1
|
Obeng S, Crowley ML, Mottinelli M, León F, Zuarth Gonzalez JD, Chen Y, Gamez-Jimenez LR, Restrepo LF, Ho NP, Patel A, Martins Rocha J, Alvarez MA, Thadisetti AM, Park CR, Pallares VLC, Milner MJ, Canal CE, Hampson AJ, McCurdy CR, McMahon LR, Wilkerson JL, Hiranita T. The Mitragyna speciosa (kratom) alkaloid mitragynine: Analysis of adrenergic α 2 receptor activity in vitro and in vivo. Eur J Pharmacol 2024; 980:176863. [PMID: 39068978 DOI: 10.1016/j.ejphar.2024.176863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Mitragynine, an alkaloid present in the leaves of Mitragyna speciosa (kratom), has a complex pharmacology that includes low efficacy agonism at μ-opioid receptors (MORs). This study examined the activity of mitragynine at adrenergic α2 receptors (Aα2Rs) in vitro and in vivo. Mitragynine displaced a radiolabeled Aα2R antagonist ([3H]RX821002) from human Aα2ARs in vitro with lower affinity (Ki = 1260 nM) than the agonists (-)-epinephrine (Ki = 263 nM) or lofexidine (Ki = 7.42 nM). Mitragynine did not significantly stimulate [35S]GTPγS binding at Aα2ARs in vitro, but in rats trained to discriminate 32 mg/kg mitragynine from vehicle (intraperitoneally administered; i.p.), mitragynine exerted an Aα2R agonist-like effect. Both α2R antagonists (atipamezole and yohimbine) and MOR antagonists (naloxone and naltrexone) produced rightward shifts in mitragynine discrimination dose-effect function and Aα2R agonists lofexidine and clonidine produced leftward shifts. In the mitragynine trained rats, Aα2R agonists also produced leftward shifts in discrimination dose-effect functions for morphine and fentanyl. In a separate rat cohort trained to discriminate 3.2 mg/kg i.p. morphine from vehicle, naltrexone produced a rightward shift, but neither an Aα2R agonist or antagonist affected morphine discrimination. In a hypothermia assay, both lofexidine and clonidine produced marked effects antagonized by yohimbine. Mitragynine did not produce hypothermia. Together, these data demonstrate that mitragynine acts in vivo like an Aα2R agonist, although its failure to induce hypothermia or stimulate [35S]GTPγS binding in vitro, suggests that mitragynine maybe a low efficacy Aα2R agonist.
Collapse
Affiliation(s)
- Samuel Obeng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA; Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Morgan L Crowley
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Marco Mottinelli
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Francisco León
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Julio D Zuarth Gonzalez
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Yiming Chen
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Atlanta, GA, 30341, USA
| | - Lea R Gamez-Jimenez
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Luis F Restrepo
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Nicholas P Ho
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Avi Patel
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Joelma Martins Rocha
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Manuel A Alvarez
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Amsha M Thadisetti
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Chai R Park
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Victoria L C Pallares
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Megan J Milner
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Clinton E Canal
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Atlanta, GA, 30341, USA
| | - Aidan J Hampson
- Division of Therapeutics and Medical Consequences, National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA; Department of Pharmaceutics, University of Florida, Gainesville, FL 32610, USA; Translational Drug Development Core, Clinical and Translational Sciences Institute, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Lance R McMahon
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Jenny L Wilkerson
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA.
| | - Takato Hiranita
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
2
|
Adhikary S, Williams JT. Cellular Tolerance Induced by Chronic Opioids in the Central Nervous System. Front Syst Neurosci 2022; 16:937126. [PMID: 35837149 PMCID: PMC9273719 DOI: 10.3389/fnsys.2022.937126] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/08/2022] [Indexed: 01/21/2023] Open
Abstract
Opioids are powerful analgesics that elicit acute antinociceptive effects through their action the mu opioid receptor (MOR). However opioids are ineffective for chronic pain management, in part because continuous activation of MORs induces adaptive changes at the receptor level and downstream signaling molecules. These adaptations include a decrease in receptor-effector coupling and changes to second messenger systems that can counteract the persistent activation of MORs by opioid agonists. Homeostatic regulation of MORs and downstream signaling cascades are viewed as precursors to developing tolerance. However, despite numerous studies identifying crucial mechanisms that contribute to opioid tolerance, no single regulatory mechanism that governs tolerance in at the cellular and systems level has been identified. Opioid tolerance is a multifaceted process that involves both individual neurons that contain MORs and neuronal circuits that undergo adaptations following continuous MOR activation. The most proximal event is the agonist/receptor interaction leading to acute cellular actions. This review discusses our understanding of mechanisms that mediate cellular tolerance after chronic opioid treatment that, in part, is mediated by agonist/receptor interaction acutely.
Collapse
|
3
|
Lino CA, Barreto-Chaves ML. Beta-arrestins in the context of cardiovascular diseases: Focusing on type 1 angiotensin II receptor (AT1R). Cell Signal 2022; 92:110253. [DOI: 10.1016/j.cellsig.2022.110253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/16/2022]
|
4
|
Colvin LA, Bull F, Hales TG. Perioperative opioid analgesia-when is enough too much? A review of opioid-induced tolerance and hyperalgesia. Lancet 2019; 393:1558-1568. [PMID: 30983591 DOI: 10.1016/s0140-6736(19)30430-1] [Citation(s) in RCA: 283] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/21/2018] [Accepted: 02/15/2019] [Indexed: 12/12/2022]
Abstract
Opioids are a mainstay of acute pain management but can have many adverse effects, contributing to problematic long-term use. Opioid tolerance (increased dose needed for analgesia) and opioid-induced hyperalgesia (paradoxical increase in pain with opioid administration) can contribute to both poorly controlled pain and dose escalation. Hyperalgesia is particularly problematic as further opioid prescribing is largely futile. The mechanisms of opioid tolerance and hyperalgesia are complex, involving μ opioid receptor signalling pathways that offer opportunities for novel analgesic alternatives. The intracellular scaffold protein β-arrestin-2 is implicated in tolerance, hyperalgesia, and other opioid side-effects. Development of agonists biased against recruitment of β-arrestin-2 could provide analgesic efficacy with fewer side-effects. Alternative approaches include inhibition of peripheral μ opioid receptors and blockade of downstream signalling mechanisms, such as the non-receptor tyrosine kinase Src or N-methyl-D-aspartate receptors. Furthermore, it is prudent to use multimodal analgesic regimens to reduce reliance on opioids during the perioperative period. In the third paper in this Series we focus on clinical and mechanism-based understanding of tolerance and opioid-induced hyperalgesia, and discuss current and future strategies for pain management.
Collapse
Affiliation(s)
- Lesley A Colvin
- Division of Population Health and Genomics, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK.
| | - Fiona Bull
- Institute for Academic Anaesthesia, Division of Systems Medicine, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| | - Tim G Hales
- Institute for Academic Anaesthesia, Division of Systems Medicine, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| |
Collapse
|
5
|
Kliewer A, Schmiedel F, Sianati S, Bailey A, Bateman JT, Levitt ES, Williams JT, Christie MJ, Schulz S. Phosphorylation-deficient G-protein-biased μ-opioid receptors improve analgesia and diminish tolerance but worsen opioid side effects. Nat Commun 2019; 10:367. [PMID: 30664663 PMCID: PMC6341117 DOI: 10.1038/s41467-018-08162-1] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022] Open
Abstract
Opioid analgesics are powerful pain relievers; however, over time, pain control diminishes as analgesic tolerance develops. The molecular mechanisms initiating tolerance have remained unresolved to date. We have previously shown that desensitization of the μ-opioid receptor and interaction with β-arrestins is controlled by carboxyl-terminal phosphorylation. Here we created knockin mice with a series of serine- and threonine-to-alanine mutations that render the receptor increasingly unable to recruit β-arrestins. Desensitization is inhibited in locus coeruleus neurons of mutant mice. Opioid-induced analgesia is strongly enhanced and analgesic tolerance is greatly diminished. Surprisingly, respiratory depression, constipation, and opioid withdrawal signs are unchanged or exacerbated, indicating that β-arrestin recruitment does not contribute to the severity of opioid side effects and, hence, predicting that G-protein-biased µ-agonists are still likely to elicit severe adverse effects. In conclusion, our findings identify carboxyl-terminal multisite phosphorylation as key step that drives acute μ-opioid receptor desensitization and long-term tolerance.
Collapse
Affiliation(s)
- A Kliewer
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, 07747, Jena, Germany
| | - F Schmiedel
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, 07747, Jena, Germany
| | - S Sianati
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, NSW, 2006, Australia
| | - A Bailey
- Institute of Medical and Biomedical Education, St George's University of London, London, SW17 ORE, UK
| | - J T Bateman
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, 32608, USA
| | - E S Levitt
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, 32608, USA
| | - J T Williams
- The Vollum Institute, Oregon Health and Science University, 3181S.W. Sam Jackson Pk. Rd., Portland, OR, 97239, USA
| | - M J Christie
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, NSW, 2006, Australia
| | - S Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, 07747, Jena, Germany.
| |
Collapse
|
6
|
Aberoumandi SM, Vousooghi N, Tabrizi BA, Karimi P. Heroin-based crack induces hyperalgesia through β-arrestin 2 redistribution and phosphorylation of Erk1/2 and JNK in the periaqueductal gray area. Neurosci Lett 2019; 698:133-139. [PMID: 30641110 DOI: 10.1016/j.neulet.2019.01.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/11/2018] [Accepted: 01/10/2019] [Indexed: 01/23/2023]
Abstract
Continuous use of crack induces hyperalgesia which is related to drug tolerance. Despite cumulative evidence based on the growth rate of crack abuse, no serious study has been focused on the mechanisms of crack-induced hyperalgesia. This study aimed to elucidate whether extracellular signal-regulated kinases (Erk1/2)/β-arrestin pathways are involved in the crack-induced hyperalgesia. Fifty adult male Wistar rats were randomly divided into five groups: normal saline (NS), crack (0.9 mg/kg/day), heroin (1 mg/kg/day), crack + barbadin (100 μM), and heroin + barbadin groups, which received their intraperitoneal (i.p) treatments for four weeks. The thermal sensitivity was assessed using the hot-plate test. Moreover, phosphorylation of the Erk1/2 and JNK, as well as expression of protein kinase C-alpha (PKC-α), Mu-receptor (MOR), and β-arrestin 2 were determined in the whole lysate and membrane fraction using immunoblotting assay in the periaqueductal gray (PAG) area. The results demonstrated that chronic administration of crack and heroin significantly decreased hind-paw withdrawal latency compared to the NS group. Furthermore, crack as well as heroin administration increased phosphorylated Erk1/2 and JNK in the PAG. In addition, membrane β-arrestin 2 and PKC-α were significantly increased in the crack and heroin-received groups, while membrane MOR expression was decreased in the PAG. Nevertheless, co-administration of barbadin, an inhibitor of β-arrestin, and crack or heroin reversed all these changes. Our findings may partially confirm the role of β-arrestin 2 and PKC rearrangements, Erk1/2 and JNK phosphorylation in crack-induced hyperalgesia and provide potential therapeutic targets to attenuate crack-induced hyperalgesia.
Collapse
Affiliation(s)
- Seyed Mohsen Aberoumandi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran; Neurosciences Research Center (NSRC), Tabriz University Of Medical Sciences, Tabriz, Iran
| | - Nasim Vousooghi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahram Amoughli Tabrizi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Pouran Karimi
- Neurosciences Research Center (NSRC), Tabriz University Of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Abstract
Whilst the nociceptin/orphanin FQ (N/OFQ) receptor (NOP) has similar intracellular coupling mechanisms to opioid receptors, it has distinct modulatory effects on physiological functions such as pain. These actions range from agonistic to antagonistic interactions with classical opioids within the spinal cord and brain, respectively. Understanding the electrophysiological actions of N/OFQ has been crucial in ascertaining the mechanisms by which these agonistic and antagonistic interactions occur. These similarities and differences between N/OFQ and opioids are due to the relative location of NOP versus opioid receptors on specific neuronal elements within these CNS regions. These mechanisms result in varied cellular actions including postsynaptic modulation of ion channels and presynaptic regulation of neurotransmitter release.
Collapse
|
8
|
Carmona-Rosas G, Alcántara-Hernández R, Hernández-Espinosa DA. The role of β-arrestins in G protein-coupled receptor heterologous desensitization: A brief story. Methods Cell Biol 2018; 149:195-204. [PMID: 30616820 DOI: 10.1016/bs.mcb.2018.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
G protein-coupled receptors (GPCRs) are transmembrane proteins that have an important impact in a myriad of cellular functions. Posttranslational modifications on GPCRs are a key processes that allow these proteins to recruit other intracellular molecules. Among these modifications, phosphorylation is the most important way of desensitization of these receptors. Several research groups have described two different desensitization mechanisms: heterologous and homologous desensitization. The first one involves the phosphorylation of the receptors by protein kinases, such as PKC, following the desensitization and internalization of the receptor, while the second one involves the phosphorylation of the receptors by GRKs, allowing for the receptor to recruit β-arrestins to be desensitized and internalized. Interestingly, a few number of studies have described the participation of β-arrestins during the heterologous desensitization process. Hence, the aim of this review is to briefly explore the role that β-arrestins play during the heterologous desensitization of several GPCRs.
Collapse
|
9
|
Levitt ES, Williams JT. Desensitization and Tolerance of Mu Opioid Receptors on Pontine Kölliker-Fuse Neurons. Mol Pharmacol 2018; 93:8-13. [PMID: 29097440 PMCID: PMC5708089 DOI: 10.1124/mol.117.109603] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/25/2017] [Indexed: 12/13/2022] Open
Abstract
Acute desensitization of mu opioid receptors is thought to be an initial step in the development of tolerance to opioids. Given the resistance of the respiratory system to develop tolerance, desensitization of neurons in the Kölliker-Fuse (KF), a key area in the respiratory circuit, was examined. The activation of G protein-coupled inwardly rectifying potassium current was measured using whole-cell voltage-clamp recordings from KF and locus coeruleus (LC) neurons contained in acute rat brain slices. A saturating concentration of the opioid agonist [Met5]-enkephalin (ME) caused significantly less desensitization in KF neurons compared with LC neurons. In contrast to LC, desensitization in KF neurons was not enhanced by activation of protein kinase C or in slices from morphine-treated rats. Cellular tolerance to ME and morphine was also lacking in KF neurons from morphine-treated rats. The lack of cellular tolerance in KF neurons correlates with the relative lack of tolerance to the respiratory depressant effect of opioids.
Collapse
Affiliation(s)
- Erica S Levitt
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida (E.S.L.) and Vollum Institute, Oregon Health and Science University, Portland, Oregon (J.T.W.)
| | - John T Williams
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida (E.S.L.) and Vollum Institute, Oregon Health and Science University, Portland, Oregon (J.T.W.)
| |
Collapse
|
10
|
Src Kinase Inhibition Attenuates Morphine Tolerance without Affecting Reinforcement or Psychomotor Stimulation. Anesthesiology 2017; 127:878-889. [PMID: 28820778 DOI: 10.1097/aln.0000000000001834] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Prolonged opioid administration leads to tolerance characterized by reduced analgesic potency. Pain management is additionally compromised by the hedonic effects of opioids, the cause of their misuse. The multifunctional protein β-arrestin2 regulates the hedonic effects of morphine and participates in tolerance. These actions might reflect µ opioid receptor up-regulation through reduced endocytosis. β-Arrestin2 also recruits kinases to µ receptors. We explored the role of Src kinase in morphine analgesic tolerance, locomotor stimulation, and reinforcement in C57BL/6 mice. METHODS Analgesic (tail withdrawal latency; percentage of maximum possible effect, n = 8 to 16), locomotor (distance traveled, n = 7 to 8), and reinforcing (conditioned place preference, n = 7 to 8) effects of morphine were compared in wild-type, µ, µ, and β-arrestin2 mice. The influence of c-Src inhibitors dasatinib (n = 8) and PP2 (n = 12) was examined. RESULTS Analgesia in morphine-treated wild-type mice exhibited tolerance, declining by day 10 to a median of 62% maximum possible effect (interquartile range, 29 to 92%). Tolerance was absent from mice receiving dasatinib. Tolerance was enhanced in µ mice (34% maximum possible effect; interquartile range, 5 to 52% on day 5); dasatinib attenuated tolerance (100% maximum possible effect; interquartile range, 68 to 100%), as did PP2 (91% maximum possible effect; interquartile range, 78 to 100%). By contrast, c-Src inhibition affected neither morphine-evoked locomotor stimulation nor reinforcement. Remarkably, dasatinib not only attenuated tolerance but also reversed established tolerance in µ mice. CONCLUSIONS The ability of c-Src inhibitors to inhibit tolerance, thereby restoring analgesia, without altering the hedonic effect of morphine, makes c-Src inhibitors promising candidates as adjuncts to opioid analgesics.
Collapse
|
11
|
Morphine activation of mu opioid receptors causes disinhibition of neurons in the ventral tegmental area mediated by β-arrestin2 and c-Src. Sci Rep 2017; 7:9969. [PMID: 28855588 PMCID: PMC5577270 DOI: 10.1038/s41598-017-10360-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 08/09/2017] [Indexed: 12/31/2022] Open
Abstract
The tyrosine kinase, c-Src, participates in mu opioid receptor (MOP) mediated inhibition in sensory neurons in which β-arrestin2 (β-arr2) is implicated in its recruitment. Mice lacking β-arr2 exhibit increased sensitivity to morphine reinforcement; however, whether β-arr2 and/or c-Src participate in the actions of opioids in neurons within the reward pathway is unknown. It is also unclear whether morphine acts exclusively through MOPs, or involves delta opioid receptors (DOPs). We examined the involvement of MOPs, DOPs, β-arr2 and c-Src in the inhibition by morphine of GABAergic inhibitory postsynaptic currents (IPSCs) recorded from neurons in the mouse ventral tegmental area. Morphine inhibited spontaneous IPSC frequency, mainly through MOPs, with only a negligible effect remaining in MOP−/− neurons. However, a reduction in the inhibition by morphine for DOP−/− c.f. WT neurons and a DPDPE-induced decrease of IPSC frequency revealed a role for DOPs. The application of the c-Src inhibitor, PP2, to WT neurons also reduced inhibition by morphine, while the inactive PP3, and the MEK inhibitor, SL327, had no effect. Inhibition of IPSC frequency by morphine was also reduced in β-arr2−/− neurons in which PP2 caused no further reduction. These data suggest that inhibition of IPSCs by morphine involves a β-arr2/c-Src mediated mechanism.
Collapse
|
12
|
Mohammad Ahmadi Soleimani S, Azizi H, Pachenari N, Mirnajafi-Zadeh J, Semnanian S. Enhancement of μ-opioid receptor desensitization by orexin-A in rat locus coeruleus neurons. Neuropeptides 2017; 63:28-36. [PMID: 28385341 DOI: 10.1016/j.npep.2017.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/05/2017] [Accepted: 03/22/2017] [Indexed: 11/16/2022]
Abstract
Opioids have always been used in clinical practice for pain management. However, development of tolerance to their effects following long term administration, seriously restricts further clinical use of these drugs. In this regard, μ-opioid receptor (MOR) desensitization, as an initial step in development of opioid tolerance, is of particular significance. Previous studies support the involvement of orexinergic system in development of opioid tolerance. Locus coeruleus (LC) nucleus has been shown to modulate pain and development of tolerance. Opioid receptors (particularly μ) are densely expressed within the LC. Moreover, it receives widespread orexinergic inputs and orexin type 1 receptors (OX1Rs) are also highly expressed in this brain region. In the present study, the effect of orexin-A (OXA) on met-enkephalin (ME)-induced MOR desensitization was investigated in locus coeruleus neurons of male Wistar rats (2-3weeks of age). ME (30μM), as a potent MOR agonist, was applied for 10min and the outward K+ current was recorded using whole cell patch clamp recording. The percentage of decrease in ME-induced K+ current was considered as the degree of MOR desensitization. Results indicated that OXA (100nM) enhances ME-induced MOR desensitization via affecting OX1Rs in rat locus coeruleus neurons and this effect is mediated by a protein kinase C dependent mechanism within the LC. The activity of orexinergic system might potentiate the signaling pathways underlying opioid-induced receptor desensitization.
Collapse
Affiliation(s)
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Narges Pachenari
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeed Semnanian
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| |
Collapse
|
13
|
Shi Q, Li M, Mika D, Fu Q, Kim S, Phan J, Shen A, Vandecasteele G, Xiang YK. Heterologous desensitization of cardiac β-adrenergic signal via hormone-induced βAR/arrestin/PDE4 complexes. Cardiovasc Res 2017; 113:656-670. [PMID: 28339772 PMCID: PMC5852637 DOI: 10.1093/cvr/cvx036] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 10/20/2017] [Accepted: 02/17/2017] [Indexed: 12/22/2022] Open
Abstract
AIMS Cardiac β-adrenergic receptor (βAR) signalling is susceptible to heterologous desensitization by different neurohormonal stimuli in clinical conditions associated with heart failure. We aim to examine the underlying mechanism of cross talk between βARs and a set of G-protein coupled receptors (GPCRs) activated by hormones/agonists. METHODS AND RESULTS Rat ventricular cardiomyocytes were used to determine heterologous phosphorylation of βARs under a series of GPCR agonists. Activation of Gs-coupled dopamine receptor, adenosine receptor, relaxin receptor and prostaglandin E2 receptor, and Gq-coupled α1 adrenergic receptor and angiotensin II type 1 receptor promotes phosphorylation of β1AR and β2AR at putative protein kinase A (PKA) phosphorylation sites; but activation of Gi-coupled α2 adrenergic receptor and activation of protease-activated receptor does not. The GPCR agonists that promote β2AR phosphorylation effectively inhibit βAR agonist isoproterenol-induced PKA phosphorylation of phospholamban and contractile function in ventricular cardiomyocytes. Heterologous GPCR stimuli have minimal to small effect on isoproterenol-induced β2AR activation and G-protein coupling for cyclic adenosine monophosphate (cAMP) production. However, these GPCR stimuli significantly promote phosphorylation of phosphodiesterase 4D (PDE4D), and recruit PDE4D to the phosphorylated β2AR in a β-arrestin 2 dependent manner without promoting β2AR endocytosis. The increased binding between β2AR and PDE4D effectively hydrolyzes cAMP signal generated by subsequent stimulation with isoproterenol. Mutation of PKA phosphorylation sites in β2AR, inhibition of PDE4, or genetic ablation of PDE4D or β-arrestin 2 abolishes this heterologous inhibitory effect. Ablation of β-arrestin 2 or PDE4D gene also rescues β-adrenergic stimuli-induced myocyte contractile function. CONCLUSIONS These data reveal essential roles of β-arrestin 2 and PDE4D in a common mechanism for heterologous desensitization of cardiac βARs under hormonal stimulation, which is associated with impaired cardiac function during the development of pathophysiological conditions.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Cyclic Nucleotide Phosphodiesterases, Type 4/genetics
- Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism
- Hormones/pharmacology
- Male
- Mice, Knockout
- Myocardial Contraction/drug effects
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Phosphorylation
- Protein Kinase C/metabolism
- Rats
- Receptor Cross-Talk
- Receptors, Adrenergic, beta-1/drug effects
- Receptors, Adrenergic, beta-1/genetics
- Receptors, Adrenergic, beta-1/metabolism
- Receptors, Adrenergic, beta-2/drug effects
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Signal Transduction/drug effects
- Time Factors
- beta-Arrestin 1/genetics
- beta-Arrestin 1/metabolism
- beta-Arrestin 2/genetics
- beta-Arrestin 2/metabolism
Collapse
Affiliation(s)
- Qian Shi
- Department of Pharmacology, University of California at Davis, Davis, CA 95616, USA
| | - Minghui Li
- Department of Pharmacology, University of California at Davis, Davis, CA 95616, USA
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210001, China
| | - Delphine Mika
- INSERM UMR-S 1180, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Qin Fu
- Department of Pharmacology, Tongji Medical College, Huazhong University of Technology and Sciences, Wuhan 430030, China
| | - Sungjin Kim
- Department of Pharmacology, University of California at Davis, Davis, CA 95616, USA
| | - Jason Phan
- Department of Pharmacology, University of California at Davis, Davis, CA 95616, USA
| | - Ao Shen
- Department of Pharmacology, University of California at Davis, Davis, CA 95616, USA
| | | | - Yang K. Xiang
- Department of Pharmacology, University of California at Davis, Davis, CA 95616, USA
- VA Northern California Health care system, Mather, CA 95655, USA
| |
Collapse
|
14
|
Chen Z, Tang Y, Tao H, Li C, Zhang X, Liu Y. Dynorphin activation of kappa opioid receptor reduces neuronal excitability in the paraventricular nucleus of mouse thalamus. Neuropharmacology 2015; 97:259-69. [PMID: 26056031 DOI: 10.1016/j.neuropharm.2015.05.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 05/25/2015] [Accepted: 05/26/2015] [Indexed: 01/16/2023]
Abstract
It has been reported that kappa opioid receptor (KOR) is expressed in the paraventricular nucleus of thalamus (PVT), a brain region associated with arousal, drug reward and stress. Although intra-PVT infusion of KOR agonist was found to inhibit drug-seeking behavior, it is still unclear whether endogenous KOR agonists directly regulate PVT neuron activity. Here, we investigated the effect of the endogenous KOR agonist dynorphin-A (Dyn-A) on the excitability of mouse PVT neurons at different developmental ages. We found Dyn-A strongly inhibited PVT neurons through a direct postsynaptic hyperpolarization. Under voltage-clamp configuration, Dyn-A evoked an obvious outward current in majority of neurons tested in anterior PVT (aPVT) but only in minority of neurons in posterior PVT (pPVT). The Dyn-A current was abolished by KOR antagonist nor-BNI, Ba(2+) and non-hydrolyzable GDP analogue GDP-β-s, indicating that Dyn-A activates KOR and opens G-protein-coupled inwardly rectifying potassium channels in PVT neurons. More interestingly, by comparing Dyn-A currents in aPVT neurons of mice at various ages, we found Dyn-A evoked significant larger current in aPVT neurons from mice around prepuberty and early puberty stage. In addition, KOR activation by Dyn-A didn't produce obvious desensitization, while mu opioid receptor (MOR) activation induced obvious desensitization of mu receptor itself and also heterologous desensitization of KOR in PVT neurons. Together, our findings indicate that Dyn-A activates KOR and inhibits aPVT neurons in mice at various ages especially around puberty, suggesting a possible role of KOR in regulating aPVT-related brain function including stress response and drug-seeking behavior during adolescence.
Collapse
Affiliation(s)
- Zhiheng Chen
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Yamei Tang
- Department of Laboratory, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Huai Tao
- Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Cunyan Li
- Department of Laboratory, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xianghui Zhang
- Mental Health Institute, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha 410011, China
| | - Yong Liu
- Mental Health Institute, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha 410011, China.
| |
Collapse
|
15
|
Yousuf A, Miess E, Sianati S, Du YP, Schulz S, Christie MJ. Role of Phosphorylation Sites in Desensitization of µ-Opioid Receptor. Mol Pharmacol 2015; 88:825-35. [PMID: 25969388 DOI: 10.1124/mol.115.098244] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/12/2015] [Indexed: 11/22/2022] Open
Abstract
Phosphorylation of residues in the C-terminal tail of the µ-opioid receptor (MOPr) is thought to be a key step in desensitization and internalization. Phosphorylation of C-terminal S/T residues is required for internalization (Just et al., 2013), but its role in desensitization is unknown. This study examined the influence of C-terminal phosphorylation sites on rapid desensitization of MOPr. Wild-type MOPr, a 3S/T-A mutant (S363A, T370A, S375A) that maintains internalization, 6S/T-A (S363A, T370A, S375A, T376A, T379A, T383A) and 11S/T-A (all C-terminal S/T residues mutated) mutants not internalized by MOPr agonists were stably expressed in AtT20 cells. Perforated patch-clamp recordings of MOPr-mediated activation of G-protein-activated inwardly rectifying potassium channel (Kir3.X) (GIRK) conductance by submaximal concentrations of Met(5)-enkephalin (ME) and somatostatin (SST; coupling to native SST receptor [SSTR]) were used to examine desensitization induced by exposure to ME and morphine for 5 minutes at 37°C. The rates of ME- and morphine-induced desensitization did not correlate with phosphorylation using phosphorylation site-specific antibodies. ME-induced MOPr desensitization and resensitization did not differ from wild-type for 3S/T-A and 6S/T-A but was abolished in 11S/T-A. Morphine-induced desensitization was unaffected in all three mutants, as was heterologous desensitization of SSTR. Morphine-induced desensitization (but not ME) was reduced by protein kinase C inhibition in wild-type MOPr and abolished in the 11S/T-A mutant, as was heterologous desensitization. These findings establish that MOPr desensitization can occur independently of S/T phosphorylation and internalization; however, C-terminal phosphorylation is necessary for some forms of desensitization because mutation of all C-terminal sites (11S/T-A) abolishes desensitization induced by ME.
Collapse
Affiliation(s)
- Arsalan Yousuf
- Discipline of Pharmacology, University of Sydney, New South Wales, Sydney, Australia (A.Y., S.Si., Y.-P.D., M.J.C.); and Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany (E.M., S.Sc.)
| | - Elke Miess
- Discipline of Pharmacology, University of Sydney, New South Wales, Sydney, Australia (A.Y., S.Si., Y.-P.D., M.J.C.); and Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany (E.M., S.Sc.)
| | - Setareh Sianati
- Discipline of Pharmacology, University of Sydney, New South Wales, Sydney, Australia (A.Y., S.Si., Y.-P.D., M.J.C.); and Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany (E.M., S.Sc.)
| | - Yan-Ping Du
- Discipline of Pharmacology, University of Sydney, New South Wales, Sydney, Australia (A.Y., S.Si., Y.-P.D., M.J.C.); and Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany (E.M., S.Sc.)
| | - Stefan Schulz
- Discipline of Pharmacology, University of Sydney, New South Wales, Sydney, Australia (A.Y., S.Si., Y.-P.D., M.J.C.); and Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany (E.M., S.Sc.)
| | - MacDonald J Christie
- Discipline of Pharmacology, University of Sydney, New South Wales, Sydney, Australia (A.Y., S.Si., Y.-P.D., M.J.C.); and Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany (E.M., S.Sc.)
| |
Collapse
|
16
|
Sadeghi M, Tzschentke TM, Christie MJ. μ-Opioid receptor activation and noradrenaline transport inhibition by tapentadol in rat single locus coeruleus neurons. Br J Pharmacol 2014; 172:460-8. [PMID: 24372103 DOI: 10.1111/bph.12566] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/09/2013] [Accepted: 12/12/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Tapentadol is a novel analgesic that combines moderate μ-opioid receptor agonism and noradrenaline reuptake inhibition in a single molecule. Both mechanisms of action are involved in producing analgesia; however, the potency and efficacy of tapentadol in individual neurons has not been characterized. EXPERIMENTAL APPROACH Whole-cell patch-clamp recordings of G-protein-coupled inwardly rectifying K(+) (KIR 3.x) currents were made from rat locus coeruleus neurons in brain slices to investigate the potency and relative efficacy of tapentadol and compare its intrinsic activity with other clinically used opioids. KEY RESULTS Tapentadol showed agonist activity at μ receptors and was approximately six times less potent than morphine with respect to KIR 3.x current modulation. The intrinsic activity of tapentadol was lower than [Met]enkephalin, morphine and oxycodone, but higher than buprenorphine and pentazocine. Tapentadol inhibited the noradrenaline transporter (NAT) with potency similar to that at μ receptors. The interaction between these two mechanisms of action was additive in individual LC neurons. CONCLUSIONS AND IMPLICATIONS Tapentadol displays similar potency for both µ receptor activation and NAT inhibition in functioning neurons. The intrinsic activity of tapentadol at the μ receptor lies between that of buprenorphine and oxycodone, potentially explaining the favourable profile of side effects, related to μ receptors. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.
Collapse
Affiliation(s)
- Mahsa Sadeghi
- Discipline of Pharmacology, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | | | | |
Collapse
|
17
|
Abstract
It is now established that agonists do not uniformly activate pleiotropic signaling mechanisms initiated by receptors but rather can bias signals according to the unique receptor conformations they stabilize. One of the important emerging signaling systems where this can occur is through β-arrestin. This chapter discusses biased signaling where emphasis or de-emphasis of β-arrestin signaling is postulated (or been shown) to be beneficial. The chapter specifically focuses on methods to quantify biased effects; these methods furnish scales that can be used in the process of optimizing biased agonism (and antagonism) for therapeutic benefit. Specifically, methods to derive ΔΔLog(τ/K A) or ΔΔLog(Relative Activity) values are described to do this.
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, 120 Mason Farm Road, Room 4042, Genetic Medicine Building, CB# 7365, Chapel Hill, NC, 27599-7365, USA,
| |
Collapse
|
18
|
Abstract
This paper is the thirty-fifth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2012 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
19
|
Liu J, Ren Y, Li G, Liu ZL, Liu R, Tong Y, Zhang L, Yang K. GABAB receptors resist acute desensitization in both postsynaptic and presynaptic compartments of periaqueductal gray neurons. Neurosci Lett 2013; 543:146-51. [DOI: 10.1016/j.neulet.2013.03.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/17/2013] [Accepted: 03/18/2013] [Indexed: 10/27/2022]
|
20
|
Llorente J, Lowe JD, Sanderson HS, Tsisanova E, Kelly E, Henderson G, Bailey CP. μ-Opioid receptor desensitization: homologous or heterologous? Eur J Neurosci 2012; 36:3636-42. [PMID: 23002724 PMCID: PMC3527680 DOI: 10.1111/ejn.12003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 08/14/2012] [Accepted: 08/15/2012] [Indexed: 11/30/2022]
Abstract
There is considerable controversy over whether μ-opioid receptor (MOPr) desensitization is homologous or heterologous and over the mechanisms underlying such desensitization. In different cell types MOPr desensitization has been reported to involve receptor phosphorylation by various kinases, including G-protein-coupled receptor kinases (GRKs), second messenger and other kinases as well as perturbation of the MOPr effector pathway by GRK sequestration of G protein βγ subunits or ion channel modulation. Here we report that in brainstem locus coeruleus (LC) neurons prepared from relatively mature rats (5–8 weeks old) rapid MOPr desensitization induced by the high-efficacy opioid peptides methionine enkephalin and DAMGO was homologous and not heterologous to α2-adrenoceptors and somatostatin SST2 receptors. Given that these receptors all couple through G proteins to the same set of G-protein inwardly rectifying (GIRK) channels it is unlikely therefore that in mature neurons MOPr desensitization involves G protein βγ subunit sequestration or ion channel modulation. In contrast, in slices from immature animals (less than postnatal day 20), MOPr desensitization was observed to be heterologous and could be downstream of the receptor. Heterologous MOPr desensitization was not dependent on protein kinase C or c-Jun N-terminal kinase activity, but the change from heterologous to homologous desensitization with age was correlated with a decrease in the expression levels of GRK2 in the LC and other brain regions. The observation that the mechanisms underlying MOPr desensitization change with neuronal development is important when extrapolating to the mature brain results obtained from experiments on expression systems, cell lines and immature neuronal preparations.
Collapse
Affiliation(s)
- Javier Llorente
- School of Physiology & Pharmacology, University of Bristol, Bristol, UK
| | | | | | | | | | | | | |
Collapse
|
21
|
Levitt ES, Williams JT. Morphine desensitization and cellular tolerance are distinguished in rat locus ceruleus neurons. Mol Pharmacol 2012; 82:983-92. [PMID: 22914548 DOI: 10.1124/mol.112.081547] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
μ-Opioid receptor desensitization is considered an initial step in the development of tolerance. Curiously, the commonly used opioid morphine produces robust tolerance but minimal acute desensitization. This study was designed to test the hypothesis that desensitization is indeed present in morphine-treated animals and is distinguished from cellular tolerance by time course of recovery and mechanism. To induce tolerance, rats were treated with continuously released morphine for 1 week. Morphine-mediated activation of G protein-coupled inwardly rectifying potassium conductance was measured using voltage-clamp recordings from locus ceruleus neurons in brain slices from naive or morphine-treated rats. Cellular tolerance was observed as a decrease in morphine efficacy in slices from morphine-treated rats. This tolerance persisted for at least 6 h. An additional reduction in morphine-mediated current was observed when slices from morphine-treated rats were continuously maintained in morphine at approximately the circulating plasma concentration. This additional reduction recovered within 1 h after removal of morphine from the slice and represents desensitization that developed in the tolerant animal. Recovery from desensitization, but not long-lasting tolerance, was facilitated by protein phosphatase 1 (PP1) activity. Furthermore, desensitization, but not tolerance, was reversed by protein kinase C (PKC) inhibitor but not by an inhibitor of c-Jun N-terminal kinase. Therefore, morphine treatment leads to both long-lasting cellular tolerance and readily reversible desensitization, which are differentially dependent on PP1 and PKC activity and combine to result in a substantial decrease in morphine effectiveness. This PKC-mediated desensitization may contribute to the previously reported PKC-dependent reversal of behavioral tolerance.
Collapse
Affiliation(s)
- Erica S Levitt
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
| | | |
Collapse
|