1
|
Lambert GG, Crespo EL, Murphy J, Boassa D, Luong S, Celinskis D, Venn S, Nguyen DK, Hu J, Sprecher B, Tree MO, Orcutt R, Heydari D, Bell AB, Torreblanca-Zanca A, Hakimi A, Lipscombe D, Moore CI, Hochgeschwender U, Shaner NC. CaBLAM! A high-contrast bioluminescent Ca 2+ indicator derived from an engineered Oplophorus gracilirostris luciferase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.06.25.546478. [PMID: 37425712 PMCID: PMC10327125 DOI: 10.1101/2023.06.25.546478] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Ca2+ plays many critical roles in cell physiology and biochemistry, leading researchers to develop a number of fluorescent small molecule dyes and genetically encodable probes that optically report changes in Ca2+ concentrations in living cells. Though such fluorescence-based genetically encoded Ca2+ indicators (GECIs) have become a mainstay of modern Ca2+ sensing and imaging, bioluminescence-based GECIs-probes that generate light through oxidation of a small-molecule by a luciferase or photoprotein-have several distinct advantages over their fluorescent counterparts. Bioluminescent tags do not photobleach, do not suffer from nonspecific autofluorescent background, and do not lead to phototoxicity since they do not require the extremely bright extrinsic excitation light typically required for fluorescence imaging, especially with 2-photon microscopy. Current BL GECIs perform poorly relative to fluorescent GECIs, producing small changes in bioluminescence intensity due to high baseline signal at resting Ca2+ concentrations and suboptimal Ca2+ affinities. Here, we describe the development of a new bioluminescent GECI, "CaBLAM," which displays much higher contrast (dynamic range) than previously described bioluminescent GECIs and has a Ca2+ affinity suitable for capturing physiological changes in cytosolic Ca2+ concentration. Derived from a new variant of Oplophorus gracilirostris luciferase with superior in vitro properties and a highly favorable scaffold for insertion of sensor domains, CaBLAM allows for single-cell and subcellular resolution imaging of Ca2+ dynamics at high frame rates in cultured neurons and in vivo. CaBLAM marks a significant milestone in the GECI timeline, enabling Ca2+ recordings with high spatial and temporal resolution without perturbing cells with intense excitation light.
Collapse
Affiliation(s)
- Gerard G. Lambert
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA USA
| | | | - Jeremy Murphy
- Carney Institute for Brain Sciences, Department of Neuroscience, Brown University, Providence, RI USA
| | - Daniela Boassa
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA USA
| | - Selena Luong
- University of California San Diego, La Jolla, CA USA
| | - Dmitrijs Celinskis
- Carney Institute for Brain Sciences, Department of Neuroscience, Brown University, Providence, RI USA
| | - Stephanie Venn
- College of Medicine, Central Michigan University, Mt. Pleasant, MI USA
| | | | - Junru Hu
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA USA
| | - Brittany Sprecher
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA USA
| | - Maya O. Tree
- College of Medicine, Central Michigan University, Mt. Pleasant, MI USA
| | - Richard Orcutt
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA USA
| | - Daniel Heydari
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA USA
| | - Aidan B. Bell
- University of California San Diego, La Jolla, CA USA
| | | | | | - Diane Lipscombe
- College of Medicine, Central Michigan University, Mt. Pleasant, MI USA
| | - Christopher I. Moore
- Carney Institute for Brain Sciences, Department of Neuroscience, Brown University, Providence, RI USA
| | | | - Nathan C. Shaner
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA USA
| |
Collapse
|
2
|
Ouyang W, Li Q, Niu Q, Qui M, Fu H, Du Y, Mo X. A multiplexed time-resolved fluorescence resonance energy transfer ultrahigh-throughput screening assay for targeting the SMAD4-SMAD3-DNA complex. J Mol Cell Biol 2024; 15:mjad068. [PMID: 37968137 PMCID: PMC11063955 DOI: 10.1093/jmcb/mjad068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/07/2023] [Accepted: 11/14/2023] [Indexed: 11/17/2023] Open
Abstract
The transforming growth factor-beta (TGFβ) signaling pathway plays crucial roles in the establishment of an immunosuppressive tumor microenvironment, making anti-TGFβ agents a significant area of interest in cancer immunotherapy. However, the clinical translation of current anti-TGFβ agents that target upstream cytokines and receptors remains challenging. Therefore, the development of small-molecule inhibitors specifically targeting SMAD4, the downstream master regulator of the TGFβ pathway, would offer an alternative approach with significant therapeutic potential for anti-TGFβ signaling. In this study, we present the development of a cell lysate-based multiplexed time-resolved fluorescence resonance energy transfer (TR-FRET) assay in an ultrahigh-throughput screening (uHTS) 1536-well plate format. This assay enables simultaneous monitoring of the protein‒protein interaction between SMAD4 and SMAD3, as well as the protein‒DNA interaction between SMADs and their consensus DNA-binding motif. The multiplexed TR-FRET assay exhibits high sensitivity, allowing the dynamic analysis of the SMAD4-SMAD3-DNA complex at single-amino acid resolution. Moreover, the multiplexed uHTS assay demonstrates robustness for screening small-molecule inhibitors. Through a pilot screening of an FDA-approved bioactive compound library, we identified gambogic acid and gambogenic acid as potential hit compounds. These proof-of-concept findings underscore the utility of our optimized multiplexed TR-FRET platform for large-scale screening to discover small-molecule inhibitors that target the SMAD4-SMAD3-DNA complex as novel anti-TGFβ signaling agents.
Collapse
Affiliation(s)
- Wukun Ouyang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Qianjin Li
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Qiankun Niu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Min Qui
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Haian Fu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Hematology and Medical Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xiulei Mo
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
3
|
Venkatraman S, Balasubramanian B, Thuwajit C, Meller J, Tohtong R, Chutipongtanate S. Targeting MYC at the intersection between cancer metabolism and oncoimmunology. Front Immunol 2024; 15:1324045. [PMID: 38390324 PMCID: PMC10881682 DOI: 10.3389/fimmu.2024.1324045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
MYC activation is a known hallmark of cancer as it governs the gene targets involved in various facets of cancer progression. Of interest, MYC governs oncometabolism through the interactions with its partners and cofactors, as well as cancer immunity via its gene targets. Recent investigations have taken interest in characterizing these interactions through multi-Omic approaches, to better understand the vastness of the MYC network. Of the several gene targets of MYC involved in either oncometabolism or oncoimmunology, few of them overlap in function. Prominent interactions have been observed with MYC and HIF-1α, in promoting glucose and glutamine metabolism and activation of antigen presentation on regulatory T cells, and its subsequent metabolic reprogramming. This review explores existing knowledge of the role of MYC in oncometabolism and oncoimmunology. It also unravels how MYC governs transcription and influences cellular metabolism to facilitate the induction of pro- or anti-tumoral immunity. Moreover, considering the significant roles MYC holds in cancer development, the present study discusses effective direct or indirect therapeutic strategies to combat MYC-driven cancer progression.
Collapse
Affiliation(s)
- Simran Venkatraman
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Brinda Balasubramanian
- Division of Cancer and Stem Cells, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Chanitra Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jaroslaw Meller
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Department of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Rutaiwan Tohtong
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Somchai Chutipongtanate
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Milk, microbiome, Immunity and Lactation research for Child Health (MILCH) and Novel Therapeutics Lab, Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
4
|
Collados Rodríguez M, Maillard P, Journeaux A, Komarova AV, Najburg V, David RYS, Helynck O, Guo M, Zhong J, Baize S, Tangy F, Jacob Y, Munier-Lehmann H, Meurs EF. Novel Antiviral Molecules against Ebola Virus Infection. Int J Mol Sci 2023; 24:14791. [PMID: 37834238 PMCID: PMC10573436 DOI: 10.3390/ijms241914791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Infection with Ebola virus (EBOV) is responsible for hemorrhagic fever in humans with a high mortality rate. Combined efforts of prevention and therapeutic intervention are required to tackle highly variable RNA viruses, whose infections often lead to outbreaks. Here, we have screened the 2P2I3D chemical library using a nanoluciferase-based protein complementation assay (NPCA) and isolated two compounds that disrupt the interaction of the EBOV protein fragment VP35IID with the N-terminus of the dsRNA-binding proteins PKR and PACT, involved in IFN response and/or intrinsic immunity, respectively. The two compounds inhibited EBOV infection in cell culture as well as infection by measles virus (MV) independently of IFN induction. Consequently, we propose that the compounds are antiviral by restoring intrinsic immunity driven by PACT. Given that PACT is highly conserved across mammals, our data support further testing of the compounds in other species, as well as against other negative-sense RNA viruses.
Collapse
Affiliation(s)
- Mila Collados Rodríguez
- School of Infection & Immunity (SII), College of Medical, Veterinary and Life Sciences (MVLS), Sir Michael Stoker Building, MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow G61 1QH, UK
- Unité Hépacivirus et Immunité Innée, CNRS, UMR 3569, Département de Virologie, Institut Pasteur, 75015 Paris, France; (P.M.); (E.F.M.)
| | - Patrick Maillard
- Unité Hépacivirus et Immunité Innée, CNRS, UMR 3569, Département de Virologie, Institut Pasteur, 75015 Paris, France; (P.M.); (E.F.M.)
| | - Alexandra Journeaux
- Unit of Biology of Emerging Viral Infections, Institut Pasteur, 69007 Lyon, France; (A.J.); (S.B.)
| | - Anastassia V. Komarova
- Interactomics, RNA and Immunity Laboratory, Institut Pasteur, 75015 Paris, France;
- Unité de Génomique Virale et Vaccination, Institut Pasteur, 75015 Paris, France; (V.N.); (R.-Y.S.D.); (F.T.)
- Université Paris Cité, 75013 Paris, France;
| | - Valérie Najburg
- Unité de Génomique Virale et Vaccination, Institut Pasteur, 75015 Paris, France; (V.N.); (R.-Y.S.D.); (F.T.)
- Université Paris Cité, 75013 Paris, France;
| | - Raul-Yusef Sanchez David
- Unité de Génomique Virale et Vaccination, Institut Pasteur, 75015 Paris, France; (V.N.); (R.-Y.S.D.); (F.T.)
- Blizard Institute—Faculty of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Olivier Helynck
- Unité de Chimie et Biocatalyse, CNRS, UMR 3523, Institut Pasteur, Université de Paris, 75015 Paris, France; (O.H.); (H.M.-L.)
| | - Mingzhe Guo
- CAS Key Laboratory of Molecular Virology and Immunology, Unit of Viral Hepatitis, Shanghai Institute of Immunity and Infection, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Shanghai 200023, China; (M.G.); (J.Z.)
| | - Jin Zhong
- CAS Key Laboratory of Molecular Virology and Immunology, Unit of Viral Hepatitis, Shanghai Institute of Immunity and Infection, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Shanghai 200023, China; (M.G.); (J.Z.)
| | - Sylvain Baize
- Unit of Biology of Emerging Viral Infections, Institut Pasteur, 69007 Lyon, France; (A.J.); (S.B.)
| | - Frédéric Tangy
- Unité de Génomique Virale et Vaccination, Institut Pasteur, 75015 Paris, France; (V.N.); (R.-Y.S.D.); (F.T.)
- Université Paris Cité, 75013 Paris, France;
| | - Yves Jacob
- Université Paris Cité, 75013 Paris, France;
- Unité Génétique Moléculaire des Virus à ARN, CNRS, UMR 3569, Département de Virologie, Institut Pasteur, 75015 Paris, France
| | - Hélène Munier-Lehmann
- Unité de Chimie et Biocatalyse, CNRS, UMR 3523, Institut Pasteur, Université de Paris, 75015 Paris, France; (O.H.); (H.M.-L.)
| | - Eliane F. Meurs
- Unité Hépacivirus et Immunité Innée, CNRS, UMR 3569, Département de Virologie, Institut Pasteur, 75015 Paris, France; (P.M.); (E.F.M.)
| |
Collapse
|
5
|
Cicka D, Niu Q, Qui M, Qian K, Miller E, Fan D, Mo X, Ivanov AA, Sarafianos SG, Du Y, Fu H. TMPRSS2 and SARS-CoV-2 SPIKE interaction assay for uHTS. J Mol Cell Biol 2023; 15:mjad017. [PMID: 36921991 PMCID: PMC10399917 DOI: 10.1093/jmcb/mjad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/21/2022] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
SARS-CoV-2, the coronavirus that causes the disease COVID-19, has claimed millions of lives over the past 2 years. This demands rapid development of effective therapeutic agents that target various phases of the viral replication cycle. The interaction between host transmembrane serine protease 2 (TMPRSS2) and viral SPIKE protein is an important initial step in SARS-CoV-2 infection, offering an opportunity for therapeutic development of viral entry inhibitors. Here, we report the development of a time-resolved fluorescence/Förster resonance energy transfer (TR-FRET) assay for monitoring the TMPRSS2-SPIKE interaction in lysate from cells co-expressing these proteins. The assay was configured in a 384-well-plate format for high-throughput screening with robust assay performance. To enable large-scale compound screening, we further miniaturized the assay into 1536-well ultrahigh-throughput screening (uHTS) format. A pilot screen demonstrated the utilization of the assay for uHTS. Our optimized TR-FRET uHTS assay provides an enabling platform for expanded screening campaigns to discover new classes of small-molecule inhibitors that target the SPIKE and TMPRSS2 protein-protein interaction.
Collapse
Affiliation(s)
- Danielle Cicka
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Graduate Program in Molecular and Systems Pharmacology, Laney Graduate School of Emory University, Atlanta, GA 30322, USA
| | - Qiankun Niu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Min Qui
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kun Qian
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Eric Miller
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Dacheng Fan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xiulei Mo
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Andrey A Ivanov
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Stefan G Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Haian Fu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
6
|
Ouyang W, Niu Q, Qui M, Fu H, Du Y, Mo X. A multiplexed time-resolved fluorescence resonance energy transfer ultrahigh-throughput screening assay for targeting SMAD4-SMAD3-DNA complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.15.549169. [PMID: 37503208 PMCID: PMC10370110 DOI: 10.1101/2023.07.15.549169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The signaling pathway of transforming growth factor-beta (TGFβ) plays crucial roles in the establishment of an immunosuppressive tumor microenvironment, making anti-TGFβ agents a significant area of interest in cancer immunotherapy. However, the clinical translation of current anti-TGFβ agents that target upstream cytokines and receptors remains challenging. Therefore, the development of small molecule inhibitors specifically targeting SMAD4, the downstream master regulator of TGFβ pathway, would offer an alternative approach with significant therapeutic potential for anti-TGF-β signaling. In this study, we present the development of a cell lysate-based multiplexed time-resolved fluorescence resonance energy transfer (TR-FRET) assay in an ultrahigh-throughput screening (uHTS) 1536-well plate format. This assay enables simultaneous monitoring of the protein-protein interaction (PPI) between SMAD4 and SMAD3, as well as the protein-DNA interaction (PDI) between SMADs and their consensus DNA binding motif. The multiplexed TR-FRET assay exhibits high sensitivity, allowing the dynamic analysis of the SMAD4-SMAD3-DNA complex at single amino acid resolution. Moreover, the multiplexed uHTS assay demonstrates robustness for screening small molecule inhibitors. Through a pilot screening of an FDA-approved and bioactive compound library, we identified gambogic acid and gambogenic acid as potential hit compounds. These proof-of-concept findings underscore the utility of our optimized multiplexed TR-FRET platform for large-scale screening to discover small molecule inhibitors that target the SMAD4-SMAD3-DNA complex as novel anti-TGFβ signaling agents.
Collapse
|
7
|
Druzak SA, Tardelli M, Mays SG, El Bejjani M, Mo X, Maner-Smith KM, Bowen T, Cato ML, Tillman MC, Sugiyama A, Xie Y, Fu H, Cohen DE, Ortlund EA. Ligand dependent interaction between PC-TP and PPARδ mitigates diet-induced hepatic steatosis in male mice. Nat Commun 2023; 14:2748. [PMID: 37173315 PMCID: PMC10182070 DOI: 10.1038/s41467-023-38010-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/12/2023] [Indexed: 05/15/2023] Open
Abstract
Phosphatidylcholine transfer protein (PC-TP; synonym StarD2) is a soluble lipid-binding protein that transports phosphatidylcholine (PC) between cellular membranes. To better understand the protective metabolic effects associated with hepatic PC-TP, we generated a hepatocyte-specific PC-TP knockdown (L-Pctp-/-) in male mice, which gains less weight and accumulates less liver fat compared to wild-type mice when challenged with a high-fat diet. Hepatic deletion of PC-TP also reduced adipose tissue mass and decreases levels of triglycerides and phospholipids in skeletal muscle, liver and plasma. Gene expression analysis suggest that the observed metabolic changes are related to transcriptional activity of peroxisome proliferative activating receptor (PPAR) family members. An in-cell protein complementation screen between lipid transfer proteins and PPARs uncovered a direct interaction between PC-TP and PPARδ that was not observed for other PPARs. We confirmed the PC-TP- PPARδ interaction in Huh7 hepatocytes, where it was found to repress PPARδ-mediated transactivation. Mutations of PC-TP residues implicated in PC binding and transfer reduce the PC-TP-PPARδ interaction and relieve PC-TP-mediated PPARδ repression. Reduction of exogenously supplied methionine and choline reduces the interaction while serum starvation enhances the interaction in cultured hepatocytes. Together our data points to a ligand sensitive PC-TP- PPARδ interaction that suppresses PPAR activity.
Collapse
Affiliation(s)
- Samuel A Druzak
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA, USA
| | - Matteo Tardelli
- Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Suzanne G Mays
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA, USA
| | - Mireille El Bejjani
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA, USA
| | - Xulie Mo
- Department of Chemical Biology and Pharmacology, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA, USA
| | - Kristal M Maner-Smith
- Emory Integrated Lipidomics and Metabolomics Core, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA, USA
| | - Thomas Bowen
- Emory Integrated Lipidomics and Metabolomics Core, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA, USA
| | - Michael L Cato
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA, USA
| | - Matthew C Tillman
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA, USA
| | - Akiko Sugiyama
- Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yang Xie
- Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Haian Fu
- Department of Chemical Biology and Pharmacology, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA, USA
| | - David E Cohen
- Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Eric A Ortlund
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA, USA.
| |
Collapse
|
8
|
Mo X, Niu Q, Ivanov AA, Tsang YH, Tang C, Shu C, Li Q, Qian K, Wahafu A, Doyle SP, Cicka D, Yang X, Fan D, Reyna MA, Cooper LAD, Moreno CS, Zhou W, Owonikoko TK, Lonial S, Khuri FR, Du Y, Ramalingam SS, Mills GB, Fu H. Systematic discovery of mutation-directed neo-protein-protein interactions in cancer. Cell 2022; 185:1974-1985.e12. [PMID: 35512704 DOI: 10.1016/j.cell.2022.04.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/27/2022] [Accepted: 04/08/2022] [Indexed: 12/12/2022]
Abstract
Comprehensive sequencing of patient tumors reveals genomic mutations across tumor types that enable tumorigenesis and progression. A subset of oncogenic driver mutations results in neomorphic activity where the mutant protein mediates functions not engaged by the parental molecule. Here, we identify prevalent variant-enabled neomorph-protein-protein interactions (neoPPI) with a quantitative high-throughput differential screening (qHT-dS) platform. The coupling of highly sensitive BRET biosensors with miniaturized coexpression in an ultra-HTS format allows large-scale monitoring of the interactions of wild-type and mutant variant counterparts with a library of cancer-associated proteins in live cells. The screening of 17,792 interactions with 2,172,864 data points revealed a landscape of gain of interactions encompassing both oncogenic and tumor suppressor mutations. For example, the recurrent BRAF V600E lesion mediates KEAP1 neoPPI, rewiring a BRAFV600E/KEAP1 signaling axis and creating collateral vulnerability to NQO1 substrates, offering a combination therapeutic strategy. Thus, cancer genomic alterations can create neo-interactions, informing variant-directed therapeutic approaches for precision medicine.
Collapse
Affiliation(s)
- Xiulei Mo
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Qiankun Niu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Andrey A Ivanov
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Yiu Huen Tsang
- Division of Oncologic Science, Oregon Health Sciences University School of Medicine, Portland, OR 97239, USA
| | - Cong Tang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Urology, The First Affiliated Hospital, Medical School of Xi'An Jiaotong University, Xi'an, Shannxi 710061, PRC
| | - Changfa Shu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Gynecology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, PRC
| | - Qianjin Li
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kun Qian
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Alafate Wahafu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurosurgery, the First Affiliated Hospital of Xi'An Jiaotong University, Xi'an, PRC
| | - Sean P Doyle
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Danielle Cicka
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xuan Yang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Dacheng Fan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Matthew A Reyna
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Lee A D Cooper
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Carlos S Moreno
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA; Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Wei Zhou
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA
| | - Taofeek K Owonikoko
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA
| | - Sagar Lonial
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA
| | - Fadlo R Khuri
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA; Department of Internal Medicine, Division of Hematology and Oncology, American University of Beirut, Beirut, 1107-2020, Lebanon
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | | | - Gordon B Mills
- Division of Oncologic Science, Oregon Health Sciences University School of Medicine, Portland, OR 97239, USA
| | - Haian Fu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA; Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
9
|
Tang C, Niu Q, Cicka D, Du Y, Mo X, Fu H. A time-resolved fluorescence resonance energy transfer screening assay for discovery of protein-protein interaction modulators. STAR Protoc 2021; 2:100804. [PMID: 34527960 PMCID: PMC8433285 DOI: 10.1016/j.xpro.2021.100804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Protein-protein interactions (PPIs) have emerged as promising yet challenging therapeutic targets. A robust bioassay is required for rapid PPI modulator discovery. Here, we present a time-resolved Förster's (fluorescence) resonance energy transfer assay protocol for PPI modulator screening in a 1536-well plate format. We use hypomorph SMAD4R361H-SMAD3 PPI as an example to illustrate the application of the protocol for screening of variant-directed PPI inducers. This platform can be readily adapted for the discovery of both small-molecule PPI inducers and inhibitors. For complete details on the use and execution of this protocol, please refer to Tang et al. (2020).
Collapse
Affiliation(s)
- Cong Tang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shannxi 710061, P.R. China
| | - Qiankun Niu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Danielle Cicka
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xiulei Mo
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Haian Fu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Hematology and Medical Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
10
|
Drugging the undruggable proteins in cancer: A systems biology approach. Curr Opin Chem Biol 2021; 66:102079. [PMID: 34426091 DOI: 10.1016/j.cbpa.2021.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/30/2022]
Abstract
In recent years, the research community has, with comprehensive systems biology approaches and related technologies, gained insight into the vast complexity of numerous cancers. These approaches allow an in-depth exploration that cannot be achieved solely using conventional low-throughput methods, which do not closely mimic the natural cellular environment. In this review, we discuss recent integrative multiple omics approaches for understanding and modulating previously identified 'undruggable' targets such as members of the RAS family, MYC, TP53, and various E3 ligases and deubiquitinases. We describe how these technologies have revolutionized drug discovery by overcoming an array of biological and technological challenges and how, in the future, they will be pivotal in assessing cancer states in individual patients, allowing for the prediction and application of personalized disease treatments.
Collapse
|
11
|
Yang X, Fan D, Troha AH, Ahn HM, Qian K, Liang B, Du Y, Fu H, Ivanov AA. Discovery of the first chemical tools to regulate MKK3-mediated MYC activation in cancer. Bioorg Med Chem 2021; 45:116324. [PMID: 34333394 DOI: 10.1016/j.bmc.2021.116324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 11/29/2022]
Abstract
The transcription master regulator MYC plays an essential role in regulating major cellular programs and is a well-established therapeutic target in cancer. However, MYC targeting for drug discovery is challenging. New therapeutic approaches to control MYC-dependent malignancy are urgently needed. The mitogen-activated protein kinase kinase 3 (MKK3) binds and activates MYC in different cell types, and disruption of MKK3-MYC protein-protein interaction may provide a new strategy to target MYC-driven programs. However, there is no perturbagen available to interrogate and control this signaling arm. In this study, we assessed the drugability of the MKK3-MYC complex and discovered the first chemical tool to regulate MKK3-mediated MYC activation. We have designed a short 44-residue inhibitory peptide and developed a cell lysate-based time-resolved fluorescence resonance energy transfer (TR-FRET) assay to discover the first small molecule MKK3-MYC PPI inhibitor. We have optimized and miniaturized the assay into an ultra-high-throughput screening (uHTS) 1536-well plate format. The pilot screen of ~6,000 compounds of a bioactive chemical library followed by multiple secondary and orthogonal assays revealed a quinoline derivative SGI-1027 as a potent inhibitor of MKK3-MYC PPI. We have shown that SGI-1027 disrupts the MKK3-MYC complex in cells and in vitro and inhibits MYC transcriptional activity in colon and breast cancer cells. In contrast, SGI-1027 does not inhibit MKK3 kinase activity and does not interfere with well-known MKK3-p38 and MYC-MAX complexes. Together, our studies demonstrate the drugability of MKK3-MYC PPI, provide the first chemical tool to interrogate its biological functions, and establish a new uHTS assay to enable future discovery of potent and selective inhibitors to regulate this oncogenic complex.
Collapse
Affiliation(s)
- Xuan Yang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, Atlanta, GA, USA; Emory Chemical Biology Discovery Center, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Dacheng Fan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, Atlanta, GA, USA; Emory Chemical Biology Discovery Center, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Aidan Henry Troha
- Department of Biochemistry, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Hyunjun Max Ahn
- Department of Biochemistry, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Kun Qian
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, Atlanta, GA, USA; Emory Chemical Biology Discovery Center, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Bo Liang
- Department of Biochemistry, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, Atlanta, GA, USA; Emory Chemical Biology Discovery Center, Emory University School of Medicine, Emory University, Atlanta, GA, USA; Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Haian Fu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, Atlanta, GA, USA; Emory Chemical Biology Discovery Center, Emory University School of Medicine, Emory University, Atlanta, GA, USA; Winship Cancer Institute, Emory University, Atlanta, GA, USA; Department of Hematology & Medical Oncology Emory University, Atlanta, GA, USA.
| | - Andrey A Ivanov
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, Atlanta, GA, USA; Emory Chemical Biology Discovery Center, Emory University School of Medicine, Emory University, Atlanta, GA, USA; Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|
12
|
The Alphaviral Capsid Protein Inhibits IRAK1-Dependent TLR Signaling. Viruses 2021; 13:v13030377. [PMID: 33673546 PMCID: PMC7997285 DOI: 10.3390/v13030377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/20/2022] Open
Abstract
Alphaviruses are arthropod-borne RNA viruses which can cause either mild to severe febrile arthritis which may persist for months, or encephalitis which can lead to death or lifelong cognitive impairments. The non-assembly molecular role(s), functions, and protein–protein interactions of the alphavirus capsid proteins have been largely overlooked. Here we detail the use of a BioID2 biotin ligase system to identify the protein–protein interactions of the Sindbis virus capsid protein. These efforts led to the discovery of a series of novel host–pathogen interactions, including the identification of an interaction between the alphaviral capsid protein and the host IRAK1 protein. Importantly, this capsid–IRAK1 interaction is conserved across multiple alphavirus species, including arthritogenic alphaviruses SINV, Ross River virus, and Chikungunya virus; and encephalitic alphaviruses Eastern Equine Encephalitis virus, and Venezuelan Equine Encephalitis virus. The impact of the capsid–IRAK1 interaction was evaluated using a robust set of cellular model systems, leading to the realization that the alphaviral capsid protein specifically inhibits IRAK1-dependent signaling. This inhibition represents a means by which alphaviruses may evade innate immune detection and activation prior to viral gene expression. Altogether, these data identify novel capsid protein–protein interactions, establish the capsid–IRAK1 interaction as a common alphavirus host–pathogen interface, and delineate the molecular consequences of the capsid–IRAK1 interaction on IRAK1-dependent signaling.
Collapse
|
13
|
RP11-323N12.5 promotes the malignancy and immunosuppression of human gastric cancer by increasing YAP1 transcription. Gastric Cancer 2021; 24:85-102. [PMID: 32623586 DOI: 10.1007/s10120-020-01099-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/12/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND YAP1 is a core protein of the Hippo signaling pathway and is associated with malignancy and immunosuppression. In the present study, we discovered a novel lncRNA, RP11-323N12.5, with tumor promotion and immunosuppression activities through enhancing transcription of YAP1. METHODS RP11-323N12.5 was identified using GEPIA. Its expression levels and their relationship with clinical features were investigated using clinical samples. The regulation of YAP1 transcription by RP11-323N12.5 was investigated in both GC and T cells, the tumor and immunosuppression promotion roles of RP11-323N12.5 were explored in vitro and in vivo. RESULTS RP11-323N12.5 was the most up-regulated lncRNA in human GC, based on data from the TCGA database. Its transcription was significantly positively correlated with YAP1 transcription, YAP1 downstream gene expression which contribute to tumor growth and immunosuppression. RP11-323N12.5 promoted YAP1 transcription by binding to c-MYC in the YAP1 promoter region. Meanwhile, transcription of RP11-323N12.5 was also regulated by YAP1/TAZ/TEADs activation in GC cells. RP11-323N12.5 had tumor- and immnosuppression-promoting effects by enhancing YAP1 downstream genes in GC cells. Excessive RP11-323N12.5 was also observed in tumor-infiltrating leukocytes (TILs), which may be exosome-derived and also be related to enhanced Treg differentiation as a result YAP1 up-regulation. Moreover, RP11-323N12.5 promoted tumor growth and immunosuppression via YAP1 up-regulation in vivo. CONCLUSIONS RP11-323N12.5 was the most up-regulated lncRNA in human GC and it promoted YAP1 transcription by binding to c-MYC within the YAP1 promoter in both GC and T cells. RP11-323N12.5 is an ideal therapeutic target in human GC due to its tumor-promoting and immunosuppression characteristics.
Collapse
|
14
|
Disruption of a key ligand-H-bond network drives dissociative properties in vamorolone for Duchenne muscular dystrophy treatment. Proc Natl Acad Sci U S A 2020; 117:24285-24293. [PMID: 32917814 DOI: 10.1073/pnas.2006890117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Duchenne muscular dystrophy is a genetic disorder that shows chronic and progressive damage to skeletal and cardiac muscle leading to premature death. Antiinflammatory corticosteroids targeting the glucocorticoid receptor (GR) are the current standard of care but drive adverse side effects such as deleterious bone loss. Through subtle modification to a steroidal backbone, a recently developed drug, vamorolone, appears to preserve beneficial efficacy but with significantly reduced side effects. We use combined structural, biophysical, and biochemical approaches to show that loss of a receptor-ligand hydrogen bond drives these remarkable therapeutic effects. Moreover, vamorolone uniformly weakens coactivator associations but not corepressor associations, implicating partial agonism as the main driver of its dissociative properties. Additionally, we identify a critical and evolutionarily conserved intramolecular network connecting the ligand to the coregulator binding surface. Interruption of this allosteric network by vamorolone selectively reduces GR-driven transactivation while leaving transrepression intact. Our results establish a mechanistic understanding of how vamorolone reduces side effects, guiding the future design of partial agonists as selective GR modulators with an improved therapeutic index.
Collapse
|
15
|
Yang X, Amgad M, Cooper LAD, Du Y, Fu H, Ivanov AA. High expression of MKK3 is associated with worse clinical outcomes in African American breast cancer patients. J Transl Med 2020; 18:334. [PMID: 32873298 PMCID: PMC7465409 DOI: 10.1186/s12967-020-02502-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/25/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND African American women experience a twofold higher incidence of triple-negative breast cancer (TNBC) and are 40% more likely to die from breast cancer than women of other ethnicities. However, the molecular bases for the survival disparity in breast cancer remain unclear, and no race-specific therapeutic targets have been proposed. To address this knowledge gap, we performed a systematic analysis of the relationship between gene mRNA expression and clinical outcomes determined for The Cancer Genome Atlas (TCGA) breast cancer patient cohort. METHODS The systematic differential analysis of mRNA expression integrated with the analysis of clinical outcomes was performed for 1055 samples from the breast invasive carcinoma TCGA PanCancer cohorts. A deep learning fully-convolutional model was used to determine the association between gene expression and tumor features based on breast cancer patient histopathological images. RESULTS We found that more than 30% of all protein-coding genes are differentially expressed in White and African American breast cancer patients. We have determined a set of 32 genes whose overexpression in African American patients strongly correlates with decreased survival of African American but not White breast cancer patients. Among those genes, the overexpression of mitogen-activated protein kinase kinase 3 (MKK3) has one of the most dramatic and race-specific negative impacts on the survival of African American patients, specifically with triple-negative breast cancer. We found that MKK3 can promote the TNBC tumorigenesis in African American patients in part by activating of the epithelial-to-mesenchymal transition induced by master regulator MYC. CONCLUSIONS The poor clinical outcomes in African American women with breast cancer can be associated with the abnormal elevation of individual gene expression. Such genes, including those identified and prioritized in this study, could represent new targets for therapeutic intervention. A strong correlation between MKK3 overexpression, activation of its binding partner and major oncogene MYC, and worsened clinical outcomes suggests the MKK3-MYC protein-protein interaction as a new promising target to reduce racial disparity in breast cancer survival.
Collapse
Affiliation(s)
- Xuan Yang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Mohamed Amgad
- Department of Biomedical Informatics, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Lee A D Cooper
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Haian Fu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA.
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Emory University, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
- Department of Hematology & Medical Oncology, Emory University, Atlanta, GA, USA.
| | - Andrey A Ivanov
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA.
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Emory University, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|
16
|
Ivanov AA. Explore Protein-Protein Interactions for Cancer Target Discovery Using the OncoPPi Portal. Methods Mol Biol 2020; 2074:145-164. [PMID: 31583637 DOI: 10.1007/978-1-4939-9873-9_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Protein-protein interactions (PPIs) control all functions and physiological states of the cell. Identification and understanding of novel PPIs would facilitate the discovery of new biological models and therapeutic targets for clinical intervention. Numerous resources and PPI databases have been developed to define a global interactome through the PPI data mining, curation, and integration of different types of experimental evidence obtained with various methods in different model systems. On the other hand, the recent advances in cancer genomics and proteomics have revealed a critical role of genomic alterations in acquisition of cancer hallmarks through a dysregulated network of oncogenic PPIs. Deciphering of cancer-specific interactome would uncover new mechanisms of oncogenic signaling for therapeutic interrogation. Toward this goal our team has developed a high-throughput screening platform to detect PPIs between cancer-associated proteins in the context of cancer cells. The established network of oncogenic PPIs, termed the OncoPPi network, is available through the OncoPPi Portal, an interactive web resource that allows to access and interpret a high-quality cancer-focused network of PPIs experimentally detected in cancer cell lines integrated with the analysis of mutual exclusivity of genomic alterations, cellular co-localization of interacting proteins, domain-domain interactions, and therapeutic connectivity. This chapter presents a guide to explore the OncoPPi network using the OncoPPi Portal to facilitate cancer biology.
Collapse
Affiliation(s)
- Andrey A Ivanov
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA. .,Emory Chemical Biology Discovery Center, Emory University, Atlanta, GA, USA. .,Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|
17
|
Xiong J, Pecchi VG, Qui M, Ivanov AA, Mo X, Niu Q, Chen X, Fu H, Du Y. Development of a Time-Resolved Fluorescence Resonance Energy Transfer Ultrahigh-Throughput Screening Assay for Targeting the NSD3 and MYC Interaction. Assay Drug Dev Technol 2019; 16:96-106. [PMID: 29634317 PMCID: PMC5865254 DOI: 10.1089/adt.2017.835] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Epigenetic modulators play critical roles in reprogramming of cellular functions, emerging as a new class of promising therapeutic targets. Nuclear receptor binding SET domain protein 3 (NSD3) is a member of the lysine methyltransferase family. Interestingly, the short isoform of NSD3 without the methyltransferase fragment, NSD3S, exhibits oncogenic activity in a wide range of cancers. We recently showed that NSD3S interacts with MYC, a central regulator of tumorigenesis, suggesting a mechanism by which NSD3S regulates cell proliferation through engaging MYC. Thus, small molecule inhibitors of the NSD3S/MYC interaction will be valuable tools for understanding the function of NSD3 in tumorigenesis for potential cancer therapeutic discovery. Here we report the development of a cell lysate-based time-resolved fluorescence resonance energy transfer (TR-FRET) assay in an ultrahigh-throughput screening (uHTS) format to monitor the interaction of NSD3S with MYC. In our TR-FRET assay, anti-Flag-terbium and anti-glutathione S-transferase (GST)-d2, a paired fluorophores, were used to indirectly label Flag-tagged NSD3 and GST-MYC in HEK293T cell lysates. This TR-FRET assay is robust in a 1,536-well uHTS format, with signal-to-background >8 and a Z' factor >0.7. A pilot screening with the Spectrum library of 2,000 compounds identified several positive hits. One positive compound was confirmed to disrupt the NSD3/MYC interaction in an orthogonal protein-protein interaction assay. Thus, our optimized uHTS assay could be applied to future scaling up of a screening campaign to identify small molecule inhibitors targeting the NSD3/MYC interaction.
Collapse
Affiliation(s)
- Jinglin Xiong
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, Georgia
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Valentina Gonzalez Pecchi
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, Georgia
| | - Min Qui
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, Georgia
| | - Andrey A. Ivanov
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, Georgia
| | - Xiulei Mo
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, Georgia
| | - Qiankun Niu
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, Georgia
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Haian Fu
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, Georgia
| | - Yuhong Du
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
18
|
Rusnak L, Tang C, Qi Q, Mo X, Fu H. Large tumor suppressor 2, LATS2, activates JNK in a kinase-independent mechanism through ASK1. J Mol Cell Biol 2019; 10:549-558. [PMID: 30496488 DOI: 10.1093/jmcb/mjy061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/15/2018] [Indexed: 12/25/2022] Open
Abstract
Apoptosis signal-regulating kinase 1 (ASK1) is an important mediator of the cell stress response pathways. Because of its central role in regulating cell death, the activity of ASK1 is tightly regulated by protein-protein interactions and post-translational modifications. Deregulation of ASK1 activity has been linked to human diseases, such as neurological disorders and cancer. Here we describe the identification and characterization of large tumor suppressor 2 (LATS2) as a novel binding partner for ASK1. LATS2 is a core kinase in the Hippo signaling pathway and is commonly downregulated in cancer. We found that LATS2 interacts with ASK1 and increases ASK1-mediated signaling to promote apoptosis and activate the JNK mitogen-activated protein kinase (MAPK). This change in MAPK signaling is dependent on the catalytic activity of ASK1 but does not require LATS2 kinase activity. This work identifies a novel role for LATS2 as a positive regulator of the ASK1-MKK-JNK signaling pathway and establishes a kinase-independent function of LATS2 that may be part of the intricate regulatory system for cellular response to diverse stress signals.
Collapse
Affiliation(s)
- Lauren Rusnak
- Graduate Program in Cancer Biology, Emory University, Atlanta, GA, USA.,Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University, Atlanta, GA, USA
| | - Cong Tang
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University, Atlanta, GA, USA.,The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, China
| | - Qi Qi
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University, Atlanta, GA, USA
| | - Xiulei Mo
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University, Atlanta, GA, USA
| | - Haian Fu
- Graduate Program in Cancer Biology, Emory University, Atlanta, GA, USA.,Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University, Atlanta, GA, USA.,Winship Cancer Institute, Emory University, Atlanta, GA, USA.,Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| |
Collapse
|
19
|
Choi SG, Olivet J, Cassonnet P, Vidalain PO, Luck K, Lambourne L, Spirohn K, Lemmens I, Dos Santos M, Demeret C, Jones L, Rangarajan S, Bian W, Coutant EP, Janin YL, van der Werf S, Trepte P, Wanker EE, De Las Rivas J, Tavernier J, Twizere JC, Hao T, Hill DE, Vidal M, Calderwood MA, Jacob Y. Maximizing binary interactome mapping with a minimal number of assays. Nat Commun 2019; 10:3907. [PMID: 31467278 PMCID: PMC6715725 DOI: 10.1038/s41467-019-11809-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/02/2019] [Indexed: 02/06/2023] Open
Abstract
Complementary assays are required to comprehensively map complex biological entities such as genomes, proteomes and interactome networks. However, how various assays can be optimally combined to approach completeness while maintaining high precision often remains unclear. Here, we propose a framework for binary protein-protein interaction (PPI) mapping based on optimally combining assays and/or assay versions to maximize detection of true positive interactions, while avoiding detection of random protein pairs. We have engineered a novel NanoLuc two-hybrid (N2H) system that integrates 12 different versions, differing by protein expression systems and tagging configurations. The resulting union of N2H versions recovers as many PPIs as 10 distinct assays combined. Thus, to further improve PPI mapping, developing alternative versions of existing assays might be as productive as designing completely new assays. Our findings should be applicable to systematic mapping of other biological landscapes.
Collapse
Affiliation(s)
- Soon Gang Choi
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute (DFCI), 450 Brookline Avenue, Boston, MA, 02215, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Julien Olivet
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute (DFCI), 450 Brookline Avenue, Boston, MA, 02215, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA.,Laboratory of Viral Interactomes, Unit of Molecular Biology of Diseases, Groupe Interdisciplinaire de Génomique Appliquée (GIGA Institute), University of Liège, 7 Place du 20 Août, 4000, Liège, Belgium
| | - Patricia Cassonnet
- Département de Virologie, Unité de Génétique Moléculaire des Virus à ARN (GMVR), Institut Pasteur, UMR3569, Centre National de la Recherche Scientifique (CNRS), Université Paris Diderot, Sorbonne Paris Cité, 28 rue du Docteur Roux, 75015, Paris, France
| | - Pierre-Olivier Vidalain
- Équipe Chimie, Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques (LCBPT), Centre Interdisciplinaire Chimie Biologie-Paris (CICB-Paris), UMR8601, CNRS, Université Paris Descartes, 45 rue des Saints-Pères, 75006, Paris, France
| | - Katja Luck
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute (DFCI), 450 Brookline Avenue, Boston, MA, 02215, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Luke Lambourne
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute (DFCI), 450 Brookline Avenue, Boston, MA, 02215, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Kerstin Spirohn
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute (DFCI), 450 Brookline Avenue, Boston, MA, 02215, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Irma Lemmens
- Center for Medical Biotechnology, Vlaams Instituut voor Biotechnologie (VIB), 3 Albert Baertsoenkaai, 9000, Ghent, Belgium.,Cytokine Receptor Laboratory (CRL), Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 3 Albert Baertsoenkaai, 9000, Ghent, Belgium
| | - Mélanie Dos Santos
- Département de Virologie, Unité de Génétique Moléculaire des Virus à ARN (GMVR), Institut Pasteur, UMR3569, Centre National de la Recherche Scientifique (CNRS), Université Paris Diderot, Sorbonne Paris Cité, 28 rue du Docteur Roux, 75015, Paris, France
| | - Caroline Demeret
- Département de Virologie, Unité de Génétique Moléculaire des Virus à ARN (GMVR), Institut Pasteur, UMR3569, Centre National de la Recherche Scientifique (CNRS), Université Paris Diderot, Sorbonne Paris Cité, 28 rue du Docteur Roux, 75015, Paris, France
| | - Louis Jones
- Centre de Bioinformatique, Biostatistique et Biologie Intégrative (C3BI), Institut Pasteur, 28 rue du Docteur Roux, 75015, Paris, France
| | - Sudharshan Rangarajan
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute (DFCI), 450 Brookline Avenue, Boston, MA, 02215, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Wenting Bian
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute (DFCI), 450 Brookline Avenue, Boston, MA, 02215, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Eloi P Coutant
- Département de Biologie Structurale et Chimie, Unité de Chimie et Biocatalyse, Institut Pasteur, UMR3523, CNRS, 28 rue du Docteur Roux, 75015, Paris, France
| | - Yves L Janin
- Département de Biologie Structurale et Chimie, Unité de Chimie et Biocatalyse, Institut Pasteur, UMR3523, CNRS, 28 rue du Docteur Roux, 75015, Paris, France
| | - Sylvie van der Werf
- Département de Virologie, Unité de Génétique Moléculaire des Virus à ARN (GMVR), Institut Pasteur, UMR3569, Centre National de la Recherche Scientifique (CNRS), Université Paris Diderot, Sorbonne Paris Cité, 28 rue du Docteur Roux, 75015, Paris, France
| | - Philipp Trepte
- Neuroproteomics, Max Delbrück Center for Molecular Medicine, 10 Robert-Rössle-Str., 13125, Berlin, Germany.,Brain Development and Disease, Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 3 Dr. Bohr-Gasse, 1030, Vienna, Austria
| | - Erich E Wanker
- Neuroproteomics, Max Delbrück Center for Molecular Medicine, 10 Robert-Rössle-Str., 13125, Berlin, Germany
| | - Javier De Las Rivas
- Cancer Research Center (CiC-IBMCC, CSIC/USAL), Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca (USAL), Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Jan Tavernier
- Center for Medical Biotechnology, Vlaams Instituut voor Biotechnologie (VIB), 3 Albert Baertsoenkaai, 9000, Ghent, Belgium.,Cytokine Receptor Laboratory (CRL), Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 3 Albert Baertsoenkaai, 9000, Ghent, Belgium
| | - Jean-Claude Twizere
- Laboratory of Viral Interactomes, Unit of Molecular Biology of Diseases, Groupe Interdisciplinaire de Génomique Appliquée (GIGA Institute), University of Liège, 7 Place du 20 Août, 4000, Liège, Belgium
| | - Tong Hao
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute (DFCI), 450 Brookline Avenue, Boston, MA, 02215, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - David E Hill
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute (DFCI), 450 Brookline Avenue, Boston, MA, 02215, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute (DFCI), 450 Brookline Avenue, Boston, MA, 02215, USA. .,Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.
| | - Michael A Calderwood
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute (DFCI), 450 Brookline Avenue, Boston, MA, 02215, USA. .,Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), 77 Avenue Louis Pasteur, Boston, MA, 02115, USA. .,Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA.
| | - Yves Jacob
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute (DFCI), 450 Brookline Avenue, Boston, MA, 02215, USA. .,Département de Virologie, Unité de Génétique Moléculaire des Virus à ARN (GMVR), Institut Pasteur, UMR3569, Centre National de la Recherche Scientifique (CNRS), Université Paris Diderot, Sorbonne Paris Cité, 28 rue du Docteur Roux, 75015, Paris, France.
| |
Collapse
|
20
|
Li P, Wang L, Di LJ. Applications of Protein Fragment Complementation Assays for Analyzing Biomolecular Interactions and Biochemical Networks in Living Cells. J Proteome Res 2019; 18:2987-2998. [PMID: 31274323 DOI: 10.1021/acs.jproteome.9b00154] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein-protein interactions (PPIs) are indispensable for the dynamic assembly of multiprotein complexes that are central players of nearly all of the intracellular biological processes, such as signaling pathways, metabolic pathways, formation of intracellular organelles, establishment of cytoplasmic skeletons, etc. Numerous approaches have been invented to study PPIs both in vivo and in vitro, including the protein-fragment complementation assay (PCA), which is a widely applied technology to study PPIs and biomolecular interactions. PCA is a technology based on the expression of the bait and prey proteins in fusion with two complementary reporter protein fragments, respectively, that will reassemble when in close proximity. The reporter protein can be the enzymes or fluorescent proteins. Recovery of the enzymatic activity or fluorescent signal can be the indicator of PPI between the bait and prey proteins. Significant effort has been invested in developing many derivatives of PCA, along with various applications, in order to address specific questions. Therefore, a prompt review of these applications is important. In this review, we will categorize these applications according to the scenarios that the PCAs were applied and expect to provide a reference guideline for the future selection of PCA methods in solving a specific problem.
Collapse
Affiliation(s)
- Peipei Li
- Cancer Center, Faculty of Health Sciences , University of Macau , Macau , SAR of China
| | - Li Wang
- Cancer Center, Faculty of Health Sciences , University of Macau , Macau , SAR of China.,Metabolomics Core, Faculty of Health Sciences , University of Macau , Macau , SAR of China
| | - Li-Jun Di
- Cancer Center, Faculty of Health Sciences , University of Macau , Macau , SAR of China
| |
Collapse
|
21
|
Ivanov AA, Revennaugh B, Rusnak L, Gonzalez-Pecchi V, Mo X, Johns MA, Du Y, Cooper LAD, Moreno CS, Khuri FR, Fu H. The OncoPPi Portal: an integrative resource to explore and prioritize protein-protein interactions for cancer target discovery. Bioinformatics 2018; 34:1183-1191. [PMID: 29186335 DOI: 10.1093/bioinformatics/btx743] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/23/2017] [Indexed: 12/21/2022] Open
Abstract
Motivation As cancer genomics initiatives move toward comprehensive identification of genetic alterations in cancer, attention is now turning to understanding how interactions among these genes lead to the acquisition of tumor hallmarks. Emerging pharmacological and clinical data suggest a highly promising role of cancer-specific protein-protein interactions (PPIs) as druggable cancer targets. However, large-scale experimental identification of cancer-related PPIs remains challenging, and currently available resources to explore oncogenic PPI networks are limited. Results Recently, we have developed a PPI high-throughput screening platform to detect PPIs between cancer-associated proteins in the context of cancer cells. Here, we present the OncoPPi Portal, an interactive web resource that allows investigators to access, manipulate and interpret a high-quality cancer-focused network of PPIs experimentally detected in cancer cell lines. To facilitate prioritization of PPIs for further biological studies, this resource combines network connectivity analysis, mutual exclusivity analysis of genomic alterations, cellular co-localization of interacting proteins and domain-domain interactions. Estimates of PPI essentiality allow users to evaluate the functional impact of PPI disruption on cancer cell proliferation. Furthermore, connecting the OncoPPi network with the approved drugs and compounds in clinical trials enables discovery of new tumor dependencies to inform strategies to interrogate undruggable targets like tumor suppressors. The OncoPPi Portal serves as a resource for the cancer research community to facilitate discovery of cancer targets and therapeutic development. Availability and implementation The OncoPPi Portal is available at http://oncoppi.emory.edu. Contact andrey.ivanov@emory.edu or hfu@emory.edu.
Collapse
Affiliation(s)
- Andrei A Ivanov
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine.,Winship Cancer Institute of Emory University
| | - Brian Revennaugh
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine
| | - Lauren Rusnak
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine
| | - Valentina Gonzalez-Pecchi
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine
| | - Xiulei Mo
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine
| | - Margaret A Johns
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine
| | - Yuhong Du
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine.,Winship Cancer Institute of Emory University
| | - Lee A D Cooper
- Winship Cancer Institute of Emory University.,Department of Biomedical Informatics.,Department of Biomedical Engineering
| | - Carlos S Moreno
- Winship Cancer Institute of Emory University.,Department of Biomedical Informatics.,Department of Pathology and Laboratory Medicine
| | - Fadlo R Khuri
- Winship Cancer Institute of Emory University.,Department of Hematology and Medical Oncology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Haian Fu
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine.,Winship Cancer Institute of Emory University.,Department of Hematology and Medical Oncology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
22
|
Hu MJ, Shao XX, Li HZ, Nie WH, Wang JH, Liu YL, Xu ZG, Guo ZY. Development of a novel ligand binding assay for relaxin family peptide receptor 3 and 4 using NanoLuc complementation. Amino Acids 2018; 50:1111-1119. [PMID: 29770870 DOI: 10.1007/s00726-018-2588-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/11/2018] [Indexed: 02/06/2023]
Abstract
Relaxin family peptides perform a variety of biological functions by binding and activating relaxin family peptide receptor 1-4 (RXFP1-4), four A-class G protein-coupled receptors. In the present work, we developed a novel ligand binding assay for RXFP3 and RXFP4 based on NanoLuc complementation technology (NanoBiT). A synthetic ligation version of the low-affinity small complementation tag (SmBiT) was efficiently ligated to the A-chain N terminus of recombinant chimeric agonist R3/I5 using recombinant circular sortase A. After the ligation product R3/I5-SmBiT was mixed with human RXFP3 or RXFP4 genetically fused with a secretory large NanoLuc fragment (sLgBiT) at the N terminus, NanoLuc complementation was induced by high-affinity ligand-receptor binding. Binding kinetics and affinities of R3/I5-SmBiT with sLgBiT-fused RXFP3 and RXFP4 were conveniently measured according to the complementation-induced bioluminescence. Using R3/I5-SmBiT and the sLgBiT-fused receptor as a complementation pair, binding potencies of various ligands with RXFP3 and RXFP4 were quantitatively measured without the cumbersome washing step. The novel NanoBiT-based ligand binding assay is convenient for use and suitable for automation, thus will facilitate interaction studies of RXFP3 and RXFP4 with ligands in future. This assay can also be applied to some other plasma membrane receptors for pharmacological characterization of ligands in future studies.
Collapse
Affiliation(s)
- Meng-Jun Hu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiao-Xia Shao
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Hao-Zheng Li
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wei-Han Nie
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jia-Hui Wang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ya-Li Liu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zeng-Guang Xu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhan-Yun Guo
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| |
Collapse
|
23
|
Dabo S, Maillard P, Collados Rodriguez M, Hansen MD, Mazouz S, Bigot DJ, Tible M, Janvier G, Helynck O, Cassonnet P, Jacob Y, Bellalou J, Gatignol A, Patel RC, Hugon J, Munier-Lehmann H, Meurs EF. Inhibition of the inflammatory response to stress by targeting interaction between PKR and its cellular activator PACT. Sci Rep 2017; 7:16129. [PMID: 29170442 PMCID: PMC5701060 DOI: 10.1038/s41598-017-16089-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 11/07/2017] [Indexed: 02/07/2023] Open
Abstract
PKR is a cellular kinase involved in the regulation of the integrative stress response (ISR) and pro-inflammatory pathways. Two N-terminal dsRNA Binding Domains (DRBD) are required for activation of PKR, by interaction with either dsRNA or PACT, another cellular DRBD-containing protein. A role for PKR and PACT in inflammatory processes linked to neurodegenerative diseases has been proposed and raised interest for pharmacological PKR inhibitors. However, the role of PKR in inflammation is subject to controversy. We identified the flavonoid luteolin as an inhibitor of the PKR/PACT interaction at the level of their DRBDs using high-throughput screening of chemical libraries by homogeneous time-resolved fluorescence. This was further validated using NanoLuc-Based Protein Complementation Assay. Luteolin inhibits PKR phosphorylation, the ISR and the induction of pro-inflammatory cytokines in human THP1 macrophages submitted to oxidative stress and toll-like receptor (TLR) agonist. Similarly, luteolin inhibits induction of pro-inflammatory cytokines in murine microglial macrophages. In contrast, luteolin increased activation of the inflammasome, in a PKR-independent manner. Collectively, these data delineate the importance of PKR in the inflammation process to the ISR and induction of pro-inflammatory cytokines. Pharmacological inhibitors of PKR should be used in combination with drugs targeting directly the inflammasome.
Collapse
Affiliation(s)
- Stephanie Dabo
- Unité Hepacivirus and Innate Immunity, Institut Pasteur, 75015, Paris, France.,CNRS, UMR 3569, Paris, France
| | - Patrick Maillard
- Unité Hepacivirus and Innate Immunity, Institut Pasteur, 75015, Paris, France.,CNRS, UMR 3569, Paris, France
| | - Milagros Collados Rodriguez
- Unité Hepacivirus and Innate Immunity, Institut Pasteur, 75015, Paris, France.,CNRS, UMR 3569, Paris, France
| | - Marianne Doré Hansen
- Unité Hepacivirus and Innate Immunity, Institut Pasteur, 75015, Paris, France.,CNRS, UMR 3569, Paris, France.,Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7006, Trondheim, Norway
| | - Sabrina Mazouz
- Unité Hepacivirus and Innate Immunity, Institut Pasteur, 75015, Paris, France.,CNRS, UMR 3569, Paris, France
| | - Donna-Joe Bigot
- Unité Hepacivirus and Innate Immunity, Institut Pasteur, 75015, Paris, France.,CNRS, UMR 3569, Paris, France
| | - Marion Tible
- Center of Cognitive Neurology, Lariboisière Hospital AP-HP University Paris Diderot, Paris, France.,Inserm, U942, Paris, France
| | - Geneviève Janvier
- Unité Hepacivirus and Innate Immunity, Institut Pasteur, 75015, Paris, France.,CNRS, UMR 3569, Paris, France
| | - Olivier Helynck
- Unité de Chimie et Biocatalyse, Institut Pasteur, 75015, Paris, France.,CNRS, UMR3523, Paris, France
| | - Patricia Cassonnet
- CNRS, UMR 3569, Paris, France.,Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, Université Paris Diderot, Paris, France
| | - Yves Jacob
- CNRS, UMR 3569, Paris, France.,Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, Université Paris Diderot, Paris, France
| | - Jacques Bellalou
- Plate-forme des protéines recombinantes, Institut Pasteur, 75015, CNRS UMR 3528, Paris, France
| | - Anne Gatignol
- Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research, Department of Medicine, department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Rekha C Patel
- University of South Carolina, Department of Biological Sciences, Columbia, South Carolina, 29208, USA
| | - Jacques Hugon
- Center of Cognitive Neurology, Lariboisière Hospital AP-HP University Paris Diderot, Paris, France.,Inserm, U942, Paris, France
| | - Hélène Munier-Lehmann
- Unité de Chimie et Biocatalyse, Institut Pasteur, 75015, Paris, France.,CNRS, UMR3523, Paris, France
| | - Eliane F Meurs
- Unité Hepacivirus and Innate Immunity, Institut Pasteur, 75015, Paris, France. .,CNRS, UMR 3569, Paris, France.
| |
Collapse
|