1
|
Guo Z, Wang H, Sun J, Ma Y, Cui X, Kou S, Jiang Z, Zhang L, Wang X, Wang T, Sun L, Huang X. The intestinal absorption of triptolide for the treatment of rheumatoid arthritis is mediated by transporters. Int Immunopharmacol 2024; 143:113440. [PMID: 39471693 DOI: 10.1016/j.intimp.2024.113440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 11/01/2024]
Abstract
Tripterygium wilfordii Hook. f. is a traditional Chinese herb that is used to treat rheumatoid arthritis (RA). Triptolide (TP), an epoxidized diterpene lactone extracted from this herb, has been suggested to be the primary active and toxic component. In this work, the material basis and molecular mechanism of toxicity induced by T. wilfordii preparations in RA were investigated. Female rats with collagen-induced arthritis were given 500 μg·kg-1 TP intragastrically or intravenously. Compared with that in the control group, the AUClast in the CIA group was 1.7-fold greater after intragastric administration, while this value decreased 22.6 % after intravenous administration, suggesting that the absorption of TP was significantly greater in the CIA group. The results from RT-PCR and probe substrate perfusion indicated that Oatp1a5 expression was upregulated while P-glycoprotein (P-gp) expression was downregulated in the duodenums of CIA rats. Naringin, an inhibitor of Oatp1a5, decreased the Peff of TP in the rat duodenum by 27.9 %, whereas verapamil hydrochloride, an inhibitor of P-gp, increased the Peff by 50.8 %, suggesting that Oatp1a5 and P-gp mediate the uptake and efflux of TP in the rat duodenum, respectively. Furthermore, among the upstream nuclear receptors, the mRNA expression levels and protein expression levels of FXR and VDR were noticeably decreased. In the present study, the absorption of TP in the duodenums of CIA rats significantly increased due to the upregulation of Oatp1a5 expression and the downregulation of P-gp expression, leading to an increase in TP plasma exposure after intragastric administration. The altered expression of Oatp1a5 and P-gp may be related to FXR and VDR.
Collapse
Affiliation(s)
- Ziyu Guo
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, Guangdong 518057, China
| | - Hefei Wang
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Juan Sun
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ying Ma
- Foreign Language Teaching Department, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xueyang Cui
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Shanshan Kou
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhenzhou Jiang
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Luyong Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xinzhi Wang
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Tao Wang
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Lixin Sun
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Xin Huang
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
2
|
Olszewska AM, Nowak JI, Myszczynski K, Słominski A, Żmijewski MA. Dissection of an impact of VDR and RXRA on the genomic activity of 1,25(OH) 2D 3 in A431 squamous cell carcinoma. Mol Cell Endocrinol 2024; 582:112124. [PMID: 38123121 PMCID: PMC10872374 DOI: 10.1016/j.mce.2023.112124] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/24/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Human skin is the natural source, place of metabolism, and target for vitamin D3. The classical active form of vitamin D3, 1,25(OH)2D3, expresses pluripotent properties and is intensively studied in cancer prevention and therapy. To define the specific role of vitamin D3 receptor (VDR) and its co-receptor retinoid X receptor alpha (RXRA) in genomic regulation, VDR or RXRA genes were silenced in the squamous cell carcinoma cell line A431 and treated with 1,25(OH)2D3 at long incubation time points 24 h/72 h. Extending the incubation time of A431 WT (wild-type) cells with 1,25(OH)2D3 resulted in a two-fold increase in DEGs (differentially expressed genes) and a change in the amount of downregulated from 37% to 53%. VDR knockout led to a complete loss of 1,25(OH)2D3-induced genome-wide gene regulation at 24 h time point, but after 72 h, 20 DEGs were found, of which 75% were downregulated, and most of them belonged to the gene ontology group "immune response". This may indicate the existence of an alternative, secondary response to 1,25(OH)2D3. In contrast, treatment of A431 ΔRXRA cells with 1,25(OH)2D3 for 24 h only partially affected DEGs, suggesting RXRA-independent regulation. Interestingly, overexpression of classic 1,25(OH)2D3 targets, like CYP24A1 (family 24 of subfamily A of cytochrome P450 member 1) or CAMP (cathelicidin antimicrobial peptide) was found to be RXRA-independent. Also, immunofluorescence staining of A431 WT cells revealed partial VDR/RXRA colocalization after 24 h and 72 h 1,25(OH)2D3 treatment. Comparison of transcriptome changes induced by 1,25(OH)2D3 in normal keratinocytes vs. cancer cells showed high cell type specific expression pattern with only a few genes commonly regulated by 1,25(OH)2D3. Activation of the genomic pathway at least partially reversed the expression of cancer-related genes, forming a basis for anti-cancer activates of 1,25(OH)2D3. In summary, VDR or RXRA independent genomic activities of 1,25(OH)2D3 suggest the involvement of alternative factors, opening new challenges in this field.
Collapse
Affiliation(s)
- Anna M Olszewska
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211Gdansk, Poland
| | - Joanna I Nowak
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211Gdansk, Poland
| | - Kamil Myszczynski
- Centre of Biostatistics and Bioinformatics Analysis Medical University of Gdansk, 1aDebinki, 80-211 Gdansk, Poland
| | - Andrzej Słominski
- Department of Dermatology, University of Alabama at Birmingham, AL 35292, USA; Birmingham Veteran Administration Medical Center, Birmingham, AL 35292, USA
| | - Michał A Żmijewski
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211Gdansk, Poland.
| |
Collapse
|
3
|
Zhang Y, Chen SJ, Chen C, Chen XQ, Chatterjee S, Shuster DJ, Dexter H, Armstrong L, Joshi EM, Yang Z, Shen H. Repression of OATP1B Expression and Increase of Plasma Coproporphyrin Level as Evidence for OATP1B Down-regulation in Cynomolgus Monkeys Treated with Chenodeoxycholic Acid. Drug Metab Dispos 2022; 50:1077-1086. [PMID: 35636769 DOI: 10.1124/dmd.122.000875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/12/2022] [Indexed: 11/22/2022] Open
Abstract
Farnesoid X receptor (FXR) is a nuclear receptor known to markedly alter expression of major transporters and enzymes in liver. However, its effects toward OATP1B1 and OATP1B3 remain poorly characterized. Therefore, the present study was aimed at determining the effects of chenodeoxycholic acid (CDCA), a naturally occurring FXR agonist, on OATP1B expression in cynomolgus monkeys. Multiple administration of 50 and 100 mg/kg CDCA was first shown to significantly repress mRNA expression of SLCO1B1/3 approximately 60% to 80% in monkey livers. It also suppressed cytochrome P450 (CYP)7A1-mRNA and induced OSTα/β-mRNA, which are well known targets of FXR and determinants of bile acid homeostasis. CDCA concomitantly decreased OATP1B protein abundance by approximately 60% in monkey liver. In contrast, multiple doses of 15 mg/kg rifampin (RIF), a pregnane X receptor (PXR) agonist, had no effect on hepatic OATP1B protein although it induced the intestinal P-gp and MR2 proteins by ~2-fold. Moreover, multiple doses of CDCA resulted in a steady ~2- to 10-fold increase of the OATP1B biomarkers coproporphyrins (CPs) in the plasma samples collected prior to each CDCA dose. Additionally, 3.4- to 11.2-fold increases of CPI and CPIII AUCs were observed after multiple administrations compared to the single dose and vehicle administration dosing groups. Taken together, these data suggest that CDCA represses the expression of OATP1B1 and OATP1B3 in monkeys. Further investigation of OATP1B down-regulation by FXR in humans is warranted, as such down-regulation effects may be involved in bile acid hemostasis and potential drug interactions in man. Significance Statement Using gene expression and proteomics tools, as well as endogenous biomarker data, for the first time, we have demonstrated that OATP1B expression was suppressed and its activity was reduced in the cynomolgus monkeys following oral administration of 50 and 100 mg/kg/day CDCA, a FXR agonist, for 8 days. These results lead to a better understanding of OATP1B down-regulation by CDCA and its role on bile acid and drug disposition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Hong Shen
- Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb, United States
| |
Collapse
|
4
|
Zhou S, Shu Y. Transcriptional Regulation of Solute Carrier (SLC) Drug Transporters. Drug Metab Dispos 2022; 50:DMD-MR-2021-000704. [PMID: 35644529 PMCID: PMC9488976 DOI: 10.1124/dmd.121.000704] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 05/02/2022] [Accepted: 05/16/2022] [Indexed: 09/03/2023] Open
Abstract
Facilitated transport is necessitated for large size, charged, and/or hydrophilic drugs to move across the membrane. The drug transporters in the solute carrier (SLC) superfamily, mainly including organic anion-transporting polypeptides (OATPs), organic anion transporters (OATs), organic cation transporters (OCTs), organic cation/carnitine transporters (OCTNs), peptide transporters (PEPTs), and multidrug and toxin extrusion proteins (MATEs), are critical facilitators of drug transport and distribution in human body. The expression of these SLC drug transporters is found in tissues throughout the body, with high abundance in the epithelial cells of major organs for drug disposition, such as intestine, liver, and kidney. These SLC drug transporters are clinically important in drug absorption, metabolism, distribution, and excretion. The mechanisms underlying their regulation have been revealing in recent years. Epigenetic and nuclear receptor-mediated transcriptional regulation of SLC drug transporters have particularly attracted much attention. This review focuses on the transcriptional regulation of major SLC drug transporter genes. Revealing the mechanisms underlying the transcription of those critical drug transporters will help us understand pharmacokinetics and pharmacodynamics, ultimately improving drug therapeutic effectiveness while minimizing drug toxicity. Significance Statement It has become increasingly recognized that solute carrier (SLC) drug transporters play a crucial, and sometimes determinative, role in drug disposition and response, which is reflected in decision-making during not only clinical drug therapy but also drug development. Understanding the mechanisms accounting for the transcription of these transporters is critical to interpret their abundance in various tissues under different conditions, which is necessary to clarify the pharmacological response, adverse effects, and drug-drug interactions for clinically used drugs.
Collapse
Affiliation(s)
- Shiwei Zhou
- Pharmaceutical Sciences, University of Maryland, United States
| | - Yan Shu
- Pharmaceutical Sciences, University of Maryland, United States
| |
Collapse
|
5
|
Salat APJ, Williams KL, Chiu S, Eickmeyer DC, Kimpe LE, Blais JM, Crump D. Extracts from Dated Lake Sediment Cores in the Athabasca Oil Sands Region Alter Ethoxyresorufin-O-deethylase Activity and Gene Expression in Avian Hepatocytes. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:1883-1893. [PMID: 33751657 DOI: 10.1002/etc.5040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/12/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
Increases in oil sands mining operations in the Athabasca oil sands region have resulted in increased concentrations of polycyclic aromatic compounds (PACs) and heavy metals in aquatic systems located near surface mining operations. In the present study, sediment cores were collected from 3 lakes with varying proximity to surface mining operations to determine the differences in PAC concentrations. Sediment cores were separated into 2 sections-current mining (top; 2000-2017) and premining (bottom; pre-1945)-and extracts were prepared for in vitro screening using a well-established chicken embryonic hepatocyte (CEH) assay. Concentrations and composition of PACs varied between sites, with the highest ∑PACs in Saline Lake, 5 km from an active oil sands mine site. The proportion of alkylated PACs was greater than that of parent PACs in the top sediment sections compared with the bottom. Ethoxyresorufin-O-deethylase activity in CEH permitted the ranking of lake sites/core sections based on an aryl hydrocarbon receptor-mediated end point; mean median effect concentration values were lowest for the top cores from Saline Lake and another near-mining operations lake, referred to as WF1. A ToxChip polymerase chain reaction (PCR) array was used to evaluate gene expression changes across 43 target genes associated with numerous toxicological pathways following exposure to top and bottom sediment core extracts. The 2 study sites with the greatest ∑PAC concentrations (Saline Lake and WF1) had the highest gene expression alterations on the ToxChip PCR array (19 [top] and 17 [bottom]/43), compared with a reference site (13 [top] and 7 [bottom]/43). The avian in vitro bioassay was useful for identifying the toxicity of complex PAC extracts associated with variably contaminated sediment cores, supporting its potential use for hotspot identification and complex mixture screening. EnvironToxicol Chem 2021;40:1883-1893. © 2021 SETAC.
Collapse
Affiliation(s)
| | - Kim L Williams
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario, Canada
| | - Suzanne Chiu
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario, Canada
| | - David C Eickmeyer
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Linda E Kimpe
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Jules M Blais
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Doug Crump
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
6
|
Pizzagalli MD, Bensimon A, Superti‐Furga G. A guide to plasma membrane solute carrier proteins. FEBS J 2021; 288:2784-2835. [PMID: 32810346 PMCID: PMC8246967 DOI: 10.1111/febs.15531] [Citation(s) in RCA: 186] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022]
Abstract
This review aims to serve as an introduction to the solute carrier proteins (SLC) superfamily of transporter proteins and their roles in human cells. The SLC superfamily currently includes 458 transport proteins in 65 families that carry a wide variety of substances across cellular membranes. While members of this superfamily are found throughout cellular organelles, this review focuses on transporters expressed at the plasma membrane. At the cell surface, SLC proteins may be viewed as gatekeepers of the cellular milieu, dynamically responding to different metabolic states. With altered metabolism being one of the hallmarks of cancer, we also briefly review the roles that surface SLC proteins play in the development and progression of cancer through their influence on regulating metabolism and environmental conditions.
Collapse
Affiliation(s)
- Mattia D. Pizzagalli
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Ariel Bensimon
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Giulio Superti‐Furga
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Center for Physiology and PharmacologyMedical University of ViennaAustria
| |
Collapse
|
7
|
Beaudoin JJ, Brouwer KLR, Malinen MM. Novel insights into the organic solute transporter alpha/beta, OSTα/β: From the bench to the bedside. Pharmacol Ther 2020; 211:107542. [PMID: 32247663 PMCID: PMC7480074 DOI: 10.1016/j.pharmthera.2020.107542] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/25/2020] [Indexed: 12/14/2022]
Abstract
Organic solute transporter alpha/beta (OSTα/β) is a heteromeric solute carrier protein that transports bile acids, steroid metabolites and drugs into and out of cells. OSTα/β protein is expressed in various tissues, but its expression is highest in the gastrointestinal tract where it facilitates the recirculation of bile acids from the gut to the liver. Previous studies established that OSTα/β is upregulated in liver tissue of patients with extrahepatic cholestasis, obstructive cholestasis, and primary biliary cholangitis (PBC), conditions that are characterized by elevated bile acid concentrations in the liver and/or systemic circulation. The discovery that OSTα/β is highly upregulated in the liver of patients with nonalcoholic steatohepatitis (NASH) further highlights the clinical relevance of this transporter because the incidence of NASH is increasing at an alarming rate with the obesity epidemic. Since OSTα/β is closely linked to the homeostasis of bile acids, and tightly regulated by the nuclear receptor farnesoid X receptor, OSTα/β is a potential drug target for treatment of cholestatic liver disease, and other bile acid-related metabolic disorders such as obesity and diabetes. Obeticholic acid, a semi-synthetic bile acid used to treat PBC, under review for the treatment of NASH, and in development for the treatment of other metabolic disorders, induces OSTα/β. Some drugs associated with hepatotoxicity inhibit OSTα/β, suggesting a possible role for OSTα/β in drug-induced liver injury (DILI). Furthermore, clinical cases of homozygous genetic defects in both OSTα/β subunits resulting in diarrhea and features of cholestasis have been reported. This review article has been compiled to comprehensively summarize the recent data emerging on OSTα/β, recapitulating the available literature on the structure-function and expression-function relationships of OSTα/β, the regulation of this important transporter, the interaction of drugs and other compounds with OSTα/β, and the comparison of OSTα/β with other solute carrier transporters as well as adenosine triphosphate-binding cassette transporters. Findings from basic to more clinically focused research efforts are described and discussed.
Collapse
Affiliation(s)
- James J Beaudoin
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Melina M Malinen
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
8
|
Rahman A, Al-Taiar A, Shaban L, Al-Sabah R, Mojiminiyi O. Plasma 25-hydroxyvitamin D is positively associated with folate and vitamin B 12 levels in adolescents. Nutr Res 2020; 79:87-99. [PMID: 32653772 DOI: 10.1016/j.nutres.2020.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 05/04/2020] [Accepted: 06/01/2020] [Indexed: 12/15/2022]
Abstract
Vitamin D affects the absorption of folate in vitro, and perhaps of vitamin B12 (B12). However, epidemiological studies on the association of vitamin D with folate and B12 are inconclusive. We hypothesized a positive association of plasma 25-hydroxyvitamin D [25(OH)D] with folate and B12 levels in adolescents. This hypothesis was tested in a cross-sectional study of healthy adolescents (11-16 years old; n = 1416), selected from public middle schools from across Kuwait, using stratified multistage cluster random sampling. Plasma 25(OH)D was measured by LC-MS/MS. Serum B12 and total folate in hemolyzed whole blood were analyzed with commercial kits; RBC and plasma folate were calculated from total folate. Data on potential confounders were collected from the parents and adolescents. In a univariable model, 25(OH)D as a continuous variable was positively associated with each of total, RBC, and plasma folate (P < .001). After adjusting for potential confounders, this association remained significant with total folate (β = 2.0, P < .001) and red blood cell folate (β = 1.8, P < .001), but not with plasma folate (β = 0.2, P = .34). A similar pattern of association was evident when 25(OH)D was fitted as categorical variable. Correlation between B12 and 25(OH)D was weak but significant (ρ = 0.1, P < .001). 25(OH)D was positively associated with B12 in both univariable and multivariable models (P < .001) when fitted as a categorical variable only. Simultaneous quantile regression confirmed these results. We conclude that plasma 25(OH)D is positively associated with folate and B12 levels in adolescents. Properly designed large-scale randomized controlled trials are warranted to investigate the causal role of vitamin D in folate and B12 absorption.
Collapse
Affiliation(s)
- Abdur Rahman
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Box 5969, Safat 13060, Kuwait.
| | - Abdullah Al-Taiar
- School of Community & Environmental Health, College of Health Sciences, Old Dominion University, Norfolk, VA 23529.
| | - Lemia Shaban
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Box 5969, Safat 13060, Kuwait.
| | - Reem Al-Sabah
- Department of Community Medicine and Behavioural Sciences, Faculty of Medicine, Kuwait University, Box: 24923, Safat 13110, Kuwait.
| | - Olusegun Mojiminiyi
- Department of Pathology, Faculty of Medicine, Kuwait University, Box: 24923, Safat 13110, Kuwait.
| |
Collapse
|
9
|
Effects of vitamin D on drugs: Response and disposal. Nutrition 2020; 74:110734. [PMID: 32179384 DOI: 10.1016/j.nut.2020.110734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 12/29/2019] [Accepted: 01/01/2020] [Indexed: 12/11/2022]
Abstract
Vitamin D supplementation and vitamin D deficiency are common in clinical experience and in daily life. Vitamin D not only promotes calcium absorption and immune regulation, but also changes drug effects (pharmacodynamics and adverse reactions) and drug disposal in vivo when combined with various commonly used clinical drugs. The extensive physiological effects of vitamin D may cause synergism effects or alleviation of adverse reactions, and vitamin D's affect on drugs in vivo disposal through drug transporters or metabolic enzymes may also lead to changes in drug effects. Herein, the effects of vitamin D combined with commonly used drugs were reviewed from the perspective of drug efficacy and adverse reactions. The effects of vitamin D on drug transport and metabolism were summarized and analyzed. Hopefully, more attention will be paid to vitamin D supplementation and deficiency in clinical treatment and drug research and development.
Collapse
|
10
|
Rodrigues AD, Lai Y, Shen H, Varma MV, Rowland A, Oswald S. Induction of Human Intestinal and Hepatic Organic Anion Transporting Polypeptides: Where Is the Evidence for Its Relevance in Drug-Drug Interactions? Drug Metab Dispos 2019; 48:205-216. [DOI: 10.1124/dmd.119.089615] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/06/2019] [Indexed: 12/12/2022] Open
|
11
|
Role of vitamin D receptor in the regulation of CYP3A gene expression. Acta Pharm Sin B 2019; 9:1087-1098. [PMID: 31867158 PMCID: PMC6900549 DOI: 10.1016/j.apsb.2019.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 02/28/2019] [Accepted: 03/15/2019] [Indexed: 12/17/2022] Open
Abstract
Vitamin D3 (VD3) is a multifunctional nutrient which can be either synthesized or absorbed from the diet. It plays a pivotal role in systemic calcium and phosphate homeostasis, as well as in various physiological and pathological processes. VD3 is converted to the active form, 1α,25-dihydroxyvitamin D3 (1,25-D3), by cytochrome P450 2R1 (CYP2R1)/CYP27A1 and CYP27B1 sequentially, and deactivated by multiple enzymes including CYP3A4. On the other hand, 1,25-D3 is capable of activating the transcription of CYP3A genes in humans, mice and rats. The vitamin D receptor (VDR)-mediated transactivation of human CYP3A4 and CYP3A5 resembles that known for pregnane X receptor (PXR). Activated VDR forms a heterodimer with retinoid X receptor α (RXRα), recruits co-activators, translocates to the cell nucleus, binds to the specific vitamin D responsive elements (VDRE), and activates the gene transcription. In mice, intestinal Cyp3a11 mRNA levels, but not those of hepatic CYP3As, were induced by in vivo administration of VDR and PXR agonists. In rats, intestinal Cyp3a1 and Cyp3a2 mRNAs were induced by 1,25-D3 or lithocholic acid (LCA), whereas hepatic Cyp3a2, but not Cyp3a1 and Cyp3a9, was modulated to 1,25-D3 treatment. In general, the VDR-mediated regulation of CYP3A presents species and organ specificity.
Collapse
|
12
|
Therapeutic targets of vitamin D receptor ligands and their pharmacokinetic effects by modulation of transporters and metabolic enzymes. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-019-00429-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Oswald S. Organic Anion Transporting Polypeptide (OATP) transporter expression, localization and function in the human intestine. Pharmacol Ther 2019; 195:39-53. [DOI: 10.1016/j.pharmthera.2018.10.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
14
|
Pawlak D, Znorko B, Kalaska B, Domaniewski T, Zawadzki R, Lipowicz P, Doroszko M, Łebkowska U, Grabowski P, Pawlak K. LP533401 restores bone health in 5/6 nephrectomized rats by a decrease of gut-derived serotonin and regulation of serum phosphate through the inhibition of phosphate co-transporters expression in the kidneys. Bone 2018; 113:124-136. [PMID: 29792935 DOI: 10.1016/j.bone.2018.05.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 04/28/2018] [Accepted: 05/20/2018] [Indexed: 11/17/2022]
Abstract
LP533401 is an orally bioavailable small molecule that inhibits tryptophan hydroxylase-1, an enzyme responsible for the synthesis of gut-derived serotonin (GDS). Recently, we showed that increased GDS in rats with chronic kidney disease (CKD) affected bone strength and metabolism. We tested the hypothesis that treatment with LP533401 could reverse CKD-induced bone loss in uremia. Sixteen weeks after 5/6 nephrectomy, rats were randomized into untreated (CKD), treated with vehicle (VEH) and LP533401 at a dose of 30 or 100 mg/kg daily for 8 weeks. Treatment with LP533401 decreased serotonin turnover and restored bone mineral status, microarchitecture, and strength in CKD rats to the values observed in the controls. In parallel with the reduction of serotonin, serum phosphate levels also decreased, particularly in the LP533401, 100 mg/kg group. The mechanism underlying this phenomenon resulted from decreased expression of the renal VDR/FGF1R/Klotho/Npt2a/Npt2c axis, leading to elevated phosphate excretion in the kidneys. The elevated urinary phosphate excretion resulted in improved bone mineral status and strength in LP533401-treated rats. Unexpectedly, the standard VEH used in this model was able to reduce renal VDR/FGF1R/Klotho/Npt2a expression, leading to a compensatory increase in Npt2c mRNA levels, secondary disturbances in phosphate-regulated hormones and partial improvement in the mineral status of the trabecular bone. The decrease of serotonin synthesis together with the simultaneous reduction of renal Npt2a and Npt2c expression in rats treated with LP533401, 100 mg/kg led to an increase in 1,25(OH)2D3 levels; this mechanism seems to be particularly beneficial in relation to the mineral status of cortical bone.
Collapse
Affiliation(s)
- Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| | - Beata Znorko
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Bialystok, Poland
| | - Bartlomiej Kalaska
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| | - Tomasz Domaniewski
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Bialystok, Poland
| | - Radosław Zawadzki
- Department of Radiology, Medical University of Bialystok, Bialystok, Poland
| | - Paweł Lipowicz
- Institute of Biocybernetics and Biomedical Engineering, Faculty of Mechanical Engineering, Bialystok University of Technology, Bialystok, Poland
| | - Michał Doroszko
- Department of Mechanics and Applied Computer Science, Faculty of Mechanical Engineering, Bialystok University of Technology, Bialystok, Poland
| | - Urszula Łebkowska
- Department of Radiology, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Grabowski
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Bialystok, Poland
| | - Krystyna Pawlak
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|
15
|
Bukuroshi P, Saitoh H, Magomedova L, Cummins CL, Chow EC, Li AP, Pang KS. Strategies and limitations associated with in vitro characterization of vitamin D receptor activators. Biochem Pharmacol 2018; 155:547-561. [PMID: 30028992 DOI: 10.1016/j.bcp.2018.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/14/2018] [Indexed: 11/26/2022]
Abstract
In vitro cell-based assays are common screening tools used for the identification of new VDR ligands. For 25-hydroxyvitamin D3 [25(OH)D3] and 1α-hydroxyvitamin D3 [1α(OH)D3], protein expressions of CYP2R1 and CYP27B1, respectively, that form the active 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] ligand were detected in human embryonic kidney (HEK293) cells expressing the GAL4-hVDR, the human brain microvessel endothelial (hCMEC/D3) and adenocarcinoma colonic (Caco-2) cells. The impact of bioactivation enzymes was shown upon the addition of ketoconazole (10 μM KTZ), a pan-CYP inhibitor, which reduced the apparent potency of 25(OH)D3 and increased the EC50 from 272 to 608 nM in HEK293 cells. EIA assays verified that 1,25(OH)2D3 was formed and contributed to VDR activity independently of its precursors. In hCMEC/D3 cells where enzyme protein levels were lowest, changes in MDR1/P-gp expression with KTZ were minimal. In Caco-2 cells, the induction of TRPV6 (calcium channel), CYP24A1, CYP3A4, OATP1A2 and MDR1 mRNA expression was 1,25(OH)2D3 > 1α(OH)D3 > 25(OH)D3, with the magnitude of change being blunted by KTZ. Upon inclusion of KTZ in the cell-based assays, high transcriptional activities were observed for synthetic VDR activators from Teijin Pharma. Cyclopentanone derivatives: TPD-003, TPD-005, TPD-006, TPD-008 and TPD-009 (EC50s 0.06 to 67 nM, unchanged with KTZ) were found more potent over straight chain and lactone derivatives (antagonists). Most TPD compounds activated OATP1A2, CYP24A1, CYP3A4, and MDR1 (28-67%) and TRPV6 transcriptionally in Caco-2 cells. The results identified that cell-based assays with added KTZ could accurately identify new VDR activators, although these may be hypercalcemic with strong TRPV6 inducing properties.
Collapse
Affiliation(s)
- Paola Bukuroshi
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Hiroshi Saitoh
- Teijin Pharma Inc., 3-2, Asahigaoka 4-chome, Hino, Tokyo 191-8512, Japan
| | - Lilia Magomedova
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Carolyn L Cummins
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Edwin C Chow
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Albert P Li
- In Vitro ADMET Laboratories, Columbia, MD 21045, USA
| | - K Sandy Pang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
16
|
Quach HP, Dzekic T, Bukuroshi P, Pang KS. Potencies of vitamin D analogs, 1α-hydroxyvitamin D3
, 1α-hydroxyvitamin D2
and 25-hydroxyvitamin D3
, in lowering cholesterol in hypercholesterolemic mice in vivo. Biopharm Drug Dispos 2018; 39:196-204. [DOI: 10.1002/bdd.2126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/28/2018] [Accepted: 02/11/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Holly P. Quach
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy; University of Toronto; Toronto Ontario Canada
| | - Tamara Dzekic
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy; University of Toronto; Toronto Ontario Canada
| | - Paola Bukuroshi
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy; University of Toronto; Toronto Ontario Canada
| | - K. Sandy Pang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
17
|
Quach HP, Noh K, Hoi SY, Bruinsma A, Groothuis GMM, Li AP, Chow ECY, Pang KS. Alterations in gene expression in vitamin D-deficiency: Down-regulation of liver Cyp7a1 and renal Oat3 in mice. Biopharm Drug Dispos 2018; 39:99-115. [PMID: 29243851 DOI: 10.1002/bdd.2118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/01/2017] [Accepted: 12/03/2017] [Indexed: 01/06/2023]
Abstract
The vitamin D-deficient model, established in the C57BL/6 mouse after 8 weeks of feeding vitamin D-deficient diets in the absence or presence of added calcium, was found associated with elevated levels of plasma parathyroid hormone (PTH) and plasma and liver cholesterol, and a reduction in cholesterol 7α-hydroxylase (Cyp7a1, rate-limiting enzyme for cholesterol metabolism) and renal Oat3 mRNA/protein expression levels. However, there was no change in plasma calcium and phosphate levels. Appraisal of the liver revealed an up-regulation of mRNA expressions of the small heterodimer partner (Shp) and attenuation of Cyp7a1, which contributed to hypercholesterolemia in vitamin D-deficiency. When vitamin D-sufficient or D-deficient mice were further rendered hypercholesterolemic with 3 weeks of feeding the respective, high fat/high cholesterol (HF/HC) diets, treatment with 1α,25-dihydroxyvitamin D3 [1,25(OH)2 D3 ], active vitamin D receptor (VDR) ligand, or vitamin D (cholecalciferol) to HF/HC vitamin D-deficient mice lowered the cholesterol back to baseline levels. Cholecalciferol treatment partially restored renal Oat3 mRNA/protein expression back to that of vitamin D-sufficient mice. When the protein expression of protein kinase C (PKC), a known, negative regulator of Oat3, was examined in murine kidney, no difference in PKC expression was observed for any of the diets with/without 1,25(OH)2 D3 /cholecalciferol treatment, inferring that VDR regulation of renal Oat3 did not involve PKC in mice. As expected, plasma calcium levels were not elevated by cholecalciferol treatment of vitamin D-deficient mice, while 1,25(OH)2 D3 treatment led to hypercalcemia. In conclusion, vitamin D-deficiency resulted in down-regulation of liver Cyp7a1 and renal Oat3, conditions that are alleviated upon replenishment of cholecalciferol.
Collapse
Affiliation(s)
- Holly P Quach
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada, M5S 3M2
| | - Keumhan Noh
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada, M5S 3M2
| | - Stacie Y Hoi
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada, M5S 3M2
| | - Adrie Bruinsma
- Division of Pharmacokinetics, Toxicology and Targeting, Department of Pharmacy, University of Groningen, Groningen, The Netherlands, 9713, AV
| | - Geny M M Groothuis
- Division of Pharmacokinetics, Toxicology and Targeting, Department of Pharmacy, University of Groningen, Groningen, The Netherlands, 9713, AV
| | - Albert P Li
- In Vitro ADMET Laboratories, Columbia, Maryland, USA, 21045
| | - Edwin C Y Chow
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada, M5S 3M2
| | - K Sandy Pang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada, M5S 3M2
| |
Collapse
|
18
|
Alam C, Hoque MT, Finnell RH, Goldman ID, Bendayan R. Regulation of Reduced Folate Carrier (RFC) by Vitamin D Receptor at the Blood-Brain Barrier. Mol Pharm 2017; 14:3848-3858. [PMID: 28885847 DOI: 10.1021/acs.molpharmaceut.7b00572] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Folates are essential for brain development and function. Folate transport in mammalian tissues is mediated by three major folate transport systems, i.e., reduced folate carrier (RFC), proton-coupled folate transporter (PCFT), and folate receptor alpha (FRα), known to be regulated by ligand-activated nuclear receptors, such as vitamin D receptor (VDR). Folate uptake at the choroid plexus, which requires the actions of both FRα and PCFT, is critical to cerebral folate delivery. Inactivating FRα or PCFT mutations cause severe cerebral folate deficiency resulting in early childhood neurodegeneration. The objective of this study was to investigate the role of RFC in folate uptake at the level of the blood-brain barrier (BBB) and its potential regulation by VDR. We detected robust expression of RFC in different in vitro BBB model systems, particularly in immortalized cultures of human cerebral microvascular endothelial cells (hCMEC/D3) and isolated mouse brain capillaries. [3H]-methotrexate uptake by hCMEC/D3 cells at pH 7.4 was inhibited by PT523 and pemetrexed, antifolates with high affinity for RFC. We also showed that activation of VDR through calcitriol (1,25-dihydroxyvitamin D3) exposure up-regulates RFC mRNA and protein expression as well as function in hCMEC/D3 cells and isolated mouse brain capillaries. We further demonstrated that RFC expression could be down-regulated by VDR-targeting siRNA, further confirming the role of VDR in the direct regulation of this folate transporter. Together, these data suggest that augmenting RFC functional expression could constitute a novel strategy for enhancing brain folate delivery for the treatment of neurometabolic disorders caused by loss of FRα or PCFT function.
Collapse
Affiliation(s)
- Camille Alam
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto , Toronto, Ontario M5S 3M2, Canada
| | - Md Tozammel Hoque
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto , Toronto, Ontario M5S 3M2, Canada
| | - Richard H Finnell
- Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine , Houston, Texas 77030, United States
| | - I David Goldman
- Department of Molecular Pharmacology, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto , Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
19
|
An J, Zhou Q, Qian G, Wang T, Wu M, Zhu T, Qiu X, Shang Y, Shang J. Comparison of gene expression profiles induced by fresh or ozone-oxidized black carbon particles in A549 cells. CHEMOSPHERE 2017; 180:212-220. [PMID: 28410501 DOI: 10.1016/j.chemosphere.2017.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/11/2017] [Accepted: 04/01/2017] [Indexed: 05/23/2023]
Abstract
Epidemiological studies have showed an association between black carbon (BC) exposure and adverse health effects. This study intends to investigate the influence of oxidation processes in atmosphere on the initial cellular responses of BC. The changes of gene expressions induced by fresh BC (FBC) and ozone-oxidized BC (OBC) in human lung epithelial A549 cells were analyzed. And their toxic effects presented by viability, LDH release and DNA damage were compared. Totally 47, 000 genes in A549 cells were examined using Affymetrix Human U133 plus 2.0 chips. Some of the differentially expressed genes were verified by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The results showed that 1446 genes (including 756 up-regulated and 690 down-regulated) and 1594 genes (including 788 up-regulated and 806 down-regulated genes) were significantly changed by FBC and OBC respectively. Only 4 of 14 (FBC)/15 (OBC) oxidative stress related genes, up- or down-regulated by FBC and OBC, were identical; 13 of 29 (FBC)/31 (OBC) inflammation related genes, and 6 of 20 (FBC)/18 (OBC) autophagy related genes were identical. No obvious differences were observed between the toxic effects of FBC and OBC. The cytotoxicity of OBC and FBC in A549 cells is at least partially induced by oxidative stress and consequent inflammation or autophagy process. Previous studies indicated that OBC may be more toxic than FBC. However, our results suggested that FBC and OBC might lead to diverse toxic endpoints through activating different molecular pathways.
Collapse
Affiliation(s)
- Jing An
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Qian Zhou
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Guangren Qian
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Tiantian Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Meiying Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Tong Zhu
- State Key Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xinghua Qiu
- State Key Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yu Shang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Jing Shang
- State Key Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
20
|
Claro da Silva T, Hiller C, Gai Z, Kullak-Ublick GA. Vitamin D3 transactivates the zinc and manganese transporter SLC30A10 via the Vitamin D receptor. J Steroid Biochem Mol Biol 2016; 163:77-87. [PMID: 27107558 DOI: 10.1016/j.jsbmb.2016.04.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 03/15/2016] [Accepted: 04/13/2016] [Indexed: 01/11/2023]
Abstract
Vitamin D3 regulates genes critical for human health and its deficiency is associated with an increased risk for osteoporosis, cancer, diabetes, multiple sclerosis, hypertension, inflammatory and immunological diseases. To study the impact of vitamin D3 on genes relevant for the transport and metabolism of nutrients and drugs, we employed next-generation sequencing (NGS) and analyzed global gene expression of the human-derived Caco-2 cell line treated with 500nM vitamin D3. Genes involved in neuropeptide signaling, inflammation, cell adhesion and morphogenesis were differentially expressed. Notably, genes implicated in zinc, manganese and iron homeostasis were largely increased by vitamin D3 treatment. An ∼10-fold increase in ceruloplasmin and ∼4-fold increase in haptoglobin gene expression suggested a possible association between vitamin D and iron homeostasis. SLC30A10, the gene encoding the zinc and manganese transporter ZnT10, was the chiefly affected transporter, with ∼15-fold increase in expression. SLC30A10 is critical for zinc and manganese homeostasis and mutations in this gene, resulting in impaired ZnT10 function or expression, cause manganese intoxication, with Parkinson-like symptoms. Our NGS results were validated by real-time PCR in Caco-2 cells, as well as in duodenal biopsies taken from healthy human subjects treated with 0.5μg vitamin D3 daily for 10 days. In addition to increasing gene expression of SLC30A10 and the positive control TRPV6, vitamin D3 also increased ZnT10 protein expression, as indicated by Western blot and cytofluorescence. In silico identification of potential vitamin D responsive elements (VDREs) in the 5'-flanking region of the SLC30A10 promoter and dual-luciferase reporter assay showed enhanced promoter activity in the presence of vitamin D receptor (VDR) and retinoid X receptor (RXR) constructs, as well as vitamin D3, but not when one of these factors was absent. Electrophoretic mobility shift assay (EMSA) and competition EMSA revealed binding of select sequences, namely, nt -1623/-1588 and nt -1758/-1723 relative to the transcription start site, to VDR-containing nuclear extracts. In conclusion, we have shown that vitamin D3 transactivates the SLC30A10 gene in a VDR-dependent manner, resulting in increased ZnT10 protein expression. Because SLC30A10 is highly expressed in the small intestine, it is possible that the control of zinc and manganese systemic levels is regulated by vitamin D3 in the intestine. Zinc, manganese and vitamin D are important for bone metabolism and brain health. Future examination of a possible role for supplementation or chelation of zinc and manganese, alongside vitamin D3 administration, will further our understanding of its potential benefit in the treatment of specific illnesses, such as osteoporosis and Parkinson's disease.
Collapse
Affiliation(s)
- Tatiana Claro da Silva
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Switzerland.
| | - Christian Hiller
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Switzerland.
| | - Zhibo Gai
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Switzerland.
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Switzerland.
| |
Collapse
|
21
|
Lau AJ, Politi R, Yang G, Chang TKH. Cell-based and in silico evidence against quercetin and structurally-related flavonols as activators of vitamin D receptor. J Steroid Biochem Mol Biol 2016; 163:59-67. [PMID: 27041117 DOI: 10.1016/j.jsbmb.2016.03.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/28/2016] [Accepted: 03/31/2016] [Indexed: 12/15/2022]
Abstract
It has been reported that quercetin is an activator of rat vitamin D receptor (rVDR). However, the conclusion was based on experiments performed without all the appropriate control groups, raising the possibility of a false-positive finding. Furthermore, distinct differences exist in the chemical structures of quercetin and 1α,25-dihydroxyvitamin D3, which is a prototypic agonist of VDR. Therefore, we investigated systematically whether quercetin and other flavonols are agonists of rVDR, mouse VDR (mVDR), or human VDR (hVDR). Quercetin, 3-hydroxyflavone, galangin, datiscetin, kaempferol, morin, isorhamnetin, tamarixetin, myricetin, and syringetin did not activate rVDR, mVDR, or hVDR in HEK-293 and HepG2 cells transfected with the corresponding receptor expression plasmid and either the secreted phosphoprotein 1 (Spp1) or cytochrome P450 24A1 (CYP24A1) reporter plasmid, when compared to the respective empty vector control group transfected with one or the other reporter plasmid and treated with one of the flavonols. Control analysis indicated that lithocholic acid and 1α,25-dihydroxyvitamin D3, but not rifampicin, activated rVDR, mVDR, and hVDR. As shown in transfected HEK293 and HepG2 cells, the flavonols did not influence hVDR ligand binding domain transactivation, steroid receptor coactivator-1 recruitment, or hVDR target gene expression (transient receptor potential cation channel 6 and CYP24A1) in hVDR-expressing Caco-2 or LS180 cells. The cumulative data from the cell-based experiments were corroborated by results obtained from molecular docking analysis. In conclusion, quercetin, 3-hydroxyflavone, galangin, datiscetin, kaempferol, morin, isorhamnetin, tamarixetin, myricetin, and syringetin are not agonists of rVDR, mVDR, or hVDR, as judged by cell-based and in silico evidence.
Collapse
Affiliation(s)
- Aik Jiang Lau
- Faculty of Pharmaceutical Sciences, The University of British Columbia Vancouver, BC V6T 1Z3, Canada
| | - Regina Politi
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Guixiang Yang
- Faculty of Pharmaceutical Sciences, The University of British Columbia Vancouver, BC V6T 1Z3, Canada
| | - Thomas K H Chang
- Faculty of Pharmaceutical Sciences, The University of British Columbia Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
22
|
Chaubey PM, Hofstetter L, Roschitzki B, Stieger B. Proteomic Analysis of the Rat Canalicular Membrane Reveals Expression of a Complex System of P4-ATPases in Liver. PLoS One 2016; 11:e0158033. [PMID: 27347675 PMCID: PMC4922570 DOI: 10.1371/journal.pone.0158033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 06/09/2016] [Indexed: 12/22/2022] Open
Abstract
Transport processes in the canalicular membrane are key elements in bile formation and are the driving force of the enterohepatic circulation of bile salts. The canalicular membrane is constantly exposed to the detergent action of bile salts. One potential element protecting the canalicular membrane from the high canalicular bile salt concentrations may be bile salt resistant microdomains, however additional factors are likely to play a role. To obtain more insights into the molecular composition of the canalicular membrane, the proteome of highly purified rat canalicular membrane vesicles was determined. Isolated rat canalicular membrane vesicles were stripped from adhering proteins, deglycosylated and protease digested before subjecting the samples to shot gun proteomic analysis. The expression of individual candidates was studied by PCR, Western blotting and immunohistochemistry. A total of 2449 proteins were identified, of which 1282 were predicted to be membrane proteins. About 50% of the proteins identified here were absent from previously published liver proteomes. In addition to ATP8B1, four more P4-ATPases were identified. ATP8A1 and ATP9A showed expression specific to the canalicular membrane, ATP11C at the bLPM and ATP11A in an intracellular vesicular compartment partially colocalizing with RAB7A and EEA1 as markers of the endosomal compartment. This study helped to identify additional P4-ATPases from rat liver particularly in the canalicular membrane, previously not known to be expressed in liver. These P4-ATPases might be contributing for maintaining transmembrane lipid homeostasis in hepatocytes.
Collapse
Affiliation(s)
- Pururawa Mayank Chaubey
- Department of Clinical Pharmacology and Toxicology, University Hospital Zürich, Zürich, Switzerland
| | - Lia Hofstetter
- Department of Clinical Pharmacology and Toxicology, University Hospital Zürich, Zürich, Switzerland
| | - Bernd Roschitzki
- Functional Genomics Center Zürich, University of Zürich/ETH Zürich, Zürich, Switzerland
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital Zürich, Zürich, Switzerland
- * E-mail:
| |
Collapse
|
23
|
No major effects of vitamin D3 (1,25 dihydroxyvitamin D3) on absorption and pharmacokinetics of folic acid and fexofenadine in healthy volunteers. Eur J Clin Pharmacol 2016; 72:797-805. [PMID: 27023466 PMCID: PMC4909797 DOI: 10.1007/s00228-016-2050-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/16/2016] [Indexed: 12/16/2022]
Abstract
PURPOSE In Caco-2 cells, folate uptake via the proton-coupled folate transporter (PCFT) increases significantly by a 3-day treatment with 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). Additionally, mRNA content and protein expression of the transporter OATP1A2 were increased up to ninefold with 1,25(OH)2D3. We investigated whether these in vitro findings can be confirmed in humans in vivo. METHODS Ten healthy volunteers (six women) received 5 mg folic acid orally once before and once together with the last intake of a 10-day course of 0.5 μg 1,25(OH)2D3 orally. One hundred twenty milligrams fexofenadine, an OATP1A2 substrate, was taken in 1 day before the first folic acid intake, and again on the ninth day of 1,25(OH)2D3 intake. Duodenal biopsies were taken for transporter mRNA assessments once before and once on the ninth or tenth day of the vitamin D3 course. Serum folic acid and fexofenadine concentrations were quantified with a chemiluminescence immunoassay and LC-MS/MS, respectively. Pharmacokinetics were compared between periods with standard bioequivalence approaches. RESULTS While geometric mean folic acid AUC0-2h, which mainly reflects absorption, was 0.403 and 0.414 mg/L·h before and after the vitamin D3 course (geometric mean ratio (GMR), 1.027; 90 % confidence interval (90 % CI), 0.788-1.340), the geometric mean fexofenadine AUC0-2h was 1.932 and 2.761 mg/L·h, respectively (GMR, 1.429; 90 % CI, 0.890-2.294). PCFT- and OATP1A2-mRNA expressions in duodenal biopsies were essentially unchanged. CONCLUSIONS No significant changes in folic acid and fexofenadine absorption were observed after a 10-day course of 1,25(OH)2D3 in humans in vivo. This study underlines the importance of confirming in vitro findings in vivo in humans.
Collapse
|
24
|
Nanduri R, Mahajan S, Bhagyaraj E, Sethi K, Kalra R, Chandra V, Gupta P. The Active Form of Vitamin D Transcriptionally Represses Smad7 Signaling and Activates Extracellular Signal-regulated Kinase (ERK) to Inhibit the Differentiation of a Inflammatory T Helper Cell Subset and Suppress Experimental Autoimmune Encephalomyelitis. J Biol Chem 2015; 290:12222-36. [PMID: 25809484 DOI: 10.1074/jbc.m114.621839] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Indexed: 12/22/2022] Open
Abstract
The ability of the active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), to transcriptionally modulate Smads to inhibit Th17 differentiation and experimental autoimmune encephalomyelitis (EAE) has not been adequately studied. This study reports modulation of Smad signaling by the specific binding of the VDR along with its heterodimeric partner RXR to the negative vitamin D response element on the promoter of Smad7, which leads to Smad7 gene repression. The vitamin D receptor-mediated increase in Smad3 expression partially explains the IL10 augmentation seen in Th17 cells. Furthermore, the VDR axis also modulates non-Smad signaling by activating ERK during differentiation of Th17 cells, which inhibits the Th17-specific genes il17a, il17f, il22, and il23r. In vivo EAE experiments revealed that, 1,25(OH)2D3 suppression of EAE correlates with the Smad7 expression in the spleen and lymph nodes. Furthermore, Smad7 expression also correlates well with IL17 and IFNγ expression in CNS infiltered inflammatory T cells. We also observed similar gene repression of Smad7 in in vitro differentiated Th1 cells when cultured in presence of 1,25(OH)2D3. The above canonical and non-canonical pathways in part address the ability of 1,25(OH)2D3-VDR to inhibit EAE.
Collapse
Affiliation(s)
- Ravikanth Nanduri
- From the Department of Protein Science and Molecular Biology, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39 A, Chandigarh 160036, India
| | - Sahil Mahajan
- From the Department of Protein Science and Molecular Biology, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39 A, Chandigarh 160036, India
| | - Ella Bhagyaraj
- From the Department of Protein Science and Molecular Biology, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39 A, Chandigarh 160036, India
| | - Kanupriya Sethi
- From the Department of Protein Science and Molecular Biology, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39 A, Chandigarh 160036, India
| | - Rashi Kalra
- From the Department of Protein Science and Molecular Biology, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39 A, Chandigarh 160036, India
| | - Vemika Chandra
- From the Department of Protein Science and Molecular Biology, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39 A, Chandigarh 160036, India
| | - Pawan Gupta
- From the Department of Protein Science and Molecular Biology, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39 A, Chandigarh 160036, India
| |
Collapse
|
25
|
Prakash C, Zuniga B, Song CS, Jiang S, Cropper J, Park S, Chatterjee B. Nuclear Receptors in Drug Metabolism, Drug Response and Drug Interactions. NUCLEAR RECEPTOR RESEARCH 2015; 2:101178. [PMID: 27478824 PMCID: PMC4963026 DOI: 10.11131/2015/101178] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Orally delivered small-molecule therapeutics are metabolized in the liver and intestine by phase I and phase II drug-metabolizing enzymes (DMEs), and transport proteins coordinate drug influx (phase 0) and drug/drug-metabolite efflux (phase III). Genes involved in drug metabolism and disposition are induced by xenobiotic-activated nuclear receptors (NRs), i.e. PXR (pregnane X receptor) and CAR (constitutive androstane receptor), and by the 1α, 25-dihydroxy vitamin D3-activated vitamin D receptor (VDR), due to transactivation of xenobiotic-response elements (XREs) present in phase 0-III genes. Additional NRs, like HNF4-α, FXR, LXR-α play important roles in drug metabolism in certain settings, such as in relation to cholesterol and bile acid metabolism. The phase I enzymes CYP3A4/A5, CYP2D6, CYP2B6, CYP2C9, CYP2C19, CYP1A2, CYP2C8, CYP2A6, CYP2J2, and CYP2E1 metabolize >90% of all prescription drugs, and phase II conjugation of hydrophilic functional groups (with/without phase I modification) facilitates drug clearance. The conjugation step is mediated by broad-specificity transferases like UGTs, SULTs, GSTs. This review delves into our current understanding of PXR/CAR/VDR-mediated regulation of DME and transporter expression, as well as effects of single nucleotide polymorphism (SNP) and epigenome (specified by promoter methylation, histone modification, microRNAs, long non coding RNAs) on the expression of PXR/CAR/VDR and phase 0-III mediators, and their impacts on variable drug response. Therapeutic agents that target epigenetic regulation and the molecular basis and consequences (overdosing, underdosing, or beneficial outcome) of drug-drug/drug-food/drug-herb interactions are also discussed. Precision medicine requires understanding of a drug's impact on DME and transporter activity and their NR-regulated expression in order to achieve optimal drug efficacy without adverse drug reactions. In future drug screening, new tools such as humanized mouse models and microfluidic organs-on-chips, which mimic the physiology of a multicellular environment, will likely replace the current cell-based workflow.
Collapse
Affiliation(s)
- Chandra Prakash
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, Texas Research Park, 15355 Lambda Drive, San Antonio, Texas 78245
- William Carey University College of Osteopathic Medicine, 498 Tucsan Ave, Hattiesburg, Mississipi 39401
| | - Baltazar Zuniga
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, Texas Research Park, 15355 Lambda Drive, San Antonio, Texas 78245
- University of Texas at Austin, 2100 Comal Street, Austin, Texas 78712
| | - Chung Seog Song
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, Texas Research Park, 15355 Lambda Drive, San Antonio, Texas 78245
| | - Shoulei Jiang
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, Texas Research Park, 15355 Lambda Drive, San Antonio, Texas 78245
| | - Jodie Cropper
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, Texas Research Park, 15355 Lambda Drive, San Antonio, Texas 78245
| | - Sulgi Park
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, Texas Research Park, 15355 Lambda Drive, San Antonio, Texas 78245
| | - Bandana Chatterjee
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, Texas Research Park, 15355 Lambda Drive, San Antonio, Texas 78245
- South Texas Veterans Health Care System, Audie L Murphy VA Hospital, 7400 Merton Minter Boulevard, San Antonio, Texas 78229
| |
Collapse
|
26
|
Abstract
Organic anion-transporting polypeptides or OATPs are central transporters in the disposition of drugs and other xenobiotics. In addition, they mediate transport of a wide variety of endogenous substrates. The critical role of OATPs in drug disposition has spurred research both in academia and in the pharmaceutical industry. Translational aspects with clinical questions are the focus in academia, while the pharmaceutical industry tries to define and understand the role these transporters play in pharmacotherapy. The present overview summarizes our knowledge on the interaction of food constituents with OATPs and on the OATP transport mechanisms. Further, it gives an update on the available information on the structure-function relationship of the OATPs and, finally, covers the transcriptional and posttranscriptional regulation of OATPs.
Collapse
Affiliation(s)
- Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital, Zürich, Switzerland.
| | - Bruno Hagenbuch
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
27
|
Kim YC, Kim IB, Noh CK, Quach HP, Yoon IS, Chow ECY, Kim M, Jin HE, Cho KH, Chung SJ, Pang KS, Maeng HJ. Effects of 1α,25-dihydroxyvitamin D3 , the natural vitamin D receptor ligand, on the pharmacokinetics of cefdinir and cefadroxil, organic anion transporter substrates, in rat. J Pharm Sci 2014; 103:3793-3805. [PMID: 25266751 DOI: 10.1002/jps.24195] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/21/2014] [Accepted: 09/11/2014] [Indexed: 01/31/2023]
Abstract
Evidence in the literature suggests that 1α,25-dihydroxyvitamin D3 [1,25(OH)2 D3 ], the vitamin D receptor ligand, down-regulated the expression of the rat renal organic anion (renal organic anion transporter, rOAT) and oligopeptide (rPEPT) transporters, but increased intestinal rPEPT1 expression. We investigated, in rats, the intravenous and oral pharmacokinetics of 2 mg/kg cefdinir and cefadroxil, two cephalosporins that are eliminated via renal OAT1/OAT3 and are substrates of PEPT1/PEPT2, with and without 1,25(OH)2 D3 treatment. The area under the plasma concentration-time curve (AUC) of cefdinir or cefadroxil after 1,25(OH)2 D3 treatment was increased significantly because of decreased clearance (CL). Both kidney uptake and cumulative urinary recovery were significantly decreased, whereas liver uptake and fecal recovery remained unchanged in 1,25(OH)2 D3 -treated rats. Similar changes in AUC and CL were observed for both drugs upon coadministration of probenecid, the OAT inhibitor. Oral availability of cefdinir and cefadroxil remained unchanged with 1,25(OH)2 D3 treatment, suggesting lack of a role for intestinal rPEPT1. Rather, reduction of rOAT1/rOAT3 mRNA expression in kidney with 1,25(OH)2 D3 -treatment was observed, confirmed by decreased function in MDCKII cells overexpressing human OAT1 and OAT3. These composite results suggest that 1,25(OH)2 D3 treatment reduces cefdinir and cefadroxil clearances by diminution of renal OAT1/OAT3 expression, implicating a role for 1,25(OH)2 D3 in eliciting transporter-based drug interactions.
Collapse
Affiliation(s)
- Yu Chul Kim
- C&C Research Laboratories, Suwon, Gyeonggi, Republic of Korea
| | - In-Bong Kim
- College of Pharmacy, Inje University, Gimhae, Gyeongnam 621-749, Republic of Korea
| | - Chi-Kyoung Noh
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Holly P Quach
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - In-Soo Yoon
- College of Pharmacy, and Natural Medicine Research Institute, Mokpo National University, Jeonnam 534-729, Republic of Korea
| | - Edwin C Y Chow
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Myungsoo Kim
- College of Pharmacy, Inje University, Gimhae, Gyeongnam 621-749, Republic of Korea
| | - Hyo-Eon Jin
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Kwan Hyung Cho
- College of Pharmacy, Inje University, Gimhae, Gyeongnam 621-749, Republic of Korea
| | - Suk-Jae Chung
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - K Sandy Pang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Han-Joo Maeng
- College of Pharmacy, Inje University, Gimhae, Gyeongnam 621-749, Republic of Korea.
| |
Collapse
|
28
|
Al-Asmari AK, Ullah Z, Al-Sabaan F, Tariq M, Al-Eid A, Al-Omani SF. Effect of vitamin D on bioavailability and lipid lowering efficacy of simvastatin. Eur J Drug Metab Pharmacokinet 2014; 40:87-94. [PMID: 24740652 DOI: 10.1007/s13318-014-0183-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 02/21/2014] [Indexed: 01/30/2023]
Abstract
The 3-hydroxy 3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) inhibitors known as "statins" are widely prescribed for the management of dyslipidemia. In spite of their muscle toxicity, use of statins has alarmingly increased worldwide. A recent report suggests that vitamin D (VD) levels are closely associated with lipid lowering activity and muscular toxicity of statins. However, data are limited and inconclusive. The present study was undertaken to investigate the effect of VD supplementation on the bioavailability and lipid lowering effect of simvastatin (ST). Adult Sprague-Dawley male rats (250 ± 10 g) were divided into four groups including control, ST (100 mg/kg/day), VD (100 μg/kg/day) and ST + VD group, respectively. After the dosing period of 8 days the animals were sacrificed and the blood was collected for the analysis of ST, its active metabolite simvastatin acid (STA), total cholesterol, triglyceride and liver enzymes including aspartate transaminase and alanine transaminase. The result of this study showed a significant decrease in the level of cholesterol and triglyceride in ST alone treated group, whereas VD alone failed to alter the blood lipid levels. Concomitant treatment with VD produced significant decrease in the bioavailability of ST and STA. However, there was no significant difference in the level of cholesterol in ST alone and in ST + VD treated group. Our results on the liver enzyme suggest that ST alone or in combination with VD does not produce any hepatotoxicity. Further studies using VD along with various statins for a longer duration are suggested.
Collapse
Affiliation(s)
- Abdulrahman K Al-Asmari
- Research Center, Prince Sultan Medical Military City, P.O. Box k-486, Riyadh, 11159, Saudi Arabia,
| | | | | | | | | | | |
Collapse
|
29
|
Gemelli C, Martello A, Montanari M, Zanocco Marani T, Salsi V, Zappavigna V, Parenti S, Vignudelli T, Selmi T, Ferrari S, Grande A. The Orosomucoid 1 protein is involved in the vitamin D – mediated macrophage de-activation process. Exp Cell Res 2013; 319:3201-13. [DOI: 10.1016/j.yexcr.2013.08.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 08/06/2013] [Accepted: 08/14/2013] [Indexed: 12/20/2022]
|
30
|
Abstract
Organic anion-transporting polypeptides (OATPs) encoded by the SLCO genes constitute an important transporter superfamily that mediates transmembrane transport of various clinical drugs and endogenous nutrients. Eleven human OATPs with different transport functions are expressed in various tissues. Bile acids, steroid hormone conjugates, prostaglandins, testosterone and thyroid hormones that promote cell proliferation are typical substrates of OATPs. Many important clinical drugs have been identified as substrates of OATP1B1, OATP1B3, OATP2B1 and OATP1A2. Liver-specific OATP1B1 and OATP1B3 as well as testis-specific OATP6A1 are expressed in malignancies and can act as biomarkers for many tumours. Various studies have shown the associations of genetic polymorphisms in OATP genes with the uptake pharmacokinetics of their substrates. Because of their abundant expression in tumours and their high transport activity for many cancer drugs, OATPs should be considered as important therapeutic targets in anti-cancer drug design.
Collapse
Affiliation(s)
- Tianyu Liu
- State Engineering Laboratory of Bio-Resources Eco-Utilization, Northeast Forestry University, Ministry of Education , Harbin , China and
| | | |
Collapse
|
31
|
Staudinger JL, Woody S, Sun M, Cui W. Nuclear-receptor-mediated regulation of drug- and bile-acid-transporter proteins in gut and liver. Drug Metab Rev 2013; 45:48-59. [PMID: 23330541 DOI: 10.3109/03602532.2012.748793] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Adverse drug events (ADEs) are a common cause of patient morbidity and mortality and are classically thought to result, in part, from variation in expression and activity of hepatic enzymes of drug metabolism. It is now known that alterations in the expression of genes that encode drug- and bile-acid-transporter proteins in both the gut and liver play a previously unrecognized role in determining patient drug response and eventual clinical outcome. Four nuclear receptor (NR) superfamily members, including pregnane X receptor (PXR, NR1I2), constitutive androstane receptor (NR1I3), farnesoid X receptor (NR1H4), and vitamin D receptor (NR1I1), play pivotal roles in drug- and bile-acid-activated programs of gene expression to coordinately regulate drug- and bile-acid transport activity in the intestine and liver. This review focuses on the NR-mediated gene activation of drug and bile-acid transporters in these tissues as well as the possible underlying molecular mechanisms.
Collapse
Affiliation(s)
- Jeff L Staudinger
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, Kansas 66045, USA.
| | | | | | | |
Collapse
|
32
|
Chow ECY, Quach HP, Vieth R, Pang KS. Temporal changes in tissue 1α,25-dihydroxyvitamin D3, vitamin D receptor target genes, and calcium and PTH levels after 1,25(OH)2D3 treatment in mice. Am J Physiol Endocrinol Metab 2013; 304:E977-89. [PMID: 23482451 DOI: 10.1152/ajpendo.00489.2012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The vitamin D receptor (VDR) maintains a balance of plasma calcium and 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3], its natural active ligand, by directly regulating the calcium ion channel (TRPV6) and degradation enzyme (CYP24A1), and indirectly regulating the parathyroid hormone (PTH) for feedback regulation of the synthetic enzyme CYP27B1. Studies that examined the intricate relationships between plasma and tissue 1,25(OH)2D3 levels and changes in VDR target genes and plasma calcium and PTH are virtually nonexistent. In this study, we investigated temporal correlations between tissue 1,25(OH)2D3 concentrations and VDR target genes in ileum and kidney and plasma calcium and PTH concentrations in response to 1,25(OH)2D3 treatment in mice (2.5 μg/kg ip, singly or q2d × 4). After a single ip dose, plasma 1,25(OH)2D3 peaked at ∼0.5 h and then decayed biexponentially, falling below basal levels after 24 h and then returning to baseline after 8 days. Upon repetitive ip dosing, plasma, ileal, renal, and bone 1,25(OH)2D3 concentrations rose and decayed in unison. Temporal profiles showed increased expressions of ileal Cyp24a1 and renal Cyp24a1, Mdr1/P-gp, and VDR but decreased renal Cyp27b1 mRNA after a time delay in VDR activation. Increased plasma calcium and attenuated PTH levels and increased ileal and renal Trpv6 expression paralleled the changes in tissue 1,25(OH)2D3 concentrations. Gene changes in the kidney were more sustained than those in intestine, but the magnitudes of change for Cyp24a1 and Trpv6 were lower than those in intestine. The data revealed that 1,25(OH)2D3 equilibrates with tissues rapidly, and VDR target genes respond quickly to exogenously administered 1,25(OH)2D3.
Collapse
Affiliation(s)
- Edwin C Y Chow
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
33
|
Lindh JD, Björkhem-Bergman L, Eliasson E. Vitamin D and drug-metabolising enzymes. Photochem Photobiol Sci 2013; 11:1797-801. [PMID: 22903070 DOI: 10.1039/c2pp25194a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Experimental studies on the molecular regulation of human drug metabolism have revealed that vitamin D up-regulates transcription of several key enzymes, such as CYP3A4, through the vitamin D receptor pathway in intestinal and hepatic cells. Recent data suggest that this results in seasonal changes with higher clearance of orally administered drugs during periods with high UV-B radiation and vitamin D levels. Taken together, vitamin D status might contribute to inter- and intraindividual differences in drug metabolism, but the therapeutic impact of these findings remains to be established.
Collapse
Affiliation(s)
- Jonatan D Lindh
- Karolinska Institutet, Department of Laboratory Medicine, Clinical Pharmacology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | | |
Collapse
|
34
|
Tumor-specific expression of organic anion-transporting polypeptides: transporters as novel targets for cancer therapy. JOURNAL OF DRUG DELIVERY 2013; 2013:863539. [PMID: 23431456 PMCID: PMC3574750 DOI: 10.1155/2013/863539] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 12/24/2012] [Indexed: 01/16/2023]
Abstract
Members of the organic anion transporter family (OATP) mediate the transmembrane uptake of clinical important drugs and hormones thereby affecting drug disposition and tissue penetration. Particularly OATP subfamily 1 is known to mediate the cellular uptake of anticancer drugs (e.g., methotrexate, derivatives of taxol and camptothecin, flavopiridol, and imatinib). Tissue-specific expression was shown for OATP1B1/OATP1B3 in liver, OATP4C1 in kidney, and OATP6A1 in testis, while other OATPs, for example, OATP4A1, are expressed in multiple cells and organs. Many different tumor entities show an altered expression of OATPs. OATP1B1/OATP1B3 are downregulated in liver tumors, but highly expressed in cancers in the gastrointestinal tract, breast, prostate, and lung. Similarly, testis-specific OATP6A1 is expressed in cancers in the lung, brain, and bladder. Due to their presence in various cancer tissues and their limited expression in normal tissues, OATP1B1, OATP1B3, and OATP6A1 could be a target for tumor immunotherapy. Otherwise, high levels of ubiquitous expressed OATP4A1 are found in colorectal cancers and their metastases. Therefore, this OATP might serve as biomarkers for these tumors. Expression of OATP is regulated by nuclear receptors, inflammatory cytokines, tissue factors, and also posttranslational modifications of the proteins. Through these processes, the distribution of the transporter in the tissue will be altered, and a shift from the plasma membrane to cytoplasmic compartments is possible. It will modify OATP uptake properties and, subsequently, change intracellular concentrations of drugs, hormones, and various other OATP substrates. Therefore, screening tumors for OATP expression before therapy should lead to an OATP-targeted therapy with higher efficacy and decreased side effects.
Collapse
|
35
|
Durk MR, Chan GNY, Campos CR, Peart JC, Chow ECY, Lee E, Cannon RE, Bendayan R, Miller DS, Pang KS. 1α,25-Dihydroxyvitamin D3-liganded vitamin D receptor increases expression and transport activity of P-glycoprotein in isolated rat brain capillaries and human and rat brain microvessel endothelial cells. J Neurochem 2012; 123:944-53. [PMID: 23035695 PMCID: PMC3538370 DOI: 10.1111/jnc.12041] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 09/24/2012] [Accepted: 09/26/2012] [Indexed: 12/18/2022]
Abstract
Induction of the multidrug resistance protein 1 (MDR1)/P-glycoprotein (P-gp) by the vitamin D receptor (VDR) was investigated in isolated rat brain capillaries and rat (RBE4) and human (hCMEC/D3) brain microvessel endothelial cell lines. Incubation of isolated rat brain capillaries with 10 nM of the VDR ligand, 1α,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] for 4 h increased P-gp protein expression fourfold. Incubation with 1,25(OH)(2)D(3) for 4 or 24 h increased P-gp transport activity (specific luminal accumulation of NBD-CSA, the fluorescent P-gp substrate) by 25-30%. In RBE4 cells, Mdr1b mRNA was induced in a concentration-dependent manner by exposure to 1,25(OH)(2)D(3). Concomitantly, P-gp protein expression increased 2.5-fold and was accompanied by a 20-35% reduction in cellular accumulation of the P-gp substrates, rhodamine 6G (R6G), and HiLyte Fluor 488-labeled human amyloid beta 1-42 (hAβ(42)). In hCMEC/D3 cells, a 3 day exposure to 100 nM 1,25(OH)(2)D(3) increased MDR1 mRNA expression (40%) and P-gp protein (threefold); cellular accumulation of R6G and hAβ(42) was reduced by 30%. Thus, VDR activation up-regulates Mdr1/MDR1 and P-gp protein in isolated rat brain capillaries and rodent and human brain microvascular endothelia, implicating a role for VDR in increasing the brain clearance of P-gp substrates, including hAβ(42), a plaque-forming precursor in Alzheimer's disease.
Collapse
Affiliation(s)
- Matthew R Durk
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|