1
|
Xie T, Qin Y, Zhao J, Dong J, Qi P, Zhang P, Zhangsun D, Zhu X, Yu J, Luo S. Molecular Determinants of Species Specificity of α-Conotoxin TxIB towards Rat and Human α6/α3β4 Nicotinic Acetylcholine Receptors. Int J Mol Sci 2023; 24:ijms24108618. [PMID: 37239959 DOI: 10.3390/ijms24108618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Conotoxins are widely distributed and important for studying ligand-gated ion channels. TxIB, a conotoxin consisting of 16 amino acids derived from Conus textile, is a unique selective ligand that blocks rat α6/α3β2β3 nAChR (IC50 = 28 nM) without affecting other rat subtypes. However, when the activity of TxIB against human nAChRs was examined, it was unexpectedly found that TxIB had a significant blocking effect on not only human α6/α3β2β3 nAChR but also human α6/α3β4 nAChR, with an IC50 of 537 nM. To investigate the molecular mechanism of this species specificity and to establish a theoretical basis for drug development studies of TxIB and its analogs, different amino acid residues between human and rat α6/α3 and β4 nAChR subunits were identified. Each residue of the human species was then substituted with the corresponding residue of the rat species via PCR-directed mutagenesis. The potencies of TxIB towards the native α6/α3β4 nAChRs and their mutants were evaluated through electrophysiological experiments. The results showed that the IC50 of TxIB against h[α6V32L, K61R/α3]β4L107V, V115I was 22.5 μM, a 42-fold decrease in potency compared to the native hα6/α3β4 nAChR. Val-32 and Lys-61 in the human α6/α3 subunit and Leu-107 and Val-115 in the human β4 subunit, together, were found to determine the species differences in the α6/α3β4 nAChR. These results also demonstrate that the effects of species differences between humans and rats should be fully considered when evaluating the efficacy of drug candidates targeting nAChRs in rodent models.
Collapse
Affiliation(s)
- Ting Xie
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Yuan Qin
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Jinyuan Zhao
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Jianying Dong
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Panpan Qi
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Panpan Zhang
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Dongting Zhangsun
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou 570228, China
| | - Xiaopeng Zhu
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Jinpeng Yu
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Sulan Luo
- School of Medicine, Guangxi University, Nanning 530004, China
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou 570228, China
| |
Collapse
|
2
|
Zhao Z, Pan T, Chen S, Harvey PJ, Zhang J, Li X, Yang M, Huang L, Wang S, Craik DJ, Jiang T, Yu R. Design, synthesis, and mechanism of action of novel μ-conotoxin KIIIA analogues for inhibition of the voltage-gated sodium channel Na v1.7. J Biol Chem 2023; 299:103068. [PMID: 36842500 PMCID: PMC10074208 DOI: 10.1016/j.jbc.2023.103068] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 02/28/2023] Open
Abstract
μ-Conotoxin KIIIA, a selective blocker of sodium channels, has strong inhibitory activity against several Nav isoforms, including Nav1.7, and has potent analgesic effects, but it contains three pairs of disulfide bonds, making structural modification difficult and synthesis complex. To circumvent these difficulties, we designed and synthesized three KIIIA analogues with one disulfide bond deleted. The most active analogue, KIIIA-1, was further analyzed, and its binding pattern to hNav1.7 was determined by molecular dynamics simulations. Guided by the molecular dynamics computational model, we designed and tested 32 second-generation and 6 third-generation analogues of KIIIA-1 on hNav1.7 expressed in HEK293 cells. Several analogues showed significantly improved inhibitory activity on hNav1.7, and the most potent peptide, 37, was approximately 4-fold more potent than the KIIIA Isomer I and 8-fold more potent than the wildtype (WT) KIIIA in inhibiting hNav1.7 current. Intraperitoneally injected 37 exhibited potent in vivo analgesic activity in a formalin-induced inflammatory pain model, with activity reaching ∼350-fold of the positive control drug morphine. Overall, peptide 37 has a simplified disulfide-bond framework and exhibits potent in vivo analgesic effects and has promising potential for development as a pain therapy in the future.
Collapse
Affiliation(s)
- Zitong Zhao
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Teng Pan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shen Chen
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Peta J Harvey
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Jinghui Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiao Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Mengke Yang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Linhong Huang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shoushi Wang
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
3
|
A Novel α4/7-Conotoxin QuIA Selectively Inhibits α3β2 and α6/α3β4 Nicotinic Acetylcholine Receptor Subtypes with High Efficacy. Mar Drugs 2022; 20:md20020146. [PMID: 35200675 PMCID: PMC8878501 DOI: 10.3390/md20020146] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 12/10/2022] Open
Abstract
α6β4 nAChR is expressed in the peripheral and central nervous systems and is associated with pain, addiction, and movement disorders. Natural α-conotoxins (α-CTxs) can effectively block different nAChR subtypes with higher efficacy and selectivity. However, the research on α6β4 nAChR is relatively poor, partly because of the lack of available target-specific α-CTxs. In this study, we synthesized a novel α-4/7 conotoxin QuIA that was found from Conus quercinus. We investigated the efficacy of this peptide to different nAChR subtypes using a two-electrode voltage-clamp technique. Remarkably, we found α-QuIA inhibited the neuronal α3β2 and α6/α3β4 nAChR subtypes with significantly high affinity (IC50 was 55.7 nM and 90.68 nM, respectively), and did not block other nAChR subtypes even at a high concentration of 10 μM. In contrast, most α-CTxs have been determined so far to effectively block the α6/α3β4 nAChR subtype while also maintaining a similar higher efficacy against the closely related α6β2β3 and/or α3β4 subtypes, which are different from QuIA. In conclusion, α-QuIA is a novel α4/7-CTx, which has the potential to develop as an effective neuropharmacology tool to detect the function of α6β4 nAChR.
Collapse
|
4
|
Marine Origin Ligands of Nicotinic Receptors: Low Molecular Compounds, Peptides and Proteins for Fundamental Research and Practical Applications. Biomolecules 2022; 12:biom12020189. [PMID: 35204690 PMCID: PMC8961598 DOI: 10.3390/biom12020189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/05/2023] Open
Abstract
The purpose of our review is to briefly show what different compounds of marine origin, from low molecular weight ones to peptides and proteins, offer for understanding the structure and mechanism of action of nicotinic acetylcholine receptors (nAChRs) and for finding novel drugs to combat the diseases where nAChRs may be involved. The importance of the mentioned classes of ligands has changed with time; a protein from the marine snake venom was the first excellent tool to characterize the muscle-type nAChRs from the electric ray, while at present, muscle and α7 receptors are labeled with the radioactive or fluorescent derivatives prepared from α-bungarotoxin isolated from the many-banded krait. The most sophisticated instruments to distinguish muscle from neuronal nAChRs, and especially distinct subtypes within the latter, are α-conotoxins. Such information is crucial for fundamental studies on the nAChR revealing the properties of their orthosteric and allosteric binding sites and mechanisms of the channel opening and closure. Similar data are provided by low-molecular weight compounds of marine origin, but here the main purpose is drug design. In our review we tried to show what has been obtained in the last decade when the listed classes of compounds were used in the nAChR research, applying computer modeling, synthetic analogues and receptor mutants, X-ray and electron-microscopy analyses of complexes with the nAChRs, and their models which are acetylcholine-binding proteins and heterologously-expressed ligand-binding domains.
Collapse
|
5
|
Bekbossynova A, Zharylgap A, Filchakova O. Venom-Derived Neurotoxins Targeting Nicotinic Acetylcholine Receptors. Molecules 2021; 26:molecules26113373. [PMID: 34204855 PMCID: PMC8199771 DOI: 10.3390/molecules26113373] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 01/02/2023] Open
Abstract
Acetylcholine was the first neurotransmitter described. The receptors targeted by acetylcholine are found within organisms spanning different phyla and position themselves as very attractive targets for predation, as well as for defense. Venoms of snakes within the Elapidae family, as well as those of marine snails within the Conus genus, are particularly rich in proteins and peptides that target nicotinic acetylcholine receptors (nAChRs). Such compounds are invaluable tools for research seeking to understand the structure and function of the cholinergic system. Proteins and peptides of venomous origin targeting nAChR demonstrate high affinity and good selectivity. This review aims at providing an overview of the toxins targeting nAChRs found within venoms of different animals, as well as their activities and the structural determinants important for receptor binding.
Collapse
|
6
|
Wang S, Zhu X, Zhangsun M, Wu Y, Yu J, Harvey PJ, Kaas Q, Zhangsun D, Craik DJ, Luo S. Engineered Conotoxin Differentially Blocks and Discriminates Rat and Human α7 Nicotinic Acetylcholine Receptors. J Med Chem 2021; 64:5620-5631. [PMID: 33902275 DOI: 10.1021/acs.jmedchem.0c02079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The α7 nicotinic acetylcholine receptor (nAChR) is present in the central nervous system and plays an important role in cognitive function and memory. α-Conotoxin LvIB, identified from genomic DNA of Conus lividus, its three isomers and four globular isomer analogues were synthesized and screened at a wide range of nAChR subtypes. One of the analogues, amidated [Q1G,ΔR14]LvIB, was found to be a potent blocker of rat α7 nAChRs. Importantly, it differentiates between α7 nAChRs of human (IC50: 1570 nM) and rat (IC50: 97 nM). Substitutions between rat and human α7 nAChRs at three key mutation sites revealed that no single mutant could completely change the activity profile of amidated [Q1G,ΔR14]LvIB. Rather, we found that the combined influence of Gln141, Asn184, and Lys186 determines the α7 nAChR species specificity of this peptide. This engineered α4/4 conotoxin has potential applications as a template for designing ligands to selectively block human α7 nAChRs.
Collapse
Affiliation(s)
- Shuai Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Xiaopeng Zhu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China.,Medical School, Guangxi University, Nanning 530004, China
| | - Manqi Zhangsun
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Yong Wu
- Medical School, Guangxi University, Nanning 530004, China
| | - Jinpeng Yu
- Medical School, Guangxi University, Nanning 530004, China
| | - Peta J Harvey
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Dongting Zhangsun
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China.,Medical School, Guangxi University, Nanning 530004, China
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sulan Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China.,Medical School, Guangxi University, Nanning 530004, China
| |
Collapse
|
7
|
Hone AJ, Kaas Q, Kearns I, Hararah F, Gajewiak J, Christensen S, Craik DJ, McIntosh JM. Computational and Functional Mapping of Human and Rat α6β4 Nicotinic Acetylcholine Receptors Reveals Species-Specific Ligand-Binding Motifs. J Med Chem 2021; 64:1685-1700. [PMID: 33523678 PMCID: PMC8382285 DOI: 10.1021/acs.jmedchem.0c01973] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are pharmacological targets for the treatment of neuropathic pain, and the α6β4 subtype has been identified as particularly promising. Rat α6β4 nAChRs are less sensitive to some ligands than the human homologue potentially complicating the use of rodent α6β4 receptors for screening therapeutic compounds. We used molecular dynamics simulations coupled with functional assays to study the interaction between α-conotoxin PeIA and α6β4 nAChRs and to identify key ligand-receptor interactions that contribute to species differences in α-conotoxin potency. Our results show that human and rat α6β4 nAChRs have distinct ligand-binding motifs and show markedly different sensitivities to α-conotoxins. These studies facilitated the creation of PeIA-5667, a peptide that shows 270-fold higher potency for rat α6β4 nAChRs over native PeIA and similar potency for the human homologue. Our results may inform the design of therapeutic ligands that target α6β4 nAChRs for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Arik J Hone
- MIRECC, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah 84148 United States
| | - Quentin Kaas
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072 Australia
| | | | | | | | | | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072 Australia
| | - J Michael McIntosh
- George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah 84148 United States
| |
Collapse
|
8
|
Li X, Tae HS, Chu Y, Jiang T, Adams DJ, Yu R. Medicinal chemistry, pharmacology, and therapeutic potential of α-conotoxins antagonizing the α9α10 nicotinic acetylcholine receptor. Pharmacol Ther 2020; 222:107792. [PMID: 33309557 DOI: 10.1016/j.pharmthera.2020.107792] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022]
Abstract
α-Conotoxins are disulfide-rich and well-structured peptides, most of which can block nicotinic acetylcholine receptors (nAChRs) with exquisite selectivity and potency. There are various nAChR subtypes, of which the α9α10 nAChR functions as a heteromeric ionotropic receptor in the mammalian cochlea and mediates postsynaptic transmission from the medial olivocochlear. The α9α10 nAChR subtype has also been proposed as a target for the treatment of neuropathic pain and the suppression of breast cancer cell proliferation. Therefore, α-conotoxins targeting the α9α10 nAChR are potentially useful in the development of specific therapeutic drugs and pharmacological tools. Despite dissimilarities in their amino acid sequence and structures, these conopeptides are potent antagonists of the α9α10 nAChR subtype. Consequently, the activity and stability of these peptides have been subjected to chemical modifications. The resulting synthetic analogues have not only functioned as molecular probes to explore ligand binding sites of the α9α10 nAChR, but also have the potential to become candidates for drug development. From the perspectives of medicinal chemistry and pharmacology, we highlight the structure and function of the α9α10 nAChR and review studies of α-conotoxins targeting it, including their three-dimensional structures, structure optimization strategies, and binding modes at the α9α10 nAChR, as well as their therapeutic potential.
Collapse
Affiliation(s)
- Xiao Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Han-Shen Tae
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Yanyan Chu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China; Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266100, China
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - David J Adams
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, New South Wales 2522, Australia.
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China; Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266100, China.
| |
Collapse
|
9
|
Zhu X, Pan S, Xu M, Zhang L, Yu J, Yu J, Wu Y, Fan Y, Li H, Kasheverov IE, Kudryavtsev DS, Tsetlin VI, Xue Y, Zhangsun D, Wang X, Luo S. High Selectivity of an α-Conotoxin LvIA Analogue for α3β2 Nicotinic Acetylcholine Receptors Is Mediated by β2 Functionally Important Residues. J Med Chem 2020; 63:13656-13668. [PMID: 33196189 DOI: 10.1021/acs.jmedchem.0c00975] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The α3β2 and α3β4 nicotinic acetylcholine receptors (nAChRs) are widely expressed in the central and peripheral nervous systems, playing critical roles in various physiological processes and in such pathologies as addiction to nicotine and other drugs of abuse. α-Conotoxin LvIA, which we previously isolated from Conus lividus, modestly discriminates α3β2 and α3β4 rat nAChRs exhibiting a ∼17-fold tighter binding to the former. Here, alanine scanning resulted in two more selective analogues [N9A]LvIA and [D11A]LvIA, the former having a >2000-fold higher selectivity for α3β2. The determined crystal structures of [N9A]LvIA and [D11A]LvIA bound to the acetylcholine-binding protein (AChBP) were followed by homologous modeling of the complexes with the α3β2 and α3β4 nAChRs and by receptor mutagenesis, which revealed Phe106, Ser108, Ser113, and Ser168 residues in the β2 subunit as essential for LvIA binding. These results may be useful for the design of novel compounds of therapeutic potential targeting α3β2 nAChRs.
Collapse
Affiliation(s)
- Xiaopeng Zhu
- Medical School, Guangxi University, Nanning 530004, China.,Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Si Pan
- The Ministry of Education Key Laboratory of Protein Science, School of Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy, Tsinghua University, Beijing 100084, China
| | - Manyu Xu
- The Ministry of Education Key Laboratory of Protein Science, School of Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy, Tsinghua University, Beijing 100084, China
| | - Lu Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Jinfang Yu
- The Ministry of Education Key Laboratory of Protein Science, School of Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy, Tsinghua University, Beijing 100084, China
| | - Jinpeng Yu
- Medical School, Guangxi University, Nanning 530004, China
| | - Yong Wu
- Medical School, Guangxi University, Nanning 530004, China
| | - Yingxu Fan
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haonan Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Igor E Kasheverov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, Moscow 117997, Russia.,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya Street 8, bld. 2, Moscow 119991, Russia
| | - Denis S Kudryavtsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, Moscow 117997, Russia
| | - Victor I Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, Moscow 117997, Russia.,PhysBio of MePhi, Kashirskoe Ave. 31, Moscow 115409, Russia
| | - Yi Xue
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Dongting Zhangsun
- Medical School, Guangxi University, Nanning 530004, China.,Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Xinquan Wang
- The Ministry of Education Key Laboratory of Protein Science, School of Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy, Tsinghua University, Beijing 100084, China
| | - Sulan Luo
- Medical School, Guangxi University, Nanning 530004, China.,Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| |
Collapse
|
10
|
Smith LC, George O. Advances in smoking cessation pharmacotherapy: Non-nicotinic approaches in animal models. Neuropharmacology 2020; 178:108225. [PMID: 32758566 DOI: 10.1016/j.neuropharm.2020.108225] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/22/2022]
Abstract
The landscape of worldwide tobacco use is changing, with a decrease in traditional smoking and an exponential rise in electronic cigarette use. No new nicotine cessation pharmacotherapies have come to market in the last 10 years. The current therapies that have been approved by the United States Food and Drug Administration for nicotine cessation include nicotine replacement therapy, varenicline, a nicotinic acetylcholine receptor partial agonist, and the atypical antidepressant bupropion. Nicotine replacement therapy and varenicline both act on nicotinic acetylcholine receptors. Bupropion inhibits the dopamine transporter, the norepinephrine transporter, and the nicotinic acetylcholine receptors to inhibit smoking behavior. Notwithstanding these treatments, rates of successful nicotine cessation in clinical trials remain low. Recent pharmacological approaches to improve nicotine cessation rates in animal models have turned their focus away from activating nicotinic acetylcholine receptors. The present review focuses on such pharmacological approaches, including nicotine vaccines, anti-nicotine antibodies, nicotine-degrading enzymes, cannabinoids, and metformin. Both immunopharmacological and enzymatic approaches rely on restricting and degrading nicotine within the periphery, thus preventing psychoactive effects of nicotine on the central nervous system. In contrast, pharmacologic inhibition of the enzymes which degrade nicotine could affect smoking behavior. Cannabinoid receptor agonists and antagonists interact with the dopamine reward pathway and show efficacy in reducing nicotine addiction-like behaviors in preclinical studies. Metformin is currently approved by the Food and Drug Administration for the treatment of diabetes. It activates specific intracellular kinases that may protect against the lower metabolism, higher oxidation, and inflammation that are associated with nicotine withdrawal. Further studies are needed to investigate non-nicotinic targets to improve the treatment of tobacco use disorder. This article is part of the special issue on 'Contemporary Advances in Nicotine Neuropharmacology'.
Collapse
Affiliation(s)
- Lauren C Smith
- Department of Neuroscience, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA; Department of Psychiatry, University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA
| | - Olivier George
- Department of Neuroscience, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA; Department of Psychiatry, University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA.
| |
Collapse
|
11
|
Li X, Wang S, Zhu X, Zhangsun D, Wu Y, Luo S. Effects of Cyclization on Activity and Stability of α-Conotoxin TxIB. Mar Drugs 2020; 18:E180. [PMID: 32235388 PMCID: PMC7230940 DOI: 10.3390/md18040180] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 11/17/2022] Open
Abstract
α-Conotoxin TxIB specifically blocked α6/α3β2β3 acetylcholine receptors (nAChRs), and it could be a potential probe for studying addiction and other diseases related to α6/α3β2β3 nAChRs. However, as a peptide, TxIB may suffer from low stability, short half-life, and poor bioavailability. In this study, cyclization of TxIB was used to improve its stability. Four cyclic mutants of TxIB (cTxIB) were synthesized, and the inhibition of these analogues on α6/α3β2β3 nAChRs as well as their stability in human serum were measured. All cyclized analogues had similar activity compared to wild-type TxIB, which indicated that backbone cyclization of TxIB had no significant effect on its activity. Cyclization of TxIB with a seven-residue linker improved its stability significantly in human serum. Besides this, the results showed that cyclization maintained the activity of α-conotoxin TxIB, which is conducive to its future application.
Collapse
Affiliation(s)
- Xincan Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (X.L.); (S.W.); (X.Z.); (D.Z.)
| | - Shuai Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (X.L.); (S.W.); (X.Z.); (D.Z.)
| | - Xiaopeng Zhu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (X.L.); (S.W.); (X.Z.); (D.Z.)
| | - Dongting Zhangsun
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (X.L.); (S.W.); (X.Z.); (D.Z.)
- Medical School, Guangxi University, Nanning 530004, China
| | - Yong Wu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (X.L.); (S.W.); (X.Z.); (D.Z.)
- Medical School, Guangxi University, Nanning 530004, China
| | - Sulan Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (X.L.); (S.W.); (X.Z.); (D.Z.)
- Medical School, Guangxi University, Nanning 530004, China
| |
Collapse
|
12
|
Liang J, Tae HS, Xu X, Jiang T, Adams DJ, Yu R. Dimerization of α-Conotoxins as a Strategy to Enhance the Inhibition of the Human α7 and α9α10 Nicotinic Acetylcholine Receptors. J Med Chem 2020; 63:2974-2985. [PMID: 32101438 DOI: 10.1021/acs.jmedchem.9b01536] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The affinity of α-conotoxins, a class of nicotinic acetylcholine receptor (nAChR) peptide inhibitors, can be enhanced by dendrimerization. It has been hypothesized that this improvement arose from simultaneous binding of the α-conotoxins to several spatially adjacent sites. We here engineered several α-conotoxin dimers using a linker length compatible between neighboring binding sites on the same receptor. Remarkably, the dimer of α-conotoxin PeIA compared to the monomer displayed an increase in potency by 11-fold (IC50 = 1.9 nM) for the human α9α10 nAChR. The dimerization of α-conotoxin RgIA# resulted in a dual inhibitor that targets both α9α10 and α7 nAChR subtypes with an IC50 = ∼50 nM. The RgIA# dimer is therapeutically interesting because it is the first dual inhibitor that potently and selectively inhibits these two nAChR subtypes, which are both involved in the etiology of several cancers. We propose that the dimerization of α-conotoxins is a simpler and efficient alternative strategy to dendrimers for enhancing the activity of α-conotoxins.
Collapse
Affiliation(s)
- Jiazhen Liang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Han-Shen Tae
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Xiaoxiao Xu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - David J Adams
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.,Innovation Center for Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
13
|
Hone AJ, Rueda-Ruzafa L, Gordon TJ, Gajewiak J, Christensen S, Dyhring T, Albillos A, McIntosh JM. Expression of α3β2β4 nicotinic acetylcholine receptors by rat adrenal chromaffin cells determined using novel conopeptide antagonists. J Neurochem 2020; 154:158-176. [PMID: 31967330 DOI: 10.1111/jnc.14966] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/17/2019] [Accepted: 01/13/2020] [Indexed: 01/07/2023]
Abstract
Adrenal chromaffin cells release neurotransmitters in response to stress and may be involved in conditions such as post-traumatic stress and anxiety disorders. Neurotransmitter release is triggered, in part, by activation of nicotinic acetylcholine receptors (nAChRs). However, despite decades of use as a model system for studying exocytosis, the nAChR subtypes involved have not been pharmacologically identified. Quantitative real-time PCR of rat adrenal medulla revealed an abundance of mRNAs for α3, α7, β2, and β4 subunits. Whole-cell patch-clamp electrophysiology of chromaffin cells and subtype-selective ligands were used to probe for nAChRs derived from the mRNAs found in adrenal medulla. A novel conopeptide antagonist, PeIA-5469, was created that is highly selective for α3β2 over other nAChR subtypes heterologously expressed in Xenopus laevis oocytes. Experiments using PeIA-5469 and the α3β4-selective α-conotoxin TxID revealed that rat adrenal medulla contain two populations of chromaffin cells that express either α3β4 nAChRs alone or α3β4 together with the α3β2β4 subtype. Conclusions were derived from observations that acetylcholine-gated currents in some cells were sensitive to inhibition by PeIA-5469 and TxID, while in other cells, currents were sensitive only to TxID. Expression of functional α7 nAChRs was determined using three α7-selective ligands: the agonist PNU282987, the positive allosteric modulator PNU120596, and the antagonist α-conotoxin [V11L,V16D]ArIB. The results of these studies identify for the first time the expression of α3β2β4 nAChRs as well as functional α7 nAChRs by rat adrenal chromaffin cells.
Collapse
Affiliation(s)
- Arik J Hone
- George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah, USA.,School of Biological Sciences and University of Utah, Salt Lake City, Utah, USA.,Departament of Pharmacology and Therapeutics, Universidad Autónoma de Madrid, Madrid, Spain
| | - Lola Rueda-Ruzafa
- Departament of Pharmacology and Therapeutics, Universidad Autónoma de Madrid, Madrid, Spain.,Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain
| | - Thomas J Gordon
- School of Biological Sciences and University of Utah, Salt Lake City, Utah, USA
| | - Joanna Gajewiak
- School of Biological Sciences and University of Utah, Salt Lake City, Utah, USA
| | - Sean Christensen
- School of Biological Sciences and University of Utah, Salt Lake City, Utah, USA
| | | | - Almudena Albillos
- Departament of Pharmacology and Therapeutics, Universidad Autónoma de Madrid, Madrid, Spain
| | - J Michael McIntosh
- George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah, USA.,School of Biological Sciences and University of Utah, Salt Lake City, Utah, USA.,Department of Psychiatry, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
14
|
Marquart LA, Turner MW, McDougal OM. Qualitative Assay to Detect Dopamine Release by Ligand Action on Nicotinic Acetylcholine Receptors. Toxins (Basel) 2019; 11:toxins11120682. [PMID: 31757080 PMCID: PMC6949981 DOI: 10.3390/toxins11120682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 11/16/2022] Open
Abstract
A pheochromocytoma of the rat adrenal medulla derived (a.k.a. PC12) cell-based assay for dopamine measurement by luminescence detection was customized for the qualitative evaluation of agonists and antagonists of nicotinic acetylcholine receptors (nAChRs). The assay mechanism begins with ligand binding to transmembrane nAChRs, altering ion flow into the cell and inducing dopamine release from the cell. Following release, dopamine is oxidized by monoamine oxidase generating hydrogen peroxide that catalyzes a chemiluminescence reaction involving luminol and horseradish peroxidase, thus producing a detectable response. Results are presented for the action of nAChR agonists (acetylcholine, nicotine, and cytisine), and antagonists (α-conotoxins (α-CTxs) MII, ImI, LvIA, and PeIA) that demonstrate a luminescence response correlating to the increase or decrease of dopamine release. A survey of cell growth and treatment conditions, including nerve growth factor, nicotine, ethanol, and temperature, led to optimal assay requirements to achieve maximal signal intensity and consistent response to ligand treatment. It was determined that PC12 cells treated with a combination of nerve growth factor and nicotine, and incubated at 37 °C, provided favorable results for a reduction in luminescence signal upon treatment of cells with α-CTxs. The PC12 assay is intended for use as a fast, efficient, and economic qualitative method to assess the bioactivity of molecules that act on nAChRs, in which testing of ligand-nAChR binding hypotheses and computational predictions can be validated. As a screening method for nAChR bioactivity, lead compounds can be assessed for their likelihood of exhibiting desired bioactivity prior to being subjected to more complex quantitative methods, such as electrophysiology or live animal studies.
Collapse
Affiliation(s)
- Leanna A. Marquart
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA;
| | - Matthew W. Turner
- Biomolecular Sciences PhD Program, Boise State University, Boise, ID 83725, USA;
| | - Owen M. McDougal
- Biomolecular Sciences PhD Program, Boise State University, Boise, ID 83725, USA;
- Correspondence:
| |
Collapse
|
15
|
van Hout M, Valdes A, Christensen SB, Tran PT, Watkins M, Gajewiak J, Jensen AA, Olivera BM, McIntosh JM. α-Conotoxin VnIB from Conus ventricosus is a potent and selective antagonist of α6β4* nicotinic acetylcholine receptors. Neuropharmacology 2019; 157:107691. [PMID: 31255696 DOI: 10.1016/j.neuropharm.2019.107691] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/05/2019] [Accepted: 06/26/2019] [Indexed: 01/20/2023]
Abstract
α6-containing (α6*) nicotinic acetylcholine receptors (nAChRs) are expressed throughout the periphery and the central nervous system and constitute putative therapeutic targets in pain, addiction and movement disorders. The α6β2* nAChRs are relatively well studied, in part due to the availability of target specific α-conotoxins (α-Ctxs). In contrast, all native α-Ctxs identified that potently block α6β4 nAChRs exhibit higher potencies for the closely related α6β2β3 and/or α3β4 subtypes. In this study, we have identified a novel peptide from Conus ventricosus with pronounced selectivity for the α6β4 nAChR. The peptide-encoding gene was cloned from genomic DNA and the predicted mature peptide, α-Ctx VnIB, was synthesized. The functional properties of VnIB were characterized at rat and human nAChRs expressed in Xenopus oocytes by two-electrode voltage clamp electrophysiology. VnIB potently inhibited ACh-evoked currents at rα6β4 and rα6/α3β4 nAChRs, displayed ∼20-fold and ∼250-fold lower potencies at rα3β4 and rα6/α3β2β3 receptors, respectively, and exhibited negligible effects at eight other nAChR subtypes. Interestingly, even higher degrees of selectivity were observed for hα6/α3β4 over hα6/α3β2β3 and hα3β4 receptors. Finally, VnIB displayed fast binding kinetics at rα6/α3β4 (on-rate t½ = 0.87 min-1, off-rate t½ = 2.7 min-1). The overall preference of VnIB for β4* over β2* nAChRs is similar to the selectivity profiles of other 4/6 α-Ctxs. However, in contrast to previously identified native α-Ctxs targeting α6* nAChRs, VnIB displays pronounced selectivity for α6β4 nAChRs over both α3β4 and α6β2β3 receptors. VnIB thus represents a novel molecular probe for elucidating the physiological role and therapeutic properties of α6β4* nAChRs.
Collapse
Affiliation(s)
- Marloes van Hout
- Department of Biology, University of Utah, Salt Lake City, UT, 84112, USA; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Amanda Valdes
- Department of Biology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Sean B Christensen
- Department of Biology, University of Utah, Salt Lake City, UT, 84112, USA.
| | - Phuong T Tran
- Department of Biology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Maren Watkins
- Department of Biology, University of Utah, Salt Lake City, UT, 84112, USA; Department of Pathology, University of Utah, Salt Lake City, UT, 84112, USA.
| | - Joanna Gajewiak
- Department of Biology, University of Utah, Salt Lake City, UT, 84112, USA.
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | - J Michael McIntosh
- Department of Biology, University of Utah, Salt Lake City, UT, 84112, USA; Department of Psychiatry, University of Utah, Salt Lake City, UT, 84108, USA; George E. Wahlen Veterans Affair Medical Center, Salt Lake City, UT, 84148, USA.
| |
Collapse
|
16
|
Hone AJ, Fisher F, Christensen S, Gajewiak J, Larkin D, Whiteaker P, McIntosh JM. PeIA-5466: A Novel Peptide Antagonist Containing Non-natural Amino Acids That Selectively Targets α3β2 Nicotinic Acetylcholine Receptors. J Med Chem 2019; 62:6262-6275. [PMID: 31194549 DOI: 10.1021/acs.jmedchem.9b00566] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pharmacologically distinguishing α3β2 nicotinic acetylcholine receptors (nAChRs) from closely related subtypes, particularly α6β2, has been challenging due to the lack of subtype-selective ligands. We created analogs of α-conotoxin (α-Ctx) PeIA to identify ligand-receptor interactions that could be exploited to selectively increase potency and selectivity for α3β2 nAChRs. A series of PeIA analogs were synthesized by replacing amino acid residues in the second disulfide loop with standard or nonstandard residues and assessing their activity on α3β2 and α6/α3β2β3 nAChRs heterologously expressed in Xenopus laevis oocytes. Asparagine11 was found to occupy a pivotal position, and when replaced with negatively charged amino acids, selectivity for α3β2 over α6/α3β2β3 nAChRs was substantially increased. Second generation peptides were then designed to further improve both potency and selectivity. One peptide, PeIA-5466, was ∼300-fold more potent on α3β2 than α6/α3β2β3 and is the most α3β2-selective antagonist heretofore reported.
Collapse
Affiliation(s)
| | | | | | | | | | | | - J Michael McIntosh
- George E. Whalen Veterans Affairs Medical Center , Salt Lake City , Utah 84148 , United States
| |
Collapse
|
17
|
Morales Duque H, Campos Dias S, Franco OL. Structural and Functional Analyses of Cone Snail Toxins. Mar Drugs 2019; 17:md17060370. [PMID: 31234371 PMCID: PMC6628382 DOI: 10.3390/md17060370] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/16/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022] Open
Abstract
Cone snails are marine gastropod mollusks with one of the most powerful venoms in nature. The toxins, named conotoxins, must act quickly on the cone snails´ prey due to the fact that snails are extremely slow, reducing their hunting capability. Therefore, the characteristics of conotoxins have become the object of investigation, and as a result medicines have been developed or are in the trialing process. Conotoxins interact with transmembrane proteins, showing specificity and potency. They target ion channels and ionotropic receptors with greater regularity, and when interaction occurs, there is immediate physiological decompensation. In this review we aimed to evaluate the structural features of conotoxins and the relationship with their target types.
Collapse
Affiliation(s)
- Harry Morales Duque
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF 70.790-160, Brazil.
| | - Simoni Campos Dias
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF 70.790-160, Brazil.
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF 70.790-160, Brazil.
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande-MS 79.117-900, Brazil.
| |
Collapse
|
18
|
Turner MW, Marquart LA, Phillips PD, McDougal OM. Mutagenesis of α-Conotoxins for Enhancing Activity and Selectivity for Nicotinic Acetylcholine Receptors. Toxins (Basel) 2019; 11:E113. [PMID: 30781866 PMCID: PMC6409848 DOI: 10.3390/toxins11020113] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 02/04/2023] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are found throughout the mammalian body and have been studied extensively because of their implication in a myriad of diseases. α-Conotoxins (α-CTxs) are peptide neurotoxins found in the venom of marine snails of genus Conus. α-CTxs are potent and selective antagonists for a variety of nAChR isoforms. Over the past 40 years, α-CTxs have proven to be valuable molecular probes capable of differentiating between closely related nAChR subtypes and have contributed greatly to understanding the physiological role of nAChRs in the mammalian nervous system. Here, we review the amino acid composition and structure of several α-CTxs that selectively target nAChR isoforms and explore strategies and outcomes for introducing mutations in native α-CTxs to direct selectivity and enhance binding affinity for specific nAChRs. This review will focus on structure-activity relationship studies involving native α-CTxs that have been rationally mutated and molecular interactions that underlie binding between ligand and nAChR isoform.
Collapse
Affiliation(s)
- Matthew W Turner
- Biomolecular Sciences Graduate Programs, Boise State University; Boise, ID 83725, USA.
| | - Leanna A Marquart
- Department of Chemistry and Biochemistry, Boise State University; Boise, ID 83725, USA.
| | - Paul D Phillips
- Department of Chemistry and Biochemistry, Boise State University; Boise, ID 83725, USA.
| | - Owen M McDougal
- Department of Chemistry and Biochemistry, Boise State University; Boise, ID 83725, USA.
| |
Collapse
|
19
|
Hone AJ, Talley TT, Bobango J, Huidobro Melo C, Hararah F, Gajewiak J, Christensen S, Harvey PJ, Craik DJ, McIntosh JM. Molecular determinants of α-conotoxin potency for inhibition of human and rat α6β4 nicotinic acetylcholine receptors. J Biol Chem 2018; 293:17838-17852. [PMID: 30249616 DOI: 10.1074/jbc.ra118.005649] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/20/2018] [Indexed: 12/15/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) containing α6 and β4 subunits are expressed by dorsal root ganglion neurons and have been implicated in neuropathic pain. Rodent models are often used to evaluate the efficacy of analgesic compounds, but species differences may affect the activity of some nAChR ligands. A previous candidate α-conotoxin-based therapeutic yielded promising results in rodent models, but failed in human clinical trials, emphasizing the importance of understanding species differences in ligand activity. Here, we show that human and rat α6/α3β4 nAChRs expressed in Xenopus laevis oocytes exhibit differential sensitivity to α-conotoxins. Sequence homology comparisons of human and rat α6β4 nAChR subunits indicated that α6 residues forming the ligand-binding pocket are highly conserved between the two species, but several residues of β4 differed, including a Leu-Gln difference at position 119. X-ray crystallography of α-conotoxin PeIA complexed with the Aplysia californica acetylcholine-binding protein (AChBP) revealed that binding of PeIA orients Pro13 in close proximity to residue 119 of the AChBP complementary subunit. Site-directed mutagenesis studies revealed that Leu119 of human β4 contributes to higher sensitivity of human α6/α3β4 nAChRs to α-conotoxins, and structure-activity studies indicated that PeIA Pro13 is critical for high potency. Human and rat α6/α3β4 nAChRs displayed differential sensitivities to perturbations of the interaction between PeIA Pro13 and residue 119 of the β4 subunit. These results highlight the potential significance of species differences in α6β4 nAChR pharmacology that should be taken into consideration when evaluating the activity of candidate human therapeutics in rodent models.
Collapse
Affiliation(s)
| | | | - Janet Bobango
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana 59812
| | | | | | | | | | - Peta J Harvey
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - J Michael McIntosh
- From the Departments of Biology; Psychiatry, University of Utah, Salt Lake City, Utah 84112; George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah 84148.
| |
Collapse
|
20
|
Morley BJ, Whiteaker P, Elgoyhen AB. Commentary: Nicotinic Acetylcholine Receptor α9 and α10 Subunits Are Expressed in the Brain of Mice. Front Cell Neurosci 2018; 12:104. [PMID: 29765305 PMCID: PMC5938352 DOI: 10.3389/fncel.2018.00104] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/03/2018] [Indexed: 01/17/2023] Open
Affiliation(s)
| | - Paul Whiteaker
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Ana B Elgoyhen
- CONICET, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular Dr. Héctor N. Torres (INGEBI), Buenos Aires, Argentina.,Facultad de Medicinia, Instiuto de Farmaologia, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
21
|
α-Conotoxins to explore the molecular, physiological and pathophysiological functions of neuronal nicotinic acetylcholine receptors. Neurosci Lett 2017; 679:24-34. [PMID: 29199094 DOI: 10.1016/j.neulet.2017.11.063] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 12/22/2022]
Abstract
The vast diversity of neuronal nicotinic acetylcholine subunits expressed in the central and peripheral nervous systems, as well as in non-neuronal tissues, constitutes a formidable challenge for researchers and clinicians to decipher the role of particular subtypes, including complex subunit associations, in physiological and pathophysiological functions. Many natural products target the nAChRs, but there is no richer source of nicotinic ligands than the venom of predatory gastropods known as cone snails. Indeed, every single species of cone snail was shown to produce at least one type of such α-conotoxins. These tiny peptides (10-25 amino acids), constrained by disulfide bridges, proved to be unvaluable tools to investigate the structure and function of nAChRs, some of them having also therapeutic potential. In this review, we provide a recent update on the pharmacology and subtype specificity of several major α-conotoxins.
Collapse
|
22
|
Wall TR, Henderson BJ, Voren G, Wageman CR, Deshpande P, Cohen BN, Grady SR, Marks MJ, Yohannes D, Kenny PJ, Bencherif M, Lester HA. TC299423, a Novel Agonist for Nicotinic Acetylcholine Receptors. Front Pharmacol 2017; 8:641. [PMID: 29033834 PMCID: PMC5626944 DOI: 10.3389/fphar.2017.00641] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 08/29/2017] [Indexed: 01/11/2023] Open
Abstract
(E)-5-(Pyrimidin-5-yl)-1,2,3,4,7,8-hexahydroazocine (TC299423) is a novel agonist for nicotinic acetylcholine receptors (nAChRs). We examined its efficacy, affinity, and potency for α6β2∗ (α6β2-containing), α4β2∗, and α3β4∗ nAChRs, using [125I]-epibatidine binding, whole-cell patch-clamp recordings, synaptosomal 86Rb+ efflux, [3H]-dopamine release, and [3H]-acetylcholine release. TC299423 displayed an EC50 of 30–60 nM for α6β2∗ nAChRs in patch-clamp recordings and [3H]-dopamine release assays. Its potency for α6β2∗ in these assays was 2.5-fold greater than that for α4β2∗, and much greater than that for α3β4∗-mediated [3H]-acetylcholine release. We observed no major off-target binding on 70 diverse molecular targets. TC299423 was bioavailable after intraperitoneal or oral administration. Locomotor assays, measured with gain-of-function, mutant α6 (α6L9′S) nAChR mice, show that TC299423 elicits α6β2∗ nAChR-mediated responses at low doses. Conditioned place preference assays show that low-dose TC299423 also produces significant reward in α6L9′S mice, and modest reward in WT mice, through a mechanism that probably involves α6(non-α4)β2∗ nAChRs. However, TC299423 did not suppress nicotine self-administration in rats, indicating that it did not block nicotine reinforcement in the dosage range that was tested. In a hot-plate test, TC299423 evoked antinociceptive responses in mice similar to those of nicotine. TC299423 and nicotine similarly inhibited mouse marble burying as a measure of anxiolytic effects. Taken together, our data suggest that TC299423 will be a useful small-molecule agonist for future in vitro and in vivo studies of nAChR function and physiology.
Collapse
Affiliation(s)
- Teagan R Wall
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Brandon J Henderson
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - George Voren
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Charles R Wageman
- Institute of Behavioral Genetics, University of Colorado, Boulder, Boulder, CO, United States
| | - Purnima Deshpande
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Bruce N Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Sharon R Grady
- Institute of Behavioral Genetics, University of Colorado, Boulder, Boulder, CO, United States
| | - Michael J Marks
- Institute of Behavioral Genetics, University of Colorado, Boulder, Boulder, CO, United States.,Department of Psychology and Neuroscience, University of Colorado, Boulder, Boulder, CO, United States
| | | | - Paul J Kenny
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Henry A Lester
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
23
|
Wu Y, Zhangsun D, Zhu X, Kaas Q, Zhangsun M, Harvey PJ, Craik DJ, McIntosh JM, Luo S. α-Conotoxin [S9A]TxID Potently Discriminates between α3β4 and α6/α3β4 Nicotinic Acetylcholine Receptors. J Med Chem 2017; 60:5826-5833. [PMID: 28603989 DOI: 10.1021/acs.jmedchem.7b00546] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
α3β4 nAChRs have been implicated in various pathophysiological conditions. However, the expression profile of α3β4 nAChRs and α6/α3β4 nAChRs overlap in a variety of tissues. To distinguish between these two subtypes, we redesigned peptide 1 (α-conotoxin TxID), which inhibits α3β4 and α6/α3β4 nAChR subtypes. We systematically mutated 1 to evaluate analogue selectivity for α3β4 vs α6/α3β4 nAChRs expressed in Xenopus laevis oocytes. One analogue, peptide 7 ([S9A]TxID), had 46-fold greater potency for α3β4 versus α6/α3β4 nAChRs. Peptide 7 had IC50s > 10 μM for other nAChR subtypes. Molecular dynamics simulations suggested that Ser-9 of TxID was involved in a weak hydrogen bond with β4 Lys-81 in the α6β4 binding site but not in the α3β4 binding site. When Ser-9 was substituted by an Ala, this hydrogen bond interaction was disrupted. These results provide further molecular insights into the selectivity of 7 and provide a guide for designing ligands that block α3β4 nAChRs.
Collapse
Affiliation(s)
- Yong Wu
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Lab for Marine Drugs of Haikou, Hainan University , Haikou, Hainan 570228 China
| | - Dongting Zhangsun
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Lab for Marine Drugs of Haikou, Hainan University , Haikou, Hainan 570228 China
| | - Xiaopeng Zhu
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Lab for Marine Drugs of Haikou, Hainan University , Haikou, Hainan 570228 China
| | - Quentin Kaas
- Institute for Molecular Bioscience, The University of Queensland , Brisbane, Queensland 4072, Australia
| | - Manqi Zhangsun
- Departments of Biology and Psychiatry, University of Utah , Salt Lake City, Utah 84112, United States
| | - Peta J Harvey
- Institute for Molecular Bioscience, The University of Queensland , Brisbane, Queensland 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland , Brisbane, Queensland 4072, Australia
| | - J Michael McIntosh
- Departments of Biology and Psychiatry, University of Utah , Salt Lake City, Utah 84112, United States.,George E. Wahlen Veterans Affairs Medical Center , Salt Lake City, Utah 84108, United States
| | - Sulan Luo
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Lab for Marine Drugs of Haikou, Hainan University , Haikou, Hainan 570228 China
| |
Collapse
|
24
|
Dutertre S, Nicke A, Tsetlin VI. Nicotinic acetylcholine receptor inhibitors derived from snake and snail venoms. Neuropharmacology 2017. [PMID: 28623170 DOI: 10.1016/j.neuropharm.2017.06.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The nicotinic acetylcholine receptor (nAChR) represents the prototype of ligand-gated ion channels. It is vital for neuromuscular transmission and an important regulator of neurotransmission. A variety of toxic compounds derived from diverse species target this receptor and have been of elemental importance in basic and applied research. They enabled milestone discoveries in pharmacology and biochemistry ranging from the original formulation of the receptor concept, the first isolation and structural analysis of a receptor protein (the nAChR) to the identification, localization, and differentiation of its diverse subtypes and their validation as a target for therapeutic intervention. Among the venom-derived compounds, α-neurotoxins and α-conotoxins provide the largest families and still represent indispensable pharmacological tools. Application of modified α-neurotoxins provided substantial structural and functional details of the nAChR long before high resolution structures were available. α-bungarotoxin represents not only a standard pharmacological tool and label in nAChR research but also for unrelated proteins tagged with a minimal α-bungarotoxin binding motif. A major advantage of α-conotoxins is their smaller size, as well as superior selectivity for diverse nAChR subtypes that allows their development into ligands with optimized pharmacological and chemical properties and potentially novel drugs. In the following, these two groups of nAChR antagonists will be described focusing on their respective roles in the structural and functional characterization of nAChRs and their development into research tools. In addition, we provide a comparative overview of the diverse α-conotoxin selectivities that can serve as a practical guide for both structure activity studies and subtype classification. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Sébastien Dutertre
- Institut des Biomolécules Max Mousseron, UMR 5247, Université Montpellier - CNRS, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Annette Nicke
- Walther Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Nußbaumstr. 26, 80336 Munich, Germany.
| | - Victor I Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str.16/10, Moscow 117999, Russian Federation
| |
Collapse
|
25
|
Inhibition of α9α10 nicotinic acetylcholine receptors prevents chemotherapy-induced neuropathic pain. Proc Natl Acad Sci U S A 2017; 114:E1825-E1832. [PMID: 28223528 DOI: 10.1073/pnas.1621433114] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Opioids are first-line drugs for moderate to severe acute pain and cancer pain. However, these medications are associated with severe side effects, and whether they are efficacious in treatment of chronic nonmalignant pain remains controversial. Medications that act through alternative molecular mechanisms are critically needed. Antagonists of α9α10 nicotinic acetylcholine receptors (nAChRs) have been proposed as an important nonopioid mechanism based on studies demonstrating prevention of neuropathology after trauma-induced nerve injury. However, the key α9α10 ligands characterized to date are at least two orders of magnitude less potent on human vs. rodent nAChRs, limiting their translational application. Furthermore, an alternative proposal that these ligands achieve their beneficial effects by acting as agonists of GABAB receptors has caused confusion over whether blockade of α9α10 nAChRs is the fundamental underlying mechanism. To address these issues definitively, we developed RgIA4, a peptide that exhibits high potency for both human and rodent α9α10 nAChRs, and was at least 1,000-fold more selective for α9α10 nAChRs vs. all other molecular targets tested, including opioid and GABAB receptors. A daily s.c. dose of RgIA4 prevented chemotherapy-induced neuropathic pain in rats. In wild-type mice, oxaliplatin treatment produced cold allodynia that could be prevented by RgIA4. Additionally, in α9 KO mice, chemotherapy-induced development of cold allodynia was attenuated and the milder, temporary cold allodynia was not relieved by RgIA4. These findings establish blockade of α9-containing nAChRs as the basis for the efficacy of RgIA4, and that α9-containing nAChRs are a critical target for prevention of chronic cancer chemotherapy-induced neuropathic pain.
Collapse
|
26
|
Barloscio D, Cerri E, Domenici L, Longhi R, Dallanoce C, Moretti M, Vilella A, Zoli M, Gotti C, Origlia N. In vivo study of the role of α6-containing nicotinic acetylcholine receptor in retinal function using subtype-specific RDP-MII(E11R) toxin. FASEB J 2016; 31:192-202. [PMID: 27682206 DOI: 10.1096/fj.201600855r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/16/2016] [Indexed: 02/05/2023]
Abstract
Although α6-contaning (α6*) nicotinic acetylcholine receptors (nAChRs) are densely expressed in the visual system, their role is not well known. We have characterized a family of toxins that are antagonists for α6β2* receptors and used one of these [RDP-MII(E11R)] to localize α6* nAChRs and investigate their impact on retinal function in adult Long-Evans rats. The α6*nAChRs in retinal tissue were localized using either a fluorescently tagged [RDP-MII(E11R)] or anti-α6-specific antibodies and found to be predominantly at the level of the ganglion cell layer. After intraocular injection of RDP-MII(E11R) in one eye and vehicle or inactive MII in contralateral eyes as controls, we recorded flash electroretinograms (F-ERGs), pattern ERGs (P-ERGs), and cortical visual-evoked potential (VEPs). There was no significant difference in F-ERG between the RDP-MII(E11R)-treated and control eyes. In contrast, P-ERG response amplitude was significantly reduced in the RDP-MII(E11R)-injected eye. Blocking α6* nAChRs at retinal level also decreased the VEP amplitude recorded in the visual cortex contralateral to the injected eye. Because both the cortical and inner retina output were affected by RDP-MII(E11R), whereas photoreceptor output was preserved, we conclude that the reduced visual response was due to an alteration in the function of α6* nAChRs present in the ganglion cell layer.-Barloscio, D., Cerri, E., Domenici, L., Longhi, R., Dallanoce, C., Moretti, M., Vilella, A., Zoli, M., Gotti, C., and Origlia, N. In vivo study of the role of α6-containing nicotinic acetylcholine receptor in retinal function using subtype-specific RDP-MII(E11R) toxin.
Collapse
Affiliation(s)
- Davide Barloscio
- National Research Council (CNR) Neuroscience Institute-Pisa, Pisa, Italy
| | - Elisa Cerri
- National Research Council (CNR) Neuroscience Institute-Pisa, Pisa, Italy
| | - Luciano Domenici
- National Research Council (CNR) Neuroscience Institute-Pisa, Pisa, Italy
| | - Renato Longhi
- CNR Institute of Chemistry of Molecular Recognition, Milan, Italy
| | - Clelia Dallanoce
- Department of Pharmaceutical Sciences, Section of Medicinal Chemistry "Pietro Pratesi," University of Milan, Milan, Italy
| | - Milena Moretti
- CNR Neuroscience Institute-Milano, Biometra University of Milan, Milan, Italy; and
| | - Antonietta Vilella
- Center for Neuroscience and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Michele Zoli
- Center for Neuroscience and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Cecilia Gotti
- CNR Neuroscience Institute-Milano, Biometra University of Milan, Milan, Italy; and
| | - Nicola Origlia
- National Research Council (CNR) Neuroscience Institute-Pisa, Pisa, Italy;
| |
Collapse
|
27
|
Hone AJ, McIntosh JM, Azam L, Lindstrom J, Lucero L, Whiteaker P, Passas J, Blázquez J, Albillos A. α-Conotoxins Identify the α3β4* Subtype as the Predominant Nicotinic Acetylcholine Receptor Expressed in Human Adrenal Chromaffin Cells. Mol Pharmacol 2015; 88:881-93. [PMID: 26330550 DOI: 10.1124/mol.115.100982] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 08/31/2015] [Indexed: 01/17/2023] Open
Abstract
Ligands that selectively inhibit human α3β2 and α6β2 nicotinic acetylcholine receptor (nAChRs) and not the closely related α3β4 and α6β4 subtypes are lacking. Current α-conotoxins (α-Ctxs) that discriminate among these nAChR subtypes in rat fail to discriminate among the human receptor homologs. In this study, we describe the development of α-Ctx LvIA(N9R,V10A) that is 3000-fold more potent on oocyte-expressed human α3β2 than α3β4 and 165-fold more potent on human α6/α3β2β3 than α6/α3β4 nAChRs. This analog was used in conjuction with three other α-Ctx analogs and patch-clamp electrophysiology to characterize the nAChR subtypes expressed by human adrenal chromaffin cells. LvIA(N9R,V10A) showed little effect on the acetylcholine-evoked currents in these cells at concentrations expected to inhibit nAChRs with β2 ligand-binding sites. In contrast, the β4-selective α-Ctx BuIA(T5A,P6O) inhibited >98% of the acetylcholine-evoked current, indicating that most of the heteromeric receptors contained β4 ligand-binding sites. Additional studies using the α6-selective α-Ctx PeIA(A7V,S9H,V10A,N11R,E14A) indicated that the predominant heteromeric nAChR expressed by human adrenal chromaffin cells is the α3β4* subtype (asterisk indicates the possible presence of additional subunits). This conclusion was supported by polymerase chain reaction experiments of human adrenal medulla gland and of cultured human adrenal chromaffin cells that demonstrated prominent expression of RNAs for α3, α5, α7, β2, and β4 subunits and a low abundance of RNAs for α2, α4, α6, and α10 subunits.
Collapse
Affiliation(s)
- Arik J Hone
- Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain (A.J.H., A.A.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M., L.A.); George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.); Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, Pennsylvania (J.L.); Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona (L.L., P.W.); Hospital Doce de Octubre, Madrid, Spain (J.P.); and Hospital Clínico San Carlos Madrid, Spain (J.B.)
| | - J Michael McIntosh
- Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain (A.J.H., A.A.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M., L.A.); George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.); Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, Pennsylvania (J.L.); Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona (L.L., P.W.); Hospital Doce de Octubre, Madrid, Spain (J.P.); and Hospital Clínico San Carlos Madrid, Spain (J.B.)
| | - Layla Azam
- Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain (A.J.H., A.A.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M., L.A.); George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.); Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, Pennsylvania (J.L.); Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona (L.L., P.W.); Hospital Doce de Octubre, Madrid, Spain (J.P.); and Hospital Clínico San Carlos Madrid, Spain (J.B.)
| | - Jon Lindstrom
- Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain (A.J.H., A.A.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M., L.A.); George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.); Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, Pennsylvania (J.L.); Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona (L.L., P.W.); Hospital Doce de Octubre, Madrid, Spain (J.P.); and Hospital Clínico San Carlos Madrid, Spain (J.B.)
| | - Linda Lucero
- Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain (A.J.H., A.A.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M., L.A.); George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.); Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, Pennsylvania (J.L.); Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona (L.L., P.W.); Hospital Doce de Octubre, Madrid, Spain (J.P.); and Hospital Clínico San Carlos Madrid, Spain (J.B.)
| | - Paul Whiteaker
- Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain (A.J.H., A.A.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M., L.A.); George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.); Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, Pennsylvania (J.L.); Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona (L.L., P.W.); Hospital Doce de Octubre, Madrid, Spain (J.P.); and Hospital Clínico San Carlos Madrid, Spain (J.B.)
| | - Juan Passas
- Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain (A.J.H., A.A.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M., L.A.); George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.); Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, Pennsylvania (J.L.); Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona (L.L., P.W.); Hospital Doce de Octubre, Madrid, Spain (J.P.); and Hospital Clínico San Carlos Madrid, Spain (J.B.)
| | - Jesús Blázquez
- Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain (A.J.H., A.A.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M., L.A.); George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.); Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, Pennsylvania (J.L.); Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona (L.L., P.W.); Hospital Doce de Octubre, Madrid, Spain (J.P.); and Hospital Clínico San Carlos Madrid, Spain (J.B.)
| | - Almudena Albillos
- Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain (A.J.H., A.A.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M., L.A.); George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.); Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, Pennsylvania (J.L.); Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona (L.L., P.W.); Hospital Doce de Octubre, Madrid, Spain (J.P.); and Hospital Clínico San Carlos Madrid, Spain (J.B.)
| |
Collapse
|
28
|
Natural compounds interacting with nicotinic acetylcholine receptors: from low-molecular weight ones to peptides and proteins. Toxins (Basel) 2015; 7:1683-701. [PMID: 26008231 PMCID: PMC4448168 DOI: 10.3390/toxins7051683] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 05/07/2015] [Indexed: 12/16/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) fulfill a variety of functions making identification and analysis of nAChR subtypes a challenging task. Traditional instruments for nAChR research are d-tubocurarine, snake venom protein α-bungarotoxin (α-Bgt), and α-conotoxins, neurotoxic peptides from Conus snails. Various new compounds of different structural classes also interacting with nAChRs have been recently identified. Among the low-molecular weight compounds are alkaloids pibocin, varacin and makaluvamines C and G. 6-Bromohypaphorine from the mollusk Hermissenda crassicornis does not bind to Torpedo nAChR but behaves as an agonist on human α7 nAChR. To get more selective α-conotoxins, computer modeling of their complexes with acetylcholine-binding proteins and distinct nAChRs was used. Several novel three-finger neurotoxins targeting nAChRs were described and α-Bgt inhibition of GABA-A receptors was discovered. Information on the mechanisms of nAChR interactions with the three-finger proteins of the Ly6 family was found. Snake venom phospholipases A2 were recently found to inhibit different nAChR subtypes. Blocking of nAChRs in Lymnaea stagnalis neurons was shown for venom C-type lectin-like proteins, appearing to be the largest molecules capable to interact with the receptor. A huge nAChR molecule sensible to conformational rearrangements accommodates diverse binding sites recognizable by structurally very different compounds.
Collapse
|
29
|
Post MR, Limapichat W, Lester HA, Dougherty DA. Heterologous expression and nonsense suppression provide insights into agonist behavior at α6β2 nicotinic acetylcholine receptors. Neuropharmacology 2015; 97:376-82. [PMID: 25908401 DOI: 10.1016/j.neuropharm.2015.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/27/2015] [Accepted: 04/10/2015] [Indexed: 10/23/2022]
Abstract
The α6-containing subtypes of the nicotinic acetylcholine receptor (nAChR) are localized to presynaptic terminals of the dopaminergic pathways of the central nervous system. Selective ligands for these nAChRs are potentially useful in both Parkinson's disease and addiction. For these and other goals, it is important to distinguish the binding behavior of agonists at the α6-β2 binding site versus other subtypes. To study this problem, we apply nonsense suppression-based non-canonical amino acid mutagenesis. We report a combination of four mutations in α6β2 that yield high-level heterologous expression in Xenopus oocytes. By varying mRNA injection ratios, two populations were observed with unique characteristics, likely due to differing stoichiometries. Responses to nine known nAChR agonists were analyzed at the receptor, and their corresponding EC50 values and efficacies are reported. The system is compatible with nonsense suppression, allowing structure-function studies between Trp149 - a conserved residue on loop B found to make a cation-π interaction at several nAChR subtypes - and several agonists. These studies reveal that acetylcholine forms a strong cation-π interaction with the conserved tryptophan, while nicotine and TC299423 do not, suggesting a unique pharmacology for the α6β2 nAChR.
Collapse
Affiliation(s)
- Michael R Post
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd., Pasadena, CA 91125, USA
| | - Walrati Limapichat
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd., Pasadena, CA 91125, USA
| | - Henry A Lester
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Dennis A Dougherty
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd., Pasadena, CA 91125, USA.
| |
Collapse
|
30
|
Conotoxins targeting nicotinic acetylcholine receptors: an overview. Mar Drugs 2014; 12:2970-3004. [PMID: 24857959 PMCID: PMC4052327 DOI: 10.3390/md12052970] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 04/24/2014] [Accepted: 04/28/2014] [Indexed: 12/19/2022] Open
Abstract
Marine snails of the genus Conus are a large family of predatory gastropods with an unparalleled molecular diversity of pharmacologically active compounds in their venom. Cone snail venom comprises of a rich and diverse cocktail of peptide toxins which act on a wide variety of ion channels such as voltage-gated sodium- (NaV), potassium- (KV), and calcium- (CaV) channels as well as nicotinic acetylcholine receptors (nAChRs) which are classified as ligand-gated ion channels. The mode of action of several conotoxins has been the subject of investigation, while for many others this remains unknown. This review aims to give an overview of the knowledge we have today on the molecular pharmacology of conotoxins specifically interacting with nAChRs along with the structure–function relationship data.
Collapse
|
31
|
Luo S, Zhangsun D, Schroeder CI, Zhu X, Hu Y, Wu Y, Weltzin MM, Eberhard S, Kaas Q, Craik DJ, McIntosh JM, Whiteaker P. A novel α4/7-conotoxin LvIA from Conus lividus that selectively blocks α3β2 vs. α6/α3β2β3 nicotinic acetylcholine receptors. FASEB J 2014; 28:1842-53. [PMID: 24398291 DOI: 10.1096/fj.13-244103] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This study was performed to discover and characterize the first potent α3β2-subtype-selective nicotinic acetylcholine receptor (nAChR) ligand. A novel α4/7-conotoxin, α-CTxLvIA, was cloned from Conus lividus. Its pharmacological profile at Xenopus laevis oocyte-expressed rat nAChR subtypes was determined by 2-electrode voltage-clamp electrophysiology, and its 3-dimensional (3D) structure was determined by NMR spectroscopy. α-CTx LvIA is a 16-aa C-terminally-amidated peptide with 2-disulfide bridges. Using rat subunits expressed in Xenopus oocytes, we found the highest affinity of α-CTxLvIA was for α3β2 nAChRs (IC50 8.7 nM), where blockade was reversible within 2 min. IC50 values were >100 nM at α6/α3β2β3, α6/α3β4, and α3β4 nAChRs, and ≥3 μM at all other subtypes tested. α3β2 vs. α6β2 subtype selectivity was confirmed for human-subunit nAChRs with much greater preference (300-fold) for α3β2 over α6β2 nAChRs. This is the first α-CTx reported to show high selectivity for human α3β2 vs. α6β2 nAChRs. α-CTxLvIA adopts two similarly populated conformations water: one (assumed to be bioactive) is highly structured, whereas the other is mostly random coil in nature. Selectivity differences with the similarly potent, but less selective, α3β2 nAChR antagonist α-CTx PeIA probably reside within the three residues, which differ in loop 2, given their otherwise similar 3D structures. α4/7-CTx LvIA is a new, potent, selective α3β2 nAChR antagonist, which will enable detailed studies of α3β2 nAChR structure, function, and physiological roles.
Collapse
Affiliation(s)
- Sulan Luo
- 1Key Laboratory of Tropical Biological Resources, Ministry of Education, Hainan University; Haikou, Hainan, 570228 China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hone AJ, Ruiz M, Scadden M, Christensen S, Gajewiak J, Azam L, McIntosh JM. Positional scanning mutagenesis of α-conotoxin PeIA identifies critical residues that confer potency and selectivity for α6/α3β2β3 and α3β2 nicotinic acetylcholine receptors. J Biol Chem 2013; 288:25428-25439. [PMID: 23846688 DOI: 10.1074/jbc.m113.482059] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The nicotinic acetylcholine receptor (nAChR) subtype α6β2* (the asterisk denotes the possible presence of additional subunits) has been identified as an important molecular target for the pharmacotherapy of Parkinson disease and nicotine dependence. The α6 subunit is closely related to the α3 subunit, and this presents a problem in designing ligands that discriminate between α6β2* and α3β2* nAChRs. We used positional scanning mutagenesis of α-conotoxin PeIA, which targets both α6β2* and α3β2*, in combination with mutagenesis of the α6 and α3 subunits, to gain molecular insights into the interaction of PeIA with heterologously expressed α6/α3β2β3 and α3β2 receptors. Mutagenesis of PeIA revealed that Asn(11) was located in an important position that interacts with the α6 and α3 subunits. Substitution of Asn(11) with a positively charged amino acid essentially abolished the activity of PeIA for α3β2 but not for α6/α3β2β3 receptors. These results were used to synthesize a PeIA analog that was >15,000-fold more potent on α6/α3β2β3 than α3β2 receptors. Analogs with an N11R substitution were then used to show a critical interaction between the 11th position of PeIA and Glu(152) of the α6 subunit and Lys(152) of the α3 subunit. The results of these studies provide molecular insights into designing ligands that selectively target α6β2* nAChRs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - J Michael McIntosh
- the Departments of Biology and; From the Interdepartmental Program in Neuroscience and; Psychiatry, University of Utah, Salt Lake City, Utah 84132 and; the George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah 84148.
| |
Collapse
|