1
|
Kubrak O, Jørgensen AF, Koyama T, Lassen M, Nagy S, Hald J, Mazzoni G, Madsen D, Hansen JB, Larsen MR, Texada MJ, Hansen JL, Halberg KV, Rewitz K. LGR signaling mediates muscle-adipose tissue crosstalk and protects against diet-induced insulin resistance. Nat Commun 2024; 15:6126. [PMID: 39033139 PMCID: PMC11271308 DOI: 10.1038/s41467-024-50468-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 07/04/2024] [Indexed: 07/23/2024] Open
Abstract
Obesity impairs tissue insulin sensitivity and signaling, promoting type-2 diabetes. Although improving insulin signaling is key to reversing diabetes, the multi-organ mechanisms regulating this process are poorly defined. Here, we screen the secretome and receptome in Drosophila to identify the hormonal crosstalk affecting diet-induced insulin resistance and obesity. We discover a complex interplay between muscle, neuronal, and adipose tissues, mediated by Bone Morphogenetic Protein (BMP) signaling and the hormone Bursicon, that enhances insulin signaling and sugar tolerance. Muscle-derived BMP signaling, induced by sugar, governs neuronal Bursicon signaling. Bursicon, through its receptor Rickets, a Leucine-rich-repeat-containing G-protein coupled receptor (LGR), improves insulin secretion and insulin sensitivity in adipose tissue, mitigating hyperglycemia. In mouse adipocytes, loss of the Rickets ortholog LGR4 blunts insulin responses, showing an essential role of LGR4 in adipocyte insulin sensitivity. Our findings reveal a muscle-neuronal-fat-tissue axis driving metabolic adaptation to high-sugar conditions, identifying LGR4 as a critical mediator in this regulatory network.
Collapse
Affiliation(s)
- Olga Kubrak
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Anne F Jørgensen
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
- Novo Nordisk, Novo Nordisk Park, 2760, Maaløv, Denmark
| | - Takashi Koyama
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Mette Lassen
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Stanislav Nagy
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Jacob Hald
- Novo Nordisk, Novo Nordisk Park, 2760, Maaløv, Denmark
| | | | - Dennis Madsen
- Novo Nordisk, Novo Nordisk Park, 2760, Maaløv, Denmark
| | - Jacob B Hansen
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Martin Røssel Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230, Odense, Denmark
| | - Michael J Texada
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | | | - Kenneth V Halberg
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark.
| |
Collapse
|
2
|
Willard FS, Meredith TD, Showalter AD, Ma W, Ho JD, Sauder JM, Sloop KW. Synthetic protease-activated class B GPCRs. Biochem Biophys Res Commun 2020; 530:246-251. [DOI: 10.1016/j.bbrc.2020.07.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/06/2020] [Indexed: 11/28/2022]
|
3
|
Flaven-Pouchon J, Alvarez JV, Rojas C, Ewer J. The tanning hormone, bursicon, does not act directly on the epidermis to tan the Drosophila exoskeleton. BMC Biol 2020; 18:17. [PMID: 32075655 PMCID: PMC7029472 DOI: 10.1186/s12915-020-0742-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/24/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND In insects, continuous growth requires the periodic replacement of the exoskeleton. Once the remains of the exoskeleton from the previous stage have been shed during ecdysis, the new one is rapidly sclerotized (hardened) and melanized (pigmented), a process collectively known as tanning. The rapid tanning that occurs after ecdysis is critical for insect survival, as it reduces desiccation, and gives the exoskeleton the rigidity needed to support the internal organs and to provide a solid anchor for the muscles. This rapid postecdysial tanning is triggered by the "tanning hormone", bursicon. Since bursicon is released into the hemolymph, it has naturally been assumed that it would act on the epidermal cells to cause the tanning of the overlying exoskeleton. RESULTS Here we investigated the site of bursicon action in Drosophila by examining the consequences on tanning of disabling the bursicon receptor (encoded by the rickets gene) in different tissues. To our surprise, we found that rapid tanning does not require rickets function in the epidermis but requires it instead in peptidergic neurons of the ventral nervous system (VNS). Although we were unable to identify the signal that is transmitted from the VNS to the epidermis, we show that neurons that express the Drosophila insulin-like peptide ILP7, but not the ILP7 peptide itself, are involved. In addition, we found that some of the bursicon targets involved in melanization are different from those that cause sclerotization. CONCLUSIONS Our findings show that bursicon does not act directly on the epidermis to cause the tanning of the overlying exoskeleton but instead requires an intermediary messenger produced by peptidergic neurons within the central nervous system. Thus, this work has uncovered an unexpected layer of control in a process that is critical for insect survival, which will significantly alter the direction of future research aimed at understanding how rapid postecdysial tanning occurs.
Collapse
Affiliation(s)
| | - Javier V Alvarez
- Instituto de Neurociencia, Universidad de Valparaíso, Valparaiso, Chile
| | - Candy Rojas
- Instituto de Neurociencia, Universidad de Valparaíso, Valparaiso, Chile
| | - John Ewer
- Instituto de Neurociencia, Universidad de Valparaíso, Valparaiso, Chile.
| |
Collapse
|
4
|
Ferveur JF, Cortot J, Rihani K, Cobb M, Everaerts C. Desiccation resistance: effect of cuticular hydrocarbons and water content in Drosophila melanogaster adults. PeerJ 2018; 6:e4318. [PMID: 29456884 PMCID: PMC5813593 DOI: 10.7717/peerj.4318] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/12/2018] [Indexed: 11/20/2022] Open
Abstract
Background The insect cuticle covers the whole body and all appendages and has bi-directionnal selective permeability: it protects against environmental stress and pathogen infection and also helps to reduce water loss. The adult cuticle is often associated with a superficial layer of fatty acid-derived molecules such as waxes and long chain hydrocarbons that prevent rapid dehydration. The waterproofing properties of cuticular hydrocarbons (CHs) depend on their chain length and desaturation number. Drosophila CH biosynthesis involves an enzymatic pathway including several elongase and desaturase enzymes. Methods The link between desiccation resistance and CH profile remains unclear, so we tested (1) experimentally selected desiccation-resistant lines, (2) transgenic flies with altered desaturase expression and (3) natural and laboratory-induced CH variants. We also explored the possible relationship between desiccation resistance, relative water content and fecundity in females. Results We found that increased desiccation resistance is linked with the increased proportion of desaturated CHs, but not with their total amount. Experimentally-induced desiccation resistance and CH variation both remained stable after many generations without selection. Conversely, flies with a higher water content and a lower proportion of desaturated CHs showed reduced desiccation resistance. This was also the case in flies with defective desaturase expression in the fat body. Discussion We conclude that rapidly acquired desiccation resistance, depending on both CH profile and water content, can remain stable without selection in a humid environment. These three phenotypes, which might be expected to show a simple relationship, turn out to have complex physiological and genetic links.
Collapse
Affiliation(s)
- Jean-Francois Ferveur
- Centre des Sciences du Goût et de l'Alimentation, Agrosup-UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - Jérôme Cortot
- Centre des Sciences du Goût et de l'Alimentation, Agrosup-UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - Karen Rihani
- Centre des Sciences du Goût et de l'Alimentation, Agrosup-UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - Matthew Cobb
- School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Claude Everaerts
- Centre des Sciences du Goût et de l'Alimentation, Agrosup-UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| |
Collapse
|
5
|
Regna K, Kurshan PT, Harwood BN, Jenkins AM, Lai CQ, Muskavitch MAT, Kopin AS, Draper I. A critical role for the Drosophila dopamine D1-like receptor Dop1R2 at the onset of metamorphosis. BMC DEVELOPMENTAL BIOLOGY 2016; 16:15. [PMID: 27184815 PMCID: PMC4868058 DOI: 10.1186/s12861-016-0115-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/08/2016] [Indexed: 01/26/2023]
Abstract
BACKGROUND Insect metamorphosis relies on temporal and spatial cues that are precisely controlled. Previous studies in Drosophila have shown that untimely activation of genes that are essential to metamorphosis results in growth defects, developmental delay and death. Multiple factors exist that safeguard these genes against dysregulated expression. The list of identified negative regulators that play such a role in Drosophila development continues to expand. RESULTS By using RNAi transgene-induced gene silencing coupled to spatio/temporal assessment, we have unraveled an important role for the Drosophila dopamine 1-like receptor, Dop1R2, in development. We show that Dop1R2 knockdown leads to pre-adult lethality. In adults that escape death, abnormal wing expansion and/or melanization defects occur. Furthermore we show that salivary gland expression of this GPCR during the late larval/prepupal stage is essential for the flies to survive through adulthood. In addition to RNAi-induced effects, treatment of larvae with the high affinity D1-like receptor antagonist flupenthixol, also results in developmental arrest, and in morphological defects comparable to those seen in Dop1R2 RNAi flies. To examine the basis for pupal lethality in Dop1R2 RNAi flies, we carried out transcriptome analysis. These studies revealed up-regulation of genes that respond to ecdysone, regulate morphogenesis and/or modulate defense/immunity. CONCLUSION Taken together our findings suggest a role for Dop1R2 in the repression of genes that coordinate metamorphosis. Premature release of this inhibition is not tolerated by the developing fly.
Collapse
Affiliation(s)
- Kimberly Regna
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
| | - Peri T Kurshan
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA.,Present Address: Department of Biology, Stanford University, California, 94305, USA
| | - Benjamin N Harwood
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA
| | - Adam M Jenkins
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
| | - Chao-Qiang Lai
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA
| | - Marc A T Muskavitch
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA.,Discovery Research, Biogen Idec, Cambridge, MA, 02142, USA
| | - Alan S Kopin
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA
| | - Isabelle Draper
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA.
| |
Collapse
|
6
|
Heller D, Doyle JR, Raman VS, Beinborn M, Kumar K, Kopin AS. Novel Probes Establish Mas-Related G Protein-Coupled Receptor X1 Variants as Receptors with Loss or Gain of Function. ACTA ACUST UNITED AC 2015; 356:276-83. [DOI: 10.1124/jpet.115.227058] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/16/2015] [Indexed: 11/22/2022]
|
7
|
Doyle JR, Harwood BN, Krishnaji ST, Krishnamurthy VM, Lin WE, Fortin JP, Kumar K, Kopin AS. A two-step strategy to enhance activity of low potency peptides. PLoS One 2014; 9:e110502. [PMID: 25391026 PMCID: PMC4229100 DOI: 10.1371/journal.pone.0110502] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 09/15/2014] [Indexed: 12/25/2022] Open
Abstract
Novel strategies are needed to expedite the generation and optimization of peptide probes targeting G protein-coupled receptors (GPCRs). We have previously shown that membrane tethered ligands (MTLs), recombinant proteins comprised of a membrane anchor, an extracellular linker, and a peptide ligand can be used to identify targeted receptor modulators. Although MTLs provide a useful tool to identify and/or modify functionally active peptides, a major limitation of this strategy is the reliance on recombinant protein expression. We now report the generation and pharmacological characterization of prototype peptide-linker-lipid conjugates, synthetic membrane anchored ligands (SMALs), which are designed as mimics of corresponding MTLs. In this study, we systematically compare the activity of selected peptides as MTLs versus SMALs. As prototypes, we focused on the precursor proteins of mature Substance P (SubP) and Cholecystokinin 4 (CCK4), specifically non-amidated SubP (SubP-COOH) and glycine extended CCK4 (CCK4-Gly-COOH). As low affinity soluble peptides these ligands each presented a challenging test case for assessment of MTL/SMAL technology. For each ligand, MTLs and corresponding SMALs showed agonist activity and comparable subtype selectivity. In addition, our results illustrate that membrane anchoring increases ligand potency. Furthermore, both MTL and SMAL induced signaling can be blocked by specific non-peptide antagonists suggesting that the anchored constructs may be orthosteric agonists. In conclusion, MTLs offer a streamlined approach for identifying low activity peptides which can be readily converted to higher potency SMALs. The ability to recapitulate MTL activity with SMALs extends the utility of anchored peptides as probes of GPCR function.
Collapse
Affiliation(s)
- Jamie R. Doyle
- Tufts Medical Center, Molecular Cardiology Research Institute, Molecular Pharmacology Research Center, Boston, Massachusetts, United States of America
| | - Benjamin N. Harwood
- Tufts Medical Center, Molecular Cardiology Research Institute, Molecular Pharmacology Research Center, Boston, Massachusetts, United States of America
- Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | | | - Vijay M. Krishnamurthy
- Tufts University, Department of Chemistry, Medford, Massachusetts, United States of America
| | - Wei-En Lin
- Tufts University, Department of Chemistry, Medford, Massachusetts, United States of America
| | - Jean-Philippe Fortin
- Tufts Medical Center, Molecular Cardiology Research Institute, Molecular Pharmacology Research Center, Boston, Massachusetts, United States of America
| | - Krishna Kumar
- Tufts University, Department of Chemistry, Medford, Massachusetts, United States of America
| | - Alan S. Kopin
- Tufts Medical Center, Molecular Cardiology Research Institute, Molecular Pharmacology Research Center, Boston, Massachusetts, United States of America
- Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| |
Collapse
|
8
|
Harwood BN, Draper I, Kopin AS. Targeted inactivation of the rickets receptor in muscle compromises Drosophila viability. ACTA ACUST UNITED AC 2014; 217:4091-8. [PMID: 25278473 DOI: 10.1242/jeb.110098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Bursicon is a hormone that modulates wing expansion, cuticle hardening and melanization in Drosophila melanogaster. Bursicon activity is mediated through its cognate G protein-coupled receptor (GPCR), rickets. We have developed a membrane-tethered bursicon construct that enables spatial modulation of rickets-mediated physiology in transgenic flies. Ubiquitous expression of tethered bursicon throughout development results in arrest at the pupal stage. The few organisms that eclose fail to undergo wing expansion. These phenotypes suggest that expression of tethered bursicon inhibits rickets-mediated function. Consistent with this hypothesis, we show in vitro that sustained stimulation of rickets by tethered bursicon leads to receptor desensitization. Furthermore, tissue-specific expression of the tethered bursicon inhibitor unraveled a critical role for rickets in a subset of adult muscles. Taken together, our findings highlight the utility of membrane-tethered inhibitors as important genetic/pharmacological tools to dissect the tissue-specific roles of GPCRs in vivo.
Collapse
Affiliation(s)
- Benjamin N Harwood
- Tufts Medical Center, Molecular Cardiology Research Institute, Molecular Pharmacology Research Center, 800 Washington St, Box 7703, Boston, MA 02111, USA Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, 145 Harrison Avenue, Boston, MA 02111, USA
| | - Isabelle Draper
- Tufts Medical Center, Molecular Cardiology Research Institute, Molecular Pharmacology Research Center, 800 Washington St, Box 7703, Boston, MA 02111, USA
| | - Alan S Kopin
- Tufts Medical Center, Molecular Cardiology Research Institute, Molecular Pharmacology Research Center, 800 Washington St, Box 7703, Boston, MA 02111, USA Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, 145 Harrison Avenue, Boston, MA 02111, USA
| |
Collapse
|
9
|
Doyle JR, Krishnaji ST, Zhu G, Xu ZZ, Heller D, Ji RR, Levy BD, Kumar K, Kopin AS. Development of a membrane-anchored chemerin receptor agonist as a novel modulator of allergic airway inflammation and neuropathic pain. J Biol Chem 2014; 289:13385-96. [PMID: 24659779 DOI: 10.1074/jbc.m113.522680] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The chemerin receptor (CMKLR1) is a G protein-coupled receptor found on select immune, epithelial, and dorsal root ganglion/spinal cord neuronal cells. CMKLR1 is primarily coupled to the inhibitory G protein, Gαi, and has been shown to modulate the resolution of inflammation and neuropathic pain. CMKLR1 is activated by both lipid and peptide agonists, resolvin E1 and chemerin, respectively. Notably, these ligands have short half-lives. To expedite the development of long acting, stable chemerin analogs as candidate therapeutics, we used membrane-tethered ligand technology. Membrane-tethered ligands are recombinant proteins comprised of an extracellular peptide ligand, a linker sequence, and an anchoring transmembrane domain. Using this technology, we established that a 9-amino acid-tethered chemerin fragment (amino acids 149-157) activates both mouse and human CMKLR1 with efficacy exceeding that of the full-length peptide (amino acids 21-157). To enable in vivo delivery of a corresponding soluble membrane anchored ligand, we generated lipidated analogs of the 9-amino acid fragment. Pharmacological assessment revealed high potency and wash resistance (an index of membrane anchoring). When tested in vivo, a chemerin SMAL decreased allergic airway inflammation and attenuated neuropathic pain in mice. This compound provides a prototype membrane-anchored peptide for the treatment of inflammatory disease. A parallel approach may be applied to developing therapeutics targeting other peptide hormone G protein-coupled receptors.
Collapse
Affiliation(s)
- Jamie R Doyle
- From the Molecular Pharmacology Research Center, and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts 02111
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hayden RS, Fortin JP, Harwood B, Subramanian B, Quinn KP, Georgakoudi I, Kopin AS, Kaplan DL. Cell-tethered ligands modulate bone remodeling by osteoblasts and osteoclasts. ADVANCED FUNCTIONAL MATERIALS 2014; 24:472-479. [PMID: 25419210 PMCID: PMC4235974 DOI: 10.1002/adfm.201302210] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The goals of the present study are to establish an in vitro co-culture model of osteoblast and osteoclast function and to quantify the resulting bone remodeling. The bone is tissue engineered using well-defined silk protein biomaterials in 2D and 3D formats in combination with human cells expressing tethered agonists for selected G protein-coupled receptors (GPCRs). The tethered constructs are introduced with the objective of triggering sustained and localized GPCR signaling. The cell-modified biomaterial surfaces are reconstructed from SEM images into 3D models using image processing for quantitative measurement of surface characteristics. Parathyroid hormone (PTH) and glucose-dependent insulinotropic peptide (GIP) are selected because of their roles in bone remodeling for expression in tethered format on bone marrow derived human mesenchymal stem cells (hMSCs). Increased calcium deposition and increased surface roughness are found in 3D digital surface models constructed from SEM images of silk protein films remodeled by the co-cultures containing the tethered PTH, and decreased surface roughness is found for the films remodeled by the tethered GIP co-cultures. Increased surface roughness is not found in monocultures of hMSCs expressing tethered PTH, suggesting that osteoclast-osteoblast interactions in the presence of PTH signaling are responsible for the increased mineralization. These data point towards the design of in vitro bone models in which osteoblast-osteoclast interactions are mimicked for a better understanding of bone remodeling.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Alan S. Kopin
- 800 Washington Street, Box 7703, Boston, MA 02111 (USA)
| | | |
Collapse
|
11
|
Snyder JC, Rochelle LK, Barak LS, Caron MG. The stem cell-expressed receptor Lgr5 possesses canonical and functionally active molecular determinants critical to β-arrestin-2 recruitment. PLoS One 2013; 8:e84476. [PMID: 24386388 PMCID: PMC3873998 DOI: 10.1371/journal.pone.0084476] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/14/2013] [Indexed: 01/08/2023] Open
Abstract
Lgr5 is a membrane protein related to G protein-coupled receptors (GPCR)s whose expression identifies stem cells in multiple tissues and is strongly correlated with cancer. Despite the recent identification of endogenous ligands for Lgr5, its mode of signaling remains enigmatic. The ability to couple to G proteins and βarrestins are classical molecular behaviors of GPCRs that have yet to be observed for Lgr5. Therefore, the goal of this study was to determine if Lgr5 can engage a classical GPCR behavior and elucidate the molecular determinants of this process. Structural analysis of Lgr5 revealed several motifs consistent with its ability to recruit βarr2. Among them, a "SSS" serine cluster located at amino acid position 873-875 within the C-terminal tail (C-tail), is in a region consistent with other GPCRs that bind βarr2 with high-affinity. To test its functionality, a ligand-independent βarr2 translocation assay was implemented. We show that Lgr5 recruits βarr2 and that the "SSS" amino acids (873-875) are absolutely critical to this process. We also demonstrate that for full efficacy, this cluster requires other Lgr5 C-tail serines that were previously shown to be important for constitutive and βarr2 independent internalization of Lgr5. These data are proof of principle that a classical GPCR behavior can be manifested by Lgr5. The existence of alternative ligands or missing effectors of Lgr5 that scaffold this classical GPCR behavior and the downstream signaling pathways engaged should be considered. Characterizing Lgr5 signaling will be invaluable for assessing its role in tissue maintenance, repair, and disease.
Collapse
Affiliation(s)
- Joshua C. Snyder
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Lauren K. Rochelle
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Larry S. Barak
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Marc G. Caron
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|