1
|
Shastak Y, Pelletier W. Pet Wellness and Vitamin A: A Narrative Overview. Animals (Basel) 2024; 14:1000. [PMID: 38612239 PMCID: PMC11010875 DOI: 10.3390/ani14071000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
The health of companion animals, particularly dogs and cats, is significantly influenced by nutrition, with vitamins playing a crucial role. Vitamin A, in particular, is indispensable, with diverse roles ranging from vision to immune modulation and reproduction. Despite its importance, the metabolism and dietary requirements of vitamin A in companion animals remain complex and not fully understood. This review provides a comprehensive overview of the historical perspective, the digestion, the metabolism, the physiological roles, the deficiency, the excess, and the interactions with other micronutrients of vitamin A in companion animals. Additionally, it highlights future research directions and gaps in our understanding. Insights into the metabolism of vitamin A in companion animals, personalized nutrition strategies based on genetic variability, longitudinal studies tracking the status of vitamin A, and investigations into its immunomodulatory effects are crucial for optimizing pet health and wellness. Furthermore, understanding the stability and bioavailability of vitamin A in pet food formulations is essential for ensuring the provision of adequate micronutrients. Overall, this review underscores the importance of vitamin A in companion animal nutrition and the need for further research to enhance our understanding and to optimize dietary recommendations for pet health and well-being.
Collapse
Affiliation(s)
- Yauheni Shastak
- Nutrition & Health Division, BASF SE, 67063 Ludwigshafen am Rhein, Germany
| | | |
Collapse
|
2
|
Cassim Bawa FN, Xu Y, Gopoju R, Plonski N, Shiyab A, Hu S, Chen S, Zhu Y, Jadhav K, Kasumov T, Zhang Y. Hepatic retinoic acid receptor alpha mediates all-trans retinoic acid's effect on diet-induced hepatosteatosis. Hepatol Commun 2022; 6:2665-2675. [PMID: 35852305 PMCID: PMC9512485 DOI: 10.1002/hep4.2049] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/13/2022] [Accepted: 07/02/2022] [Indexed: 12/30/2022] Open
Abstract
All-trans retinoic acid (AtRA) is an active metabolite of vitamin A that influences many biological processes in development, differentiation, and metabolism. AtRA functions through activation of retinoid acid receptors (RARs). AtRA is shown to ameliorate hepatic steatosis, but the underlying mechanism is not well understood. In this study, we investigated the role of hepatocyte RAR alpha (RARα) in mediating the effect of AtRA on hepatosteatosis in mice. Hepatocyte-specific Rarα-/- (L-Rarα-/- ) mice and their control mice were fed a chow diet, high-fat diet (HFD), or a high-fat/cholesterol/fructose (HFCF) diet. Some of the mice were also treated with AtRA. Loss of hepatocyte RARα-induced hepatosteatosis in chow-fed aged mice and HFD-fed mice. AtRA prevented and reversed HFCF diet-induced obesity and hepatosteatosis in the control mice but not in L-Rarα-/- mice. Furthermore, AtRA reduced hepatocyte fatty acid uptake and lipid droplet formation, dependent on hepatocyte RARα. Our data suggest that hepatocyte RARα plays an important role in preventing hepatosteatosis and mediates AtRA's effects on diet-induced hepatosteatosis.
Collapse
Affiliation(s)
- Fathima N. Cassim Bawa
- School of Biomedical SciencesKent State University KentKentOhioUSA
- Department of Integrative Medical SciencesNortheast Ohio Medical UniversityRootstownOhioUSA
| | - Yanyong Xu
- Department of Integrative Medical SciencesNortheast Ohio Medical UniversityRootstownOhioUSA
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of EducationDepartment of Pathology of School of Basic Medical SciencesFudan UniversityShanghaiChina.
| | - Raja Gopoju
- Department of Integrative Medical SciencesNortheast Ohio Medical UniversityRootstownOhioUSA
| | | | - Amy Shiyab
- School of Biomedical SciencesKent State University KentKentOhioUSA
- Department of Integrative Medical SciencesNortheast Ohio Medical UniversityRootstownOhioUSA
| | - Shuwei Hu
- Department of Integrative Medical SciencesNortheast Ohio Medical UniversityRootstownOhioUSA
| | - Shaoru Chen
- Department of Integrative Medical SciencesNortheast Ohio Medical UniversityRootstownOhioUSA
| | - Yingdong Zhu
- School of Biomedical SciencesKent State University KentKentOhioUSA
- Department of Integrative Medical SciencesNortheast Ohio Medical UniversityRootstownOhioUSA
| | - Kavita Jadhav
- School of Biomedical SciencesKent State University KentKentOhioUSA
- Department of Integrative Medical SciencesNortheast Ohio Medical UniversityRootstownOhioUSA
| | - Takhar Kasumov
- Department of Pharmaceutical SciencesNortheast Ohio Medical UniversityRootstownOhioUSA
| | - Yanqiao Zhang
- Department of Integrative Medical SciencesNortheast Ohio Medical UniversityRootstownOhioUSA
| |
Collapse
|
3
|
Hassan A, Ahmed I, Wani GB. Effect of Supplementation of Vitamin A on Growth, Haemato-Biochemical Composition, and Antioxidant Ability in Cyprinus carpio var. communis. AQUACULTURE NUTRITION 2022; 2022:8446092. [PMID: 36860425 PMCID: PMC9973194 DOI: 10.1155/2022/8446092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/27/2022] [Accepted: 07/21/2022] [Indexed: 06/18/2023]
Abstract
Vitamin A requirement in fingerling common carp, Cyprinus carpio var. communis (1.64 ± 0.02 g; ABW ± SD), was evaluated by conducting a 10 week growth experiment. Casein-gelatin-based test diets representing six graded levels of vitamin A (0, 0.03, 0.07, 0.11, 0.15, and 0.19 g/kg, dry diet) were designed and fed to the triplicate group of fish at 08:00 and 16:00 hrs at the rate of 4% body weight per day. Growth parameters like live weight gain (LWG %), feed conversion ratio (FCR), protein efficiency ratio (PER), specific growth rate (SGR), and body protein deposition (BPD) improved significantly (P < 0.05) with each elevated dietary vitamin A level and found maximum growth rate along with the best- FCR at 0.11 g/kg diet. Dietary vitamin A levels also significantly (P < 0.05) affected haematological parameters of the fish. Highest haemoglobin (Hb), erythrocyte count (RBC), haematocrit content (Hct %), and lowest leucocyte count (WBC) were observed at 0.11 g/kg vitamin A fed diet compared to all the diets. Highest protein and lowest fat content were observed in the group of fingerlings fed with 0.11 g/kg vitamin A containing diet. Blood and serum profile also showed some significant (P < 0.05) differences with elevating concentration of dietary vitamin A levels. Serum parameters like aspartate aminotransferase (AST), alanine aminotransferase (ALT), and cholesterol values decreased significantly (P < 0.05) at 0.11 g/kg vitamin A fed diet compared to control diet. However, except albumin the other electrolytes improved significantly (P < 0.05) and maximal values of these parameters were also evident at 0.11 g/kg of vitamin A fed diet. Better value of TBARS was found in the group that fed 0.11 g/kg vitamin A diet. Hepatosomatic index and condition factor improved significantly (P < 0.05) with fish fed at optimal dose 0.11 g/kg of vitamin A diet. Based on quadratic regression analysis of LWG%, FCR, BPD, Hb, and calcium values of C. carpio var. communis against the varying levels of dietary vitamin A, an optimum growth, best FCR, higher BPD, Hb, and Ca values lie in the range of 0.10 to 0.12 g/kg diet, respectively. The data generated during this study would be important in developing vitamin A balanced feed for successful intensive culture of C. carpio var. communis.
Collapse
Affiliation(s)
- Aamina Hassan
- Fish Nutrition Research Laboratory, Department of Zoology, University of Kashmir, Hazratbal, 190006, Srinagar, Jammu and Kashmir, India
| | - Imtiaz Ahmed
- Fish Nutrition Research Laboratory, Department of Zoology, University of Kashmir, Hazratbal, 190006, Srinagar, Jammu and Kashmir, India
| | - Gohar Bilal Wani
- Faculty of Fisheries, Sher-e-Kashmir University of Agricultural Sciences and Technology, Rangil, 191201, Ganderbal, Jammu and Kashmir, India
| |
Collapse
|
4
|
Zenkel M, Hoja U, Gießl A, Berner D, Hohberger B, Weller JM, König L, Hübner L, Ostermann TA, Gusek-Schneider GC, Kruse FE, Pasutto F, Schlötzer-Schrehardt U. Dysregulated Retinoic Acid Signaling in the Pathogenesis of Pseudoexfoliation Syndrome. Int J Mol Sci 2022; 23:ijms23115977. [PMID: 35682657 PMCID: PMC9180992 DOI: 10.3390/ijms23115977] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 01/15/2023] Open
Abstract
Pseudoexfoliation (PEX) syndrome, a stress-induced fibrotic matrix process, is the most common recognizable cause of open-angle glaucoma worldwide. The recent identification of PEX-associated gene variants uncovered the vitamin A metabolic pathway as a factor influencing the risk of disease. In this study, we analyzed the role of the retinoic acid (RA) signaling pathway in the PEX-associated matrix metabolism and evaluated its targeting as a potential candidate for an anti-fibrotic intervention. We provided evidence that decreased expression levels of RA pathway components and diminished RA signaling activity occur in an antagonistic crosstalk with TGF-β1/Smad signaling in ocular tissues and cells from PEX patients when compared with age-matched controls. Genetic and pharmacologic modes of RA pathway inhibition induced the expression and production of PEX-associated matrix components by disease-relevant cell culture models in vitro. Conversely, RA signaling pathway activation by natural and synthetic retinoids was able to suppress PEX-associated matrix production and formation of microfibrillar networks via antagonization of Smad-dependent TGF-β1 signaling. The findings indicate that deficient RA signaling in conjunction with hyperactivated TGF-β1/Smad signaling is a driver of PEX-associated fibrosis, and that restoration of RA signaling may be a promising strategy for anti-fibrotic intervention in patients with PEX syndrome and glaucoma.
Collapse
Affiliation(s)
- Matthias Zenkel
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
| | - Ursula Hoja
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
| | - Andreas Gießl
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
| | - Daniel Berner
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
- Genetikum, 89231 Neu-Ulm, Germany
| | - Bettina Hohberger
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
| | - Julia M. Weller
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
| | - Loretta König
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
| | - Lisa Hübner
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
| | - Thomas A. Ostermann
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
| | - Gabriele C. Gusek-Schneider
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
| | - Friedrich E. Kruse
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
| | - Francesca Pasutto
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Ursula Schlötzer-Schrehardt
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
- Correspondence: ; Tel.: +49-9131-8534433; Fax: +49-9131-8534631
| |
Collapse
|
5
|
Liang D, Yang Q, Tan B, Dong X, Chi S, Liu H, Zhang S. Dietary vitamin A deficiency reduces growth performance, immune function of intestine, and alters tight junction proteins of intestine for juvenile hybrid grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂). FISH & SHELLFISH IMMUNOLOGY 2020; 107:346-356. [PMID: 33068761 DOI: 10.1016/j.fsi.2020.10.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
This study was carried out to investigate the effects of dietary vitamin A (VA) on growth performance, antioxidant capacity, digestion, intestinal immune response, and mRNA expression of intestinal tight junction proteins for juvenile hybrid grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂). Six isonitrogenous and isolipidic experimental diets were formulated to obtain VA levels (317, 1136, 2038, 4142, 7715, 15204 IU/kg diet, respectively). The triplicate groups of fish (average weight of 9.01 ± 0.27 g) were fed twice daily (8:00 and 16:00) for 7 weeks. Based on the broken-line analysis model of WG and LYZ activity, the dietary VA requirement of hybrid grouper were estimated to be 2688.58 and 4096.36 IU/kg diet. The results showed that VA deficiency or excess could reduce Weight gain, specific growth rate, and protein efficiency ratio, and increase feed conversion ratio and hepatosomatic index (P < 0.05). In addition, VA deficiency could reduce the serum activities of acid phosphatase (ACP), superoxide dismutase, and total antioxidant capacity and increase the malondialdehyde content (P < 0.05). VA deficiency also could reduce intestinal activities of ACP, alkaline phosphatase, lysozyme, complement 3, complement 4 contents, and activities of alpha-amylase, lipase, and trypsin (P < 0.05). Meanwhile, VA deficiency could reduce villus height in proximal intestine (PI) and mid intestine (MI), as well as muscle thickness in PI and distal intestine (DI) (P < 0.05). Moreover, VA deficiency could down-regulated antimicrobial peptides (β-defensin, Hepcidin [not in MI and DI], Epinecidin), anti-inflammatory cytokines (interleukin 10 and transforming growth factor β1 [not in DI]), tight junction proteins (occluding and claudin3) mRNA levels in the PI, MI and DI, and up-regulated pro-inflammatory cytokines (tumor necrosis factor α [not in MI] and interleukin 1β [not in MI]), signaling molecules c-Rel and p65 (P < 0.05). Collectively, VA deficiency could reduce growth performance because of a negative effect on intestinal health by depressing digestive abilities, intestinal morphology, immunity and tight junction function in the intestine.
Collapse
Affiliation(s)
- Dazhi Liang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Guangdong, 524088, China
| | - Qihui Yang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Guangdong, 524088, China.
| | - Beiping Tan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Guangdong, 524088, China.
| | - Xiaohui Dong
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Guangdong, 524088, China
| | - Shuyan Chi
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Guangdong, 524088, China
| | - Hongyu Liu
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Guangdong, 524088, China
| | - Shuang Zhang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Guangdong, 524088, China
| |
Collapse
|
6
|
Greene E, Cauble R, Dhamad AE, Kidd MT, Kong B, Howard SM, Castro HF, Campagna SR, Bedford M, Dridi S. Muscle Metabolome Profiles in Woody Breast-(un)Affected Broilers: Effects of Quantum Blue Phytase-Enriched Diet. Front Vet Sci 2020; 7:458. [PMID: 32851035 PMCID: PMC7417653 DOI: 10.3389/fvets.2020.00458] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/22/2020] [Indexed: 12/21/2022] Open
Abstract
Woody breast (WB) myopathy is significantly impacting modern broilers and is imposing a huge economic burden on the poultry industry worldwide. Yet, its etiology is not fully defined. In a previous study, we have shown that hypoxia and the activation of its upstream mediators (AKT/PI3K/mTOR) played a key role in WB myopathy, and supplementation of quantum blue (QB) can help to reduce WB severity via modulation of hypoxia-related pathways. To gain further insights, we undertook here a metabolomics approach to identify key metabolite signatures and outline their most enriched biological functions. Ultra performance liquid chromatography coupled with high resolution mass spectrometry (UPLC-HRMS) identified a total of 108 known metabolites. Of these, mean intensity differences at P < 0.05 were found in 60 metabolites with 42 higher and 18 lower in WB-affected compared to unaffected muscles. Multivariate analysis and Partial Least Squares Discriminant analysis (PLS-DA) scores plot displayed different clusters when comparing metabolites profile from affected and unaffected tissues and from moderate (MOD) and severe (SEV) WB muscles indicating that unique metabolite profiles are present for the WB-affected and unaffected muscles. To gain biologically related molecule networks, a stringent pathway analyses was conducted using IPA knowledge-base. The top 10 canonical pathways generated, using a fold-change -1.5 and 1.5 cutoff, with the 50 differentially abundant-metabolites were purine nucleotide degradation and de novo biosynthesis, sirtuin signaling pathway, citrulline-nitric oxide cycle, salvage pathways of pyrimidine DNA, IL-1 signaling, iNOS, Angiogenesis, PI3K/AKT signaling, and oxidative phosphorylation. The top altered bio-functions in term of molecular and cellular functions in WB-affected tissues included cellular development, cellular growth and proliferation, cellular death and survival, small molecular biochemistry, inflammatory response, free radical scavenging, cell signaling and cell-to-cell interaction, cell cycles, and lipid, carbohydrate, amino acid, and nucleic acid metabolisms. The top disorder functions identified were organismal injury and abnormalities, cancer, skeletal and muscular disorders, connective tissue disorders, and inflammatory diseases. Breast tissues from birds fed with high dose (2,000 FTU) of QB phytase exhibited 22 metabolites with significantly different levels compared to the control group with a clear cluster using PLS-DA analysis. Of these 22 metabolites, 9 were differentially abundant between WB-affected and unaffected muscles. Taken together, this study determined many metabolic signatures and disordered pathways, which could be regarded as new routes for discovering potential mechanisms of WB myopathy.
Collapse
Affiliation(s)
- Elizabeth Greene
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Reagan Cauble
- Department of Animal Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Ahmed E Dhamad
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Michael T Kidd
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Byungwhi Kong
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Sara M Howard
- Biological and Small Molecule Mass Spectrometry Core, Department of Chemistry, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Hector F Castro
- Biological and Small Molecule Mass Spectrometry Core, Department of Chemistry, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Shawn R Campagna
- Biological and Small Molecule Mass Spectrometry Core, Department of Chemistry, University of Tennessee, Knoxville, Knoxville, TN, United States
| | | | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
7
|
Dou Y, Huang D, Zeng X, Zhou Y, Jiang X, Yue C, He J, Xiao S. All-trans retinoic acid enhances the effect of Fra-1 to inhibit cell proliferation and metabolism in cervical cancer. Biotechnol Lett 2020; 42:1051-1060. [PMID: 32124141 DOI: 10.1007/s10529-020-02847-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/20/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVES This study on all-trans retinoic acid was designed to explore its effect on the ability of Fra-1 to cervical cancer cell development. The results show that all-trans retinoic acid enhances the effect of Fra-1 on inhibiting cervical cancer proliferation and the glucose consumption, its effect on the loss of mitochondrial membrane potential, on the decreasing of lactic acid as well as ATP, and also influences the expression of MDM2/P53/P21 and LDHA. RESULTS The results show that the expression of Fra-1 is higher in all-trans retinoic acid-treated cervical cancer. Flow cytometry and kit detection show that all-trans retinoic acid can enhance the ability of Fra-1 to lose the mitochondrial membrane potential, inhibit the glucose consumption and the production of lactic acid as well as ATP. CCK8 and colony formation assays indicate that all-trans retinoic acid enhances the ability of Fra-1 to inhibit cell proliferation. In addition, through Western blot analysis, it was determined that P53 and P21 were up-regulated, and MDM2 and LDHA were down-regulated. CONCLUSION The overall results of the study strongly suggest that all-trans retinoic acid enhances the effect of Fra-1 on inhibiting cervical cancer proliferation and metabolism in vitro, and also influences the expression of MDM2/P53/P21 and LDHA.
Collapse
Affiliation(s)
- Yingyu Dou
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Dongqing Huang
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.,Department of Gynecology and Obstetrics, The Second Hospital of Zhuzhou, Zhuzhou, 412000, Hunan, China
| | - Xiangyang Zeng
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Yanhong Zhou
- The Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xiaoyan Jiang
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Chunxue Yue
- The Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Junyu He
- The Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Songshu Xiao
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
8
|
Ribot J, Arreguín A, Kuda O, Kopecky J, Palou A, Bonet ML. Novel Markers of the Metabolic Impact of Exogenous Retinoic Acid with A Focus on Acylcarnitines and Amino Acids. Int J Mol Sci 2019; 20:E3640. [PMID: 31349613 PMCID: PMC6696161 DOI: 10.3390/ijms20153640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/21/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023] Open
Abstract
Treatment with all-trans retinoic acid (ATRA), the carboxylic form of vitamin A, lowers body weight in rodents by promoting oxidative metabolism in multiple tissues including white and brown adipose tissues. We aimed to identify novel markers of the metabolic impact of ATRA through targeted blood metabolomics analyses, with a focus on acylcarnitines and amino acids. Blood was obtained from mice treated with a high ATRA dose (50 mg/kg body weight/day, subcutaneous injection) or placebo (controls) during the 4 days preceding collection. LC-MS/MS analyses with a focus on acylcarnitines and amino acids were conducted on plasma and PBMC. Main results showed that, relative to controls, ATRA-treated mice had in plasma: increased levels of carnitine, acetylcarnitine, and longer acylcarnitine species; decreased levels of citrulline, and increased global arginine bioavailability ratio for nitric oxide synthesis; increased levels of creatine, taurine and docosahexaenoic acid; and a decreased n-6/n-3 polyunsaturated fatty acids ratio. While some of these features likely reflect the stimulation of lipid mobilization and oxidation promoted by ATRA treatment systemically, other may also play a causal role underlying ATRA actions. The results connect ATRA to specific nutrition-modulated biochemical pathways, and suggest novel mechanisms of action of vitamin A-derived retinoic acid on metabolic health.
Collapse
Affiliation(s)
- Joan Ribot
- Grup de Recerca Nutrigenòmica i Obesitat, Laboratori de Biologia Molecular, Nutrició i Biotecnologia (LBNB), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain.
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain.
| | - Andrea Arreguín
- Grup de Recerca Nutrigenòmica i Obesitat, Laboratori de Biologia Molecular, Nutrició i Biotecnologia (LBNB), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain
| | - Ondrej Kuda
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, 14220 Prague 4, Czech Republic
| | - Jan Kopecky
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, 14220 Prague 4, Czech Republic
| | - Andreu Palou
- Grup de Recerca Nutrigenòmica i Obesitat, Laboratori de Biologia Molecular, Nutrició i Biotecnologia (LBNB), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Maria Luisa Bonet
- Grup de Recerca Nutrigenòmica i Obesitat, Laboratori de Biologia Molecular, Nutrició i Biotecnologia (LBNB), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| |
Collapse
|
9
|
Lee SA, Jiang H, Feranil JB, Brun PJ, Blaner WS. Adipocyte-specific expression of a retinoic acid receptor α dominant negative form causes glucose intolerance and hepatic steatosis in mice. Biochem Biophys Res Commun 2019; 514:1231-1237. [PMID: 31109648 DOI: 10.1016/j.bbrc.2019.05.075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/09/2019] [Indexed: 11/30/2022]
Abstract
All-trans-retinoic acid (ATRA) has been well described as a positive regulator for early stage of adipocyte differentiation and lipid metabolism and also linked to an in vivo fat-lowering effect in mice. However, not all studies support this association. Our objective was to characterize the action of ATRA in mature adipocytes of mice by ablating RAR signaling through overexpression of a well-characterized dominant negative RARα mutant (RARdn) form specifically in adipocytes. Altered RAR signaling in adipocytes resulted in a significant decrease in ATRA levels in visceral and brown adipose tissues as well as liver tissue. This was linked to significant impairments in glucose clearance and elevated hepatic lipid accumulation for chow diet fed mice, indicating the development of metabolic disease, including hepatic steatosis. In addition, we found that adipose RARdn expression in mice fed a chow diet decreased thermogenesis. We conclude that altered RAR signaling and ATRA levels in adipocytes impacts glucose and lipid metabolism in mice.
Collapse
Affiliation(s)
- Seung-Ah Lee
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, United States; Present Address: Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea.
| | - Hongfeng Jiang
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, United States.
| | - Jun B Feranil
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, United States.
| | - Pierre-Jacques Brun
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, United States.
| | - William S Blaner
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, United States.
| |
Collapse
|
10
|
Gad A, Abu Hamed S, Khalifa M, Amin A, El-Sayed A, Swiefy SA, El-Assal S. Retinoic acid improves maturation rate and upregulates the expression of antioxidant-related genes in in vitro matured buffalo ( Bubalus bubalis) oocytes. Int J Vet Sci Med 2018; 6:279-285. [PMID: 30564610 PMCID: PMC6286416 DOI: 10.1016/j.ijvsm.2018.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 02/08/2023] Open
Abstract
Retinoic acid, vitamin A metabolite, plays a role in oocyte development and maturation in different ways including gene expression alteration and/or prohibiting oxidative stress. The objective of this study was to examine the effect of 9-cis-retinoic acid (9-cisRA) on the quality and maturation rate of buffalo oocytes. Cumulus-oocyte complexes (COCs, n = 460) were collected from ovaries of slaughtered buffalos. Varying concentrations of 9-cisRA (0, 5, 50, and 200 nM) were added to the maturation medium, and the following parameters were analyzed: (i) maturation and cleavage rates, (ii) mitochondrial activity and reactive oxygen species (ROS) levels, (iii) expression level of antioxidant-related genes (PRDX1, SOD1, CAT, HOMX1, and GPX4) using RT-qPCR. Maturation rate was significantly improved in 5 nM 9-cisRA oocyte group (95.8%, P < .05) compared to control and other treatment groups (86.7% in control group). The same oocyte group exhibited significantly higher mitochondrial membrane potential activity and lower ROS accumulation level compared to other treatment groups. Antioxidant-related genes were up-regulated in oocytes matured with 5 or 50 nM 9-cisRA compared to control and 200 nM 9-cisRA groups. In contrast, 200 nM of 9-cisRA showed a clear down-regulation for antioxidant-related genes except for PRDX1. In conclusion, supplementation of 9-cisRA with a lower concentration (5 nM) to the buffalo oocytes maturation media promotes maturation rate through a protection mechanism that maintains adequate levels of antioxidant-related transcripts and improves mitochondrial activity. However, 9-cisRA has no significant effect on the cleavage rate of the treated oocytes.
Collapse
Affiliation(s)
- Ahmed Gad
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
- Cairo University Research Park (CURP), Faculty of Agriculture, Giza, Egypt
| | - Said Abu Hamed
- Animal Production Research Institute, Agriculture Research Center, Giza, Egypt
| | - Mohamed Khalifa
- Cairo University Research Park (CURP), Faculty of Agriculture, Giza, Egypt
| | - Ahmed Amin
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Ashraf El-Sayed
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
- Cairo University Research Park (CURP), Faculty of Agriculture, Giza, Egypt
| | - Swiefy A. Swiefy
- Animal Production Research Institute, Agriculture Research Center, Giza, Egypt
| | - Salah El-Assal
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| |
Collapse
|
11
|
Wang B, Nie W, Fu X, de Avila JM, Ma Y, Zhu MJ, Maquivar M, Parish SM, Busboom JR, Nelson ML, Du M. Neonatal vitamin A injection promotes cattle muscle growth and increases oxidative muscle fibers. J Anim Sci Biotechnol 2018; 9:82. [PMID: 30459947 PMCID: PMC6236944 DOI: 10.1186/s40104-018-0296-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/26/2018] [Indexed: 01/12/2023] Open
Abstract
Background Vitamin A and its metabolite, retinoic acid (RA), are important regulators of cell differentiation and organ morphogenesis. Its impact on beef cattle muscle growth remains undefined. Method Angus steer calves were administrated with 0 (control) or 150,000 IU vitamin A (retinyl palmitate in glycerol, i.m.) per calf at birth and 1 month of age. At 2 months of age, a biopsy of the Biceps femoris muscle was obtained to analyze the immediate effects of vitamin A injection on myogenic capacity of muscle cells. The resulting steers were harvested at 14 months of age. Results Vitamin A administration increased cattle growth at 2 months. At 2 months of age, Vitamin A increased PAX7 positive satellite cells and the expression of myogenic marker genes including PAX7, MYF5, MYOD and MYOG. Muscle derived mononuclear cells were further isolated and induced myogenesis in vitro. More myotubes and a higher degree of myogenesis was observed in vitamin A groups. Consistently, vitamin A increased Latissimus dorsi (LD) muscle fiber size at harvest. In addition, vitamin A increased the ratio of oxidative type I and type IIA fibers and reduced the glycolic type IIX fibers. Furthermore, we found that RA, a key bioactive metabolite of vitamin A, activated PPARGC1A promoter, which explains the upregulated expression of PPARGC1A in skeletal muscle. Conclusion Vitamin A administration to neonatal calves enhanced postnatal muscle growth by promoting myogenesis and increasing satellite cell density, accompanied with a shift to oxidative muscle fibers.
Collapse
Affiliation(s)
- Bo Wang
- 1State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China.,2Department of Animal Sciences, Washington State University, Pullman, WA 99164 USA
| | - Wei Nie
- 1State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China.,2Department of Animal Sciences, Washington State University, Pullman, WA 99164 USA
| | - Xing Fu
- 2Department of Animal Sciences, Washington State University, Pullman, WA 99164 USA.,3Department of Animal Sciences, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Jeanene M de Avila
- 2Department of Animal Sciences, Washington State University, Pullman, WA 99164 USA
| | - Yannan Ma
- 2Department of Animal Sciences, Washington State University, Pullman, WA 99164 USA.,4College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070 Gansu People's Republic of China
| | - Mei-Jun Zhu
- 5School of Food Science, Washington State University, Pullman, WA 99164 USA
| | - Martin Maquivar
- 2Department of Animal Sciences, Washington State University, Pullman, WA 99164 USA
| | - Steven M Parish
- 6College of Veterinary Science, Washington State University, Pullman, WA 99164 USA
| | - Jan R Busboom
- 2Department of Animal Sciences, Washington State University, Pullman, WA 99164 USA
| | - Mark L Nelson
- 2Department of Animal Sciences, Washington State University, Pullman, WA 99164 USA
| | - Min Du
- 2Department of Animal Sciences, Washington State University, Pullman, WA 99164 USA
| |
Collapse
|
12
|
CXCL12 and MYC control energy metabolism to support adaptive responses after kidney injury. Nat Commun 2018; 9:3660. [PMID: 30202007 PMCID: PMC6131511 DOI: 10.1038/s41467-018-06094-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 08/15/2018] [Indexed: 01/12/2023] Open
Abstract
Kidney injury is a common complication of severe disease. Here, we report that injuries of the zebrafish embryonal kidney are rapidly repaired by a migratory response in 2-, but not in 1-day-old embryos. Gene expression profiles between these two developmental stages identify cxcl12a and myca as candidates involved in the repair process. Zebrafish embryos with cxcl12a, cxcr4b, or myca deficiency display repair abnormalities, confirming their role in response to injury. In mice with a kidney-specific knockout, Cxcl12 and Myc gene deletions suppress mitochondrial metabolism and glycolysis, and delay the recovery after ischemia/reperfusion injury. Probing these observations in zebrafish reveal that inhibition of glycolysis slows fast migrating cells and delays the repair after injury, but does not affect the slow cell movements during kidney development. Our findings demonstrate that Cxcl12 and Myc facilitate glycolysis to promote fast migratory responses during development and repair, and potentially also during tumor invasion and metastasis.
Collapse
|
13
|
Xiao YB, Cai SH, Liu LL, Yang X, Yun JP. Decreased expression of peroxisome proliferator-activated receptor alpha indicates unfavorable outcomes in hepatocellular carcinoma. Cancer Manag Res 2018; 10:1781-1789. [PMID: 29983595 PMCID: PMC6027701 DOI: 10.2147/cmar.s166971] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) has a close relationship with lipid metabolism. Peroxisome proliferator-activated receptor α (PPARα) plays a crucial role in the regulation of fatty acid oxidation in the liver. However, the role of PPARα in HCC remains unclear. Methods A total of 804 HCC specimens were collected to construct a tissue microarray and for immunohistochemical analysis. The relationship between PPARα expression and clinical features of HCC patients was analyzed. Kaplan–Meier analysis was conducted to assess the prognostic value of PPARα expression levels. Results The expression of PPARα in HCC was noticeably decreased in HCC tissues. HCC patients with high levels of PPARα expression in cytoplasm had smaller tumors (P=0.027), less vascular invasion (P=0.049), and a higher proportion of complete involucrum (P=0.038). Kaplan–Meier analysis showed that HCC patients with low PPARα expression in the cytoplasm had significantly worse outcomes in terms of overall survival (P<0.001), disease-free survival (P=0.024), and the probability of recurrence (P=0.037). Similarly, overall survival was significantly shorter in HCC patients with negative PPARα expression in the nucleus (P=0.034). Multivariate Cox analyses indicated that tumor size (P=0.001), TNM stage (P<0.001), vascular invasion (P<0.001), and PPARα expression in the cytoplasm (P<0.001) were found to be independent prognostic variables for overall survival. Conclusion Our data revealed that PPARα expression was decreased in HCC samples. High PPARα expression was correlated with longer survival times in HCC patients, and served as an independent factor for better outcomes. Our study therefore provides a promising biomarker for prognostic prediction and a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Yong-Bo Xiao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China, .,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China,
| | - Shao-Hang Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China, .,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China,
| | - Li-Li Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China, .,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China,
| | - Xia Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China, .,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China,
| | - Jing-Ping Yun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China, .,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China,
| |
Collapse
|
14
|
Peak TC, Praharaj PP, Panigrahi GK, Doyle M, Su Y, Schlaepfer IR, Singh R, Vander Griend DJ, Alickson J, Hemal A, Atala A, Deep G. Exosomes secreted by placental stem cells selectively inhibit growth of aggressive prostate cancer cells. Biochem Biophys Res Commun 2018; 499:1004-1010. [PMID: 29627574 DOI: 10.1016/j.bbrc.2018.04.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/04/2018] [Indexed: 01/08/2023]
Abstract
The current paradigm in the development of new cancer therapies is the ability to target tumor cells while avoiding harm to noncancerous cells. Furthermore, there is a need to develop novel therapeutic options against drug-resistant cancer cells. Herein, we characterized the placental-derived stem cell (PLSC) exosomes (PLSCExo) and evaluated their anti-cancer efficacy in prostate cancer (PCa) cell lines. Nanoparticle tracking analyses revealed the size distribution (average size 131.4 ± 0.9 nm) and concentration of exosomes (5.23 × 1010±1.99 × 109 per ml) secreted by PLSC. PLSCExo treatment strongly inhibited the viability of enzalutamide-sensitive and -resistant PCa cell lines (C4-2B, CWR-R1, and LNCaP cells). Interestingly, PLSCExo treatment had no effect on the viability of a non-neoplastic human prostate cell line (PREC-1). Mass spectrometry (MS) analyses showed that PLSCExo are loaded with 241 proteins and mainly with saturated fatty acids. Further, Ingenuity Pathway Analysis analyses of proteins loaded in PLSCExo suggested the role of retinoic acid receptor/liver x receptor pathways in their biological effects. Together, these results suggest the novel selective anti-cancer effects of PLSCExo against aggressive PCa cells.
Collapse
Affiliation(s)
- Taylor C Peak
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Prakash P Praharaj
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Gati K Panigrahi
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Michael Doyle
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Yixin Su
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Isabel R Schlaepfer
- Division of Medical Oncology, Genitourinary Cancer Program, University of Colorado School of Medicine, Aurora, CO, United States
| | - Ravi Singh
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Donald J Vander Griend
- Department of Surgery, Section of Urology, The University of Chicago, Chicago, IL, United States
| | - Julie Alickson
- Wake Forest Institute for Regenerative Medicine, United States
| | - Ashok Hemal
- Wake Forest Institute for Regenerative Medicine, United States; Department of Urology, Wake Forest School of Medicine, United States; Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, United States
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, United States; Department of Urology, Wake Forest School of Medicine, United States
| | - Gagan Deep
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States; Department of Urology, Wake Forest School of Medicine, United States; Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, United States.
| |
Collapse
|
15
|
Yang D, Vuckovic MG, Smullin CP, Kim M, Lo CPS, Devericks E, Yoo HS, Tintcheva M, Deng Y, Napoli JL. Modest Decreases in Endogenous All- trans-Retinoic Acid Produced by a Mouse Rdh10 Heterozygote Provoke Major Abnormalities in Adipogenesis and Lipid Metabolism. Diabetes 2018; 67:662-673. [PMID: 29321172 PMCID: PMC5860858 DOI: 10.2337/db17-0946] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 01/02/2018] [Indexed: 12/18/2022]
Abstract
Pharmacological dosing of all-trans-retinoic acid (atRA) controls adiposity in rodents by inhibiting adipogenesis and inducing fatty acid oxidation. Retinol dehydrogenases (Rdh) catalyze the first reaction that activates retinol into atRA. This study examined postnatal contributions of Rdh10 to atRA biosynthesis and physiological functions of endogenous atRA. Embryonic fibroblasts from Rdh10 heterozygote hypomorphs or with a total Rdh10 knockout exhibit decreased atRA biosynthesis and escalated adipogenesis. atRA or a retinoic acid receptor (RAR) pan-agonist reversed the phenotype. Eliminating one Rdh10 copy in vivo (Rdh10+/- ) yielded a modest decrease (≤25%) in the atRA concentration of liver and adipose but increased adiposity in male and female mice fed a high-fat diet (HFD); increased liver steatosis, glucose intolerance, and insulin resistance in males fed an HFD; and activated bone marrow adipocyte formation in females, regardless of dietary fat. Chronic dosing with low-dose atRA corrected the metabolic defects. These data resolve physiological actions of endogenous atRA, reveal sex-specific effects of atRA in vivo, and establish the importance of Rdh10 to metabolic control by atRA. The consequences of a modest decrease in tissue atRA suggest that impaired retinol activation may contribute to diabesity, and low-dose atRA therapy may ameliorate adiposity and its sequelae of glucose intolerance and insulin resistance.
Collapse
Affiliation(s)
- Di Yang
- Graduate Program in Metabolic Biology, University of California, Berkeley, Berkeley, CA
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA
| | - Marta G Vuckovic
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA
| | - Carolyn P Smullin
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA
| | - Myeongcheol Kim
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA
| | - Christabel Pui-See Lo
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA
| | - Emily Devericks
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA
| | - Hong Sik Yoo
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA
| | - Milena Tintcheva
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA
| | - Yinghua Deng
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA
| | - Joseph L Napoli
- Graduate Program in Metabolic Biology, University of California, Berkeley, Berkeley, CA
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA
| |
Collapse
|
16
|
Mu Q, Yu W, Zheng S, Shi H, Li M, Sun J, Wang D, Hou X, Liu L, Wang X, Zhao Z, Liang R, Zhang X, Dong W, Zeng C, Guo J. RIP140/PGC-1α axis involved in vitamin A-induced neural differentiation by increasing mitochondrial function. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018. [PMID: 29513101 DOI: 10.1080/21691401.2018.1436552] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Vitamin A deficiency and mitochondrial dysfunction are both associated with neural differentiation-related disorders, such as Alzheimer's disease (AD) and Down syndrome (DS). The mechanism of vitamin A-induced neural differentiation and the notion that vitamin A can regulate the morphology and function of mitochondria in its induction of neural differentiation through the RIP140/PGC-1α axis are unclear. The aim of this study was to investigate the roles and underlying mechanisms of RIP140/PGC-1α axis in vitamin A-induced neural differentiation. Human neuroblastoma cells (SH-SY5Y) were used as a model of neural stem cells, which were incubated with DMSO, 9-cis-retinoic acid (9-cis-RA), 13-cis-retinoic acid (13-cis-RA) and all-trans-retinoic acid (at-RA). Neural differentiation of SH-SY5Y was evaluated by Sandquist calculation, combined with immunofluorescence and real-time polymerase chain reaction (PCR) of neural markers. Mitochondrial function was estimated by ultrastructure assay using transmission electron microscopy (TEM) combined with the expression of PGC-1α and NEMGs using real-time PCR. The participation of the RA signaling pathway was demonstrated by adding RA receptor antagonists. Vitamin A derivatives are able to regulate mitochondrial morphology and function, and furthermore to induce neural differentiation through the RA signaling pathway. The RIP140/PGC-1α axis is involved in the regulation of mitochondrial function in vitamin A derivative-induced neural differentiation.
Collapse
Affiliation(s)
- Qing Mu
- a Department of Pediatric , Peking University People's Hospital , Beijing , China.,b Department of Central Laboratory & Institute of Clinical Molecular Biology , Peking University People's Hospital , Beijing , China
| | - Weidong Yu
- b Department of Central Laboratory & Institute of Clinical Molecular Biology , Peking University People's Hospital , Beijing , China
| | - Shuying Zheng
- c Department of Electron Microscope Lab , Peking University People's Hospital , Beijing , China
| | - Hongxia Shi
- c Department of Electron Microscope Lab , Peking University People's Hospital , Beijing , China
| | - Mei Li
- b Department of Central Laboratory & Institute of Clinical Molecular Biology , Peking University People's Hospital , Beijing , China
| | - Jie Sun
- b Department of Central Laboratory & Institute of Clinical Molecular Biology , Peking University People's Hospital , Beijing , China
| | - Di Wang
- b Department of Central Laboratory & Institute of Clinical Molecular Biology , Peking University People's Hospital , Beijing , China
| | - Xiaoli Hou
- b Department of Central Laboratory & Institute of Clinical Molecular Biology , Peking University People's Hospital , Beijing , China
| | - Ling Liu
- b Department of Central Laboratory & Institute of Clinical Molecular Biology , Peking University People's Hospital , Beijing , China
| | - Xinjuan Wang
- b Department of Central Laboratory & Institute of Clinical Molecular Biology , Peking University People's Hospital , Beijing , China
| | - Zhuran Zhao
- a Department of Pediatric , Peking University People's Hospital , Beijing , China
| | - Rong Liang
- d Department of Obstetrics and Gynecology , Peking University People's Hospital , Beijing , China
| | - Xue Zhang
- a Department of Pediatric , Peking University People's Hospital , Beijing , China
| | - Wei Dong
- a Department of Pediatric , Peking University People's Hospital , Beijing , China
| | - Chaomei Zeng
- a Department of Pediatric , Peking University People's Hospital , Beijing , China
| | - Jingzhu Guo
- a Department of Pediatric , Peking University People's Hospital , Beijing , China
| |
Collapse
|
17
|
Inhibition of retinoic acid receptor β signaling confers glycolytic dependence and sensitization to dichloroacetate in melanoma cells. Oncotarget 2017; 8:84210-84223. [PMID: 29137417 PMCID: PMC5663589 DOI: 10.18632/oncotarget.20476] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/19/2017] [Indexed: 12/24/2022] Open
Abstract
Dysregulation of metabolism during melanoma progression is tightly associated with the acquisition of genetic and epigenetic alterations in regulators of metabolic pathways. Retinoic acid receptor beta (RARβ) is epigenetically silenced in a large proportion of melanomas, but a link between RARβ and metabolic rewiring of melanoma has not been established. Here, we show that in primary human melanocytes, all-trans retinoic acid (a RARβ agonist) induced growth inhibition accompanied by a decrease in both glycolytic and oxidative metabolism, whereas selective inhibition of RARβ led to an increase in the basal glycolytic rate and increased sensitivity to inhibition of glycolysis. In melanoma cells, inhibition of RARβ promoted lower mitochondrial respiration and higher glycolytic activity, which led to energetic stress and activation of the energy sensor AMP-activated protein kinase. This metabolic shift increased the sensitivity to both glycolytic inhibition and stimulation of mitochondrial metabolism with dichloroacetate, an inhibitor of pyruvate dehydrogenase kinase. In melanoma cells harboring the BRAFV600E mutation, RARβ activation antagonized the effect of the BRAF inhibitor PLX4032 (vemurafenib). Collectively, these data suggest that RARβ signaling is involved in regulating cellular metabolism in melanoma and may provide a potential target in combination treatment strategies.
Collapse
|
18
|
Ma SP, Ju F, Zhang YP, Shi X, Zhuang RJ, Xue H, Ma J, Wang L, Cheng BF, Cao H, Feng ZW, Wang M, Yang HJ. Cold-inducible protein RBM3 protects neuroblastoma cells from retinoic acid-induced apoptosis via AMPK, p38 and JNK signaling. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.05.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
19
|
Stevison F, Hogarth C, Tripathy S, Kent T, Isoherranen N. Inhibition of the all-trans Retinoic Acid ( atRA) Hydroxylases CYP26A1 and CYP26B1 Results in Dynamic, Tissue-Specific Changes in Endogenous atRA Signaling. Drug Metab Dispos 2017; 45:846-854. [PMID: 28446509 DOI: 10.1124/dmd.117.075341] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/18/2017] [Indexed: 12/20/2022] Open
Abstract
All-trans retinoic acid (atRA), the active metabolite of vitamin A, is a ligand for several nuclear receptors and acts as a critical regulator of many physiologic processes. The cytochrome P450 family 26 (CYP26) enzymes are responsible for atRA clearance, and are potential drug targets to increase concentrations of endogenous atRA in a tissue-specific manner. Talarozole is a potent inhibitor of CYP26A1 and CYP26B1, and has shown some success in clinical trials. However, it is not known what magnitude of change is needed in tissue atRA concentrations to promote atRA signaling changes. The aim of this study was to quantify the increase in endogenous atRA concentrations necessary to alter atRA signaling in target organs, and to establish the relationship between CYP26 inhibition and altered atRA concentrations in tissues. Following a single 2.5-mg/kg dose of talarozole to mice, atRA concentrations increased up to 5.7-, 2.7-, and 2.5-fold in serum, liver, and testis, respectively, resulting in induction of Cyp26a1 in the liver and testis and Rar β and Pgc 1β in liver. The increase in atRA concentrations was well predicted from talarozole pharmacokinetics and in vitro data of CYP26 inhibition. After multiple doses of talarozole, a significant increase in atRA concentrations was observed in serum but not in liver or testis. This lack of increase in atRA concentrations correlated with an increase in CYP26A1 expression in the liver. The increased atRA concentrations in serum without a change in liver suggest that CYP26B1 in extrahepatic sites plays a key role in regulating systemic atRA exposure.
Collapse
Affiliation(s)
- Faith Stevison
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (F.S., S.T., N.I.); and School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, Washington (C.H., T.K.)
| | - Cathryn Hogarth
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (F.S., S.T., N.I.); and School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, Washington (C.H., T.K.)
| | - Sasmita Tripathy
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (F.S., S.T., N.I.); and School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, Washington (C.H., T.K.)
| | - Travis Kent
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (F.S., S.T., N.I.); and School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, Washington (C.H., T.K.)
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (F.S., S.T., N.I.); and School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, Washington (C.H., T.K.)
| |
Collapse
|
20
|
El-Sherbeni AA, El-Kadi AOS. Microsomal cytochrome P450 as a target for drug discovery and repurposing. Drug Metab Rev 2016; 49:1-17. [DOI: 10.1080/03602532.2016.1257021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ahmed A. El-Sherbeni
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O. S. El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
21
|
Sager JE, Tripathy S, Price LSL, Nath A, Chang J, Stephenson-Famy A, Isoherranen N. In vitro to in vivo extrapolation of the complex drug-drug interaction of bupropion and its metabolites with CYP2D6; simultaneous reversible inhibition and CYP2D6 downregulation. Biochem Pharmacol 2016; 123:85-96. [PMID: 27836670 DOI: 10.1016/j.bcp.2016.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/04/2016] [Indexed: 01/05/2023]
Abstract
Bupropion is a widely used antidepressant and smoking cessation aid and a strong inhibitor of CYP2D6 in vivo. Bupropion is administered as a racemic mixture of R- and S-bupropion and has stereoselective pharmacokinetics. Four primary metabolites of bupropion, threo- and erythro-hydrobupropion and R,R- and S,S-OH-bupropion, circulate at higher concentrations than the parent drug and are believed to contribute to the efficacy and side effects of bupropion as well as to the CYP2D6 inhibition. However, bupropion and its metabolites are only weak inhibitors of CYP2D6 in vitro, and the magnitude of the in vivo drug-drug interactions (DDI) caused by bupropion cannot be explained by the in vitro data even when CYP2D6 inhibition by the metabolites is accounted for. The aim of this study was to quantitatively explain the in vivo CYP2D6 DDI magnitude by in vitro DDI data. Bupropion and its metabolites were found to inhibit CYP2D6 stereoselectively with up to 10-fold difference in inhibition potency between enantiomers. However, the reversible inhibition or active uptake into hepatocytes did not explain the in vivo DDIs. In HepG2 cells and in plated human hepatocytes bupropion and its metabolites were found to significantly downregulate CYP2D6 mRNA in a concentration dependent manner. The in vivo DDI was quantitatively predicted by significant down-regulation of CYP2D6 mRNA and reversible inhibition of CYP2D6 by bupropion and its metabolites. This study is the first example of a clinical DDI resulting from CYP down-regulation and first demonstration of a CYP2D6 interaction resulting from transcriptional regulation.
Collapse
Affiliation(s)
- Jennifer E Sager
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Sasmita Tripathy
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Lauren S L Price
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Abhinav Nath
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Justine Chang
- Department of Obstetrics and Gynecology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Alyssa Stephenson-Famy
- Department of Obstetrics and Gynecology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA.
| |
Collapse
|