collapse
Affiliation(s)
- Dionisio A Olmedo
- Centro de Investigaciones Farmacognósticas de la Flora Panameña (CIFLORPAN), Facultad de Farmacia, Universidad de Panamá, Estafeta de Correos, 0824-00172, Panamá, Panamá
| | - Yelkaira Vasquez
- Centro de Investigaciones Farmacognósticas de la Flora Panameña (CIFLORPAN), Facultad de Farmacia, Universidad de Panamá, Estafeta de Correos, 0824-00172, Panamá, Panamá
| | - Juan Antonio Morán
- Departamento de Farmacología, Facultad de Medicina, Universidad de Panamá, Panama
| | | | - Catherina Caballero-George
- Centre of Innovation and Technology Transfer, Institute of Scientific Research and High Technology Services (INDICASAT-AIP), Building 208, City of Knowledge, Panama
| | - Pablo N Solís
- Centro de Investigaciones Farmacognósticas de la Flora Panameña (CIFLORPAN), Facultad de Farmacia, Universidad de Panamá, Estafeta de Correos, 0824-00172, Panamá, Panamá
| |
Collapse
|
5
|
Yuan D, Meng Y, Ai Z, Zhou S. Research trend of epigenetics and depression: adolescents' research needs to strengthen. Front Neurosci 2024; 17:1289019. [PMID: 38249586 PMCID: PMC10799345 DOI: 10.3389/fnins.2023.1289019] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/30/2023] [Indexed: 01/23/2024] Open
Abstract
Objective With its high prevalence, depression's pathogenesis remains unclear. Recent attention has turned to the interplay between depression and epigenetic modifications. However, quantitative bibliometric analyses are lacking. This study aims to visually analyze depression epigenetics trends, utilizing bibliometric tools, while comprehensively reviewing its epigenetic mechanisms. Methods Utilizing the Web of Science core dataset, we collected depression and epigenetics-related studies. Employing VOSViewer software, we visualized data on authors, countries, journals, and keywords. A ranking table highlighted field leaders. Results Analysis encompassed 3,469 depression epigenetics studies published from January 2002 to June 2023. Key findings include: (1) Gradual publication growth, peaking in 2021; (2) The United States and its research institutions leading contributions; (3) Need for enhanced collaborations, spanning international and interdisciplinary efforts; (4) Keyword clustering revealed five main themes-early-life stress, microRNA, genetics, DNA methylation, and histone acetylation-highlighting research hotspots; (5) Limited focus on adolescent depression epigenetics, warranting increased attention. Conclusion Taken together, this study revealed trends and hotspots in depression epigenetics research, underscoring global collaboration, interdisciplinary fusion, and multi-omics data's importance. It discussed in detail the potential of epigenetic mechanisms in depression diagnosis and treatment, advocating increased focus on adolescent research in this field. Insights aid researchers in shaping their investigative paths toward understanding depression's epigenetic mechanisms and antidepressant interventions.
Collapse
Affiliation(s)
- Dongfeng Yuan
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yitong Meng
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhongzhu Ai
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
- Modern Engineering Research Center of Traditional Chinese Medicine and Ethnic Medicine of Hubei Province, Wuhan, China
| | - Shiquan Zhou
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
6
|
Zheng Y, Chang X, Huang Y, He D. The application of antidepressant drugs in cancer treatment. Biomed Pharmacother 2023; 157:113985. [PMID: 36402031 DOI: 10.1016/j.biopha.2022.113985] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/22/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022] Open
Abstract
Antidepressants refer to psychotropic drugs which are used to treat mental illness with prominent emotional depression symptoms. It was reported that antidepressants had associated with anti-carcinogenic function which was associated with various signaling pathways and changing of microenvironment. Its mechanism includes cell apoptosis, antiproliferative effects, mitochondria-mediated oxidative stress, DNA damaging, changing of immune response and inflammatory conditions, and acting by inhibiting multidrug resistance of cancer cells. Accumulated studies showed that antidepressants influenced the metabolic pathway of tumor cells. This review summarized recent developments with the impacts and mechanisms of 10 kinds of antidepressants in carcinostasis. Antidepressants are also used in combination therapy with typical anti-tumor drugs which shows a synergic effect in anti-tumor. By contrast, the promotion roles of antidepressants in increasing cancer recurrence risk, mortality, and morbidity are also included. Further clinical experiments and mechanism analyses needed to be achieved. A full understanding of the underlying mechanisms of antidepressants-mediated anticarcinogenic effects may provide new clues for cancer prevention and clinical treatment.
Collapse
Affiliation(s)
- Yunxi Zheng
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Medical Collage of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xu Chang
- Medical Collage of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yuyang Huang
- Medical Collage of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Dingwen He
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
7
|
Asensi-Cantó A, López-Abellán MD, Castillo-Guardiola V, Hurtado AM, Martínez-Penella M, Luengo-Gil G, Conesa-Zamora P. Antitumoral Effects of Tricyclic Antidepressants: Beyond Neuropathic Pain Treatment. Cancers (Basel) 2022; 14:cancers14133248. [PMID: 35805019 PMCID: PMC9265090 DOI: 10.3390/cancers14133248] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Tricyclic antidepressants (TCAs) are old and known therapeutic agents whose good safety profile makes them good candidates for drug repurposing. As the relevance of nerves in cancer development and progression is being unveiled, attention now turns to the use of nerve-targeting drugs, such as TCAs, as an interesting approach to combat cancer. In this review, we discuss current evidence about the safety of TCAs, their application to treat neuropathic pain in cancer patients, and in vitro and in vivo demonstrations of the antitumoral effects of TCAs. Finally, the results of ongoing clinical trials and future directions are discussed. Abstract Growing evidence shows that nerves play an active role in cancer development and progression by altering crucial molecular pathways and cell functions. Conversely, the use of neurotropic drugs, such as tricyclic antidepressants (TCAs), may modulate these molecular signals with a therapeutic purpose based on a direct antitumoral effect and beyond the TCA use to treat neuropathic pain in oncology patients. In this review, we discuss the TCAs’ safety and their central effects against neuropathic pain in cancer, and the antitumoral effects of TCAs in in vitro and preclinical studies, as well as in the clinical setting. The current evidence points out that TCAs are safe and beneficial to treat neuropathic pain associated with cancer and chemotherapy, and they block different molecular pathways used by cancer cells from different locations for tumor growth and promotion. Likewise, ongoing clinical trials evaluating the antineoplastic effects of TCAs are discussed. TCAs are very biologically active compounds, and their repurposing as antitumoral drugs is a promising and straightforward approach to treat specific cancer subtypes and to further define their molecular targets, as well as an interesting starting point to design analogues with increased antitumoral activity.
Collapse
Affiliation(s)
- Antonio Asensi-Cantó
- Facultad de Ciencias de la Salud, Universidad Católica de Murcia (UCAM), 30107 Guadalupe, Spain; (A.A.-C.); (M.D.L.-A.); (M.M.-P.)
- Servicio de Farmacia Hospitalaria, Hospital Universitario Santa Lucía, 30202 Cartagena, Spain
- Grupo de Investigación en Patología Molecular y Farmacogenética, Servicios de Anatomía Patológica y Análisis Clínicos, Instituto Murciano de Investigación Biosanitaria (IMIB), Hospital Universitario Santa Lucía, 30202 Cartagena, Spain; (V.C.-G.); (A.M.H.)
| | - María Dolores López-Abellán
- Facultad de Ciencias de la Salud, Universidad Católica de Murcia (UCAM), 30107 Guadalupe, Spain; (A.A.-C.); (M.D.L.-A.); (M.M.-P.)
- Grupo de Investigación en Patología Molecular y Farmacogenética, Servicios de Anatomía Patológica y Análisis Clínicos, Instituto Murciano de Investigación Biosanitaria (IMIB), Hospital Universitario Santa Lucía, 30202 Cartagena, Spain; (V.C.-G.); (A.M.H.)
| | - Verónica Castillo-Guardiola
- Grupo de Investigación en Patología Molecular y Farmacogenética, Servicios de Anatomía Patológica y Análisis Clínicos, Instituto Murciano de Investigación Biosanitaria (IMIB), Hospital Universitario Santa Lucía, 30202 Cartagena, Spain; (V.C.-G.); (A.M.H.)
| | - Ana María Hurtado
- Grupo de Investigación en Patología Molecular y Farmacogenética, Servicios de Anatomía Patológica y Análisis Clínicos, Instituto Murciano de Investigación Biosanitaria (IMIB), Hospital Universitario Santa Lucía, 30202 Cartagena, Spain; (V.C.-G.); (A.M.H.)
- Grupo de Investigación en Inmunobiología para la Acuicultura, Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - Mónica Martínez-Penella
- Facultad de Ciencias de la Salud, Universidad Católica de Murcia (UCAM), 30107 Guadalupe, Spain; (A.A.-C.); (M.D.L.-A.); (M.M.-P.)
- Servicio de Farmacia Hospitalaria, Hospital Universitario Santa Lucía, 30202 Cartagena, Spain
| | - Ginés Luengo-Gil
- Grupo de Investigación en Patología Molecular y Farmacogenética, Servicios de Anatomía Patológica y Análisis Clínicos, Instituto Murciano de Investigación Biosanitaria (IMIB), Hospital Universitario Santa Lucía, 30202 Cartagena, Spain; (V.C.-G.); (A.M.H.)
- Correspondence: (G.L.-G.); (P.C.-Z.); Tel.: +34-968-128-600 (ext. 951615) (G.L.-G. & P.C.-Z.)
| | - Pablo Conesa-Zamora
- Facultad de Ciencias de la Salud, Universidad Católica de Murcia (UCAM), 30107 Guadalupe, Spain; (A.A.-C.); (M.D.L.-A.); (M.M.-P.)
- Grupo de Investigación en Patología Molecular y Farmacogenética, Servicios de Anatomía Patológica y Análisis Clínicos, Instituto Murciano de Investigación Biosanitaria (IMIB), Hospital Universitario Santa Lucía, 30202 Cartagena, Spain; (V.C.-G.); (A.M.H.)
- Correspondence: (G.L.-G.); (P.C.-Z.); Tel.: +34-968-128-600 (ext. 951615) (G.L.-G. & P.C.-Z.)
| |
Collapse
|
8
|
López-Muñoz E, Mejía-Terrazas GE. Epigenetics and Postsurgical Pain: A Scoping Review. PAIN MEDICINE (MALDEN, MASS.) 2022; 23:246-262. [PMID: 34314508 DOI: 10.1093/pm/pnab234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Multiple factors are involved in the physiology and variability of postsurgical pain, a great part of which can be explained by genetic and environmental factors and their interaction. Epigenetics refers to the mechanism by which the environment alters the stability and expression of genes. We conducted a scoping review to examine the available evidence in both animal models and clinical studies on epigenetic mechanisms involved in the regulation of postsurgical and chronic postsurgical pain. METHODS The Arksey and O'Malley framework and the PRISMA-ScR (Preferred Reporting Items for Systematic Review and Meta-Analysis, scoping reviews extension) guidelines were used. The PubMed, Web of Science, and Google Scholar databases were searched, and the original articles cited in reviews located through the search were also reviewed. English-language articles without time limits were retrieved. Articles were selected if the abstract addressed information on the epigenetic or epigenomic mechanisms, histone, or DNA methylation and microribonucleic acids involved in postsurgical and chronic postsurgical pain in animal models and clinical studies. RESULTS The initial search provided 174 articles, and 95 were used. The available studies to date, mostly in animal models, have shown that epigenetics contributes to the regulation of gene expression in the pathways involved in postsurgical pain and in maintaining long-term pain. CONCLUSION Research on possible epigenetic mechanisms involved in postsurgical pain and chronic postsurgical pain in humans is scarce. In view of the evidence available in animal models, there is a need to evaluate epigenetic pain mechanisms in the context of human and clinical studies.
Collapse
Affiliation(s)
- Eunice López-Muñoz
- Medical Research Unit in Reproductive Medicine, Unidad Médica de Alta Especialidad, Hospital de Gineco Obstetricia No. 4, "Luis Castelazo Ayala," Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Gabriel Enrique Mejía-Terrazas
- Medical Research Unit in Reproductive Medicine, Unidad Médica de Alta Especialidad, Hospital de Gineco Obstetricia No. 4, "Luis Castelazo Ayala," Instituto Mexicano del Seguro Social, Mexico City, Mexico
- Anaesthesiology Service and Pain Clinic, Hospital Angeles México, Mexico City, Mexico
| |
Collapse
|
9
|
Zhou L, Huang X, Niesvizky R, Pu Z, Xu G. Caspase-8 Regulates the Antimyeloma Activity of Bortezomib and Lenalidomide. J Pharmacol Exp Ther 2021; 379:303-309. [PMID: 34588172 DOI: 10.1124/jpet.121.000818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/20/2021] [Indexed: 11/22/2022] Open
Abstract
Proteasome inhibitors and immunomodulatory drugs (IMiDs) are two major types of drugs for the treatment of multiple myeloma. Although different combination therapies for myeloma have been developed and achieved high responsive rate, these strategies frequently result in drug resistance. Therefore, it is necessary to explore new molecular mechanisms and therapeutic approaches to fulfill this unmet medical need. Here, we find that proteasome inhibitor bortezomib (Btz) causes cereblon (CRBN) cleavage and that caspase-8 (CASP-8) is responsible for this cleavage. Either inhibition or genetic depletion of CASP-8 decreased the CRBN cleavage upon Btz treatment, which could potentiate the antimyeloma activity of IMiD lenalidomide (Len). This work suggests that administration of CASP-8 inhibitors might enhance the overall effectiveness of Btz/Len-based therapeutic treatment of patients with myeloma. SIGNIFICANCE STATEMENT: Caspase-8 activation upon bortezomib treatment results in the cleavage of cereblon, a substrate receptor of the cullin-4 RING E3 ligase, which is responsible for the degradation of two transcription factors, Ikaros family zinc finger protein (IKZF) 1 and IKZF3, in the presence of immunomodulatory drugs including lenalidomide. The administration of caspase-8 inhibitor may enhance the antimyeloma activity of the combination therapy with bortezomib and lenalidomide.
Collapse
Affiliation(s)
- Liang Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Jiangsu, China (L.Z., G.X.); Department of Pathology and Laboratory Medicine (X.H.) and Department of Medicine (R.N.), Weill Cornell Medicine, New York, New York; Department of Oncology, Haian Hospital of Traditional Chinese Medicine, Haian, Jiangsu, China (Z.P.)
| | - Xiangao Huang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Jiangsu, China (L.Z., G.X.); Department of Pathology and Laboratory Medicine (X.H.) and Department of Medicine (R.N.), Weill Cornell Medicine, New York, New York; Department of Oncology, Haian Hospital of Traditional Chinese Medicine, Haian, Jiangsu, China (Z.P.)
| | - Ruben Niesvizky
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Jiangsu, China (L.Z., G.X.); Department of Pathology and Laboratory Medicine (X.H.) and Department of Medicine (R.N.), Weill Cornell Medicine, New York, New York; Department of Oncology, Haian Hospital of Traditional Chinese Medicine, Haian, Jiangsu, China (Z.P.)
| | - Zhongjian Pu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Jiangsu, China (L.Z., G.X.); Department of Pathology and Laboratory Medicine (X.H.) and Department of Medicine (R.N.), Weill Cornell Medicine, New York, New York; Department of Oncology, Haian Hospital of Traditional Chinese Medicine, Haian, Jiangsu, China (Z.P.)
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Jiangsu, China (L.Z., G.X.); Department of Pathology and Laboratory Medicine (X.H.) and Department of Medicine (R.N.), Weill Cornell Medicine, New York, New York; Department of Oncology, Haian Hospital of Traditional Chinese Medicine, Haian, Jiangsu, China (Z.P.)
| |
Collapse
|
10
|
Sołek P, Mytych J, Tabęcka-Łonczyńska A, Koziorowski M. Molecular Consequences of Depression Treatment: A Potential In Vitro Mechanism for Antidepressants-Induced Reprotoxic Side Effects. Int J Mol Sci 2021; 22:11855. [PMID: 34769286 PMCID: PMC8584852 DOI: 10.3390/ijms222111855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/24/2021] [Accepted: 10/30/2021] [Indexed: 11/16/2022] Open
Abstract
The incidence of depression among humans is growing worldwide, and so is the use of antidepressants. However, our fundamental understanding regarding the mechanisms by which these drugs function and their off-target effects against human sexuality remains poorly defined. The present study aimed to determine their differential toxicity on mouse spermatogenic cells and provide mechanistic data of cell-specific response to antidepressant and neuroleptic drug treatment. To directly test reprotoxicity, the spermatogenic cells (GC-1 spg and GC-2 spd cells) were incubated for 48 and 96 h with amitriptyline (hydrochloride) (AMI), escitalopram (ESC), fluoxetine (hydrochloride) (FLU), imipramine (hydrochloride) (IMI), mirtazapine (MIR), olanzapine (OLZ), reboxetine (mesylate) (REB), and venlafaxine (hydrochloride) (VEN), and several cellular and biochemical features were assessed. Obtained results reveal that all investigated substances showed considerable reprotoxic potency leading to micronuclei formation, which, in turn, resulted in upregulation of telomeric binding factor (TRF1/TRF2) protein expression. The TRF-based response was strictly dependent on p53/p21 signaling and was followed by irreversible G2/M cell cycle arrest and finally initiation of apoptotic cell death. In conclusion, our findings suggest that antidepressants promote a telomere-focused DNA damage response in germ cell lines, which broadens the established view of antidepressants' and neuroleptic drugs' toxicity and points to the need for further research in this topic with the use of in vivo models and human samples.
Collapse
Affiliation(s)
- Przemysław Sołek
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszow, Werynia 2, 36-100 Kolbuszowa, Poland; (A.T.-Ł.); (M.K.)
| | - Jennifer Mytych
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszow, Werynia 2, 36-100 Kolbuszowa, Poland; (A.T.-Ł.); (M.K.)
| | | | | |
Collapse
|
11
|
Beklen H, Arslan S, Gulfidan G, Turanli B, Ozbek P, Karademir Yilmaz B, Arga KY. Differential Interactome Based Drug Repositioning Unraveled Abacavir, Exemestane, Nortriptyline Hydrochloride, and Tolcapone as Potential Therapeutics for Colorectal Cancers. FRONTIERS IN BIOINFORMATICS 2021; 1:710591. [PMID: 36303724 PMCID: PMC9581026 DOI: 10.3389/fbinf.2021.710591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 09/01/2021] [Indexed: 12/17/2022] Open
Abstract
There is a critical requirement for alternative strategies to provide the better treatment in colorectal cancer (CRC). Hence, our goal was to propose novel biomarkers as well as drug candidates for its treatment through differential interactome based drug repositioning. Differentially interacting proteins and their modules were identified, and their prognostic power were estimated through survival analyses. Drug repositioning was carried out for significant target proteins, and candidate drugs were analyzed via in silico molecular docking prior to in vitro cell viability assays in CRC cell lines. Six modules (mAPEX1, mCCT7, mHSD17B10, mMYC, mPSMB5, mRAN) were highlighted considering their prognostic performance. Drug repositioning resulted in eight drugs (abacavir, ribociclib, exemestane, voriconazole, nortriptyline hydrochloride, theophylline, bromocriptine mesylate, and tolcapone). Moreover, significant in vitro inhibition profiles were obtained in abacavir, nortriptyline hydrochloride, exemestane, tolcapone, and theophylline (positive control). Our findings may provide new and complementary strategies for the treatment of CRC.
Collapse
Affiliation(s)
- Hande Beklen
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Sema Arslan
- Department of Biochemistry, School of Medicine, Marmara University, Istanbul, Turkey
| | - Gizem Gulfidan
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Beste Turanli
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Pemra Ozbek
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Betul Karademir Yilmaz
- Department of Biochemistry, School of Medicine, Marmara University, Istanbul, Turkey
- Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, Istanbul, Turkey
| | - Kazim Yalcin Arga
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
- *Correspondence: Kazim Yalcin Arga,
| |
Collapse
|
12
|
Abstract
IMPACT STATEMENT Brain development and degeneration are highly complex processes that are regulated by a large number of molecules and signaling pathways the identities of which are being unraveled. Accumulating evidence points to histone deacetylases and epigenetic mechanisms as being important regulators of these processes. In this review, we describe that histone deacetylase-3 (HDAC3) is a particularly crucial regulator of both neurodevelopment and neurodegeneration. In addition, HDAC3 regulates memory formation, synaptic plasticity, and the cognitive impairment associated with normal aging. Understanding how HDAC3 functions contributes to the normal development and functioning of the brain while also promoting neurodegeneration could lead to the development of therapeutic approaches for neurodevelopmental, neuropsychiatric, and neurodegenerative disorders.
Collapse
|
13
|
Ren Y, Xu X, Mao CY, Han KK, Xu YJ, Cao BY, Zhang ZB, Sethi G, Tang XW, Mao XL. RNF6 promotes myeloma cell proliferation and survival by inducing glucocorticoid receptor polyubiquitination. Acta Pharmacol Sin 2020; 41:394-403. [PMID: 31645658 PMCID: PMC7470801 DOI: 10.1038/s41401-019-0309-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/12/2019] [Indexed: 12/20/2022]
Abstract
RNF6, a RING-type ubiquitin ligase, has been identified as an oncogene in various cancers but its role in multiple myeloma (MM) remains elusive. In the present study we first showed that the expression levels of RNF6 in MM were significantly elevated compared with the bone marrow cells of healthy donors. Overexpression of RNF6 in LP1 and PRMI-8266 MM cell lines promoted cell proliferation, whereas knockdown of RNF6 led to apoptosis of MM cells. Furthermore, we revealed that RNF6, as a ubiquitin ligase, interacted with glucocorticoid receptor (GR) and induced its K63-linked polyubiquitination. Different from current knowledge, RNF6 increased GR stability at both endogenous and exogenous contexts. Such an action greatly promoted GR transcriptional activity, which was confirmed by luciferase assays and by the increased expression levels of prosurvival genes including Bcl-xL and Mcl-1, two typical downstream genes of the GR pathway. Consistent with these findings, ectopic expression of RNF6 in MM cells conferred resistance to dexamethasone, a typical anti-myeloma agent. In conclusion, we demonstrate that RNF6 promotes MM cell proliferation and survival by inducing atypical polyubiquitination to GR, and RNF6 could be a promising therapeutic target for the treatment of MM.
Collapse
|
14
|
Abdel Karim NF, Hassan R, Siddiqi NI, Eldessouki I, Gaber O, Rahouma M, Kamel M, Yellu M, Gulati S, Xie C, Magdy M, Pruemer J. Impact of tricyclic antidepressants, selective serotonin reuptake inhibitors, and other antidepressants on overall survival of patients with advanced lung cancer from 2004 to 2014: University of Cincinnati experience. J Int Med Res 2019; 47:6016-6026. [PMID: 31640444 PMCID: PMC7045662 DOI: 10.1177/0300060519862469] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Objectives To evaluate and categorize the survival benefit of tricyclic antidepressants (TCAs) in lung cancer patients based on systematic computational drug repositioning data. Methods Data were retrospectively extracted from the medical records of non-small cell lung cancer (NSCLC) patients from the University of Cincinnati Cancer Medical Center database. Patients receiving antidepressants during their course of anti-cancer treatment were compared with those without antidepressants. Data were analyzed using Kaplan–Meier survival curves with the log-rank test, and overall survival (OS) was calculated from the date of diagnosis until last follow-up or death. Results The median OS at 2 and 5 years for patients on antidepressants was 20.3 months (54.7% and 42%) vs 44.3 months (47.6% and 43.2%), which was not significant. The median OS for patients receiving TCAs, selective serotonin reuptake inhibitors, and other antidepressants was 3.17 months, 31.33 months, and 18.50 months, respectively. Conclusion We found no significant survival benefit for TCA use in combination with anti-cancer agents in NSCLC patients.
Collapse
Affiliation(s)
| | - Rammey Hassan
- Department of Oncology, University of Cincinnati Medical Center, Cincinnati, USA
| | | | - Ihab Eldessouki
- Department of Oncology, University of Cincinnati Medical Center, Cincinnati, USA
| | - Ola Gaber
- Department of Oncology, University of Cincinnati Medical Center, Cincinnati, USA
| | - Mohamed Rahouma
- Department of Surgical Oncology, Cairo University, Cairo, Egypt
| | - Mohamed Kamel
- Department of Surgical Oncology, Cairo University, Cairo, Egypt
| | - Mhender Yellu
- Department of Oncology, University of Cincinnati Medical Center, Cincinnati, USA
| | - Shuchi Gulati
- Department of Oncology, University of Cincinnati Medical Center, Cincinnati, USA
| | - Changchun Xie
- Division of Biostatistics and Bioinformatics, University of Cincinnati, Cincinnati, USA
| | | | - Jane Pruemer
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, USA
| |
Collapse
|
15
|
Liu Y, Xu X, Lin P, He Y, Zhang Y, Cao B, Zhang Z, Sethi G, Liu J, Zhou X, Mao X. Inhibition of the deubiquitinase USP9x induces pre-B cell homeobox 1 (PBX1) degradation and thereby stimulates prostate cancer cell apoptosis. J Biol Chem 2019; 294:4572-4582. [PMID: 30718275 PMCID: PMC6433065 DOI: 10.1074/jbc.ra118.006057] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 01/29/2019] [Indexed: 01/21/2023] Open
Abstract
Chemoresistance is a leading obstacle in effective management of advanced prostate cancer (PCa). A better understanding of the molecular mechanisms involved in PCa chemoresistance could improve treatment of patients with PCa. In the present study, using immune histochemical, chemistry, and precipitation assays with cells from individuals with benign or malignant prostate cancer or established PCa cell lines, we found that the oncogenic transcription factor pre-B cell leukemia homeobox-1 (PBX1) promotes PCa cell proliferation and confers to resistance against common anti-cancer drugs such as doxorubicin and cisplatin. We observed that genetic PBX1 knockdown abrogates this resistance, and further experiments revealed that PBX1 stability was modulated by the ubiquitin-proteasomal pathway. To directly probe the impact of this pathway on PBX1 activity, we screened for PBX1-specific deubiquitinases (Dubs) and found that ubiquitin-specific peptidase 9 X-linked (USP9x) interacted with and stabilized the PBX1 protein by attenuating its Lys-48-linked polyubiquitination. Moreover, the USP9x inhibitor WP1130 markedly induced PBX1 degradation and promoted PCa cell apoptosis. The results in this study indicate that PBX1 confers to PCa chemoresistance and identify USP9x as a Dub of PBX1. We concluded that targeting the USP9x/PBX1 axis could be a potential therapeutic strategy for managing advanced prostate cancer.
Collapse
Affiliation(s)
- Yan Liu
- From the Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 511436, China
- the Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
- Sichuan Kelun Pharmaceutical Co., Ltd., Chengdu, Sichuan 610071, China
| | - Xiaofeng Xu
- the Department of Urology, Nanjing Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 21002, China
| | - Peng Lin
- the Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yuanming He
- the Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yawen Zhang
- the Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Biyin Cao
- the Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zubin Zhang
- From the Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 511436, China
- the Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Gautam Sethi
- the Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore
| | - Jinbao Liu
- From the Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 511436, China
| | - Xiumin Zhou
- the Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China, and
| | - Xinliang Mao
- From the Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 511436, China,
- the Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
16
|
McGrory CL, Ryan KM, Kolshus E, McLoughlin DM. Peripheral blood E2F1 mRNA in depression and following electroconvulsive therapy. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89:380-385. [PMID: 30365982 DOI: 10.1016/j.pnpbp.2018.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/19/2018] [Accepted: 10/21/2018] [Indexed: 12/28/2022]
Abstract
The E2F transcription factors are a group of proteins that bind to the promotor region of the adenovirus E2 gene. E2F1, the first family member to be cloned, is linked to functions including cell proliferation and apoptosis, DNA repair, cell senescence and metabolism. We recently performed a deep sequencing study of micro-RNA changes in whole blood following ECT. Two micro-RNAs (miR-126-3p and miR-106a-5p) were identified and gene targeting analysis identified E2F1 as a shared target of these miRNAs. To our knowledge, no studies have examined E2F1 mRNA levels in patients with depression. Peripheral blood E2F1 mRNA levels were therefore examined in patients with depression, compared to healthy controls, and the effects of a course of ECT on peripheral blood E2F1 mRNA was investigated. Depressed patient and healthy control groups were balanced on the basis of age and sex. E2F1 mRNA levels were significantly lower in depressed patients in comparison to controls (p = .009) but did not change with ECT. There was no relationship between baseline E2F1 levels and depression severity, response to treatment, presence of psychosis or polarity of depression. There were no significant correlations between E2F1 levels and mood scores based on the HAM-D24. These results indicate that reduced peripheral blood E2F1 mRNA could be a trait feature of depression.
Collapse
Affiliation(s)
- Claire L McGrory
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland; Department of Psychiatry, Trinity College Dublin, St Patrick's University Hospital, Dublin 8, Ireland
| | - Karen M Ryan
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland; Department of Psychiatry, Trinity College Dublin, St Patrick's University Hospital, Dublin 8, Ireland
| | - Erik Kolshus
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland; Department of Psychiatry, Trinity College Dublin, St Patrick's University Hospital, Dublin 8, Ireland
| | - Declan M McLoughlin
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland; Department of Psychiatry, Trinity College Dublin, St Patrick's University Hospital, Dublin 8, Ireland.
| |
Collapse
|
17
|
Biber A, Durusu İZ, Özen C. In vitro anticancer effect of tricyclic antidepressant nortriptyline on multiple myeloma. Turk J Biol 2018; 42:414-421. [PMID: 30930625 PMCID: PMC6438120 DOI: 10.3906/biy-1802-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Drug repurposing has been proved to be an effective strategy to meet the urgent need for novel anticancer agents for multiple myeloma (MM) treatment. In this work, we aimed to investigate the anticancer effect and mechanism of tricyclic antidepressant nortriptyline (NTP) on the U266 MM cell line. The in vitro inhibitory effect of NTP at various doses and time points was studied. The combination potential of cisplatin-NTP was also investigated. Cell cycle analysis and three flow cytometric apoptosis assays were performed. NTP showed dose- and time-dependent inhibitory effects on the U266 MM cell line. NTP had greater inhibitory effect than cisplatin (IC50 26 µM vs. 40 µM). The cisplatin-NTP combination is antagonistic. In addition to G2/M phase cell cycle arrest, NTP induced apoptosis as indicated by mitochondrial membrane potential and caspase-3 and annexin V assays. NTP has inhibitory and apoptotic effects on U266 MM cells. The cisplatin-NTP combination indicated strong antagonism, which may have significant clinical relevance since antidepressants are commonly employed in adjuvant therapy for cancer patients. Based on these findings, the therapeutic potential of NTP for MM treatment should be investigated with in-depth mechanistic studies and in vivo experiments.
Collapse
Affiliation(s)
- Ayşenur Biber
- Biotechnology Graduate Program, Central Laboratory, Center of Excellence for Biomaterials and Tissue Engineering, Middle East Technical University , Ankara , Turkey
| | - İpek Z Durusu
- Biotechnology Graduate Program, Central Laboratory, Center of Excellence for Biomaterials and Tissue Engineering, Middle East Technical University , Ankara , Turkey
| | - Can Özen
- Biotechnology Graduate Program, Central Laboratory, Center of Excellence for Biomaterials and Tissue Engineering, Middle East Technical University , Ankara , Turkey
| |
Collapse
|
18
|
Gallic acid inhibits the release of ADAMTS4 in nucleus pulposus cells by inhibiting p65 phosphorylation and acetylation of the NF-κB signaling pathway. Oncotarget 2018; 8:47665-47674. [PMID: 28512264 PMCID: PMC5564596 DOI: 10.18632/oncotarget.17509] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 03/30/2017] [Indexed: 12/19/2022] Open
Abstract
This study investigated the inhibitory effect of gallic acid (GA) on the release of A Disintegrin and Metalloproteinase with Thrombospondin motifs 4 (ADAMTS4) through the regulation of the NF-κB signaling pathway, which is closely related to the matrix metalloproteinases in nucleus pulposus cells. Different concentrations of GA were added to TNF-α-induced human nucleus pulposus cells (hNPCs) and intervertebral disc degeneration rat model. ADAMTS-4 expression increased both in the TNF-α-induced nucleus pulposus cells and intervertebral disc degeneration rat model. By contrast, the release of ADAMTS-4 was reduced, and the TNF-α-induced apoptosis of nucleus pulposus cells was significantly inhibited after addition of GA at different concentrations. Further study found that the levels of phosphorylated p65 (p-p65) was increased and the classical NF-κB signal pathway was activated after the nucleus pulposus cells were stimulated by TNF-α. Meanwhile, GA suppressed the p65 phosphorylation and inceased p65 deacetylation levels. As a consequence, GA can decrease the expression of ADAMTS-4 in nucleus pulposus cells by regulating the phosphorylation and acetylation of p65 in NF-κB signaling pathways.
Collapse
|
19
|
Huang J, Zhao D, Liu Z, Liu F. Repurposing psychiatric drugs as anti-cancer agents. Cancer Lett 2018; 419:257-265. [PMID: 29414306 DOI: 10.1016/j.canlet.2018.01.058] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 01/11/2023]
Abstract
Cancer is a major public health problem and one of the leading contributors to the global disease burden. The high cost of development of new drugs and the increasingly severe burden of cancer globally have led to increased interest in the search and development of novel, affordable anti-neoplastic medications. Antipsychotic drugs have a long history of clinical use and tolerable safety; they have been used as good targets for drug repurposing. Being used for various psychiatric diseases for decades, antipsychotic drugs are now reported to have potent anti-cancer properties against a wide variety of malignancies in addition to their antipsychotic effects. In this review, an overview of repurposing various psychiatric drugs for cancer treatment is presented, and the putative mechanisms for the anti-neoplastic actions of these antipsychotic drugs are reviewed.
Collapse
Affiliation(s)
- Jing Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China; Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Mental Health Institute of the Second Xiangya Hospital, Central South University, Chinese National Clinical Research Center for Mental Disorders (Xiangya), Changsha, Hunan, 410011, China; Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, 410011, China
| | - Danwei Zhao
- Xiangya Medical School, Central South University, Changsha, Hunan, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China
| | - Fangkun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China.
| |
Collapse
|
20
|
Abstract
The aim of this study was to identify the most potent quinoline-based anti-infectives for the treatment of multiple myeloma (MM) and to understand the molecular mechanisms. A small-scale screen against a panel of marketed quinoline-based drugs was performed in MM cell lines. Cell apoptosis was examined by flow cytometry. Anti-MM activity was also evaluated in nude mice. Western blotting was performed to investigate mechanisms. Nitroxoline (NXQ) was the most effective in suppressing MM cell proliferation. NXQ induced more than 40% MM cell apoptosis within 24 h and potentiated anti-MM activities of current major drugs including doxorubicin and lenalidomide. This finding was shown by activation of caspase-3, a major executive apoptotic enzyme, and by inactivation of PARP, a major enzyme in DNA damage repair. NXQ also suppressed prosurvival proteins Bcl-xL and Mcl-1. Moreover, NXQ suppressed the growth of myeloma xenografts in nude mice models. In the mechanistic study, NXQ was found to downregulate TRIM25, a highly expressed ubiquitin ligase in MM. Notably, NXQ upregulated tumor suppressor p53, but not PTEN. Furthermore, overexpression of TRIM25 decreased p53 protein. This study indicated that the long-term use of anti-infective NXQ has potential for MM treatment by targeting the TRIM25/p53 axle.
Collapse
|
21
|
Zeng Y, Xu X, Wang S, Zhang Z, Liu Y, Han K, Cao B, Mao X. Ring finger protein 6 promotes breast cancer cell proliferation by stabilizing estrogen receptor alpha. Oncotarget 2017; 8:20103-20112. [PMID: 28223545 PMCID: PMC5386747 DOI: 10.18632/oncotarget.15384] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/22/2017] [Indexed: 12/19/2022] Open
Abstract
Ring finger protein 6 (RNF6) is a key oncogene in both prostate cancer and leukemia, but its role is elusive in breast cancer. In the present study, we found that RNF6 was overexpressed in more than 70% of breast cancer tissues and it was associated with overall survival. RNF6 increased breast cancer cell proliferation, migration and reduced cell sensitivity to doxorubicin. Further studies showed that RNF6 was closely associated with increased expression of estrogen receptor, a critical factor in the development of breast cancers. RNF6 was found to induce ERα expression and increased its stability. In doxorubicin-resistant breast cancer cells, RNF6 was found to be elevated in association with increased ERα and anti-apoptotic Bcl-xL, but not pro-apoptotic Bim-1. In consistence with this finding, overexpression of ERα led to increased Bcl-xL but had no effects on Bim-1. Therefore, this study demonstrated that there exists an RNF6/ERα/Bcl-xL axle in breast cancer which promotes cancer cell proliferation and survival. Targeting the RNF6/ERα/Bcl-xL axle could be a promising strategy in the treatment of breast cancer.
Collapse
Affiliation(s)
- Yuanying Zeng
- Jiangsu Key Laboratory for Translational Research and Therapeutics of Neuro-Psycho- Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.,Department of Oncology, Suzhou Municipal Hospital East Campus, Suzhou, 215100, P.R. China
| | - Xin Xu
- Jiangsu Key Laboratory for Translational Research and Therapeutics of Neuro-Psycho- Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.,Suzhou Institute of Systems Medicine, Center of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, 215123, P. R. China
| | - Siyu Wang
- Jiangsu Key Laboratory for Translational Research and Therapeutics of Neuro-Psycho- Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Zubin Zhang
- Jiangsu Key Laboratory for Translational Research and Therapeutics of Neuro-Psycho- Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Yan Liu
- Jiangsu Key Laboratory for Translational Research and Therapeutics of Neuro-Psycho- Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Kunkun Han
- Jiangsu Key Laboratory for Translational Research and Therapeutics of Neuro-Psycho- Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Biyin Cao
- Jiangsu Key Laboratory for Translational Research and Therapeutics of Neuro-Psycho- Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xinliang Mao
- Jiangsu Key Laboratory for Translational Research and Therapeutics of Neuro-Psycho- Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, P. R. China.,Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 511436, P. R. China
| |
Collapse
|
22
|
Tahara H, Yamamoto Y, Matsuda S, Yoshizawa H, Fujita M, Hioki T, Kasahara T. Chemically induced strong cellular hypertrophy often reduces the accuracy of cytotoxicity measurements obtained using the ATP assay. J Toxicol Sci 2017; 42:205-221. [PMID: 28321047 DOI: 10.2131/jts.42.205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The ATP assay is a highly sensitive and versatile method for measuring cytotoxicity. However, the correlation between the cell viability results obtained using the ATP assay and those obtained using direct cell counting has not been widely reported. Therefore, to evaluate the reliability and limitations of the ATP assay, we compared the results of ATP assay with those of automatic cell counter, which can measure the number and diameter of cells directly, by using 24 compounds and repeating individual experiments thrice. The correlation between the data was low for 7 of the 24 compounds (r2 < 0.8, at least 2 out of 3 experiments). These were the top 7 of the 11 compounds that induced cell hypertrophy. These 7 compounds were also observed to increase the area of mitochondria. However, the last 4 of the 11 compounds increased the cell size but did not increase the mitochondrial area. For the remaining 13 compounds, which had no effect on cell size, a good correlation was observed between the results of the two methods (r2 > 0.8, at least 2 out of 3 experiments), and the cell size was effectively the same as that of the controls. We concluded that the poor correlation between the two methods was attributable to an increase in the content of intracellular ATP because of the chemically induced cell and mitochondrial hypertrophy. We showed that the ATP assay is unsuitable for assessing the cytotoxicity of compounds that induce cell hypertrophy with increase in the mitochondrial area and ATP content.
Collapse
|
23
|
Xu Y, Zhang Z, Li J, Tong J, Cao B, Taylor P, Tang X, Wu D, Moran MF, Zeng Y, Mao X. The ubiquitin-conjugating enzyme UBE2O modulates c-Maf stability and induces myeloma cell apoptosis. J Hematol Oncol 2017; 10:132. [PMID: 28673317 PMCID: PMC5496436 DOI: 10.1186/s13045-017-0499-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 06/16/2017] [Indexed: 12/31/2022] Open
Abstract
Background UBE2O is proposed as a ubiquitin-conjugating enzyme, but its function was largely unknown. Methods Mass spectrometry was applied to identify c-Maf ubiquitination-associated proteins. Immunoprecipitation was applied for c-Maf and UBE2O interaction. Immunoblotting was used for Maf protein stability. Luciferase assay was used for c-Maf transcriptional activity. Lentiviral infections were applied for UBE2O function in multiple myeloma (MM) cells. Flow cytometry and nude mice xenografts were applied for MM cell apoptosis and tumor growth assay, respectively. Results UBE2O was found to interact with c-Maf, a critical transcription factor in MM, by the affinity purification/tandem mass spectrometry assay and co-immunoprecipitation assays. Subsequent studies showed that UBE2O mediated c-Maf polyubiquitination and degradation. Moreover, UBE2O downregulated the transcriptional activity of c-Maf and the expression of cyclin D2, a typical gene modulated by c-Maf. DNA microarray revealed that UBE2O was expressed in normal bone marrow cells but downregulated in MGUS, smoldering MM and MM cells, which was confirmed by RT-PCR in primary MM cells, suggesting its potential role in myeloma pathophysiology. When UBE2O was restored, c-Maf protein in MM cells was significantly decreased and MM cells underwent apoptosis. Furthermore, the human MM xenograft in nude mice showed that re-expression of UBE2O delayed the growth of myeloma xenografts in nude mice in association with c-Maf downregulation and activation of the apoptotic pathway. Conclusions UBE2O mediates c-Maf polyubiquitination and degradation, induces MM cell apoptosis, and suppresses myeloma tumor growth, which provides a novel insight in understanding myelomagenesis and UBE2O biology.
Collapse
Affiliation(s)
- Yujia Xu
- Jiangsu Key Laboratory for Translational Research and Therapeutics of Neuro-Psycho- Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Zubin Zhang
- Jiangsu Key Laboratory for Translational Research and Therapeutics of Neuro-Psycho- Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Jie Li
- Jiangsu Key Laboratory for Translational Research and Therapeutics of Neuro-Psycho- Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Jiefei Tong
- Program in Molecular Structure and Function, The Hospital for Sick Children, Department of Molecular Genetics, University of Toronto, Toronto, M5G 0A4, Canada
| | - Biyin Cao
- Jiangsu Key Laboratory for Translational Research and Therapeutics of Neuro-Psycho- Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Paul Taylor
- Program in Molecular Structure and Function, The Hospital for Sick Children, Department of Molecular Genetics, University of Toronto, Toronto, M5G 0A4, Canada
| | - Xiaowen Tang
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Depei Wu
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Michael F Moran
- Program in Molecular Structure and Function, The Hospital for Sick Children, Department of Molecular Genetics, University of Toronto, Toronto, M5G 0A4, Canada
| | - Yuanying Zeng
- Jiangsu Key Laboratory for Translational Research and Therapeutics of Neuro-Psycho- Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China. .,Department of Oncology, Suzhou Municipal Hospital East Campus, Suzhou, 215100, People's Republic of China.
| | - Xinliang Mao
- Jiangsu Key Laboratory for Translational Research and Therapeutics of Neuro-Psycho- Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China. .,Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
24
|
Abstract
More than 20% of adults worldwide experience different types of chronic pain, which are frequently associated with several comorbidities and a decrease in quality of life. Several approved painkillers are available, but current analgesics are often hampered by insufficient efficacy and/or severe adverse effects. Consequently, novel strategies for safe, highly efficacious treatments are highly desirable, particularly for chronic pain. Epigenetic mechanisms such as DNA methylation, histone modifications and microRNAs (miRNAs) strongly affect the regulation of gene expression, potentially for long periods over years or even generations, and have been associated with pathophysiological pain. Several studies, mostly in animals, revealed that inhibitors of DNA methylation, activators and inhibitors of histone modification and modulators of miRNAs reverse a number of pathological changes in the pain epigenome, which are associated with altered expression of pain-relevant genes. This epigenetic modulation might then reduce the nociceptive response and provide novel therapeutic options for analgesic therapy of chronic pain states. However, a number of challenges, such as nonspecific effects and poor delivery to target cells and tissues, hinder the rapid development of such analgesics. In this Review, we critically summarize data on epigenetics and pain, focusing on challenges in clinical development as well as possible new approaches to the drug modulation of the pain epigenome.
Collapse
Affiliation(s)
- Ellen Niederberger
- Pharmazentrum Frankfurt, Zentrum für Arzneimittelforschung Entwicklung und Sicherheit (ZAFES), Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Eduard Resch
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Project Group for Translational Medicine &Pharmacology, Theodor Stern Kai 7, 60596 Frankfurt am Main, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Project Group for Translational Medicine &Pharmacology, Theodor Stern Kai 7, 60596 Frankfurt am Main, Germany
| | - Gerd Geisslinger
- Pharmazentrum Frankfurt, Zentrum für Arzneimittelforschung Entwicklung und Sicherheit (ZAFES), Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology, Project Group for Translational Medicine &Pharmacology, Theodor Stern Kai 7, 60596 Frankfurt am Main, Germany
| |
Collapse
|
25
|
Tran NQV, Nguyen AN, Takabe K, Yamagata Z, Miyake K. Pre-treatment with amitriptyline causes epigenetic up-regulation of neuroprotection-associated genes and has anti-apoptotic effects in mouse neuronal cells. Neurotoxicol Teratol 2017; 62:1-12. [PMID: 28511916 DOI: 10.1016/j.ntt.2017.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 05/09/2017] [Accepted: 05/11/2017] [Indexed: 12/12/2022]
Abstract
Antidepressants, such as imipramine and fluoxetine, are known to alter gene expression patterns by inducing changes in the epigenetic status of neuronal cells. There is also some evidence for the anti-apoptotic effect of various groups of antidepressants; however, this effect is complicated and cell-type dependent. Antidepressants of the tricyclic group, in particular amitriptyline, have been suggested to be beneficial in the treatment of neurodegenerative disorders. We examined whether amitriptyline exerts an anti-apoptotic effect via epigenetic mechanisms. Using DNA microarray, we analyzed global gene expression in mouse primary cultured neocortical neurons after treatment with amitriptyline and imipramine. The neuroprotection-associated genes, activating transcription factor 3 (Atf3) and heme oxygenase 1 (Hmox1), were up-regulated at both mRNA and protein levels by treatment with amitriptyline. Quantitative chromatin immunoprecipitation assay revealed that amitriptyline increased enrichments of trimethylation of histone H3 lysine 4 in the promoter regions of Atf3 and Hmox1 and acetylation of histone H3 lysine 9 in the promoter regions of Atf3, which indicate an active epigenetic status. Amitriptyline pre-treatment attenuated 1-methyl-4-phenylpyridinium ion (MPP+)- or amyloid β peptide 1-42 (Aβ1-42)-induced neuronal cell death and inhibited the activation of extracellular signal-regulated kinase 1 and 2 (ERK1/2). We found that Atf3 and Hmox1 were also up-regulated after Aβ1-42 treatment, and were further increased when pre-treated with amitriptyline. Interestingly, the highest up-regulation of Atf3 and Hmox1, at least at mRNA level, was observed after co-treatment with Aβ1-42 and amitriptyline, together with the loss of the neuroprotective effect. These findings suggest preconditioning and neuroprotective effects of amitriptyline; however, further investigations are needed for clarifying the contribution of epigenetic up-regulation of Atf3 and Hmox1 genes.
Collapse
Affiliation(s)
- Nguyen Quoc Vuong Tran
- Department of Health Sciences, Graduate School of Interdisciplinary Research, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - An Nghia Nguyen
- Department of Health Sciences, Graduate School of Interdisciplinary Research, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Kyoko Takabe
- Department of Health Sciences, Graduate School of Interdisciplinary Research, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Zentaro Yamagata
- Department of Health Sciences, Graduate School of Interdisciplinary Research, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Kunio Miyake
- Department of Health Sciences, Graduate School of Interdisciplinary Research, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi 409-3898, Japan.
| |
Collapse
|
26
|
Kuzu OF, Toprak M, Noory MA, Robertson GP. Effect of lysosomotropic molecules on cellular homeostasis. Pharmacol Res 2017; 117:177-184. [DOI: 10.1016/j.phrs.2016.12.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/13/2016] [Indexed: 01/01/2023]
|
27
|
Lu T, Chou CT, Liang WZ, Kuo CC, Chen IL, Wang JL, Jan CR. Amitriptyline modulated Ca2+ signaling and induced Ca2+-independent cell viability in human osteosarcoma cells. Hum Exp Toxicol 2017; 37:125-134. [DOI: 10.1177/0960327117693070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Amitriptyline is a widely used tricyclic antidepressant, which acts primarily as a serotonin–norepinephrine reuptake inhibitor. This study examined the effect of amitriptyline on Ca2+ homeostasis and its related mechanism in MG63 human osteosarcoma cells. Amitriptyline evoked cytosolic-free Ca2+ concentrations ([Ca2+]i) rises concentration dependently. Amitriptyline-evoked Ca2+ entry was confirmed by Mn2+-induced quench of fura-2 fluorescence. This entry was inhibited by Ca2+ entry modulators nifedipine, econazole, SKF96365, the protein kinase C (PKC) activator phorbol 12-myristate 13 acetate but was not affected by the PKC inhibitor GF109203X. In Ca2+-free medium, treatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin (TG) inhibited amitriptyline-evoked [Ca2+]i rises by 95%. Conversely, treatment with amitriptyline abolished TG-evoked [Ca2+]i rises. Inhibition of phospholipase C (PLC) with U73122 inhibited amitriptyline-evoked [Ca2+]i rises by 70%. Amitriptyline killed cells at 200–500 μM in a concentration-dependent fashion. Chelating cytosolic Ca2+ with 1,2-bis(2-aminophenoxy)ethane- N, N, N′, N′-tetraacetic acid/AM did not reverse amitriptyline-induced cytotoxicity. Collectively, our data suggest that in MG63 cells, amitriptyline induced [Ca2+]i rises by evoking PLC-dependent Ca2+ release from the endoplasmic reticulum and Ca2+ entry via PKC-regulated store-operated Ca2+ entry. Amitriptyline also induced Ca2+-disassociated cell death.
Collapse
Affiliation(s)
- T Lu
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - C-T Chou
- Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Chia-Yi, Taiwan
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chia-Yi, Taiwan
| | - W-Z Liang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - C-C Kuo
- Department of Nursing, Tzu Hui Institute of Technology, Pingtung, Taiwan
| | - I-L Chen
- Department of Pharmacy, Tajen University, Pingtung, Taiwan
| | - J-L Wang
- Department of Rehabilitation, Kaohsiung Veterans General Hospital Tainan Branch, Tainan, Taiwan
| | - C-R Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| |
Collapse
|
28
|
Zhang Z, Mao H, Du X, Zhu J, Xu Y, Wang S, Xu X, Ji P, Yu Y, Cao B, Han K, Hou T, Xu Z, Kong Y, Jiang G, Tang X, Qiao C, Mao X. A novel small molecule agent displays potent anti-myeloma activity by inhibiting the JAK2-STAT3 signaling pathway. Oncotarget 2017; 7:9296-308. [PMID: 26814430 PMCID: PMC4891041 DOI: 10.18632/oncotarget.6974] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 01/17/2016] [Indexed: 01/04/2023] Open
Abstract
The oncogenic STAT3 signaling pathway is emerging as a promising target for the treatment of multiple myeloma (MM). In the present study, we identified a novel STAT3 inhibitor SC99 in a target-based high throughput screen. SC99 inhibited JAK2-STAT3 activation but had no effects on other transcription factors such as NF-κB, and kinases such as AKT, ERK, and c-Src that are in association with STAT3 signaling pathway. Furthermore, SC99 downregulated the expression of STAT3-modulated genes, including Bcl-2, Bcl-xL, VEGF, cyclin D2, and E2F-1. By inhibiting the STAT3 signaling, SC99 induced MM cell apoptosis which could be partly abolished by the ectopic expression of STAT3. Furthermore, SC99 displayed potent anti-MM activity in two independent MM xenograft models in nude mice. Oral administration of SC99 led to marked decrease of tumor growth within 10 days at a daily dosage of 30 mg/kg, but did not raise toxic effects. Taken together, this study identified a novel oral JAK2/STAT3 inhibitor that could be developed as an anti-myeloma agent.
Collapse
Affiliation(s)
- Zubin Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Hongwu Mao
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Xiaolin Du
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Jingyu Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, China
| | - Yujia Xu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Siyu Wang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Xin Xu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Peng Ji
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yang Yu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Biyin Cao
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Kunkun Han
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, China
| | - Zhuan Xu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yan Kong
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Gaofeng Jiang
- School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaowen Tang
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chunhua Qiao
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Xinliang Mao
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| |
Collapse
|
29
|
Xu X, Han K, Tang X, Zeng Y, Lin X, Zhao Y, Zhang Z, Cao B, Wu D, Mao X. The Ring Finger Protein RNF6 Induces Leukemia Cell Proliferation as a Direct Target of Pre-B-cell Leukemia Homeobox 1. J Biol Chem 2016; 291:9617-28. [PMID: 26971355 PMCID: PMC4850299 DOI: 10.1074/jbc.m115.701979] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 03/11/2016] [Indexed: 11/06/2022] Open
Abstract
RNF6 is a little-studied ring finger protein. In the present study, we found that RNF6 was overexpressed in various leukemia cells and that it accelerated leukemia cell proliferation, whereas knockdown of RNF6 delayed tumor growth in xenografts. To find out the mechanism of RNF6 overexpression in leukemia, we designed a series of truncated constructs of RNF6 regulatory regions in the luciferase reporter system. The results revealed that the region between -144 and -99 upstream of the RNF6 transcription start site was critical and that this region contained a PBX1 recognition element (PRE). PBX1 modulated RNF6 expression by binding to the specific PRE. When PRE was mutated, RNF6 transcription was completely abolished. Further studies showed that PBX1 collaborated with PREP1 but not MEIS1 to modulate RNF6 expression. Moreover, RNF6 expression could be suppressed by doxorubicin, a major anti-leukemia agent, via down-regulating PBX1. This study thus suggests that RNF6 overexpression in leukemia is under the direction of PBX1 and that the PBX1/RNF6 axis can be developed as a novel therapeutic target of leukemia.
Collapse
Affiliation(s)
- Xin Xu
- From the Jiangsu Key Laboratory for Translational Research and Therapeutics of Neuro-Psycho-Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123
| | - Kunkun Han
- From the Jiangsu Key Laboratory for Translational Research and Therapeutics of Neuro-Psycho-Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, the Asclepius Technology Company Group and Asclepius Cancer Research Center, Suzhou, Jiangsu 215123, China
| | - Xiaowen Tang
- the Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006
| | - Yuanying Zeng
- From the Jiangsu Key Laboratory for Translational Research and Therapeutics of Neuro-Psycho-Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123
| | - Xu Lin
- From the Jiangsu Key Laboratory for Translational Research and Therapeutics of Neuro-Psycho-Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123
| | - Yun Zhao
- the Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu 215123
| | - Zubin Zhang
- From the Jiangsu Key Laboratory for Translational Research and Therapeutics of Neuro-Psycho-Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123
| | - Biyin Cao
- From the Jiangsu Key Laboratory for Translational Research and Therapeutics of Neuro-Psycho-Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123
| | - Depei Wu
- the Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006
| | - Xinliang Mao
- From the Jiangsu Key Laboratory for Translational Research and Therapeutics of Neuro-Psycho-Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, the Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu 215123, and
| |
Collapse
|
30
|
The ubiquitin ligase HERC4 mediates c-Maf ubiquitination and delays the growth of multiple myeloma xenografts in nude mice. Blood 2016; 127:1676-86. [PMID: 26825710 DOI: 10.1182/blood-2015-07-658203] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 12/18/2015] [Indexed: 01/11/2023] Open
Abstract
The transcription factor c-Maf is extensively involved in the pathophysiology of multiple myeloma (MM), a fatal malignancy of plasma cells. In the present study, affinity chromatography and mass spectrometry were used to identify c-Maf ubiquitination-associated proteins, from which the E3 ligase HERC4 was found to interact with c-Maf and catalyzed its polyubiquitination and subsequent proteasome-mediated degradation. HERC4 mediated polyubiquitination at K85 and K297 in c-Maf, and this polyubiquitination could be prevented by the isopeptidase USP5. Further analysis on the NCI-60 cell line collection revealed that RPMI 8226, a MM-derived cell line, expressed the lowest level of HERC4. Primary bone marrow analysis revealed HERC4 expression was high in normal bone marrow, but was steadily decreased during myelomagenesis. These findings suggested HERC4 played an important role in MM progression. Moreover, ectopic HERC4 expression decreased MM proliferation in vitro, and delayed xenograft tumor growth in vivo. Therefore, modulation of c-Maf ubiquitination by targeting HERC4 may represent a new therapeutic modality for MM.
Collapse
|
31
|
Liu ZH, Li J, Xia J, Jiang R, Zuo GW, Li XP, Chen Y, Xiong W, Chen DL. Ginsenoside 20(s)-Rh2 as potent natural histone deacetylase inhibitors suppressing the growth of human leukemia cells. Chem Biol Interact 2015; 242:227-34. [PMID: 26482938 DOI: 10.1016/j.cbi.2015.10.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND OBJECTIVE Activation and abnormal expression of histone deacetylase (HDAC) which is important target for cancer therapeutics are related to the occurrence of human leukemia. 20(s)-Ginsenoside Rh2 (20(s)-Rh2) may be a potential HDAC inhibitor (HDACi) of leukemia, but the mechanism has not been reported. METHODS The cell proliferation and apoptosis was assessed in cultured K562 and KG-1α cells. The protein expression was measured with immunoblotting. The activities of HDAC and histone acetyltransferase (HAT) were measured with BCA. In vivo experiments were performed on naked mice carrying K562 cells for assessment of tumor growth, apoptosis, protein expression, and HDAC/HAT activities. RESULTS 20(s)-Rh2 effectively induced cell cycle arrest at G0/G1 phase and apoptosis in K562 and KG1-α cells, decreased the levels of proteins associated with cell proliferation (Cyclin D1, Bcl-2, ERK, p-ERK) and activated pro-apoptotic proteins (Bax, cleaved Caspase-3, p38, p-p38, JNK, p-JNK). 20(s)-Rh2 down-regulated HDAC1, HDAC2, HDAC6, increased histone H3 acetylation and HAT activity. Moreover, 20(s)-Rh2 inhibited the growth of human leukemia xenograft tumors in vivo. CONCLUSION 20(s)-Rh2 inhibited the proliferation of K562 and KG1-α cell by reducing the expression and activity of HDACs, increasing histone acetylation, and regulating key proteins in the downstream signaling pathways. Therefore, 20(s)-Rh2 could become a potential natural HDACi for chemotherapy of leukemia.
Collapse
Affiliation(s)
- Ze-Hong Liu
- Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China
| | - Jing Li
- Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China
| | - Jing Xia
- Department of Human Anatomy, Chongqing Medical and Health School, Chongqing 400016, China
| | - Rong Jiang
- Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China
| | - Guo-Wei Zuo
- Key Laboratories of Clinical Diagnostics, Province and Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Xiao-Peng Li
- Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China
| | - Yi Chen
- Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China
| | - Wei Xiong
- Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China
| | - Di-Long Chen
- Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
32
|
Han K, Xu X, Xu Z, Chen G, Zeng Y, Zhang Z, Cao B, Kong Y, Tang X, Mao X. SC06, a novel small molecule compound, displays preclinical activity against multiple myeloma by disrupting the mTOR signaling pathway. Sci Rep 2015; 5:12809. [PMID: 26329846 PMCID: PMC4556980 DOI: 10.1038/srep12809] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/08/2015] [Indexed: 12/30/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is extensively involved in multiple myeloma (MM) pathophysiology. In the present study, we reported a novel small molecule SC06 that induced MM cell apoptosis and delayed MM xenograft growth in vivo. Oral administration of SC06 to mice bearing human MM xenografts resulted in significant inhibition of tumor growth at doses that were well tolerated. Mechanistic studies revealed that SC06 selectively inhibited the mTOR signaling pathway but had no effects on other associated kinases, such as AKT, ERK, p38, c-Src and JNK. Further studies showed that SC06-decreased mTOR activation was associated with the downregulation of Raptor, a key component of the mTORC1 complex. SC06 also suppressed the phosphorylation of 4E-BP1 and P70S6K, two typical substrates in the mTORC1 signaling pathway. Notably, expression of Raptor, phosphorylation of mTOR and phosphorylated 4E-BP1 was also decreased in the tumor tissues from SC06-treated mice, which was consistent with the cellular studies. Therefore, given the potency and low toxicity, SC06 could be developed as a potential anti-MM drug candidate by disrupting the mTOR signaling.
Collapse
Affiliation(s)
- Kunkun Han
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-psycho-diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Xin Xu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-psycho-diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Zhuan Xu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guodong Chen
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-psycho-diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yuanying Zeng
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-psycho-diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Zubin Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-psycho-diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Biyin Cao
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-psycho-diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yan Kong
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaowen Tang
- Department of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xinliang Mao
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-psycho-diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, China
| |
Collapse
|
33
|
Nortriptyline induces mitochondria and death receptor-mediated apoptosis in bladder cancer cells and inhibits bladder tumor growth in vivo. Eur J Pharmacol 2015; 761:309-20. [DOI: 10.1016/j.ejphar.2015.06.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 05/30/2015] [Accepted: 06/02/2015] [Indexed: 01/15/2023]
|
34
|
Evason KJ, Francisco MT, Juric V, Balakrishnan S, Lopez Pazmino MDP, Gordan JD, Kakar S, Spitsbergen J, Goga A, Stainier DYR. Identification of Chemical Inhibitors of β-Catenin-Driven Liver Tumorigenesis in Zebrafish. PLoS Genet 2015; 11:e1005305. [PMID: 26134322 PMCID: PMC4489858 DOI: 10.1371/journal.pgen.1005305] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 05/28/2015] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal human cancers. The search for targeted treatments has been hampered by the lack of relevant animal models for the genetically diverse subsets of HCC, including the 20-40% of HCCs that are defined by activating mutations in the gene encoding β-catenin. To address this chemotherapeutic challenge, we created and characterized transgenic zebrafish expressing hepatocyte-specific activated β-catenin. By 2 months post fertilization (mpf), 33% of transgenic zebrafish developed HCC in their livers, and 78% and 80% of transgenic zebrafish showed HCC at 6 and 12 mpf, respectively. As expected for a malignant process, transgenic zebrafish showed significantly decreased mean adult survival compared to non-transgenic control siblings. Using this novel transgenic model, we screened for druggable pathways that mediate β-catenin-induced liver growth and identified two c-Jun N-terminal kinase (JNK) inhibitors and two antidepressants (one tricyclic antidepressant, amitriptyline, and one selective serotonin reuptake inhibitor) that suppressed this phenotype. We further found that activated β-catenin was associated with JNK pathway hyperactivation in zebrafish and in human HCC. In zebrafish larvae, JNK inhibition decreased liver size specifically in the presence of activated β-catenin. The β-catenin-specific growth-inhibitory effect of targeting JNK was conserved in human liver cancer cells. Our other class of hits, antidepressants, has been used in patient treatment for decades, raising the exciting possibility that these drugs could potentially be repurposed for cancer treatment. In support of this proposal, we found that amitriptyline decreased tumor burden in a mouse HCC model. Our studies implicate JNK inhibitors and antidepressants as potential therapeutics for β-catenin-induced liver tumors. Liver cancer is a leading cause of cancer-related death. Genetic analysis of liver cancer has enabled classification of these tumors into subsets with unique genetic, clinical, and prognostic features. The search for targeted liver cancer treatments has been hampered by the lack of relevant animal models for these genetically diverse subsets, including liver cancers that are defined by activating mutations in the gene encoding β-catenin, an integral component of the Wnt signaling pathway. Here we describe the generation and characterization of genetically modified zebrafish expressing hepatocyte-specific activated β-catenin. We used this new zebrafish model to screen for drugs that suppress β-catenin-induced liver growth, and identified two classes of hits, c-Jun N-terminal kinase (JNK) inhibitors and antidepressants, that suppressed this phenotype. Our findings provide insights into the mechanisms by which β-catenin promotes liver tumor formation and implicate JNK inhibitors and antidepressants as potential treatments for a subset of human liver cancers.
Collapse
Affiliation(s)
- Kimberley J. Evason
- Department of Pathology, University of California, San Francisco, San Francisco, California, United States of America
- Department of Biochemistry and Biophysics, Programs in Developmental and Stem Cell Biology, Genetics and Human Genetics, Diabetes Center, Institute for Regeneration Medicine and the Liver Center, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail: (KJE); (AG); (DYRS)
| | - Macrina T. Francisco
- Department of Pathology, University of California, San Francisco, San Francisco, California, United States of America
- Department of Cell & Tissue Biology, University of California, San Francisco, San Francisco, California, United States of America
| | - Vladislava Juric
- The George Williams Hooper Research Foundation, University of California, San Francisco, San Francisco, California, United States of America
| | - Sanjeev Balakrishnan
- Department of Cell & Tissue Biology, University of California, San Francisco, San Francisco, California, United States of America
| | - Maria del Pilar Lopez Pazmino
- Department of Biochemistry and Biophysics, Programs in Developmental and Stem Cell Biology, Genetics and Human Genetics, Diabetes Center, Institute for Regeneration Medicine and the Liver Center, University of California, San Francisco, San Francisco, California, United States of America
| | - John D. Gordan
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Sanjay Kakar
- Department of Pathology, University of California, San Francisco, San Francisco, California, United States of America
| | - Jan Spitsbergen
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
| | - Andrei Goga
- Department of Cell & Tissue Biology, University of California, San Francisco, San Francisco, California, United States of America
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail: (KJE); (AG); (DYRS)
| | - Didier Y. R. Stainier
- Department of Biochemistry and Biophysics, Programs in Developmental and Stem Cell Biology, Genetics and Human Genetics, Diabetes Center, Institute for Regeneration Medicine and the Liver Center, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail: (KJE); (AG); (DYRS)
| |
Collapse
|
35
|
Zerbini LF, Bhasin MK, de Vasconcellos JF, Paccez JD, Gu X, Kung AL, Libermann TA. Computational repositioning and preclinical validation of pentamidine for renal cell cancer. Mol Cancer Ther 2014; 13:1929-1941. [PMID: 24785412 DOI: 10.1158/1535-7163.mct-13-0750] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although early stages of clear cell renal cell carcinoma (ccRCC) are curable, survival outcome for metastatic ccRCC remains poor. We previously established a highly accurate signature of differentially expressed genes that distinguish ccRCC from normal kidney. The purpose of this study was to apply a new individualized bioinformatics analysis (IBA) strategy to these transcriptome data in conjunction with Gene Set Enrichment Analysis of the Connectivity Map (C-MAP) database to identify and reposition FDA-approved drugs for anticancer therapy. Here, we demonstrate that one of the drugs predicted to revert the RCC gene signature toward normal kidney, pentamidine, is effective against RCC cells in culture and in a RCC xenograft model. ccRCC-specific gene expression signatures of individual patients were used to query the C-MAP software. Eight drugs with negative correlation and P-value <0.05 were analyzed for efficacy against RCC in vitro and in vivo. Our data demonstrate consistency across most patients with ccRCC for the set of high-scoring drugs. Most of the selected high-scoring drugs potently induce apoptosis in RCC cells. Several drugs also demonstrate selectivity for Von Hippel-Lindau negative RCC cells. Most importantly, at least one of these drugs, pentamidine, slows tumor growth in the 786-O human ccRCC xenograft mouse model. Our findings suggest that pentamidine might be a new therapeutic agent to be combined with current standard-of-care regimens for patients with metastatic ccRCC and support our notion that IBA combined with C-MAP analysis enables repurposing of FDA-approved drugs for potential anti-RCC therapy.
Collapse
Affiliation(s)
- Luiz Fernando Zerbini
- International Center for Genetic Engineering and Biotechnology (ICGEB), Cancer Genomics Group and Division of Medical Biochemistry, University of Cape Town, Cape Town, South Africa.,BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Manoj K Bhasin
- BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Jaira F de Vasconcellos
- BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Juliano D Paccez
- International Center for Genetic Engineering and Biotechnology (ICGEB), Cancer Genomics Group and Division of Medical Biochemistry, University of Cape Town, Cape Town, South Africa
| | - Xuesong Gu
- BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Andrew L Kung
- Department of Pediatrics, Columbia University Medical Center, New York, NY
| | - Towia A Libermann
- BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| |
Collapse
|
36
|
Bielecka AM, Obuchowicz E. Antidepressant drugs as a complementary therapeutic strategy in cancer. Exp Biol Med (Maywood) 2014; 238:849-58. [PMID: 23970405 DOI: 10.1177/1535370213493721] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In the last decade, it has been increasingly recognized that antidepressant drugs may exert a range of effects, in addition to their well-documented ability to modulate neurotransmission. Although as a group they act on monoaminergic systems and receptors in different ways, a number of studies have demonstrated that at least some antidepressants might have other properties in common, including immunomodulatory, cyto/neuroprotective, analgesic and anti-inflammatory activities. These properties are partly related to the influence of antidepressants on glial cell function. Recently, emerging information about the possible anticancer properties of antidepressants has sparked increased interest within scientific community, and there is now evidence that these drugs affect the key cellular mechanisms of carcinogenesis. This review examines the putative cellular targets for the anticancer action of antidepressant drugs, and presents examples of the interaction between antidepressants and anticancer drugs. By reviewing the current state of research in this area, we hope to focus the attention of oncologists and researchers engaged in the study of cancer on the role that antidepressant drugs could play in the complementary therapy of cancer.
Collapse
Affiliation(s)
- Anna M Bielecka
- Medical University of Silesia, Department of Pharmacology, Medyków 18, 40-752 Katowice, Poland.
| | | |
Collapse
|
37
|
Antidepressant-like properties of novel HDAC6-selective inhibitors with improved brain bioavailability. Neuropsychopharmacology 2014; 39:389-400. [PMID: 23954848 PMCID: PMC3870780 DOI: 10.1038/npp.2013.207] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/15/2013] [Accepted: 08/02/2013] [Indexed: 12/13/2022]
Abstract
HDAC inhibitors have been reported to produce antidepressant and pro-cognitive effects in animal models, however, poor brain bioavailability or lack of isoform selectivity of current probes has limited our understanding of their mode of action. We report the characterization of novel pyrimidine hydroxyl amide small molecule inhibitors of HDAC6, brain bioavailable upon systemic administration. We show that two compounds in this family, ACY-738 and ACY-775, inhibit HDAC6 with low nanomolar potency and a selectivity of 60- to 1500-fold over class I HDACs. In contrast to tubastatin A, a reference HDAC6 inhibitor with similar potency and peripheral activity, but more limited brain bioavailability, ACY-738 and ACY-775 induce dramatic increases in α-tubulin acetylation in brain and stimulate mouse exploratory behaviors in novel, but not familiar environments. Interestingly, despite a lack of detectable effect on histone acetylation, we show that ACY-738 and ACY-775 share the antidepressant-like properties of other HDAC inhibitors, such as SAHA and MS-275, in the tail suspension test and social defeat paradigm. These effects of ACY-738 and ACY-775 are directly attributable to the inhibition of HDAC6 expressed centrally, as they are fully abrogated in mice with a neural-specific loss of function of HDAC6. Furthermore, administered in combination, a behaviorally inactive dose of ACY-738 markedly potentiates the anti-immobility activity of a subactive dose of the selective serotonin reuptake inhibitor citalopram. Our results validate new isoform-selective probes for in vivo pharmacological studies of HDAC6 in the CNS and reinforce the viability of this HDAC isoform as a potential target for antidepressant development.
Collapse
|
38
|
Autism’s cancer connection: The anti-proliferation hypothesis and why it may matter. Med Hypotheses 2014; 82:26-35. [DOI: 10.1016/j.mehy.2013.10.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/27/2013] [Accepted: 10/31/2013] [Indexed: 12/30/2022]
|
39
|
Lauterbach EC. Neuroprotective effects of psychotropic drugs in Huntington's disease. Int J Mol Sci 2013; 14:22558-603. [PMID: 24248060 PMCID: PMC3856079 DOI: 10.3390/ijms141122558] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/16/2013] [Accepted: 10/16/2013] [Indexed: 02/06/2023] Open
Abstract
Psychotropics (antipsychotics, mood stabilizers, antidepressants, anxiolytics, etc.) are commonly prescribed to treat Huntington’s disease (HD). In HD preclinical models, while no psychotropic has convincingly affected huntingtin gene, HD modifying gene, or huntingtin protein expression, psychotropic neuroprotective effects include upregulated huntingtin autophagy (lithium), histone acetylation (lithium, valproate, lamotrigine), miR-222 (lithium-plus-valproate), mitochondrial protection (haloperidol, trifluoperazine, imipramine, desipramine, nortriptyline, maprotiline, trazodone, sertraline, venlafaxine, melatonin), neurogenesis (lithium, valproate, fluoxetine, sertraline), and BDNF (lithium, valproate, sertraline) and downregulated AP-1 DNA binding (lithium), p53 (lithium), huntingtin aggregation (antipsychotics, lithium), and apoptosis (trifluoperazine, loxapine, lithium, desipramine, nortriptyline, maprotiline, cyproheptadine, melatonin). In HD live mouse models, delayed disease onset (nortriptyline, melatonin), striatal preservation (haloperidol, tetrabenazine, lithium, sertraline), memory preservation (imipramine, trazodone, fluoxetine, sertraline, venlafaxine), motor improvement (tetrabenazine, lithium, valproate, imipramine, nortriptyline, trazodone, sertraline, venlafaxine), and extended survival (lithium, valproate, sertraline, melatonin) have been documented. Upregulated CREB binding protein (CBP; valproate, dextromethorphan) and downregulated histone deacetylase (HDAC; valproate) await demonstration in HD models. Most preclinical findings await replication and their limitations are reviewed. The most promising findings involve replicated striatal neuroprotection and phenotypic disease modification in transgenic mice for tetrabenazine and for sertraline. Clinical data consist of an uncontrolled lithium case series (n = 3) suggesting non-progression and a primarily negative double-blind, placebo-controlled clinical trial of lamotrigine.
Collapse
Affiliation(s)
- Edward C Lauterbach
- Department of Psychiatry and Behavioral Sciences, Mercer University School of Medicine, 655 First Street, Macon, GA 31201, USA.
| |
Collapse
|
40
|
Cao B, Li J, Zhu J, Shen M, Han K, Zhang Z, Yu Y, Wang Y, Wu D, Chen S, Sun A, Tang X, Zhao Y, Qiao C, Hou T, Mao X. The antiparasitic clioquinol induces apoptosis in leukemia and myeloma cells by inhibiting histone deacetylase activity. J Biol Chem 2013; 288:34181-34189. [PMID: 24114842 DOI: 10.1074/jbc.m113.472563] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The antiparasitic clioquinol (CQ) represents a class of novel anticancer drugs by interfering with proteasome activity. In the present study, we found that CQ induced blood cancer cell apoptosis by inhibiting histone deacetylases (HDACs). CQ accumulated the acetylation levels of several key proteins including histone H3 (H3), p53, HSP90, and α-tubulin. In the mechanistic study, CQ was found to down-regulate HDAC1, -3, -4, and -5 in both myeloma and leukemia cells. Computer modeling analysis revealed that CQ was well docked into the active pocket of the enzyme, where the oxygen and nitrogen atoms in CQ formed stable coordinate bonds with the zinc ion, and the hydroxyl group from CQ formed an effective hydrogen bond with Asp-267. Moreover, co-treatment with CQ and zinc/copper chloride led to decreased Ac-H3. Furthermore, CQ inhibited the activity of Class I and IIa HDACs in the cell-free assays, demonstrating that CQ interfered with HDAC activity. By inhibiting HDAC activity, CQ induced expression of p21, p27, and p53, cell cycle arrest at G1 phase, and cell apoptosis. This study suggested that the HDAC enzymes are targets of CQ, which provided a novel insight into the molecular mechanism of CQ in the treatment of hematological malignancies.
Collapse
Affiliation(s)
- Biyin Cao
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China 215123
| | - Jie Li
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China 215123
| | - Jingyu Zhu
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China 215123
| | - Mingyun Shen
- Institute of Functional Nano & Soft Materials, Soochow University, Suzhou, China 215123
| | - Kunkun Han
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China 215123
| | - Zubin Zhang
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China 215123
| | - Yang Yu
- Department of Pharmacology, Pharmacy School, Soochow University, Suzhou, China 215123
| | - Yali Wang
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China 215123
| | - Depei Wu
- Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, China 215006
| | - Suning Chen
- Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, China 215006
| | - Aining Sun
- Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, China 215006
| | - Xiaowen Tang
- Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, China 215006
| | - Yun Zhao
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China 215123
| | - Chunhua Qiao
- Department of Pharmacology, Pharmacy School, Soochow University, Suzhou, China 215123
| | - Tingjun Hou
- Institute of Functional Nano & Soft Materials, Soochow University, Suzhou, China 215123
| | - Xinliang Mao
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China 215123; Department of Pharmacology, Pharmacy School, Soochow University, Suzhou, China 215123.
| |
Collapse
|
41
|
The tricyclic antidepressant amitriptyline is cytotoxic to HTB114 human leiomyosarcoma and induces p75NTR-dependent apoptosis. Anticancer Drugs 2013; 24:899-910. [DOI: 10.1097/cad.0b013e328364312f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
42
|
Réus GZ, Abelaira HM, dos Santos MAB, Carlessi AS, Tomaz DB, Neotti MV, Liranço JLG, Gubert C, Barth M, Kapczinski F, Quevedo J. Ketamine and imipramine in the nucleus accumbens regulate histone deacetylation induced by maternal deprivation and are critical for associated behaviors. Behav Brain Res 2013; 256:451-6. [PMID: 24004850 DOI: 10.1016/j.bbr.2013.08.041] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 08/20/2013] [Accepted: 08/24/2013] [Indexed: 10/26/2022]
Abstract
Studies indicate that histone deacetylation is important for long term changes related to stress and antidepressant treatment. The present study aimed to evaluate the effects of the classic antidepressant imipramine, and of an antagonist of the N-methyl-d-asparte (NMDA) receptor, ketamine, on behavior and histone deacetylase (HDAC) activity in the brains of maternally deprived adult rats. To this aim, deprived and non-deprived (control) male Wistar rats were divided into the following groups: non-deprived+saline; non-deprived+imipramine (30 mg/kg); non-deprived+ketamine (15 mg/kg); deprived+saline; deprived+imipramine (30 mg/kg); and deprived+ketamine (15 mg/kg). The drugs were administrated once a day for 14 days during their adult phase. Their behavior were then assessed using the forced swimming and open field tests. In addition, the HDAC activity was evaluated in the prefrontal cortex, hippocampus, amygdala and nucleus accumbens using the kit ELISA-sandwich test. In deprived rats treated with saline, we observed an increase in the immobility time, but treatments with imipramine and ketamine were able to reverse this alteration, decreasing the immobility time. Also, there was a decrease on number of crossings with imipramine treatment in non-deprived rats, and an increase on number of crossings with ketamine treatment in deprived rats. The HDAC activity did not alter in the prefrontal cortex, hippocampus and amygdala by deprivation or via treatment with imipramine or ketamine. However, in the nucleus accumbens we observed an increase of HDAC activity in the deprived rats, and interestingly, imipramine and ketamine treatments were able to decrease HDAC activity in this brain area. These findings provide a novel insight into the epigenetic regulation of histone deacetylase in the nucleus accumbens caused by imipramine and ketamine, and indicate that molecular events are necessary to reverse specific stress-induced behavior.
Collapse
Affiliation(s)
- Gislaine Z Réus
- Laboratório de Neurociências, Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), and Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Antidepressants: influence on cancer and immunity? Life Sci 2013; 92:525-32. [PMID: 23369745 DOI: 10.1016/j.lfs.2013.01.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 12/10/2012] [Accepted: 01/16/2013] [Indexed: 01/10/2023]
Abstract
Two decades ago, it was hypothesized that antidepressants could alter the course of neoplastic diseases. However, contradictory findings indicated that antidepressants could either have carcinogenic properties or improve the disease outcome. Intriguingly, controversial results were reported on the action of antidepressant drugs on immune function. Further hypotheses proposed that antidepressants could indirectly affect the cancer prognosis through the modulation of antitumor activity. Here we review the literature in order to elucidate the influence of antidepressants on cancer and immunity.
Collapse
|
44
|
The effect of tricyclic antidepressants on cutaneous melanoma cell lines and primary cell cultures. Anticancer Drugs 2012; 23:65-9. [PMID: 21897201 DOI: 10.1097/cad.0b013e32834b1894] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The tricyclic antidepressants have previously been shown to exert activity against glioma cells in vitro. Initial studies in cell lines suggested that this might extend to melanoma cells. We have therefore conducted a study in primary cell cultures from metastatic cutaneous melanoma deposits using a well established ATP-based tumour chemosensitivity assay to confirm and extend these findings. Two cell lines and eight primary cell cultures from metastatic melanoma deposits were exposed to three tricyclic drugs, amitriptyline, nortriptyline and clomipramine, at concentrations ranging from 200 to 6.25 µmol/l in the ATP-based tumour chemosensitivity assay. All three drugs showed activity, although nortriptyline was more active than clomipramine or amitriptyline in both cell lines and primary cell cultures, with an IC50 of 9, 27 and 33 µmol/l, respectively. Tricyclic agents show activity against melanoma in vitro. This could be related to the lysosomal effects based on their cationic amphiphilic properties, or effects at the mitochondrial membrane.
Collapse
|
45
|
HDAC6 regulates glucocorticoid receptor signaling in serotonin pathways with critical impact on stress resilience. J Neurosci 2012; 32:4400-16. [PMID: 22457490 DOI: 10.1523/jneurosci.5634-11.2012] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Genetic variations in certain components of the glucocorticoid receptor (GR) chaperone complex have been associated with the development of stress-related affective disorders and individual variability in therapeutic responses to antidepressants. Mechanisms that link GR chaperoning and stress susceptibility are not well understood. Here, we show that the effects of glucocorticoid hormones on socioaffective behaviors are critically regulated via reversible acetylation of Hsp90, a key component of the GR chaperone complex. We provide pharmacological and genetic evidence indicating that the cytoplasmic lysine deacetylase HDAC6 controls Hsp90 acetylation in the brain, and thereby modulates Hsp90-GR protein-protein interactions, as well as hormone- and stress-induced GR translocation, with a critical impact on GR downstream signaling and behavior. Pet1-Cre-driven deletion of HDAC6 in serotonin neurons, the densest HDAC6-expressing cell group in the mouse brain, dramatically reduced acute anxiogenic effects of the glucocorticoid hormone corticosterone in the open-field, elevated plus maze, and social interaction tests. Serotonin-selective depletion of HDAC6 also blocked the expression of social avoidance in mice exposed to chronic social defeat and concurrently prevented the electrophysiological and morphological changes induced, in serotonin neurons, by this murine model of traumatic stress. Together, these results identify HDAC6 inhibition as a potential new strategy for proresilience and antidepressant interventions through regulation of the Hsp90-GR heterocomplex and focal prevention of GR signaling in serotonin pathways. Our data thus uncover an alternate mechanism by which pan-HDAC inhibitors may regulate stress-related behaviors independently of their action on histones.
Collapse
|
46
|
Ling C, Chen G, Chen G, Zhang Z, Cao B, Han K, Yin J, Chu A, Zhao Y, Mao X. A deuterated analog of dasatinib disrupts cell cycle progression and displays anti-non-small cell lung cancer activity in vitro and in vivo. Int J Cancer 2012; 131:2411-9. [PMID: 22362357 DOI: 10.1002/ijc.27504] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 02/13/2011] [Indexed: 11/07/2022]
Abstract
The pan-Src family kinase inhibitor dasatinib has been approved for chronic myeloid leukemia treatment but displays limited activity in lung cancer patients. In this study, we used a deuterium substitution strategy to develop a class of novel chemicals based on dasatinib and found that these compounds maintain inhibition on c-Src activity and display anti-non-small cell lung cancer activity in vitro and in vivo. BRP800, one of these compounds, was chosen for further studies. BRP800 mainly displayed antiproliferative but not proapoptotic activity. Molecularly, BRP800 did not show significant effects on the expression of antiapoptotic genes, such as Bcl-2 and Mcl1, or on the activation of apoptotic enzymes, such as caspase-3, -8 or 9. However, BRP800 decreased expression of cell cycle promoting genes such as cyclins D1, D3, E, A and CDK4 and 6, and increased the expression of cell cycle negative regulators including p21, p27 and p53. Consistent with these findings, BRP800 arrested cells at the G0/G1 phase in a concentration-dependent manner, and the G0/G1 fraction was increased from 64% in control to 85% in BRP800-treated cells. We also evaluated the effects of BRP800 on NSCLC xenografts using H460 as a model in nude mice. Compared with the known NSCLC drug docetaxel, BRP800 displayed potent and similar antitumor activity but with less toxicity. These findings suggest that the deuterated analog of dasatinib is antiproliferative by inhibiting c-Src and disrupting cell cycle progression, and could be further developed as a novel drug for non-small lung cancer treatment.
Collapse
Affiliation(s)
- Chunhua Ling
- Department of Respiratory Diseases, the First Affiliated Hospital of Soochow University, Suzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Boks MP, de Jong NM, Kas MJH, Vinkers CH, Fernandes C, Kahn RS, Mill J, Ophoff RA. Current status and future prospects for epigenetic psychopharmacology. Epigenetics 2012; 7:20-8. [PMID: 22207355 DOI: 10.4161/epi.7.1.18688] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mounting evidence suggest that epigenetic regulation of brain functions is important in the etiology of psychiatric disorders. These epigenetic regulatory mechanisms, such as DNA methylation and histone acetylation, are influenced by many pharmaceutical compounds including psychiatric drugs. It is therefore of interest to investigate how psychiatric drugs are of influence and what the potential is of new epigenetic drugs for psychiatric disorders. With this targeted review we summarize the current state of knowledge in order to provide insight in this developing field. Several traditional psychiatric drugs have been found to alter the epigenome and in a variety of animal studies, experimental compounds with epigenetic targets have been investigated as potential psychiatric drugs. After discussion of the most relevant epigenetic mechanisms we present the evidence for epigenetic effects for the most relevant classes of drugs.
Collapse
Affiliation(s)
- Marco P Boks
- Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|