1
|
Satou M, Wang J, Nakano-Tateno T, Teramachi M, Aoki S, Sugimoto H, Chik C, Tateno T. Autophagy inhibition suppresses hormone production and cell growth in pituitary tumor cells: A potential approach to pituitary tumors. Mol Cell Endocrinol 2024; 586:112196. [PMID: 38462123 DOI: 10.1016/j.mce.2024.112196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/12/2024]
Abstract
Pituitary tumors (PTs) represent about 10% of all intracranial tumors, and most are benign. However, some PTs exhibit continued growth despite multimodal therapies. Although temozolomide (TMZ), an alkylating chemotherapeutic agent, is a first-line medical treatment for aggressive PTs, some PTs are resistant to TMZ. Existing literature indicated the involvement of autophagy in cell growth in several types of tumors, including PTs, and autophagy inhibitors have anti-tumor effects. In this study, the expression of several autophagy-inducible genes, including Atg3, Beclin1, Map1lc3A, Map1lc3b, Ulk1, Wipi2, and Tfe3 in two PT cell lines, the mouse corticotroph AtT-20 cells and the rat mammosomatotroph GH4 cells were identified. Down regulation of Tfe3, a master switch of basal autophagy, using RNA interference, suppressed cell proliferation in AtT-20 cells, suggesting basal autophagy contributes to the maintenance of cellular functions in PT cells. Expectedly, treatment with bafilomycin A1, an autophagy inhibitor, suppressed cell proliferation, increased the cleavage of PARP1, and reduced ACTH production in AtT-20 cells. Treatment with two additional autophagy inhibitors, chloroquine (CQ) and monensin, demonstrated similar effects on cell proliferation, apoptosis, and ACTH production in AtT-20 cells. Also, treatment with CQ suppressed cell proliferation and growth hormone production in GH4 cells. Moreover, the combination of CQ and TMZ had an additive effect on the inhibition of cell proliferation in AtT-20 and GH4 cells. The additive effect of anti-cancer drugs such as CQ alone or in combination with TMZ may represent a novel therapeutic approach for PTs, in particular tumors with resistance to TMZ.
Collapse
Affiliation(s)
- Motoyasu Satou
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Jason Wang
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Tae Nakano-Tateno
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Mariko Teramachi
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Shigeki Aoki
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Hiroyuki Sugimoto
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Constance Chik
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Toru Tateno
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
2
|
Singh S, Barik D, Lawrie K, Mohapatra I, Prasad S, Naqvi AR, Singh A, Singh G. Unveiling Novel Avenues in mTOR-Targeted Therapeutics: Advancements in Glioblastoma Treatment. Int J Mol Sci 2023; 24:14960. [PMID: 37834408 PMCID: PMC10573615 DOI: 10.3390/ijms241914960] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
The mTOR signaling pathway plays a pivotal and intricate role in the pathogenesis of glioblastoma, driving tumorigenesis and proliferation. Mutations or deletions in the PTEN gene constitutively activate the mTOR pathway by expressing growth factors EGF and PDGF, which activate their respective receptor pathways (e.g., EGFR and PDGFR). The convergence of signaling pathways, such as the PI3K-AKT pathway, intensifies the effect of mTOR activity. The inhibition of mTOR has the potential to disrupt diverse oncogenic processes and improve patient outcomes. However, the complexity of the mTOR signaling, off-target effects, cytotoxicity, suboptimal pharmacokinetics, and drug resistance of the mTOR inhibitors pose ongoing challenges in effectively targeting glioblastoma. Identifying innovative treatment strategies to address these challenges is vital for advancing the field of glioblastoma therapeutics. This review discusses the potential targets of mTOR signaling and the strategies of target-specific mTOR inhibitor development, optimized drug delivery system, and the implementation of personalized treatment approaches to mitigate the complications of mTOR inhibitors. The exploration of precise mTOR-targeted therapies ultimately offers elevated therapeutic outcomes and the development of more effective strategies to combat the deadliest form of adult brain cancer and transform the landscape of glioblastoma therapy.
Collapse
Affiliation(s)
- Shilpi Singh
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Debashis Barik
- Center for Computational Natural Science and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, India
| | - Karl Lawrie
- College of Saint Benedict, Saint John’s University, Collegeville, MN 56321, USA
| | - Iteeshree Mohapatra
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA
| | - Sujata Prasad
- MLM Medical Laboratories, LLC, Oakdale, MN 55128, USA
| | - Afsar R. Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois, Chicago, IL 60612, USA
| | - Amar Singh
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gatikrushna Singh
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
3
|
Khan R, Panja S, Ding L, Tang S, Tang W, Kapoor E, Bennett RG, Oupický D. Polymeric Chloroquine as an Effective Antimigration Agent in the Treatment of Pancreatic Cancer. Mol Pharm 2022; 19:4631-4643. [PMID: 36346968 DOI: 10.1021/acs.molpharmaceut.2c00596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hydroxychloroquine (HCQ) has been the subject of multiple recent preclinical and clinical studies for its beneficial use in the combination treatments of different types of cancers. Polymeric HCQ (PCQ), a macromolecular multivalent version of HCQ, has been shown to be effective in various cancer models both in vitro and in vivo as an inhibitor of cancer cell migration and experimental lung metastasis. Here, we present detailed in vitro studies that show that low concentrations of PCQ can efficiently inhibit cancer cell migration and colony formation orders of magnitude more effectively compared to HCQ. After intraperitoneal administration of PCQ in vivo, high levels of tumor accumulation and penetration are observed, combined with strong antimetastatic activity in an orthotopic pancreatic cancer model. These studies support the idea that PCQ may be effectively used at low doses as an adjuvant in the therapy of pancreatic cancer. In conjunction with previously published literature, these studies further undergird the potential of PCQ as an anticancer agent.
Collapse
Affiliation(s)
- Rubayat Khan
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Sudipta Panja
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Ling Ding
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Siyuan Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Weimin Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Ekta Kapoor
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Robert G Bennett
- Department of Internal Medicine and Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States.,Research Service, Nebraska-Western Iowa Health Care System, Omaha, Nebraska 68105, United States
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
4
|
Luo F, Zhao J, Liu S, Xue Y, Tang D, Yang J, Mei Y, Li G, Xie Y. Ursolic acid augments the chemosensitivity of drug-resistant breast cancer cells to doxorubicin by AMPK-mediated mitochondrial dysfunction. Biochem Pharmacol 2022; 205:115278. [PMID: 36191625 DOI: 10.1016/j.bcp.2022.115278] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 11/02/2022]
Abstract
Multidrug resistance remains the major obstacle to successful therapy for breast carcinoma. Ursolic acid (UA), a triterpenoid compound, has been regarded as a potential neoplasm chemopreventive drug in some preclinical studies since it exerts multiple biological activities. In this research, we investigated the role of UA in augmenting the chemosensitivity of drug-resistant breast carcinoma cells to doxorubicin (DOX), and we further explored the possible molecular mechanisms. Notably, we found that UA treatment led to inhibition of cellular proliferation and migration and cell cycle arrest in DOX-resistant breast cancers. Furthermore, combination treatment with UA and DOX showed a stronger inhibitory effect on cell viability, colony formation, and cell migration; induced more cell apoptosis in vitro; and generated a more potent inhibitory effect on the growth of the MCF-7/ADR xenograft tumor model than DOX alone. Mechanistically, UA effectively increased p-AMPK levels and concomitantly reduced p-mTOR and PGC-1α protein levels, resulting in impaired mitochondrial function, such as mitochondrial respiration inhibition, ATP depletion, and excessive reactive oxygen species (ROS) generation. In addition, UA induced a DNA damage response by increasing intracellular ROS production, thus causing cell cycle arrest at the G0/G1 phase. UA also suppressed aerobic glycolysis by prohibiting the expression and function of Glut1. Considered together, our data demonstrated that UA potentiated the susceptibility of DOX-resistant breast carcinoma cells to DOX by targeting energy metabolism through the AMPK/mTOR/PGC-1α signaling pathway, and it is a potential adjuvant chemotherapeutic candidate in MDR breast cancer.
Collapse
Affiliation(s)
- Fazhen Luo
- Research Center for Health and Nutrition, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Pharmacy Department, Shanghai Integrated Traditional Chinese and Western Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Juanjuan Zhao
- Research Center for Health and Nutrition, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Pharmacy Department, Xiangshan Hospital of Traditional Chinese Medicine, Shanghai 200020, China
| | - Shuo Liu
- Research Center for Health and Nutrition, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuanfei Xue
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai, 200062, China
| | - Dongyun Tang
- Research Center for Health and Nutrition, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Pharmacy Department, Xiangshan Hospital of Traditional Chinese Medicine, Shanghai 200020, China
| | - Jun Yang
- Pharmacy Department, Xiangshan Hospital of Traditional Chinese Medicine, Shanghai 200020, China
| | - Ye Mei
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai, 200062, China; NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China; Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Guowen Li
- Pharmacy Department, Shanghai Integrated Traditional Chinese and Western Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China.
| | - Yan Xie
- Research Center for Health and Nutrition, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
5
|
Roy A, Bera S, Saso L, Dwarakanath BS. Role of autophagy in tumor response to radiation: Implications for improving radiotherapy. Front Oncol 2022; 12:957373. [PMID: 36172166 PMCID: PMC9510974 DOI: 10.3389/fonc.2022.957373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Autophagy is an evolutionary conserved, lysosome-involved cellular process that facilitates the recycling of damaged macromolecules, cellular structures, and organelles, thereby generating precursors for macromolecular biosynthesis through the salvage pathway. It plays an important role in mediating biological responses toward various stress, including those caused by ionizing radiation at the cellular, tissue, and systemic levels thereby implying an instrumental role in shaping the tumor responses to radiotherapy. While a successful execution of autophagy appears to facilitate cell survival, abortive or interruptions in the completion of autophagy drive cell death in a context-dependent manner. Pre-clinical studies establishing its ubiquitous role in cells and tissues, and the systemic response to focal irradiation of tumors have prompted the initiation of clinical trials using pharmacologic modifiers of autophagy for enhancing the efficacy of radiotherapy. However, the outcome from the Phase I/II trials in many human malignancies has so far been equivocal. Such observations have not only precluded the advancement of these autophagy modifiers in the Phase III trial but have also raised concerns regarding their introduction as an adjuvant to radiotherapy. This warrants a thorough understanding of the biology of the cancer cells, including its spatio-temporal context, as well as its microenvironment all of which might be the crucial factors that determine the success of an autophagy modifier as an anticancer agent. This review captures the current understanding of the interplay between radiation induced autophagy and the biological responses to radiation damage as well as provides insight into the potentials and limitations of targeting autophagy for improving the radiotherapy of tumors.
Collapse
Affiliation(s)
- Amrita Roy
- Department of Biotechnology, Indian Academy Degree College (Autonomous), Bengaluru, Karnataka, India
- *Correspondence: Amrita Roy, ; ; Soumen Bera, ; ; Bilikere S. Dwarakanath, ;
| | - Soumen Bera
- B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, United States
- *Correspondence: Amrita Roy, ; ; Soumen Bera, ; ; Bilikere S. Dwarakanath, ;
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University, Rome, Italy
| | - Bilikere S. Dwarakanath
- Central Research Facility, Sri Ramachandra Institute of Higher Education and Research Institute, Chennai, India
- *Correspondence: Amrita Roy, ; ; Soumen Bera, ; ; Bilikere S. Dwarakanath, ;
| |
Collapse
|
6
|
Perspective on the Use of DNA Repair Inhibitors as a Tool for Imaging and Radionuclide Therapy of Glioblastoma. Cancers (Basel) 2022; 14:cancers14071821. [PMID: 35406593 PMCID: PMC8997380 DOI: 10.3390/cancers14071821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 01/03/2023] Open
Abstract
Simple Summary The current routine treatment for glioblastoma (GB), the most lethal high-grade brain tumor in adults, aims to induce DNA damage in the tumor. However, the tumor cells might be able to repair that damage, which leads to therapy resistance. Fortunately, DNA repair defects are common in GB cells, and their survival is often based on a sole backup repair pathway. Hence, targeted drugs inhibiting essential proteins of the DNA damage response have gained momentum and are being introduced in the clinic. This review gives a perspective on the use of radiopharmaceuticals targeting DDR kinases for imaging in order to determine the DNA repair phenotype of GB, as well as for effective radionuclide therapy. Finally, four new promising radiopharmaceuticals are suggested with the potential to lead to a more personalized GB therapy. Abstract Despite numerous innovative treatment strategies, the treatment of glioblastoma (GB) remains challenging. With the current state-of-the-art therapy, most GB patients succumb after about a year. In the evolution of personalized medicine, targeted radionuclide therapy (TRT) is gaining momentum, for example, to stratify patients based on specific biomarkers. One of these biomarkers is deficiencies in DNA damage repair (DDR), which give rise to genomic instability and cancer initiation. However, these deficiencies also provide targets to specifically kill cancer cells following the synthetic lethality principle. This led to the increased interest in targeted drugs that inhibit essential DDR kinases (DDRi), of which multiple are undergoing clinical validation. In this review, the current status of DDRi for the treatment of GB is given for selected targets: ATM/ATR, CHK1/2, DNA-PK, and PARP. Furthermore, this review provides a perspective on the use of radiopharmaceuticals targeting these DDR kinases to (1) evaluate the DNA repair phenotype of GB before treatment decisions are made and (2) induce DNA damage via TRT. Finally, by applying in-house selection criteria and analyzing the structural characteristics of the DDRi, four drugs with the potential to become new therapeutic GB radiopharmaceuticals are suggested.
Collapse
|
7
|
Cell death mechanisms in head and neck cancer cells in response to low and high-LET radiation. Expert Rev Mol Med 2022. [DOI: 10.1017/erm.2021.31] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AbstractHead and neck squamous cell carcinoma (HNSCC) is a common malignancy that develops in or around the throat, larynx, nose, sinuses and mouth, and is mostly treated with a combination of chemo- and radiotherapy (RT). The main goal of RT is to kill enough of the cancer cell population, whilst preserving the surrounding normal and healthy tissue. The mechanisms by which conventional photon RT achieves this have been extensively studied over several decades, but little is known about the cell death pathways that are activated in response to RT of increasing linear energy transfer (LET), including proton beam therapy and heavy ions. Here, we provide an up-to-date review on the observed radiobiological effects of low- versus high-LET RT in HNSCC cell models, particularly in the context of specific cell death mechanisms, including apoptosis, necrosis, autophagy, senescence and mitotic death. We also detail some of the current therapeutic strategies targeting cell death pathways that have been investigated to enhance the radiosensitivity of HNSCC cells in response to RT, including those that may present with clinical opportunities for eventual patient benefit.
Collapse
|
8
|
Wang Y, Du J, Wu X, Abdelrehem A, Ren Y, Liu C, Zhou X, Wang S. Crosstalk between autophagy and microbiota in cancer progression. Mol Cancer 2021; 20:163. [PMID: 34895252 PMCID: PMC8665582 DOI: 10.1186/s12943-021-01461-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/16/2021] [Indexed: 12/18/2022] Open
Abstract
Autophagy is a highly conserved catabolic process seen in eukaryotes and is essentially a lysosome-dependent protein degradation pathway. The dysregulation of autophagy is often associated with the pathogenesis of numerous types of cancers, and can not only promote the survival of cancer but also trigger the tumor cell death. During cancer development, the microbial community might predispose cells to tumorigenesis by promoting mucosal inflammation, causing systemic disorders, and may also regulate the immune response to cancer. The complex relationship between autophagy and microorganisms can protect the body by activating the immune system. In addition, autophagy and microorganisms can crosstalk with each other in multifaceted ways to influence various physiological and pathological responses involved in cancer progression. Various molecular mechanisms, correlating the microbiota disorders and autophagy activation, control the outcomes of protumor or antitumor responses, which depend on the cancer type, tumor microenvironment and disease stage. In this review, we mainly emphasize the leading role of autophagy during the interaction between pathogenic microorganisms and human cancers and investigate the various molecular mechanisms by which autophagy modulates such complicated biological processes. Moreover, we also highlight the possibility of curing cancers with multiple molecular agents targeting the microbiota/autophagy axis. Finally, we summarize the emerging clinical trials investigating the therapeutic potential of targeting either autophagy or microbiota as anticancer strategies, although the crosstalk between them has not been explored thoroughly.
Collapse
Affiliation(s)
- Yu Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, Tianjin, 300060 China
- National Clinical Research Center of Cancer, Tianjin, 300060 China
| | - Jiang Du
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, Tianjin, 300060 China
- National Clinical Research Center of Cancer, Tianjin, 300060 China
| | - Xuemei Wu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Gastroenterology and Hepatology Institute, Tianjin Medical University, Tianjin, 300052 China
- Key Laboratory of Immune Microenvironment and Disease, Tianjin Medical University, Ministry of Education, Tianjin, 300070 China
| | - Ahmed Abdelrehem
- Department of Craniomaxillofacial and Plastic Surgery, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Yu Ren
- Tianjin Research Center of Basic Medical Science, Tianjin Medical University, Tianjin, 300070 China
| | - Chao Liu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, Tianjin, 300060 China
- National Clinical Research Center of Cancer, Tianjin, 300060 China
| | - Xuan Zhou
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, Tianjin, 300060 China
- National Clinical Research Center of Cancer, Tianjin, 300060 China
| | - Sinan Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Gastroenterology and Hepatology Institute, Tianjin Medical University, Tianjin, 300052 China
- Key Laboratory of Immune Microenvironment and Disease, Tianjin Medical University, Ministry of Education, Tianjin, 300070 China
| |
Collapse
|
9
|
Wang Y, Wu N, Jiang N. Autophagy provides a conceptual therapeutic framework for bone metastasis from prostate cancer. Cell Death Dis 2021; 12:909. [PMID: 34611139 PMCID: PMC8492756 DOI: 10.1038/s41419-021-04181-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/01/2021] [Accepted: 09/16/2021] [Indexed: 12/14/2022]
Abstract
Prostate cancer is a common malignant tumor, which can spread to multiple organs in the body. Metastatic disease is the dominant reason of death for patients with prostate cancer. Prostate cancer usually transfers to bone. Bone metastases are related to pathologic fracture, pain, and reduced survival. There are many known targets for prostate cancer treatment, including androgen receptor (AR) axis, but drug resistance and metastasis eventually develop in advanced disease, suggesting the necessity to better understand the resistance mechanisms and consider multi-target medical treatment. Because of the limitations of approved treatments, further research into other potential targets is necessary. Metastasis is an important marker of cancer development, involving numerous factors, such as AKT, EMT, ECM, tumor angiogenesis, the development of inflammatory tumor microenvironment, and defect in programmed cell death. In tumor metastasis, programmed cell death (autophagy, apoptosis, and necroptosis) plays a key role. Malignant cancer cells have to overcome the different forms of cell death to transfer. The article sums up the recent studies on the mechanism of bone metastasis involving key regulatory factors such as macrophages and AKT and further discusses as to how regulating autophagy is crucial in relieving prostate cancer bone metastasis.
Collapse
Affiliation(s)
- YouZhi Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Ning Wu
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, 300060, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, 300060, Tianjin, China
| | - Ning Jiang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, 300211, Tianjin, China.
| |
Collapse
|
10
|
Mardanshahi A, Gharibkandi NA, Vaseghi S, Abedi SM, Molavipordanjani S. The PI3K/AKT/mTOR signaling pathway inhibitors enhance radiosensitivity in cancer cell lines. Mol Biol Rep 2021; 48:1-14. [PMID: 34357550 DOI: 10.1007/s11033-021-06607-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/29/2021] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Radiotherapy is one of the most common types of cancer treatment modalities. Radiation can affect both cancer and normal tissues, which limits the whole delivered dose. It is well documented that radiation activates phosphatidylinositol 3-kinase (PI3K) and AKT signaling pathway; hence, the inhibition of this pathway enhances the radiosensitivity of tumor cells. The mammalian target of rapamycin (mTOR) is a regulator that is involved in autophagy, cell growth, proliferation, and survival. CONCLUSION The inhibition of mTOR as a downstream mediator of the PI3K/AKT signaling pathway represents a vital option for more effective cancer treatments. The combination of PI3K/AKT/mTOR inhibitors with radiation can increase the radiosensitivity of malignant cells to radiation by autophagy activation. Therefore, this review aims to discuss the impact of such inhibitors on the cell response to radiation.
Collapse
Affiliation(s)
- Alireza Mardanshahi
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Cardiovascular Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nasrin Abbasi Gharibkandi
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Samaneh Vaseghi
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Mohammad Abedi
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Cardiovascular Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sajjad Molavipordanjani
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Cardiovascular Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
11
|
Kamynina M, Tskhovrebova S, Fares J, Timashev P, Laevskaya A, Ulasov I. Oncolytic Virus-Induced Autophagy in Glioblastoma. Cancers (Basel) 2021; 13:cancers13143482. [PMID: 34298694 PMCID: PMC8304501 DOI: 10.3390/cancers13143482] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/07/2021] [Indexed: 01/20/2023] Open
Abstract
Simple Summary Glioblastoma (GBM) is the most common and aggressive brain tumor with an incidence rate of nearly 3.19/100,000. Current therapeutic options fall short in improving the survival of patients with GBM. Various genetic and microenvironmental factors contribute to GBM progression and resistance to therapy. The development of gene therapies using self-replicating oncolytic viruses can advance GBM treatment. Due to GBM heterogeneity, oncolytic viruses have been genetically modified to improve the antiglioma effect in vitro and in vivo. Oncolytic viruses can activate autophagy signaling in GBM upon tumoral infection. Autophagy can be cytoprotective, whereby the GBM cells catabolize damaged organelles to accommodate to virus-induced stress, or cytotoxic, whereby it leads to the destruction of GBM cells. Understanding the molecular mechanisms that control oncolytic virus-induced autophagic signaling in GBM can fuel further development of novel and more effective genetic vectors. Abstract Autophagy is a catabolic process that allows cells to scavenge damaged organelles and produces energy to maintain cellular homeostasis. It is also an effective defense method for cells, which allows them to identify an internalized pathogen and destroy it through the fusion of the autophagosome and lysosomes. Recent reports have demonstrated that various chemotherapeutic agents and viral gene therapeutic vehicles provide therapeutic advantages for patients with glioblastoma as monotherapy or in combination with standards of care. Despite nonstop efforts to develop effective antiglioma therapeutics, tumor-induced autophagy in some studies manifests tumor resistance and glioma progression. Here, we explore the functional link between autophagy regulation mediated by oncolytic viruses and discuss how intracellular interactions control autophagic signaling in glioblastoma. Autophagy induced by oncolytic viruses plays a dual role in cell death and survival. On the one hand, autophagy stimulation has mostly led to an increase in cytotoxicity mediated by the oncolytic virus, but, on the other hand, autophagy is also activated as a cell defense mechanism against intracellular pathogens and modulates antiviral activity through the induction of ER stress and unfolded protein response (UPR) signaling. Despite the fact that the moment of switch between autophagic prosurvival and prodeath modes remains to be known, in the context of oncolytic virotherapy, cytotoxic autophagy is a crucial mechanism of cancer cell death.
Collapse
Affiliation(s)
- Margarita Kamynina
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (S.T.); (A.L.)
| | - Salome Tskhovrebova
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (S.T.); (A.L.)
| | - Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Department of Polymers and Composites, N. N. Semenov Institute of Chemical Physics, 119991 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anastasia Laevskaya
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (S.T.); (A.L.)
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (S.T.); (A.L.)
- Correspondence:
| |
Collapse
|
12
|
Séhédic D, Roncali L, Djoudi A, Buchtova N, Avril S, Chérel M, Boury F, Lacoeuille F, Hindré F, Garcion E. Rapamycin-Loaded Lipid Nanocapsules Induce Selective Inhibition of the mTORC1-Signaling Pathway in Glioblastoma Cells. Front Bioeng Biotechnol 2021; 8:602998. [PMID: 33718332 PMCID: PMC7947795 DOI: 10.3389/fbioe.2020.602998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/29/2020] [Indexed: 11/21/2022] Open
Abstract
Inhibition of the PI3K/Akt/mTOR signaling pathway represents a potential issue for the treatment of cancer, including glioblastoma. As such, rapamycin that inhibits the mechanistic target of rapamycin (mTOR), the downstream effector of this signaling pathway, is of great interest. However, clinical development of rapamycin has floundered due to the lack of a suitable formulation of delivery systems. In the present study, a novel method for the formulation of safe rapamycin nanocarriers is investigated. A phase inversion process was adapted to prepare lipid nanocapsules (LNCs) loaded with the lipophilic and temperature sensitive rapamycin. Rapamycin-loaded LNCs (LNC-rapa) are ~110 nm in diameter with a low polydispersity index (<0.05) and the zeta potential of about −5 mV. The encapsulation efficiency, determined by spectrophotometry conjugated with filtration/exclusion, was found to be about 69%, which represents 0.6 wt% of loading capacity. Western blot analysis showed that LNC-rapa do not act synergistically with X-ray beam radiation in U87MG glioblastoma model in vitro. Nevertheless, it demonstrated the selective inhibition of the phosphorylation of mTORC1 signaling pathway on Ser2448 at a concentration of 1 μM rapamycin in serum-free medium. Interestingly, cells cultivated in normoxia (21% O2) seem to be more sensitive to mTOR inhibition by rapamycin than those cultivated in hypoxia (0.4% O2). Finally, we also established that mTOR phosphorylation inhibition by LNC-rapa induced a negative feedback through the activation of Akt phosphorylation. This phenomenon was more noticeable after stabilization of HIF-1α in hypoxia.
Collapse
Affiliation(s)
- Delphine Séhédic
- Univ Angers, Université de Nantes, Inserm, CRCINA, SFR ICAT, Angers, France
| | - Loris Roncali
- Univ Angers, Université de Nantes, Inserm, CRCINA, SFR ICAT, Angers, France
| | - Amel Djoudi
- Univ Angers, Université de Nantes, Inserm, CRCINA, SFR ICAT, Angers, France
| | - Nela Buchtova
- Univ Angers, Université de Nantes, Inserm, CRCINA, SFR ICAT, Angers, France
| | - Sylvie Avril
- Univ Angers, Université de Nantes, Inserm, CRCINA, SFR ICAT, Angers, France
| | - Michel Chérel
- Université de Nantes, Inserm, CNRS, CRCINA, Nantes, France
| | - Frank Boury
- Univ Angers, Université de Nantes, Inserm, CRCINA, SFR ICAT, Angers, France
| | - Franck Lacoeuille
- Univ Angers, Université de Nantes, Inserm, CRCINA, SFR ICAT, Angers, France
| | - François Hindré
- Univ Angers, Université de Nantes, Inserm, CRCINA, SFR ICAT, Angers, France
| | - Emmanuel Garcion
- Univ Angers, Université de Nantes, Inserm, CRCINA, SFR ICAT, Angers, France
| |
Collapse
|
13
|
Khan I, Baig MH, Mahfooz S, Rahim M, Karacam B, Elbasan EB, Ulasov I, Dong JJ, Hatiboglu MA. Deciphering the Role of Autophagy in Treatment of Resistance Mechanisms in Glioblastoma. Int J Mol Sci 2021; 22:ijms22031318. [PMID: 33525678 PMCID: PMC7865981 DOI: 10.3390/ijms22031318] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a process essential for cellular energy consumption, survival, and defense mechanisms. The role of autophagy in several types of human cancers has been explicitly explained; however, the underlying molecular mechanism of autophagy in glioblastoma remains ambiguous. Autophagy is thought to be a “double-edged sword”, and its effect on tumorigenesis varies with cell type. On the other hand, autophagy may play a significant role in the resistance mechanisms against various therapies. Therefore, it is of the utmost importance to gain insight into the molecular mechanisms deriving the autophagy-mediated therapeutic resistance and designing improved treatment strategies for glioblastoma. In this review, we discuss autophagy mechanisms, specifically its pro-survival and growth-suppressing mechanisms in glioblastomas. In addition, we try to shed some light on the autophagy-mediated activation of the cellular mechanisms supporting radioresistance and chemoresistance in glioblastoma. This review also highlights autophagy’s involvement in glioma stem cell behavior, underlining its role as a potential molecular target for therapeutic interventions.
Collapse
Affiliation(s)
- Imran Khan
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy Mahallesi, Beykoz, 34820 Istanbul, Turkey; (I.K.); (S.M.); (B.K.)
| | - Mohammad Hassan Baig
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea;
| | - Sadaf Mahfooz
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy Mahallesi, Beykoz, 34820 Istanbul, Turkey; (I.K.); (S.M.); (B.K.)
| | - Moniba Rahim
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh 226026, India;
| | - Busra Karacam
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy Mahallesi, Beykoz, 34820 Istanbul, Turkey; (I.K.); (S.M.); (B.K.)
| | - Elif Burce Elbasan
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, 34093 Istanbul, Turkey;
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Jae-June Dong
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea;
- Correspondence: (J.-J.D.); (M.A.H.)
| | - Mustafa Aziz Hatiboglu
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy Mahallesi, Beykoz, 34820 Istanbul, Turkey; (I.K.); (S.M.); (B.K.)
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, 34093 Istanbul, Turkey;
- Correspondence: (J.-J.D.); (M.A.H.)
| |
Collapse
|
14
|
Xia Q, Xu M, Zhang P, Liu L, Meng X, Dong L. Therapeutic Potential of Autophagy in Glioblastoma Treatment With Phosphoinositide 3-Kinase/Protein Kinase B/Mammalian Target of Rapamycin Signaling Pathway Inhibitors. Front Oncol 2020; 10:572904. [PMID: 33123479 PMCID: PMC7567033 DOI: 10.3389/fonc.2020.572904] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GB) is the most malignant and aggressive form of brain tumor, characterized by frequent hyperactivation of the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway. PI3K/AKT/mTOR inhibitors have a promising clinical efficacy theoretically. However, strong drug resistance is developed in GB against the PI3K/AKT/mTOR inhibitors due to the cytoprotective effect and the adaptive response of autophagy during the treatment of GB. Activation of autophagy by the PI3K/AKT/mTOR inhibitors not only enhances treatment sensitivity but also leads to cell survival when drug resistance develops in cancer cells. In this review, we analyze how to increase the antitumor effect of the PI3K/AKT/mTOR inhibitors in GB treatment, which is achieved by various mechanisms, among which targeting autophagy is an important mechanism. We review the dual role of autophagy in both GB therapy and resistance against inhibitors of the PI3K/AKT/mTOR signaling pathway, and further discuss the possibility of using combinations of autophagy and PI3K/AKT/mTOR inhibitors to improve the treatment efficacy for GB. Finally, we provide new perspectives for targeting autophagy in GB therapy.
Collapse
Affiliation(s)
- Qin Xia
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Mengchuan Xu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Pei Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Liqun Liu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xinyi Meng
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Lei Dong
- School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
15
|
Wanigasooriya K, Tyler R, Barros-Silva JD, Sinha Y, Ismail T, Beggs AD. Radiosensitising Cancer Using Phosphatidylinositol-3-Kinase (PI3K), Protein Kinase B (AKT) or Mammalian Target of Rapamycin (mTOR) Inhibitors. Cancers (Basel) 2020; 12:E1278. [PMID: 32443649 PMCID: PMC7281073 DOI: 10.3390/cancers12051278] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy is routinely used as a neoadjuvant, adjuvant or palliative treatment in various cancers. There is significant variation in clinical response to radiotherapy with or without traditional chemotherapy. Patients with a good response to radiotherapy demonstrate better clinical outcomes universally across different cancers. The PI3K/AKT/mTOR pathway upregulation has been linked to radiotherapy resistance. We reviewed the current literature exploring the role of inhibiting targets along this pathway, in enhancing radiotherapy response. We identified several studies using in vitro cancer cell lines, in vivo tumour xenografts and a few Phase I/II clinical trials. Most of the current evidence in this area comes from glioblastoma multiforme, non-small cell lung cancer, head and neck cancer, colorectal cancer, and prostate cancer. The biological basis for radiosensitivity following pathway inhibition was through inhibited DNA double strand break repair, inhibited cell proliferation, enhanced apoptosis and autophagy as well as tumour microenvironment changes. Dual PI3K/mTOR inhibition consistently demonstrated radiosensitisation of all types of cancer cells. Single pathway component inhibitors and other inhibitor combinations yielded variable outcomes especially within early clinical trials. There is ample evidence from preclinical studies to suggest that direct pharmacological inhibition of the PI3K/AKT/mTOR pathway components can radiosensitise different types of cancer cells. We recommend that future in vitro and in vivo research in this field should focus on dual PI3K/mTOR inhibitors. Early clinical trials are needed to assess the feasibility and efficacy of these dual inhibitors in combination with radiotherapy in brain, lung, head and neck, breast, prostate and rectal cancer patients.
Collapse
Affiliation(s)
- Kasun Wanigasooriya
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Science, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (J.D.B.-S.); (Y.S.); (A.D.B.)
- The New Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham B15 2TH, UK; (R.T.); (T.I.)
| | - Robert Tyler
- The New Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham B15 2TH, UK; (R.T.); (T.I.)
| | - Joao D. Barros-Silva
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Science, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (J.D.B.-S.); (Y.S.); (A.D.B.)
| | - Yashashwi Sinha
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Science, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (J.D.B.-S.); (Y.S.); (A.D.B.)
- The New Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham B15 2TH, UK; (R.T.); (T.I.)
| | - Tariq Ismail
- The New Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham B15 2TH, UK; (R.T.); (T.I.)
| | - Andrew D. Beggs
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Science, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (J.D.B.-S.); (Y.S.); (A.D.B.)
- The New Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham B15 2TH, UK; (R.T.); (T.I.)
| |
Collapse
|
16
|
Dual PI3K/mTOR Inhibitor NVP-BEZ235 Enhances Radiosensitivity of Head and Neck Squamous Cell Carcinoma (HNSCC) Cell Lines Due to Suppressed Double-Strand Break (DSB) Repair by Non-Homologous End Joining. Cancers (Basel) 2020; 12:cancers12020467. [PMID: 32085396 PMCID: PMC7072694 DOI: 10.3390/cancers12020467] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/27/2020] [Accepted: 02/07/2020] [Indexed: 12/24/2022] Open
Abstract
The PI3K/Akt/mTOR pathway is frequently altered in human papillomavirus (HPV)-positive and negative squamous cell carcinoma of the head and neck (HNSCC) and overstimulation is associated with poor prognosis. PI3K drives Akt activation and constitutive signaling acts pro-proliferative, supports cell survival, DNA repair, and contributes to radioresistance. Since the small molecule NVP-BEZ235 (BEZ235) is a potent dual inhibitor of this pathway, we were interested whether BEZ235 could be an efficient radiosensitizer. The 50 nM BEZ235 was found to abrogate endogenous and irradiation-induced phosphorylation of Akt (Ser473). The anti-proliferative capacity of the drug resulted in an increase in G1-phase cells. Repair of radiation-induced DNA double-strand breaks (DSBs) was strongly suppressed. Reduction in DSB repair was only apparent in G1- but not in G2-phase cells, suggesting that BEZ235 primarily affects non-homologous end joining. This finding was confirmed using a DSB repair reporter gene assay and could be attributed to an impaired phosphorylation of DNA-PKcs (S2056). Cellular radiosensitivity increased strongly after BEZ235 addition in all HNSCC cell lines used, especially when irradiated in the G0 or G1 phase. Our data indicate that targeting the PI3K/Akt/mTOR pathway by BEZ235 with concurrent radiotherapy may be considered an effective strategy for the treatment of HNSCC, regardless of the HPV and Akt status.
Collapse
|
17
|
Lee JS, Jang EH, Woo HA, Lee K. Regulation of Autophagy Is a Novel Tumorigenesis-Related Activity of Multifunctional Translationally Controlled Tumor Protein. Cells 2020; 9:cells9010257. [PMID: 31968668 PMCID: PMC7017196 DOI: 10.3390/cells9010257] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/13/2022] Open
Abstract
Translationally controlled tumor protein (TCTP) is highly conserved in eukaryotic organisms and plays multiple roles regulating cellular growth and homeostasis. Because of its anti-apoptotic activity and its role in the regulation of cancer metastasis, TCTP has become a promising target for cancer therapy. Moreover, growing evidence points to its clinical role in cancer prognosis. How TCTP regulates cellular growth in cancer has been widely studied, but how it regulates cellular homeostasis has received relatively little attention. This review discusses how TCTP is related to cancer and its potential as a target in cancer therapeutics, including its novel role in the regulation of autophagy. Regulation of autophagy is essential for cell recycling and scavenging cellular materials to sustain cell survival under the metabolic stress that cancer cells undergo during their aggressive proliferation.
Collapse
|
18
|
Zhou W, Guo Y, Zhang X, Jiang Z. Lys05 induces lysosomal membrane permeabilization and increases radiosensitivity in glioblastoma. J Cell Biochem 2019; 121:2027-2037. [PMID: 31642111 DOI: 10.1002/jcb.29437] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/08/2019] [Indexed: 12/25/2022]
Abstract
Glioblastoma (GBM) is one of the most malignant primary brain tumors and its prognosis is very poor. Lysosome-dependent cell death is mainly caused by lysosomal membrane permeabilization (LMP), a process in which the lysosome loses its membrane integrity and lysosomal contents are released into the cytosol. Lysosomotropic agent, a kind of compound that selectively accumulates in the lysosomes, is one of the most important inducers of LMP. As a newly-synthetic lysosomotropic agent, Lys05 showed efficient autophagy inhibiting and antitumor effect. But its mechanisms are not well illustrated. Here, we studied whether Lys05 has antiglioma activity. We found that Lys05 decreased cell viability and reduced cell growth of glioma U251 and LN229 cells. After Lys05 treatment, autophagic flux is inhibited and lysosome function is impaired. We also found that Lys05 caused LMP and mitochondrial depolarization. Finally, Lys05 increased radiosensitivity in an LMP-dependent manner. For the first time, our findings indicate that LMP contributes to radiosensitivity in GBM cells. Therefore, LMP inducer, Lys05 might be a promising compound in the treatment of GBM cells.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Radiation Oncology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yulian Guo
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, China
| | - Xin Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, China
| | - Zheng Jiang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, China
| |
Collapse
|
19
|
Xin P, Xu W, Zhu X, Li C, Zheng Y, Zheng T, Cheng W, Peng Q. Protective autophagy or autophagic death: effects of BEZ235 on chronic myelogenous leukemia. Cancer Manag Res 2019; 11:7933-7951. [PMID: 31686909 PMCID: PMC6709803 DOI: 10.2147/cmar.s204472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/05/2019] [Indexed: 12/11/2022] Open
Abstract
Purpose To investigate the effects of BEZ235 on chronic myeloid leukemia (CML) cells. Methods MTS assay was used to detect the proliferation of CML cells. The proteins expression were detected by Western blot assay. The effects of BEZ235 on autophagy in CML cells were verified through transmission electron microscopy and evaluated by laser confocal microscopy. Annexin V-FITC/PI double staining flow cytometry was used to detect apoptosis. A xenograft model was established to observe the therapeutic effect of BEZ235 in vivo. Results BEZ235 could inhibit the proliferation of CML cells; CQ and 3-MA could increase the proliferation inhibition and Z-VAD-FMK can reduce the proliferation inhibition of BEZ235 on CML cells (P<0.05). Results of TEM showed that the autophagosomes of CML cells treated with BEZ235 increased (P<0.05). The results by confocal microscopy showed that the autophagic activity of K562 cells increased with BEZ235 treatment. When BEZ235 combined with CQ, BEZ235-induced autophagic flow was blocked. FCM results showed that BEZ235 could induces apoptosis in CML cells. Z-VAD-FMK could decrease the apoptosis of CML cells induced by BEZ235. CQ increased the apoptosis of CML cells induced by BEZ235 (P<0.05). Western blot showed that BEZ235 inhibited the phosphorylation of AKT and S6K. BEZ235 alone could upregulate the expression of cleaved caspase-3 and LC3II. When combined with Z-VAD-FMK, the expression of cleaved caspase-3 was lower than that of BEZ235 alone. When combined with CQ, the expression of cleaved caspase-3 and LC3II were higher than those of BEZ235 alone (P<0.05). BEZ235 could inhibit the growth of xenografts of CML cell line. Conclusion BEZ235 can inhibit the proliferation of CML cells, induce apoptosis, and enhance autophagy activity. It induces protective autophagy. The combination of CQ can enhance the apoptosis and proliferation inhibition of CML cells induced by BEZ235.
Collapse
Affiliation(s)
- Pengliang Xin
- Department of Haematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, People's Republic of China
| | - Wenqian Xu
- Department of Haematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, People's Republic of China
| | - Xiongpeng Zhu
- Department of Haematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, People's Republic of China
| | - Chuntuan Li
- Department of Haematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, People's Republic of China
| | - Yan Zheng
- Department of Haematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, People's Republic of China
| | - Tingjin Zheng
- Central Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, People's Republic of China
| | - Wenzhao Cheng
- Stem Cell Translational Research Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, People's Republic of China
| | - Qunyi Peng
- Department of Haematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, People's Republic of China
| |
Collapse
|
20
|
Abstract
Resistance to therapy is one of the prime causes for treatment failure in cancer and recurrent disease. In recent years, autophagy has emerged as an important cell survival mechanism in response to different stress conditions that are associated with cancer treatment and aging. Autophagy is an evolutionary conserved catabolic process through which damaged cellular contents are degraded after uptake into autophagosomes that subsequently fuse with lysosomes for cargo degradation, thereby alleviating stress. In addition, autophagy serves to maintain cellular homeostasis by enriching nutrient pools. Although autophagy can act as a double-edged sword at the interface of cell survival and cell death, increasing evidence suggest that in the context of cancer therapy-induced stress responses, it predominantly functions as a cell survival mechanism. Here, we provide an up-to-date overview on our current knowledge of the role of pro-survival autophagy in cancer therapy at the preclinical and clinical stages and delineate the molecular mechanisms of autophagy regulation in response to therapy-related stress conditions. A better understanding of the interplay of cancer therapy and autophagy may allow to unveil new targets and avenues for an improved treatment of therapy-resistant tumors in the foreseeable future.
Collapse
|
21
|
Autophagy as a molecular target for cancer treatment. Eur J Pharm Sci 2019; 134:116-137. [PMID: 30981885 DOI: 10.1016/j.ejps.2019.04.011] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 12/22/2022]
Abstract
Autophagy is an evolutionarily conserved catabolic mechanism, by which eukaryotic cells recycle or degrades internal constituents through membrane-trafficking pathway. Thus, autophagy provides the cells with a sustainable source of biomolecules and energy for the maintenance of homeostasis under stressful conditions such as tumor microenvironment. Recent findings revealed a close relationship between autophagy and malignant transformation. However, due to the complex dual role of autophagy in tumor survival or cell death, efforts to develop efficient treatment strategies targeting the autophagy/cancer relation have largely been unsuccessful. Here we review the two-faced role of autophagy in cancer as a tumor suppressor or as a pro-oncogenic mechanism. In this sense, we also review the shared regulatory pathways that play a role in autophagy and malignant transformation. Finally, anti-cancer therapeutic agents used as either inhibitors or inducers of autophagy have been discussed.
Collapse
|
22
|
Autophagy and its potent modulators from phytochemicals in cancer treatment. Cancer Chemother Pharmacol 2018; 83:17-26. [PMID: 30353226 DOI: 10.1007/s00280-018-3707-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022]
Abstract
Autophagy is a ubiquitous catabolic process by which damaged or harmful intracellular components are delivered to the lysosomes for self-digestion and recycling. It is critical in cancer treatment. Therapy-induced autophagy predominantly acts as a pro-survival mechanism, but progressive autophagy can lead to non-apoptotic cell death, also known as autophagic cell death. Plants or herbs contain various natural compounds that are widely used in the treatment of many types of malignancies. Emerging evidence indicates that phytochemicals targeting the autophagic pathway are promising agents for cancer treatment. However, these compounds play different roles in autophagy. In this review, we discussed the role of autophagy in cancer development and therapy, and focussed on elucidating the anti-cancer activities of autophagic modulators, especially phytochemicals. Notably, we described a novel premise that the dynamic role of phytochemicals should be evaluated in regulation of autophagy in cancer.
Collapse
|
23
|
Arya BD, Mittal S, Joshi P, Pandey AK, Ramirez-Vick JE, Singh SP. Graphene oxide–chloroquine nanoconjugate induce necroptotic death in A549 cancer cells through autophagy modulation. Nanomedicine (Lond) 2018; 13:2261-2282. [DOI: 10.2217/nnm-2018-0086] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: Chloroquine (Chl) has shown its potential in cancer therapy and graphene oxide (GO) exhibited excellent tumor-targeting ability, biocompatibility and low toxicity. We have endeavored to conjugate Chl to GO sheets and investigated the nonproliferation action on A549 cell lines along with cell signaling pathways. Materials & methods: Cellular toxicity, autophagic flux modulation and cell death mechanism induced by GO–Chl have been investigated on A549 cell lines. Results & conclusion: GO–Chl induces accumulation of autophagosomes (monodansylcadaverine staining, green fluorescence protein-tagged LC3 plasmid and transmission electron microscopy observations) in A549 cells through the blockade of autophagic flux that serves as scaffold for necrosome assembling and activates necroptotic cell death. GO–Chl nanoconjugate could be used as an effective cancer therapeutic agent, by targeting the autophagy necroptosis axis.
Collapse
Affiliation(s)
- Braham D Arya
- CSIR-National Physical Laboratory, Dr K. S. Krishnan Marg, New Delhi 110012, India
- Academy of Scientific & Innovative Research (AcSIR), Sector 19, Ghaziabad, UP 201002, India
| | - Sandeep Mittal
- Academy of Scientific & Innovative Research (AcSIR), Sector 19, Ghaziabad, UP 201002, India
- CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 31, Mahatma Gandhi Marg, Lucknow 226001, India
| | - Prachi Joshi
- CSIR-National Physical Laboratory, Dr K. S. Krishnan Marg, New Delhi 110012, India
| | - Alok K Pandey
- Academy of Scientific & Innovative Research (AcSIR), Sector 19, Ghaziabad, UP 201002, India
- CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 31, Mahatma Gandhi Marg, Lucknow 226001, India
| | - Jaime E Ramirez-Vick
- Department of Biomedical, Industrial & Human Factors Engineering, Wright State University, Dayton, OH 45435, USA
| | - Surinder P Singh
- CSIR-National Physical Laboratory, Dr K. S. Krishnan Marg, New Delhi 110012, India
- Academy of Scientific & Innovative Research (AcSIR), Sector 19, Ghaziabad, UP 201002, India
| |
Collapse
|
24
|
Xu J, Patel NH, Saleh T, Cudjoe EK, Alotaibi M, Wu Y, Lima S, Hawkridge AM, Gewirtz DA. Differential Radiation Sensitivity in p53 Wild-Type and p53-Deficient Tumor Cells Associated with Senescence but not Apoptosis or (Nonprotective) Autophagy. Radiat Res 2018; 190:538-557. [PMID: 30132722 DOI: 10.1667/rr15099.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Studies of radiation interaction with tumor cells often focus on apoptosis as an end point; however, clinically relevant doses of radiation also promote autophagy and senescence. Moreover, functional p53 has frequently been implicated in contributing to radiation sensitivity through the facilitation of apoptosis. To address the involvement of apoptosis, autophagy, senescence and p53 status in the response to radiation, the current studies utilized isogenic H460 non-small cell lung cancer cells that were either p53-wild type (H460wt) or null (H460crp53). As anticipated, radiosensitivity was higher in the H460wt cells than in the H460crp53 cell line; however, this differential radiation sensitivity did not appear to be a consequence of apoptosis. Furthermore, radiosensitivity did not appear to be reduced in association with the promotion of autophagy, as autophagy was markedly higher in the H460wt cells. Despite radiosensitization by chloroquine in the H460wt cells, the radiation-induced autophagy proved to be essentially nonprotective, as inhibition of autophagy via 3-methyl adenine (3-MA), bafilomycin A1 or ATG5 silencing failed to alter radiation sensitivity or promote apoptosis in either the H460wt or H460crp53 cells. Radiosensitivity appeared to be most closely associated with senescence, which occurred earlier and to a greater extent in the H460wt cells. This finding is consistent with the in-depth proteomics analysis on the secretomes from the H460wt and H460crp53 cells (with or without radiation exposure) that showed no significant association with radioresistance-related proteins, whereas several senescence-associated secretory phenotype (SASP) factors were upregulated in H460wt cells relative to H460crp53 cells. Taken together, these findings indicate that senescence, rather than apoptosis, plays a central role in determination of radiosensitivity; furthermore, autophagy is likely to have minimal influence on radiosensitivity under conditions where autophagy takes the nonprotective form.
Collapse
Affiliation(s)
- Jingwen Xu
- a Department of Pharmacology and Toxicology, Shenyang Pharmaceutical University, Liaoning, China
| | - Nipa H Patel
- b Department of Pharmacology and Toxicology and Medicine, Virginia Commonwealth University, Richmond, Virginia.,e Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Tareq Saleh
- b Department of Pharmacology and Toxicology and Medicine, Virginia Commonwealth University, Richmond, Virginia.,e Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Emmanuel K Cudjoe
- c Department of Pharmacotherapy and Outcome Sciences and Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia
| | - Moureq Alotaibi
- f Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Yingliang Wu
- a Department of Pharmacology and Toxicology, Shenyang Pharmaceutical University, Liaoning, China
| | - Santiago Lima
- d Department of Biology, Virginia Commonwealth University, Richmond, Virginia.,e Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Adam M Hawkridge
- c Department of Pharmacotherapy and Outcome Sciences and Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia.,e Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - David A Gewirtz
- b Department of Pharmacology and Toxicology and Medicine, Virginia Commonwealth University, Richmond, Virginia.,e Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
25
|
Ren J, Liu T, Han Y, Wang Q, Chen Y, Li G, Jiang L. GSK-3β inhibits autophagy and enhances radiosensitivity in non-small cell lung cancer. Diagn Pathol 2018; 13:33. [PMID: 29793508 PMCID: PMC5968472 DOI: 10.1186/s13000-018-0708-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/06/2018] [Indexed: 12/20/2022] Open
Abstract
Background Radiotherapy is one of the most common and effective treatment methods for cancer, and improving the radiosensitivity of tumor tissues during the treatment process is vital. We report the mechanisms of glycogen synthase kinase 3 (GSK-3) β-regulated autophagy and the effects of autophagy on radiosensitivity in non-small cell lung cancer (NSCLC). Method Immunohistochemical staining was performed to determine GSK-3β tissue expression in 89 NSCLC patients with follow-up data and the expression status of GSK-3β and autophagy in NSCLC tissues after X-ray radiotherapy. Western blots were used to quantitate changes in autophagy-related protein expression after A549 cells were treated with GSK-3β inhibitors and after H460 cells were transfected with GSK-3β mutants with different activities and X-ray irradiated. Clonogenic assays were used to measure the effect of autophagy on cellular proliferation. Results GSK-3β expression positively correlated with NSCLC differentiation (P < 0.05), and GSK-3β negativity was associated with a better prognosis in 89 NSCLC patients. After X-ray irradiation, the expression levels of GSK-3β and p62 were decreased in NSCLC tissues, and the expression levels of the autophagy-related protein LC3 were increased. A549 and H460 cells were selected as representative GSK-3β-high and GSK-3β-low expression cell lines. After transfecting H460 cells with different GSK-3β mutants [wild type GSK-3β (GSK-3β-WT), constitutively active GSK-3β (GSK-3β-S9A), and catalytically inactive GSK-3β (GSK-3β-K85R)] and subjecting these cells to X-ray irradiation, AMPK and LC3 expression levels decreased, and p62 expression levels increased. These effects were particularly significant for the GSK-3β-S9A mutant. In A549 cells, after GSK-3β inhibition and X-ray irradiation, AMPK and LC3 protein expression levels increased. Moreover, when autophagy was inhibited, cell proliferation decreased. Conclusion Our studies revealed that GSK-3β expression is associated with NSCLC differentiation, and patients with GSK-3β-negative tumors had a better prognosis. X-ray irradiation inhibited GSK-3β expression and promoted autophagy. Therefore, GSK-3β inhibits autophagy and enhances the radiosensitivity of NSCLC cells.
Collapse
Affiliation(s)
- Jialin Ren
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Science, China Medical University, Shenyang, 110001, China
| | - Tingting Liu
- Department of Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yang Han
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Science, China Medical University, Shenyang, 110001, China.
| | - Qiongzi Wang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Science, China Medical University, Shenyang, 110001, China
| | - Yanzhi Chen
- Department of Radiotherapy, Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Guang Li
- Department of Radiotherapy, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Lihong Jiang
- Department of Pathology, General Hospital of Liaohe Oilfield, Panjin, China
| |
Collapse
|
26
|
Campbell GR, Bruckman RS, Herns SD, Joshi S, Durden DL, Spector SA. Induction of autophagy by PI3K/MTOR and PI3K/MTOR/BRD4 inhibitors suppresses HIV-1 replication. J Biol Chem 2018; 293:5808-5820. [PMID: 29475942 DOI: 10.1074/jbc.ra118.002353] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 02/21/2018] [Indexed: 12/20/2022] Open
Abstract
In this study, we investigated the effects of the dual phosphatidylinositol 3-kinase/mechanistic target of rapamycin (PI3K/MTOR) inhibitor dactolisib (NVP-BEZ235), the PI3K/MTOR/bromodomain-containing protein 4 (BRD4) inhibitor SF2523, and the bromodomain and extra terminal domain inhibitor JQ1 on the productive infection of primary macrophages with human immunodeficiency type-1 (HIV). These inhibitors did not alter the initial susceptibility of macrophages to HIV infection. However, dactolisib, JQ1, and SF2523 all decreased HIV replication in macrophages in a dose-dependent manner via degradation of intracellular HIV through autophagy. Macrophages treated with dactolisib, JQ1, or SF2523 displayed an increase in LC3B lipidation combined with SQSTM1 degradation without inducing increased cell death. LC3B-II levels were further increased in the presence of pepstatin A suggesting that these inhibitors induce autophagic flux. RNA interference for ATG5 and ATG7 and pharmacological inhibitors of autophagosome-lysosome fusion and of lysosomal hydrolases all blocked the inhibition of HIV. Thus, we demonstrate that the mechanism of PI3K/MTOR and PI3K/MTOR/BRD4 inhibitor suppression of HIV requires the formation of autophagosomes, as well as their subsequent maturation into autolysosomes. These data provide further evidence in support of a role for autophagy in the control of HIV infection and open new avenues for the use of this class of drugs in HIV therapy.
Collapse
Affiliation(s)
- Grant R Campbell
- From the Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, California 92093-0672
| | - Rachel S Bruckman
- From the Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, California 92093-0672
| | - Shayna D Herns
- From the Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, California 92093-0672
| | - Shweta Joshi
- the Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of California San Diego, La Jolla, California 92093-0819.,the Rady Children's Hospital, San Diego, California 92123, and
| | - Donald L Durden
- the Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of California San Diego, La Jolla, California 92093-0819.,the Rady Children's Hospital, San Diego, California 92123, and.,SignalRx Pharmaceuticals, Inc., San Diego, California 92130
| | - Stephen A Spector
- From the Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, California 92093-0672, .,the Rady Children's Hospital, San Diego, California 92123, and
| |
Collapse
|
27
|
Expression profiling analysis of autophagy-related genes in perineural invasion of cutaneous squamous cell carcinoma. Oncol Lett 2018; 15:4837-4848. [PMID: 29552123 PMCID: PMC5840673 DOI: 10.3892/ol.2018.7971] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 12/19/2017] [Indexed: 12/13/2022] Open
Abstract
The aim of the present study was to identify the potential autophagy-related genes and to explore the underlying molecular mechanisms involved in cutaneous squamous cell carcinoma of head and neck (cSCCHN) by bioinformatics analysis. The Gene Expression Omnibus (GEO) series GSE86544 was downloaded from the GEO database. The primary data was generated from cSCCHN with clinical perineural invasion (PNI) and cSCCHN without PNI, and was further analyzed in order to identify differentially expressed genes (DEGs). The results revealed 239 autophagy-related DEGs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed and intersected to investigate the predicted functions of the key DEGs, including hypoxia-inducible factor 1α (HIF1A), mitogen-activated protein kinase 8 (MAPK8), mammalian target of rapamycin (mTOR) and B-cell lymphoma 2 like 1 (BCL2L1). Up and downregulated genes shared one pathway, namely ‘pathways in cancer’. Next, the protein-protein interaction (PPI) network of the autophagy-related DEGs was constructed using Cytoscape 3.30 software. HIF1A, MAPK8, mTOR and BCL2L1 were key nodes in the PPI network. Additionally, RAB23 gene expression was positively correlated with HIF1A, MAPK8 and ADP ribosylation factor GTPase activating protein 1 (ARFGAP1), but negatively correlated with mTOR and BCL2L1. The present results suggested that the genes HIF1A, MAPK8, mTOR, BCL2L1 and RAB23 may be associated with and serve as potential therapeutic targets in cSCCHN with clinical PNI.
Collapse
|
28
|
Jennewein L, Ronellenfitsch MW, Antonietti P, Ilina EI, Jung J, Stadel D, Flohr LM, Zinke J, von Renesse J, Drott U, Baumgarten P, Braczynski AK, Penski C, Burger MC, Theurillat JP, Steinbach JP, Plate KH, Dikic I, Fulda S, Brandts C, Kögel D, Behrends C, Harter PN, Mittelbronn M. Diagnostic and clinical relevance of the autophago-lysosomal network in human gliomas. Oncotarget 2018; 7:20016-32. [PMID: 26956048 PMCID: PMC4991435 DOI: 10.18632/oncotarget.7910] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 02/15/2016] [Indexed: 12/19/2022] Open
Abstract
Recently, the conserved intracellular digestion mechanism ‘autophagy’ has been considered to be involved in early tumorigenesis and its blockade proposed as an alternative treatment approach. However, there is an ongoing debate about whether blocking autophagy has positive or negative effects in tumor cells. Since there is only poor data about the clinico-pathological relevance of autophagy in gliomas in vivo, we first established a cell culture based platform for the in vivo detection of the autophago-lysosomal components. We then investigated key autophagosomal (LC3B, p62, BAG3, Beclin1) and lysosomal (CTSB, LAMP2) molecules in 350 gliomas using immunohistochemistry, immunofluorescence, immunoblotting and qPCR. Autophagy was induced pharmacologically or by altering oxygen and nutrient levels. Our results show that autophagy is enhanced in astrocytomas as compared to normal CNS tissue, but largely independent from the WHO grade and patient survival. A strong upregulation of LC3B, p62, LAMP2 and CTSB was detected in perinecrotic areas in glioblastomas suggesting micro-environmental changes as a driver of autophagy induction in gliomas. Furthermore, glucose restriction induced autophagy in a concentration-dependent manner while hypoxia or amino acid starvation had considerably lesser effects. Apoptosis and autophagy were separately induced in glioma cells both in vitro and in vivo. In conclusion, our findings indicate that autophagy in gliomas is rather driven by micro-environmental changes than by primary glioma-intrinsic features thus challenging the concept of exploitation of the autophago-lysosomal network (ALN) as a treatment approach in gliomas.
Collapse
Affiliation(s)
- Lukas Jennewein
- Neurological Institute (Edinger Institute), Goethe University, Frankfurt am Main, Germany
| | - Michael W Ronellenfitsch
- Senckenberg Institute of Neurooncology, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Patrick Antonietti
- Experimental Neurosurgery, Department of Neurosurgery, Goethe University, Frankfurt am Main, Germany
| | - Elena I Ilina
- Neurological Institute (Edinger Institute), Goethe University, Frankfurt am Main, Germany
| | - Jennifer Jung
- Institute of Biochemistry II, Goethe University, Frankfurt am Main, Germany
| | - Daniela Stadel
- Institute of Biochemistry II, Goethe University, Frankfurt am Main, Germany
| | - Lisa-Marie Flohr
- Neurological Institute (Edinger Institute), Goethe University, Frankfurt am Main, Germany
| | - Jenny Zinke
- Neurological Institute (Edinger Institute), Goethe University, Frankfurt am Main, Germany
| | - Janusz von Renesse
- Neurological Institute (Edinger Institute), Goethe University, Frankfurt am Main, Germany
| | - Ulrich Drott
- Neurological Institute (Edinger Institute), Goethe University, Frankfurt am Main, Germany
| | - Peter Baumgarten
- Neurological Institute (Edinger Institute), Goethe University, Frankfurt am Main, Germany.,Department of Neurosurgery, Goethe University, Frankfurt am Main, Germany
| | - Anne K Braczynski
- Neurological Institute (Edinger Institute), Goethe University, Frankfurt am Main, Germany
| | - Cornelia Penski
- Neurological Institute (Edinger Institute), Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael C Burger
- Senckenberg Institute of Neurooncology, Goethe University, Frankfurt am Main, Germany
| | | | - Joachim P Steinbach
- Senckenberg Institute of Neurooncology, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karl-Heinz Plate
- Neurological Institute (Edinger Institute), Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ivan Dikic
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Biochemistry II, Goethe University, Frankfurt am Main, Germany
| | - Simone Fulda
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute for Experimental Cancer Research in Pediatrics, Goethe University, Frankfurt am Main, Germany
| | - Christian Brandts
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Medicine, Hematology/Oncology, Goethe University, Frankfurt am Main, Germany
| | - Donat Kögel
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Experimental Neurosurgery, Department of Neurosurgery, Goethe University, Frankfurt am Main, Germany
| | - Christian Behrends
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Biochemistry II, Goethe University, Frankfurt am Main, Germany
| | - Patrick N Harter
- Neurological Institute (Edinger Institute), Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michel Mittelbronn
- Neurological Institute (Edinger Institute), Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
29
|
Mueck K, Rebholz S, Harati MD, Rodemann HP, Toulany M. Akt1 Stimulates Homologous Recombination Repair of DNA Double-Strand Breaks in a Rad51-Dependent Manner. Int J Mol Sci 2017; 18:E2473. [PMID: 29156644 PMCID: PMC5713439 DOI: 10.3390/ijms18112473] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/03/2017] [Accepted: 11/03/2017] [Indexed: 12/28/2022] Open
Abstract
Akt1 is known to promote non-homologous end-joining (NHEJ)-mediated DNA double-strand break (DSB) repair by stimulation of DNA-PKcs. In the present study, we investigated the effect of Akt1 on homologous recombination (HR)-dependent repair of radiation-induced DSBs in non-small cell lung cancer (NSCLC) cells A549 and H460. Akt1-knockdown (Akt1-KD) significantly reduced Rad51 protein level, Rad51 foci formation and its colocalization with γH2AX foci after irradiation. Moreover, Akt1-KD decreased clonogenicity after treatment with Mitomycin C and HR repair, as tested by an HR-reporter assay. Double knockdown of Akt1 and Rad51 did not lead to a further decrease in HR compared to the single knockdown of Rad51. Consequently, Akt1-KD significantly increased the number of residual DSBs after irradiation partially independent of the kinase activity of DNA-PKcs. Likewise, the number of residual BRCA1 foci, indicating unsuccessful HR events, also significantly increased in the irradiated cells after Akt1-KD. Together, the results of the study indicate that Akt1 seems to be a regulatory component in the HR repair of DSBs in a Rad51-dependent manner. Thus, based on this novel role of Akt1 in HR and the previously described role of Akt1 in NHEJ, we propose that targeting Akt1 could be an effective approach to selectively improve the killing of tumor cells by DSB-inducing cytotoxic agents, such as ionizing radiation.
Collapse
Affiliation(s)
- Katharina Mueck
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, 72076 Tuebingen, Germany.
- German Cancer Consortium (DKTK), Partner site Tuebingen, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Simone Rebholz
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, 72076 Tuebingen, Germany.
- German Cancer Consortium (DKTK), Partner site Tuebingen, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Mozhgan Dehghan Harati
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, 72076 Tuebingen, Germany.
- German Cancer Consortium (DKTK), Partner site Tuebingen, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - H Peter Rodemann
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, 72076 Tuebingen, Germany.
- German Cancer Consortium (DKTK), Partner site Tuebingen, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Mahmoud Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, 72076 Tuebingen, Germany.
- German Cancer Consortium (DKTK), Partner site Tuebingen, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| |
Collapse
|
30
|
Xie C, Chen X, Zheng M, Liu X, Wang H, Lou L. Pharmacologic characterization of SHR8443, a novel dual inhibitor of phosphatidylinositol 3-kinase and mammalian target of rapamycin. Oncotarget 2017; 8:107977-107990. [PMID: 29296217 PMCID: PMC5746119 DOI: 10.18632/oncotarget.22439] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/28/2017] [Indexed: 12/18/2022] Open
Abstract
Dysregulation of the phosphatidylinositol 3-kinase (PI3K) pathway occurs frequently in human cancer and contributes to resistance to antitumor therapy. Inhibition of key signaling proteins in this pathway therefore represents an attractive targeting strategy for cancer therapy. Here, we show that SHR8443, an imidazo [4,5-c] quinoline derivative, inhibited mammalian target of rapamycin (mTOR) kinase and PI3K, especially PI3Kα/δ/γ isoforms with picomolar potency, by binding to the ATP subunits of the respective enzymes. Inhibition of PI3K/AKT/mTOR signaling by SHR8443 induced G1 phase arrest, autophagy and apoptosis, and resulted in broad anti-proliferative activity against a panel of cancer cells with different genetic backgrounds. Furthermore, SHR8443 overcame resistance to RAF/MEK inhibitors and exhibited synergistic antitumor activity in combination with RAF/MEK inhibitors in vitro. Compared with the well-known PI3K/mTOR inhibitor BEZ235, SHR8443 showed broader and stronger efficacy against carcinoma xenografts, including those resistant to anti-HER2 antibody trastuzumab, in association with the inhibition of AKT and S6 phosphorylation in tumor tissues, and also caused no noticeable toxicity. Thus, our preclinical data show that SHR8443 is a dual PI3K/mTOR inhibitor with pharmaceutical properties favorable for use as an anticancer agent.
Collapse
Affiliation(s)
- Chengying Xie
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiangling Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mingyue Zheng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaohong Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hongbin Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Liguang Lou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
31
|
Ahamed J, Laurence J. Role of Platelet-Derived Transforming Growth Factor-β1 and Reactive Oxygen Species in Radiation-Induced Organ Fibrosis. Antioxid Redox Signal 2017; 27:977-988. [PMID: 28562065 PMCID: PMC5649128 DOI: 10.1089/ars.2017.7064] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE This review evaluates the role of platelet-derived transforming growth factor (TGF)-β1 in oxidative stress-linked pathologic fibrosis, with an emphasis on the heart and kidney, by using ionizing radiation as a clinically relevant stimulus. Current radiation-induced organ fibrosis interventions focus on pan-neutralization of TGF-β or the use of anti-oxidants and anti-proliferative agents, with limited clinical efficacy. Recent Advances: Pathologic fibrosis represents excessive accumulation of collagen and other extracellular matrix (ECM) components after dysregulation of a balance between ECM synthesis and degradation. Targets based on endogenous carbon monoxide (CO) pathways and the use of redox modulators such as N-acetylcysteine present promising alternatives to current therapeutic regimens. CRITICAL ISSUES Ionizing radiation leads to direct DNA damage and generation of reactive oxygen species (ROS), with TGF-β1 activation via ROS, thrombin generation, platelet activation, and pro-inflammatory signaling promoting myofibroblast accumulation and ECM production. Feed-forward loops, as TGF-β1 promotes ROS, amplify these profibrotic signals, and persistent low-grade inflammation insures their perpetuation. We highlight differential roles for platelet- versus monocyte-derived TGF-β1, establishing links between canonical and noncanonical TGF-β1 signaling pathways in relationship to macrophage polarization and autophagy, and define points where pharmacologic agents can intervene. FUTURE DIRECTIONS Additional studies are needed to understand mechanisms underlying the anti-fibrotic effects of current and proposed therapeutics, based on limiting platelet TGF-β1 activity, promotion of macrophage polarization, and facilitation of collagen autophagy. Models incorporating endogenous CO and selective TGF-β1 pathways that impact the initiation and progression of pathologic fibrosis, including nuclear factor erythroid 2-related factor (Nrf2) and redox, are of particular interest. Antioxid. Redox Signal. 27, 977-988.
Collapse
Affiliation(s)
- Jasimuddin Ahamed
- 1 Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation , Oklahoma City, Oklahoma
| | - Jeffrey Laurence
- 2 Division of Hematology and Medical Oncology, Weill Cornell Medical College , New York, New York
| |
Collapse
|
32
|
Phosphoinositide-specific phospholipase Cγ1 inhibition induces autophagy in human colon cancer and hepatocellular carcinoma cells. Sci Rep 2017; 7:13912. [PMID: 29066806 PMCID: PMC5654964 DOI: 10.1038/s41598-017-13334-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/22/2017] [Indexed: 12/25/2022] Open
Abstract
Phosphoinositide-specific phospholipase C (PLC) γ1 has been reported to be involved in cancer cell proliferation and metastasis. However, whether PLCγ1 modulates autophagy and the underlying mechanism remains unclear. Here, we investigated the relationship between PLCγ1 and autophagy in the human colon cancer cell line HCT116 and hepatocellular carcinoma cell line HepG2. The results indicated that PLCγ1 inhibition via lentivirus-mediated transduction with shRNA/PLCγ1 or transient transfection with pRK5-PLCγ1 (Y783A) vector increased LC3B-II levels and the number of autophagic vacuoles and decreased p62 levels. Addition of an autophagy inhibitor led to LC3B and p62 accumulation. Furthermore, AMPK activation promoted the autophagy induced by PLCγ1 inhibition by blocking the FAK/PLCγ1 axis. In addition, PLCγ1 inhibition either blocked the mTOR/ULK1 axis or enhanced dissociation of the Beclin1-IP3R-Bcl-2 complex to induce autophagy. Taken together, our findings revealed that PLCγ1 inhibition induced autophagy and the FAK/PLCγ1 axis is a potential downstream effector of the AMPK activation-dependent autophagy signalling cascade. Both blockade of the mTOR/ULK1 axis and dissociation of the Beclin1-IP3R-Bcl-2 complex contributed to the induction of autophagy by PLCγ1 inhibition. Consequently, these findings provide novel insight into autophagy regulation by PLCγ1 in colon cancer and hepatocellular carcinoma cells.
Collapse
|
33
|
Wu TY, Cho TY, Lu CK, Liou JP, Chen MC. Identification of 7-(4'-Cyanophenyl)indoline-1-benzenesulfonamide as a mitotic inhibitor to induce apoptotic cell death and inhibit autophagy in human colorectal cancer cells. Sci Rep 2017; 7:12406. [PMID: 28963527 PMCID: PMC5622076 DOI: 10.1038/s41598-017-12795-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/15/2017] [Indexed: 11/21/2022] Open
Abstract
Targeting cellular mitosis in tumor cells is an attractive cancer treatment strategy. Here, we report that B220, a synthetic benzenesulfonamide compound, could represent a new mitotic inhibitor for the treatment of colorectal cancer. We examined the action mechanism of B220 in the colorectal carcinoma HCT116 cell line, and found that treatment of cells with B220 caused cells to accumulate in G2/M phase, with a concomitant induction of the mitotic phase markers, MPM2 and cyclin B1. After 48 h of B220 treatment, cells underwent apoptotic cell death via caspase-3 activation and poly(ADP ribose) polymerase (PARP) cleavage. In addition, B220 inhibits autophagy by blocking conversion of microtubule-associated protein 1 light chain 3 (LC3-I) to LC3-II and inhibiting autophagic flux. Notably, blockade of autophagy by pharmacological inhibition or using an Atg5-targeting shRNA reduced B220-induced cytotoxicity. Conversely, the autophagy inducer NVP-BEZ235 shows a synergistic interaction with B220 in HCT116 cells, indicating autophagy was required for the observed cell death. In summary, these results indicate B220 combined with the induction of autophagy using the dual PI3K/mTOR inhibitor, NVP-BEZ235, might be an attractive strategy for cancer therapy, and provides a framework for further development of B220 as a new therapeutic agent for colon cancer treatment.
Collapse
Affiliation(s)
- Tung-Yun Wu
- Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ting-Yu Cho
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Chung-Kuang Lu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Mei-Chuan Chen
- Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy, Taipei Medical University, Taipei, Taiwan. .,Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
34
|
Zhang X, Xu R, Zhang C, Xu Y, Han M, Huang B, Chen A, Qiu C, Thorsen F, Prestegarden L, Bjerkvig R, Wang J, Li X. Trifluoperazine, a novel autophagy inhibitor, increases radiosensitivity in glioblastoma by impairing homologous recombination. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:118. [PMID: 28870216 PMCID: PMC5584019 DOI: 10.1186/s13046-017-0588-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 08/28/2017] [Indexed: 01/16/2023]
Abstract
BACKGROUND Resistance to adjuvant radiotherapy is a major cause of treatment failure in patients with glioblastoma (GBM). Autophagy inhibitors have been shown to enhance the efficacy of radiotherapy for certain solid tumors. However, current inhibitors do not penetrate the blood-brain-barrier (BBB). Here, we assessed the radiosensitivity effects of the antipsychotic drug trifluoperazine (TFP) on GBM in vitro and in vivo. METHODS U251 and U87 GBM cell lines as well as GBM cells from a primary human biopsy (P3), were used in vitro and in vivo to evaluate the efficacy of TFP treatment. Viability and cytotoxicity was evaluated by CCK-8 and clonogenic formation assays. Molecular studies using immunohistochemistry, western blots, immunofluorescence and qPCR were used to gain mechanistic insight into the biological activity of TFP. Preclinical therapeutic efficacy was evaluated in orthotopic xenograft mouse models. RESULTS IC50 values of U251, U87 and P3 cells treated with TFP were 16, 15 and 15.5 μM, respectively. TFP increased the expression of LC3B-II and p62, indicating a potential disruption of autophagy flux. These results were further substantiated by a decreased Lysotracker Red uptake, indicating impaired acidification of the lysosomes. We show that TFP and radiation had an additive effect when combined. This effect was in part due to impaired TFP-induced homologous recombination. Mechanistically we show that down-regulation of cathepsin L might explain the radiosensitivity effect of TFP. Finally, combining TFP and radiation resulted in a significant antitumor effect in orthotopic GBM xenograft models. CONCLUSIONS This study provides a strong rationale for further clinical studies exploring the combination therapy of TFP and radiation to treat GBM patients.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Ran Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Chao Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Yangyang Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Mingzhi Han
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Anjing Chen
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Chen Qiu
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Frits Thorsen
- Kristian Gerhard Jebsen Brain Tumour Research Centre, Department of Biomedicine, University of Bergen, 5009, Bergen, Norway.,The Molecular Imaging Center, Department of Biomedicine, University of Bergen, 5009, Bergen, Norway
| | - Lars Prestegarden
- Kristian Gerhard Jebsen Brain Tumour Research Centre, Department of Biomedicine, University of Bergen, 5009, Bergen, Norway.,Department of Dermatology, Haukeland University Hospital, 5009, Bergen, Norway
| | - Rolf Bjerkvig
- Kristian Gerhard Jebsen Brain Tumour Research Centre, Department of Biomedicine, University of Bergen, 5009, Bergen, Norway.,Department of Oncology, Luxembourg Institute of Health, L-1526, Strassen, Luxembourg
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China. .,Kristian Gerhard Jebsen Brain Tumour Research Centre, Department of Biomedicine, University of Bergen, 5009, Bergen, Norway.
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China.
| |
Collapse
|
35
|
Xin P, Li C, Zheng Y, Peng Q, Xiao H, Huang Y, Zhu X. Efficacy of the dual PI3K and mTOR inhibitor NVP-BEZ235 in combination with imatinib mesylate against chronic myelogenous leukemia cell lines. Drug Des Devel Ther 2017; 11:1115-1126. [PMID: 28435223 PMCID: PMC5388256 DOI: 10.2147/dddt.s132092] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway is a therapy target of cancer. We aimed to confirm the effect of dual PI3K/mTOR inhibitor NVP-BEZ235 on proliferation, apoptosis, and autophagy of chronic myelogenous leukemia (CML) cells and sensitivity of tyrosine kinase inhibitor in vitro. METHODS Two human CML cell lines, K562 and KBM7R (T315I mutant strain), were used. The proliferation of CML cells was detected by MTS (Owen's reagent) assay. Cell cycle and apoptosis assay were examined by flow cytometric analysis. The phosphorylation levels and the expression levels were both evaluated by Western blot analysis. NVP-BEZ235 in combination with imatinib was also used to reveal the effect on proliferation and apoptosis. RESULTS NVP-BEZ235 significantly inhibited the proliferation in a time- and dose-dependent manner, and the half-maximal inhibitory concentration values of NVP-BEZ235 inhibiting the proliferation of K562 and KBM7R were 0.37±0.21 and 0.43±0.27 μmol/L, respectively, after 48 h. Cell apoptosis assay showed that NVP-BEZ235 significantly increased the late apoptotic cells. Cell cycle analysis indicated that the cells were mostly arrested in G1/G0 phase after treatment by NVP-BEZ235. In addition, results also found that, after treatment by NVP-BEZ235, phosphorylation levels of Akt kinase and S6K kinase significantly reduced, and the expression levels of cleaved caspase-3 significantly increased; meanwhile, the expression levels of caspase-3, B-cell lymphoma-2, cyclin D1, and cyclin D2 significantly decreased, and the ratio of LC3II/LC3I was significantly increased with increased LC3II expression level. Moreover, imatinib in combination with NVP-BEZ235 induced a more pronounced colony growth inhibition than imatinib alone. CONCLUSION NVP-BEZ235 effectively inhibited cell proliferation by G0/G1 cell cycle arrest and induced apoptosis through deregulating PI3K/Akt/mTOR pathway in CML cells; in addition, NVP-BEZ235 can enhance cell autophagy, and is conducive to raising CML cell sensitivity to imatinib to inhibit the growth of imatinib-resistant cells.
Collapse
Affiliation(s)
- Pengliang Xin
- Department of Haematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Licheng, Quanzhou, Fujian Province, China
| | - Chuntuan Li
- Department of Haematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Licheng, Quanzhou, Fujian Province, China
| | - Yan Zheng
- Department of Haematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Licheng, Quanzhou, Fujian Province, China
| | - Qunyi Peng
- Department of Haematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Licheng, Quanzhou, Fujian Province, China
| | - Huifang Xiao
- Department of Haematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Licheng, Quanzhou, Fujian Province, China
| | - Yuanling Huang
- Department of Haematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Licheng, Quanzhou, Fujian Province, China
| | - Xiongpeng Zhu
- Department of Haematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Licheng, Quanzhou, Fujian Province, China
| |
Collapse
|
36
|
Xie G, Wang Z, Chen Y, Zhang S, Feng L, Meng F, Yu Z. Dual blocking of PI3K and mTOR signaling by NVP-BEZ235 inhibits proliferation in cervical carcinoma cells and enhances therapeutic response. Cancer Lett 2016; 388:12-20. [PMID: 27894954 DOI: 10.1016/j.canlet.2016.11.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/19/2016] [Accepted: 11/22/2016] [Indexed: 02/06/2023]
Abstract
NVP-BEZ235 is a novel dual PI3K/mTOR inhibitor that shows dramatic effects on many tumors, but its effects on cervical carcinoma cells are largely unknown. In the present study, we investigated the effects of NVP-BEZ235 on the proliferation and invasion of cervical carcinoma cells in vitro and clarified its mechanism of action. In cellular settings with human cervical carcinoma cell lines, this molecule effectively and specifically blocked dysfunctional PI3K/mTOR pathway activation, suppressed cell growth in a time- and concentration-dependent manner, led to G1 cell cycle arrest, and induced apoptosis. NVP-BEZ235 suppressed HeLa cell invasiveness and metastasis by inhibiting the PI3K/Akt/MMP-2 pathway. We further demonstrated that NVP-BEZ235 treatment in combination with cisplatin or carboplatin induced a synergistic anti-tumoral response in cervical carcinoma cells. These findings suggested that NVP-BEZ235 could regulate growth and invasion of cervical carcinoma cells; thus it may provide a potential therapy for cervical carcinoma.
Collapse
Affiliation(s)
- Guifang Xie
- Department of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China
| | - Zhaoyong Wang
- Department of Pathology, The Second Hospital of Jilin University, Changchun, China
| | - Yong Chen
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Shuya Zhang
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China
| | - Lu Feng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fanhui Meng
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China
| | - Zhiyun Yu
- Department of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
37
|
Enhanced Anticancer Activity of PF-04691502, a Dual PI3K/mTOR Inhibitor, in Combination With VEGF siRNA Against Non-small-cell Lung Cancer. MOLECULAR THERAPY-NUCLEIC ACIDS 2016; 5:e384. [PMID: 27845769 PMCID: PMC5155322 DOI: 10.1038/mtna.2016.90] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 09/08/2016] [Indexed: 12/29/2022]
Abstract
Lung cancer is the leading cause of cancer deaths in both men and women in the United States accounting for about 27% of all cancer deceases. In our effort to develop newer therapy for lung cancer, we evaluated the combinatory antitumor effect of siRNA targeting VEGF and the PI3K/mTOR dual inhibitor PF-04691502. We analyzed the anticancer effect of siRNA VEGF and PF-04691502 combination on proliferation, colony formation and migration of A549 and H460 lung cancer cells. Additionally, we assessed the combination treatment antiangiogenic effect on human umbilical vein endothelial cells. Here, we show for the first time that the antiangiogenic siRNA VEGF potentiates the PF-04691502 anticancer activity against non–small-cell lung cancer. We observed a significant (P < 0.05) decrease in cell viability, colony formation, and migration for the combination comparing with the single drug treatment. We also showed a significant (P < 0.05) enhanced effect of the combination treatment inhibiting angiogenesis progression and tube formation organization compared to the single drug treatment groups. Our findings demonstrated an enhanced synergistic anticancer effect of siRNA VEGF and PF-04691502 combination therapy by targeting two main pathways involved in lung cancer cell survival and angiogenesis which will be useful for future preclinical studies and potentially for lung cancer patient management.
Collapse
|
38
|
Yang X, Niu B, Wang L, Chen M, Kang X, Wang L, Ji Y, Zhong J. Autophagy inhibition enhances colorectal cancer apoptosis induced by dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235. Oncol Lett 2016; 12:102-106. [PMID: 27347108 PMCID: PMC4906634 DOI: 10.3892/ol.2016.4590] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/17/2016] [Indexed: 12/31/2022] Open
Abstract
Phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling pathway performs a central role in tumorigenesis and is constitutively activated in many malignancies. As a novel dual PI3K/mTOR inhibitor currently undergoing evaluation in a phase I/II clinical trial, NVP-BEZ235 indicates a significant antitumor efficacy in diverse solid tumors, including colorectal cancer (CRC). Autophagy is a catabolic process that maintains cellular homeostasis and reduces diverse stresses through lysosomal recycling of the unnecessary and damaged cell components. This process is also observed to antagonize the antitumor efficacy of PI3K/mTOR inhibitor agents such as NVP-BEZ235, via apoptosis inhibition. In the present study, we investigated anti-proliferative and apoptosis-inducing ability of NVP-BEZ235 in SW480 cells and the crosstalk between autophagy and apoptosis in SW480 cells treated with NVP-BEZ235 in combination with an autophagy inhibitor. The results revealed that, NVP-BEZ235 effectively inhibit the growth of SW480 cells by targeting the PI3K/mTOR signaling pathway and induced apoptosis. The inhibition of autophagy with 3-methyladenine or chloroquine inhibitors in combination with NVP-BEZ235 in SW480 cells enhanced the apoptotic rate as componets to NVP-BEZ235 alone. In conclusion, the findings provide a rationale for chemotherapy targeting the PI3K/mTOR signaling pathway presenting a potential therapeutic strategy to enhance the efficacy of dual PI3K/mTOR inhibitor NVP-BEZ235 in combination with an autophagy inhibitor in CRC treatment and treatment of other tumors.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Bingxuan Niu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Libo Wang
- Department of Gastroenterology, The First Affiliated Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Meiling Chen
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, P.R. China
| | - Xiaochun Kang
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, P.R. China
| | - Luonan Wang
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, P.R. China
| | - Yinghua Ji
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, P.R. China
| | - Jiateng Zhong
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
39
|
Holler M, Grottke A, Mueck K, Manes J, Jücker M, Rodemann HP, Toulany M. Dual Targeting of Akt and mTORC1 Impairs Repair of DNA Double-Strand Breaks and Increases Radiation Sensitivity of Human Tumor Cells. PLoS One 2016; 11:e0154745. [PMID: 27137757 PMCID: PMC4854483 DOI: 10.1371/journal.pone.0154745] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/18/2016] [Indexed: 12/22/2022] Open
Abstract
Inhibition of mammalian target of rapamycin-complex 1 (mTORC1) induces activation of Akt. Because Akt activity mediates the repair of ionizing radiation-induced DNA double-strand breaks (DNA-DSBs) and consequently the radioresistance of solid tumors, we investigated whether dual targeting of mTORC1 and Akt impairs DNA-DSB repair and induces radiosensitization. Combining mTORC1 inhibitor rapamycin with ionizing radiation in human non-small cell lung cancer (NSCLC) cells (H661, H460, SK-MES-1, HTB-182, A549) and in the breast cancer cell line MDA-MB-231 resulted in radiosensitization of H661 and H460 cells (responders), whereas only a very slight effect was observed in A549 cells, and no effect was observed in SK-MES-1, HTB-182 or MDA-MB-231 cells (non-responders). In responder cells, rapamycin treatment did not activate Akt1 phosphorylation, whereas in non-responders, rapamycin mediated PI3K-dependent Akt activity. Molecular targeting of Akt by Akt inhibitor MK2206 or knockdown of Akt1 led to a rapamycin-induced radiosensitization of non-responder cells. Compared to the single targeting of Akt, the dual targeting of mTORC1 and Akt1 markedly enhanced the frequency of residual DNA-DSBs by inhibiting the non-homologous end joining repair pathway and increased radiation sensitivity. Together, lack of radiosensitization induced by rapamycin was associated with rapamycin-mediated Akt1 activation. Thus, dual targeting of mTORC1 and Akt1 inhibits repair of DNA-DSB leading to radiosensitization of solid tumor cells.
Collapse
Affiliation(s)
- Marina Holler
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, Eberhard Karls University Tuebingen, Roentgenweg 11, 72076, Tuebingen, Germany
| | - Astrid Grottke
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Katharina Mueck
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, Eberhard Karls University Tuebingen, Roentgenweg 11, 72076, Tuebingen, Germany
| | - Julia Manes
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, Eberhard Karls University Tuebingen, Roentgenweg 11, 72076, Tuebingen, Germany
| | - Manfred Jücker
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - H. Peter Rodemann
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, Eberhard Karls University Tuebingen, Roentgenweg 11, 72076, Tuebingen, Germany
| | - Mahmoud Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, Eberhard Karls University Tuebingen, Roentgenweg 11, 72076, Tuebingen, Germany
- * E-mail:
| |
Collapse
|
40
|
Kelley K, Knisely J, Symons M, Ruggieri R. Radioresistance of Brain Tumors. Cancers (Basel) 2016; 8:cancers8040042. [PMID: 27043632 PMCID: PMC4846851 DOI: 10.3390/cancers8040042] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 03/10/2016] [Accepted: 03/24/2016] [Indexed: 12/21/2022] Open
Abstract
Radiation therapy (RT) is frequently used as part of the standard of care treatment of the majority of brain tumors. The efficacy of RT is limited by radioresistance and by normal tissue radiation tolerance. This is highlighted in pediatric brain tumors where the use of radiation is limited by the excessive toxicity to the developing brain. For these reasons, radiosensitization of tumor cells would be beneficial. In this review, we focus on radioresistance mechanisms intrinsic to tumor cells. We also evaluate existing approaches to induce radiosensitization and explore future avenues of investigation.
Collapse
Affiliation(s)
- Kevin Kelley
- Radiation Medicine Department, Hofstra Northwell School of Medicine, Northwell Health, Manhasset, NY 11030, USA.
| | - Jonathan Knisely
- Radiation Medicine Department, Hofstra Northwell School of Medicine, Northwell Health, Manhasset, NY 11030, USA.
| | - Marc Symons
- The Feinstein Institute for Molecular Medicine, Hofstra Northwell School of Medicine, Northwell Health, Manhasset, NY 11030, USA.
| | - Rosamaria Ruggieri
- Radiation Medicine Department, Hofstra Northwell School of Medicine, Northwell Health, Manhasset, NY 11030, USA.
- The Feinstein Institute for Molecular Medicine, Hofstra Northwell School of Medicine, Northwell Health, Manhasset, NY 11030, USA.
| |
Collapse
|
41
|
Ondrej M, Cechakova L, Durisova K, Pejchal J, Tichy A. To live or let die: Unclear task of autophagy in the radiosensitization battle. Radiother Oncol 2016; 119:265-75. [PMID: 26993419 DOI: 10.1016/j.radonc.2016.02.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/26/2016] [Accepted: 02/18/2016] [Indexed: 02/06/2023]
Abstract
Radiation-induced autophagy is believed to represent a radioprotective mechanism of cancer cells. Thus, its inhibition should support radiation treatment and increase its efficacy. On the other hand, there is evidence that radiation alone or in combination with various chemical agents can induce autophagy that results into increased cell death, especially within transformed apoptosis-resistant cells. In this paper, besides description of autophagic process and its relation to cancer and radiotherapy, we compared two contradictory radiosensitization approaches that employ inhibition and induction of autophagy. In spite of the classical concept based on cytoprotective model, there is a plethora of recently developed inducers of autophagy, which indicates the future trend in radiosensitization via modulation of autophagy. Because contemporary literature is conflicting and inconsistent in this respect, we reviewed the recent studies focused on enhancement of sensitivity of cancer cells toward radiation in regard to autophagy, revealing some striking discrepancies. The deeper the knowledge, the more complex this situation is. To interpret results of various studies correctly one has to take into account the methodology of autophagy assessment and also the fact that radiosensitization might be mediated by other than intrinsic mechanisms related to autophagy. Notwithstanding, targeting autophagy remains an attractive anti-tumor strategy.
Collapse
Affiliation(s)
- Martin Ondrej
- Department of Radiobiology, Faculty of Military Health Sciences in Hradec Kralove, University of Defense in Brno, Czech Republic
| | - Lucie Cechakova
- Department of Radiobiology, Faculty of Military Health Sciences in Hradec Kralove, University of Defense in Brno, Czech Republic
| | - Kamila Durisova
- Department of Radiobiology, Faculty of Military Health Sciences in Hradec Kralove, University of Defense in Brno, Czech Republic
| | - Jaroslav Pejchal
- Department of Radiobiology, Faculty of Military Health Sciences in Hradec Kralove, University of Defense in Brno, Czech Republic
| | - Ales Tichy
- Department of Radiobiology, Faculty of Military Health Sciences in Hradec Kralove, University of Defense in Brno, Czech Republic; Centre of Biomedical Research, University Hospital, Hradec Kralove, Czech Republic.
| |
Collapse
|
42
|
Cosway B, Lovat P. The role of autophagy in squamous cell carcinoma of the head and neck. Oral Oncol 2016; 54:1-6. [PMID: 26774913 DOI: 10.1016/j.oraloncology.2015.12.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/01/2015] [Accepted: 12/19/2015] [Indexed: 01/07/2023]
Abstract
Half a million new head and neck cancers are diagnosed each year worldwide. Although traditionally thought to be triggered by alcohol and smoking abuse, there is a growing subset of oropharyngeal cancers driven by the oncogenic human papilloma virus (HPV). Despite advances in both surgical and non-surgical treatment strategies, survival rates have remained relatively static emphasising the need for novel therapeutic approaches. Autophagy, the principal catabolic process for the lysosomal--mediated breakdown of cellular products is a hot topic in cancer medicine. Increasing evidence points towards the prognostic significance of autophagy biomarkers in solid tumours as well as strategies through which to harness autophagy modulation to promote tumour cell death. However, the role of autophagy in head and neck cancers is less well defined. In the present review, we summarise the current understanding of autophagy in head and neck cancers, revealing key areas for future translational research.
Collapse
Affiliation(s)
- Benjamin Cosway
- Institute for Cellular Medicine, Newcastle University, United Kingdom.
| | - Penny Lovat
- Institute for Cellular Medicine, Newcastle University, United Kingdom
| |
Collapse
|
43
|
Wang H, Xu T, Jiang Y, Xu H, Yan Y, Fu D, Chen J. The challenges and the promise of molecular targeted therapy in malignant gliomas. Neoplasia 2015; 17:239-55. [PMID: 25810009 PMCID: PMC4372648 DOI: 10.1016/j.neo.2015.02.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/06/2015] [Indexed: 11/18/2022] Open
Abstract
Malignant gliomas are the most common malignant primary brain tumors and one of the most challenging forms of cancers to treat. Despite advances in conventional treatment, the outcome for patients remains almost universally fatal. This poor prognosis is due to therapeutic resistance and tumor recurrence after surgical removal. However, over the past decade, molecular targeted therapy has held the promise of transforming the care of malignant glioma patients. Significant progress in understanding the molecular pathology of gliomagenesis and maintenance of the malignant phenotypes will open opportunities to rationally develop new molecular targeted therapy options. Recently, therapeutic strategies have focused on targeting pro-growth signaling mediated by receptor tyrosine kinase/RAS/phosphatidylinositol 3-kinase pathway, proangiogenic pathways, and several other vital intracellular signaling networks, such as proteasome and histone deacetylase. However, several factors such as cross-talk between the altered pathways, intratumoral molecular heterogeneity, and therapeutic resistance of glioma stem cells (GSCs) have limited the activity of single agents. Efforts are ongoing to study in depth the complex molecular biology of glioma, develop novel regimens targeting GSCs, and identify biomarkers to stratify patients with the individualized molecular targeted therapy. Here, we review the molecular alterations relevant to the pathology of malignant glioma, review current advances in clinical targeted trials, and discuss the challenges, controversies, and future directions of molecular targeted therapy.
Collapse
Affiliation(s)
- Hongxiang Wang
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Tao Xu
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Ying Jiang
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Hanchong Xu
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yong Yan
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Da Fu
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Juxiang Chen
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
44
|
Methanolic Extract of Ganoderma lucidum Induces Autophagy of AGS Human Gastric Tumor Cells. Molecules 2015; 20:17872-82. [PMID: 26426001 PMCID: PMC6332321 DOI: 10.3390/molecules201017872] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 11/25/2022] Open
Abstract
Ganoderma lucidum is one of the most widely studied mushroom species, particularly in what concerns its medicinal properties. Previous studies (including those from some of us) have shown some evidence that the methanolic extract of G. lucidum affects cellular autophagy. However, it was not known if it induces autophagy or decreases the autophagic flux. The treatment of a gastric adenocarcinoma cell line (AGS) with the mushroom extract increased the formation of autophagosomes (vacuoles typical from autophagy). Moreover, the cellular levels of LC3-II were also increased, and the cellular levels of p62 decreased, confirming that the extract affects cellular autophagy. Treating the cells with the extract together with lysossomal protease inhibitors, the cellular levels of LC3-II and p62 increased. The results obtained proved that, in AGS cells, the methanolic extract of G. lucidum causes an induction of autophagy, rather than a reduction in the autophagic flux. To our knowledge, this is the first study proving that statement.
Collapse
|
45
|
Yu Z, Xie G, Zhou G, Cheng Y, Zhang G, Yao G, Chen Y, Li Y, Zhao G. NVP-BEZ235, a novel dual PI3K-mTOR inhibitor displays anti-glioma activity and reduces chemoresistance to temozolomide in human glioma cells. Cancer Lett 2015; 367:58-68. [PMID: 26188279 DOI: 10.1016/j.canlet.2015.07.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/06/2015] [Accepted: 07/10/2015] [Indexed: 12/11/2022]
Abstract
Glioblastoma multiforme (GBM) is the most frequent and most aggressive brain tumor in adults. The introduction of temozolomide (TMZ) has advanced chemotherapy for malignant gliomas. However, a considerable number of GBM cases are refractory to TMZ, the need for more effective therapeutic options is overwhelming. Mounting evidence shows that endogenous AKT (protein kinase B) activity can be activated in response to clinically relevant concentrations of TMZ. AKT activation correlated with the increased tumorigenicity, invasiveness and stemness and overexpression of an active form of AKT increases glioma cell resistance to TMZ. Previous studies also show that TMZ contributes to glioma cell apoptosis by inhibiting mTOR signaling. Thus, we hypothesized that the dual PI3K-mTOR inhibitor NVP-BEZ235 may act as antitumor agent against gliomas and potentiate the cytotoxicity of TMZ. In the present study, we found that NVP-BEZ235 treatment of glioma cell lines led to G1 cell cycle arrest, and induced apoptosis. Combination treatment with both TMZ and NVP-BEZ235 resulted in synergistically inhibited glioma cell growth and induced apoptosis (combination index CI<1) in a subset of glioma cell lines, as shown in the increased levels of Bax, and active Caspase-3, and decreased level of Bcl-2. Furthermore, NVP-BEZ235 treatment reversed p-AKT levels enhanced by TMZ. Inhibition of mTOR (p70S6K) signaling with the combination of TMZ and NVP-BEZ235 can be augmented beyond that achieved using each agent individually. In vivo xenograft models in mice, the combinatorial treatment with TMZ and NVP-BEZ235 significantly reduced tumor growth rates and prolonged median survival of tumor-bearing mice. These findings exhibit that TMZ in combination with NVP-BEZ235 act synergistically to inhibit proliferation of glioma cells by down-regulating of the PI3K-AKT-mTOR pathway, suggesting TMZ and NVP-BEZ235 combination therapy may be an option for GBM treatment.
Collapse
Affiliation(s)
- Zhiyun Yu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Guifang Xie
- Department of Obstetrics and Gynecology, First Hospital of Jilin University, Changchun, China
| | - Guangtong Zhou
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Ye Cheng
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Guangtao Zhang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Guangming Yao
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Yong Chen
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China.
| | - Yunqian Li
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China.
| | - Gang Zhao
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
46
|
Li C, Xin P, Xiao H, Zheng Y, Huang Y, Zhu X. The dual PI3K/mTOR inhibitor NVP-BEZ235 inhibits proliferation and induces apoptosis of burkitt lymphoma cells. Cancer Cell Int 2015; 15:65. [PMID: 26130968 PMCID: PMC4486138 DOI: 10.1186/s12935-015-0213-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 06/03/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway is a therapy target of cancer. We aimed to confirm the effect of dual PI3K/mTOR inhibitor NVP-BEZ235 on cell proliferation and apoptosis in Burkitt lymphoma (BL) cells. METHODS Two human BL cell lines, CA46 and RAJI were used in this study. The proliferation of BL cells was detected by manganese tricarbonyl transfer (MTT) assay. Cell cycle and apoptosis assay were examined by flow cytometric analysis. The phosphorylation levels of AKT (Thr308), AKT (Ser473), and RPS6 were evaluated by western blot analysis. RESULTS NVP-BEZ235 significantly inhibited the proliferation of BL cells (CA46 and RAJI) and the inhibition effect was time and dose-dependent. Cell cycle analysis indicated that the cells (CA46 and RAJI) were mostly arrested in G1/G0 phase. Cell apoptosis assay showed that the late apoptotic cells were significantly increased after 72 h treatment by 100 nmol/L of NVP-BEZ235. In addition, results also found that NVP-BEZ235 reduced the phosphorylation levels of AKT (Thr308), AKT (Ser473), and PRS6 in BL cells (CA46 and RAJI). Moreover, this inhibition effect on phosphorylation was dose-dependent. CONCLUSIONS NVP-BEZ235 effectively inhibited cell proliferation by G0/G1 cell-cycle arrest and induced apoptosis through deregulating PI3K/Akt/mTOR pathway in BL cells.
Collapse
Affiliation(s)
- Chuntuan Li
- Department of Haematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, 248 East Street, Licheng District, Quanzhou, 362000 Fujian Province China
| | - Pengliang Xin
- Department of Haematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, 248 East Street, Licheng District, Quanzhou, 362000 Fujian Province China
| | - Huifang Xiao
- Department of Haematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, 248 East Street, Licheng District, Quanzhou, 362000 Fujian Province China
| | - Yan Zheng
- Department of Haematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, 248 East Street, Licheng District, Quanzhou, 362000 Fujian Province China
| | - Yuanling Huang
- Department of Haematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, 248 East Street, Licheng District, Quanzhou, 362000 Fujian Province China
| | - Xiongpeng Zhu
- Department of Haematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, 248 East Street, Licheng District, Quanzhou, 362000 Fujian Province China
| |
Collapse
|
47
|
Cerniglia GJ, Dey S, Gallagher-Colombo SM, Daurio NA, Tuttle S, Busch TM, Lin A, Sun R, Esipova TV, Vinogradov SA, Denko N, Koumenis C, Maity A. The PI3K/Akt Pathway Regulates Oxygen Metabolism via Pyruvate Dehydrogenase (PDH)-E1α Phosphorylation. Mol Cancer Ther 2015; 14:1928-38. [PMID: 25995437 DOI: 10.1158/1535-7163.mct-14-0888] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 05/12/2015] [Indexed: 02/02/2023]
Abstract
Inhibition of the PI3K/Akt pathway decreases hypoxia within SQ20B human head and neck cancer xenografts. We set out to understand the molecular mechanism underlying this observation. We measured oxygen consumption using both a Clark electrode and an extracellular flux analyzer. We made these measurements after various pharmacologic and genetic manipulations. Pharmacologic inhibition of the PI3K/mTOR pathway or genetic inhibition of Akt/PI3K decreased the oxygen consumption rate (OCR) in vitro in SQ20B and other cell lines by 30% to 40%. Pharmacologic inhibition of this pathway increased phosphorylation of the E1α subunit of the pyruvate dehydrogenase (PDH) complex on Ser293, which inhibits activity of this critical gatekeeper of mitochondrial respiration. Expressing wild-type PTEN in a doxycycline-inducible manner in a cell line with mutant PTEN led to an increase in PDH-E1α phosphorylation and a decrease in OCR. Pretreatment of SQ20B cells with dichloroacetate (DCA), which inhibits PDH-E1α phosphorylation by inhibiting dehydrogenase kinases (PDK), reversed the decrease in OCR in response to PI3K/Akt/mTOR inhibition. Likewise, introduction of exogenous PDH-E1α that contains serine to alanine mutations, which can no longer be regulated by phosphorylation, also blunted the decrease in OCR seen with PI3K/mTOR inhibition. Our findings highlight an association between the PI3K/mTOR pathway and tumor cell oxygen consumption that is regulated in part by PDH phosphorylation. These results have important implications for understanding the effects of PI3K pathway activation in tumor metabolism and also in designing cancer therapy trials that use inhibitors of this pathway.
Collapse
Affiliation(s)
- George J Cerniglia
- Department of Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Souvik Dey
- Department of Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shannon M Gallagher-Colombo
- Department of Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Natalie A Daurio
- Pharmacology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephen Tuttle
- Department of Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Theresa M Busch
- Department of Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alexander Lin
- Department of Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ramon Sun
- Department of Radiation Oncology, Ohio State University School of Medicine, Columbus, Ohio
| | - Tatiana V Esipova
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sergei A Vinogradov
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nicholas Denko
- Department of Radiation Oncology, Ohio State University School of Medicine, Columbus, Ohio
| | - Constantinos Koumenis
- Department of Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Amit Maity
- Department of Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
48
|
Inhibition of autophagy sensitizes malignant pleural mesothelioma cells to dual PI3K/mTOR inhibitors. Cell Death Dis 2015; 6:e1757. [PMID: 25950487 PMCID: PMC4669703 DOI: 10.1038/cddis.2015.124] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/26/2015] [Accepted: 03/30/2015] [Indexed: 01/01/2023]
Abstract
Malignant pleural mesothelioma (MPM) originates in most of the cases from chronic inflammation of the mesothelium due to exposure to asbestos fibers. Given the limited effect of chemotherapy, a big effort is being made to find new treatment options. The PI3K/mTOR pathway was reported to be upregulated in MPM. We tested the cell growth inhibition properties of two dual PI3K/mTOR inhibitors NVP-BEZ235 and GDC-0980 on 19 MPM cell lines. We could identify resistant and sensitive lines; however, there was no correlation to the downregulation of PI3K/mTOR activity markers. As a result of mTOR inhibition, both drugs efficiently induced long-term autophagy but not cell death. Autophagy blockade by chloroquine in combination with the dual PI3K/mTOR inhibitors significantly induced caspase-independent cell death involving RIP1 in the sensitive cell line SPC212. Cell death in the resistant cell line Mero-82 was less pronounced, and it was not induced via RIP1-dependent mechanism, suggesting the involvement of RIP1 downstream effectors. Cell death induction was confirmed in 3D systems. Based on these results, we identify autophagy as one of the main mechanisms of cell death resistance against dual PI3K/mTOR inhibitors in MPM. As PI3K/mTOR inhibitors are under investigation in clinical trials, these results may help interpreting their outcome and suggest ways for intervention.
Collapse
|
49
|
Nanomedicine to overcome radioresistance in glioblastoma stem-like cells and surviving clones. Trends Pharmacol Sci 2015; 36:236-52. [PMID: 25799457 DOI: 10.1016/j.tips.2015.02.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/28/2015] [Accepted: 02/03/2015] [Indexed: 12/14/2022]
Abstract
Radiotherapy is one of the standard treatments for glioblastoma, but its effectiveness often encounters the phenomenon of radioresistance. This resistance was recently attributed to distinct cell contingents known as glioblastoma stem-like cells (GSCs) and dominant clones. It is characterized in particular by the activation of signaling pathways and DNA repair mechanisms. Recent advances in the field of nanomedicine offer new possibilities for radiosensitizing these cell populations. Several strategies have been developed in this direction, the first consisting of encapsulating a contrast agent or synthesizing metal-based nanocarriers to concentrate the dose gradient at the level of the target tissue. In the second strategy the physicochemical properties of the vectors are used to encapsulate a wide range of pharmacological agents which act in synergy with the ionizing radiation to destroy the cancerous cells. This review reports on the various molecular anomalies present in GSCs and the predominant role of nanomedicines in the development of radiosensitization strategies.
Collapse
|
50
|
Zaanan A, Park JM, Tougeron D, Huang S, Wu TT, Foster NR, Sinicrope FA. Association of beclin 1 expression with response to neoadjuvant chemoradiation therapy in patients with locally advanced rectal carcinoma. Int J Cancer 2015; 137:1498-502. [PMID: 25708267 DOI: 10.1002/ijc.29496] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/10/2015] [Indexed: 12/12/2022]
Abstract
Beclin 1 is an essential regulator of autophagy that is induced in response to cellular stress and serves to maintain cell survival in established tumors. We recently demonstrated that Beclin 1 suppression can sensitize colorectal cancer cells to radiation-induced DNA damage and apoptosis. Therefore, we hypothesized that the level of Beclin 1 expression may be associated with radiation sensitivity in vivo. We determined the association of Beclin 1 expression in pretreatment rectal cancer tissues with response to neoadjuvant chemoradiation in surgical resection specimens. Stages II and III (n = 96) rectal adenocarcinoma patients were treated with neoadjuvant chemoradiation followed by surgical resection with curative intent. Beclin 1 was analyzed by immunohistochemistry and the expression level was dichotomized at the median value with categorization into low and high groups. We identified 56 (58.3%) and 40 (41.7%) patients whose tumors had high- versus low-level Beclin 1 expression, respectively. Rectal cancers with high versus low Beclin 1 expression were significantly less likely to be downstaged after chemoradiation treatment (45% [25/55] vs. 58% [22/38]; p = 0.02). In a multivariable analysis adjusted for age, sex, histological grade and baseline tumor node metastasis (TNM) stage, the impact of Beclin 1 expression on tumor downstaging remained statistically significant (p = 0.03). The association of the level of Beclin 1 expression with the rate of tumor downstaging after chemoradiation is consistent with in vitro data, and suggests that Beclin 1 may be a predictive biomarker for the efficacy of chemoradiation in patients with rectal cancer.
Collapse
Affiliation(s)
- Aziz Zaanan
- Department of Medicine, Mayo Clinic and Mayo Cancer Center, Rochester, MN
| | - Jae Myung Park
- Department of Medicine, Mayo Clinic and Mayo Cancer Center, Rochester, MN
| | - David Tougeron
- Department of Medicine, Mayo Clinic and Mayo Cancer Center, Rochester, MN
| | - Shengbing Huang
- Department of Medicine, Mayo Clinic and Mayo Cancer Center, Rochester, MN
| | - Tsung-Teh Wu
- Department of Pathology and Laboratory Medicine, Mayo Clinic and Mayo Cancer Center, Rochester, MN
| | - Nathan R Foster
- Department of Biomedical Statistics and Informatics, Mayo Clinic and Mayo Cancer Center, Rochester, MN
| | - Frank A Sinicrope
- Department of Medicine, Mayo Clinic and Mayo Cancer Center, Rochester, MN.,Department of Oncology, Mayo Clinic and Mayo Cancer Center, Rochester, MN
| |
Collapse
|