1
|
Taheri M, Afzali Mehr M, Ghafouri H. The novel orthosteric agonist M1 muscarinic acetylcholine receptor reveals anti-Alzheimer's disease activity. Sci Rep 2024; 14:28824. [PMID: 39572774 PMCID: PMC11582822 DOI: 10.1038/s41598-024-80102-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024] Open
Abstract
Cholinergic treatments with an emphasis on M1 muscarinic acetylcholine receptor (mAChR) agonists as potential modulating agents are a new approach in Alzheimer's disease (AD) therapy. In previous research, we designed and characterized novel thiazolidine-2,4-dione (TZD)-derived compounds that possess anti-AD properties and enhance the expression of mAChRM1 in rats. This study evaluated a novel orthosteric agonist of mAChRM1 from related pathways that has shown promising anti-Alzheimer's disease activity. PC12 cells were exposed to various concentrations of TZ4M before they were exposed to scopolamine (3 µM). Immunocytochemistry and western blot analyses revealed that TZ4M increased the expression of mAChRM1 in differentiated cells induced by scopolamine-treated PC12 cells. The results showed that TZ4M (3 and 5 µM) markedly upregulated PKC and ChAT protein expression, and the cells were significantly protected against increased ROS levels followed by neuronal cell loss, as evidenced by the MTT assay. TUNEL staining indicated that TZ4M impeded the shaping of apoptotic bodies. Analysis of the amino acid sequences of the ligand-protein binding site indicated that TZ4M is bound to the orthosteric site (acetylcholine site). This study revealed that TZ4M, a derivative of TZD, effectively protects against scopolamine-induced damage. TZ4M, a novel mACRM1 orthosteric agonist, is promising for treating AD.
Collapse
Affiliation(s)
- Maryam Taheri
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, 4193833697, Iran
| | - Maryam Afzali Mehr
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, 4193833697, Iran
| | - Hossein Ghafouri
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, 4193833697, Iran.
| |
Collapse
|
2
|
Tobin AB. A golden age of muscarinic acetylcholine receptor modulation in neurological diseases. Nat Rev Drug Discov 2024; 23:743-758. [PMID: 39143241 DOI: 10.1038/s41573-024-01007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 08/16/2024]
Abstract
Over the past 40 years, the muscarinic acetylcholine receptor family, particularly the M1-receptor and M4-receptor subtypes, have emerged as validated targets for the symptomatic treatment of neurological diseases such as schizophrenia and Alzheimer disease. However, despite considerable effort and investment, no drugs have yet gained clinical approval. This is largely attributable to cholinergic adverse effects that have halted the majority of programmes and resulted in a waning of interest in these G-protein-coupled receptor targets. Recently, this trend has been reversed. Driven by advances in structure-based drug design and an appreciation of the optimal pharmacological properties necessary to deliver clinical efficacy while minimizing adverse effects, a new generation of M1-receptor and M4-receptor orthosteric agonists and positive allosteric modulators are now entering the clinic. These agents offer the prospect of novel therapeutic solutions for 'hard to treat' neurological diseases, heralding a new era of muscarinic drug discovery.
Collapse
Affiliation(s)
- Andrew B Tobin
- Centre for Translational Pharmacology, School of Molecular Biosciences, The Advanced Research Centre, University of Glasgow, Glasgow, UK.
| |
Collapse
|
3
|
Nguyen HTM, van der Westhuizen ET, Langmead CJ, Tobin AB, Sexton PM, Christopoulos A, Valant C. Opportunities and challenges for the development of M 1 muscarinic receptor positive allosteric modulators in the treatment for neurocognitive deficits. Br J Pharmacol 2024; 181:2114-2142. [PMID: 36355830 DOI: 10.1111/bph.15982] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/22/2022] [Accepted: 10/18/2022] [Indexed: 11/12/2022] Open
Abstract
Targeting allosteric sites of M1 muscarinic acetylcholine receptors (M1 receptors) is a promising strategy to treat neurocognitive disorders, such as Alzheimer's disease and schizophrenia. Indeed, the last two decades have seen an impressive body of work focussing on the design and development of positive allosteric modulators (PAMs) for the M1 receptor. This has led to the identification of a structurally diverse range of highly selective M1 PAMs. In preclinical models, M1 PAMs have shown rescue of cognitive deficits and improvement of endpoints predictive of symptom domains of schizophrenia. Yet, to date only a few M1 PAMs have reached early-stage clinical trials, with many of them failing to progress further due to on-target mediated cholinergic adverse effects that have plagued the development of this class of ligand. This review covers the recent preclinical and clinical studies in the field of M1 receptor drug discovery for the treatment of Alzheimer's disease and schizophrenia, with a specific focus on M1 PAM, highlighting both the undoubted potential but also key challenges for the successful translation of M1 PAMs from bench-side to bedside. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Huong T M Nguyen
- Drug Discovery Biology, Monash University, Parkville, Melbourne, VIC, Australia
- Department of Biochemistry, Hanoi University of Pharmacy, Hanoi, Vietnam
| | | | - Christopher J Langmead
- Drug Discovery Biology, Monash University, Parkville, Melbourne, VIC, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Melbourne, VIC, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash University, Parkville, Melbourne, VIC, Australia
| | - Andrew B Tobin
- Centre for Translational Pharmacology, University of Glasgow, Glasgow, UK
| | - Patrick M Sexton
- Drug Discovery Biology, Monash University, Parkville, Melbourne, VIC, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash University, Parkville, Melbourne, VIC, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash University, Parkville, Melbourne, VIC, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Melbourne, VIC, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash University, Parkville, Melbourne, VIC, Australia
| | - Celine Valant
- Drug Discovery Biology, Monash University, Parkville, Melbourne, VIC, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Zha J, He J, Wu C, Zhang M, Liu X, Zhang J. Designing drugs and chemical probes with the dualsteric approach. Chem Soc Rev 2023; 52:8651-8677. [PMID: 37990599 DOI: 10.1039/d3cs00650f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Traditionally, drugs are monovalent, targeting only one site on the protein surface. This includes orthosteric and allosteric drugs, which bind the protein at orthosteric and allosteric sites, respectively. Orthosteric drugs are good in potency, whereas allosteric drugs have better selectivity and are solutions to classically undruggable targets. However, it would be difficult to simultaneously reach high potency and selectivity when targeting only one site. Also, both kinds of monovalent drugs suffer from mutation-caused drug resistance. To overcome these obstacles, dualsteric modulators have been proposed in the past twenty years. Compared to orthosteric or allosteric drugs, dualsteric modulators are bivalent (or bitopic) with two pharmacophores. Each of the two pharmacophores bind the protein at the orthosteric and an allosteric site, which could bring the modulator with special properties beyond monovalent drugs. In this study, we comprehensively review the current development of dualsteric modulators. Our main effort reason and illustrate the aims to apply the dualsteric approach, including a "double win" of potency and selectivity, overcoming mutation-caused drug resistance, developments of function-biased modulators, and design of partial agonists. Moreover, the strengths of the dualsteric technique also led to its application outside pharmacy, including the design of highly sensitive fluorescent tracers and usage as molecular rulers. Besides, we also introduced drug targets, designing strategies, and validation methods of dualsteric modulators. Finally, we detail the conclusions and perspectives.
Collapse
Affiliation(s)
- Jinyin Zha
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jixiao He
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengwei Wu
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingyang Zhang
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyi Liu
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Yamahashi Y, Tsuboi D, Funahashi Y, Kaibuchi K. Neuroproteomic mapping of kinases and their substrates downstream of acetylcholine: finding and implications. Expert Rev Proteomics 2023; 20:291-298. [PMID: 37787112 DOI: 10.1080/14789450.2023.2265067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/09/2023] [Indexed: 10/04/2023]
Abstract
INTRODUCTION Since the emergence of the cholinergic hypothesis of Alzheimer's disease (AD), acetylcholine has been viewed as a mediator of learning and memory. Donepezil improves AD-associated learning deficits and memory loss by recovering brain acetylcholine levels. However, it is associated with side effects due to global activation of acetylcholine receptors. Muscarinic acetylcholine receptor M1 (M1R), a key mediator of learning and memory, has been an alternative target. The importance of targeting a specific pathway downstream of M1R has recently been recognized. Elucidating signaling pathways beyond M1R that lead to learning and memory holds important clues for AD therapeutic strategies. AREAS COVERED This review first summarizes the role of acetylcholine in aversive learning, one of the outputs used for preliminary AD drug screening. It then describes the phosphoproteomic approach focused on identifying acetylcholine intracellular signaling pathways leading to aversive learning. Finally, the intracellular mechanism of donepezil and its effect on learning and memory is discussed. EXPERT OPINION The elucidation of signaling pathways beyond M1R by phosphoproteomic approach offers a platform for understanding the intracellular mechanism of AD drugs and for developing AD therapeutic strategies. Clarifying the molecular mechanism that links the identified acetylcholine signaling to AD pathophysiology will advance the development of AD therapeutic strategies.
Collapse
Affiliation(s)
- Yukie Yamahashi
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Daisuke Tsuboi
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Yasuhiro Funahashi
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Kozo Kaibuchi
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, Japan
| |
Collapse
|
6
|
Jones SE, Harvey PD. Cross-diagnostic determinants of cognitive functioning: the muscarinic cholinergic receptor as a model system. Transl Psychiatry 2023; 13:100. [PMID: 36973270 PMCID: PMC10042838 DOI: 10.1038/s41398-023-02400-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Cognitive impairment is a predictor of disability across different neuropsychiatric conditions, and cognitive abilities are also strongly related to educational attainment and indices of life success in the general population. Previous attempts at drug development for cognitive enhancement have commonly attempted to remedy defects in transmitters systems putatively associated with the conditions of interest such as the glutamate system in schizophrenia. Recent studies of the genomics of cognitive performance have suggested influences that are common in the general population and in different neuropsychiatric conditions. Thus, it seems possible that transmitter systems that are implicated for cognition across neuropsychiatric conditions and the general population would be a viable treatment target. We review the scientific data on cognition and the muscarinic cholinergic receptor system (M1 and M4) across different diagnoses, in aging, and in the general population. We suggest that there is evidence suggesting potential beneficial impacts of stimulation of critical muscarinic receptors for the enhancement of cognition in a broad manner, as well as the treatment of psychotic symptoms. Recent developments make stimulation of the M1 receptor more tolerable, and we identify the potential benefits of M1 and M4 receptor stimulation as a trans-diagnostic treatment model.
Collapse
Affiliation(s)
- Sara E Jones
- Department of Psychiatry, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Philip D Harvey
- Department of Psychiatry, University of Miami Miller School of Medicine, Miami, FL, USA.
- Research Service, Bruce W. Carter VA Medical Center, Miami, FL, USA.
| |
Collapse
|
7
|
Muscarinic acetylcholine receptors for psychotic disorders: bench-side to clinic. Trends Pharmacol Sci 2022; 43:1098-1112. [PMID: 36273943 DOI: 10.1016/j.tips.2022.09.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/19/2022] [Accepted: 09/25/2022] [Indexed: 11/11/2022]
Abstract
Modern interest in muscarinic acetylcholine receptor (mAChR) activators for schizophrenia began in the 1990s when xanomeline, an M1/M4-preferring mAChR agonist developed for cognitive symptoms of Alzheimer's disease (AD), had unexpected antipsychotic activity. However, strategies to address tolerability concerns associated with activation of peripheral mAChRs were not available at that time. The discovery of specific targeted ligands and combination treatments to reduce peripheral mAChR engagement have advanced the potential of mAChR activators as effective treatments for psychotic disorders. This review provides perspectives on the background of the identification of mAChRs as potential antipsychotics, advances in the preclinical understanding of mAChRs as targets, and the current state of mAChR activators under active clinical development for schizophrenia.
Collapse
|
8
|
Nathan PJ, Millais SB, Godwood A, Dewit O, Cross DM, Liptrot J, Ruparelia B, Jones SP, Bakker G, Maruff PT, Light GA, Brown AJ, Weir MP, Congreve M, Tasker T. A phase 1b/2a multicenter study of the safety and preliminary pharmacodynamic effects of selective muscarinic M 1 receptor agonist HTL0018318 in patients with mild-to-moderate Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12273. [PMID: 35229025 PMCID: PMC8864442 DOI: 10.1002/trc2.12273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/22/2021] [Accepted: 01/25/2022] [Indexed: 12/03/2022]
Abstract
INTRODUCTION This study examined the safety and pharmacodynamic effects of selective muscarinic M1 receptor orthosteric agonist HTL0018318 in 60 patients with mild-to-moderate Alzheimer's disease (AD) on background donepezil 10 mg/day. METHODS A randomized, double-blind, placebo-controlled 4-week safety study of HTL0018318 with up-titration and maintenance phases, observing exploratory effects on electrophysiological biomarkers and cognition. RESULTS Treatment-emergent adverse events (TEAEs) were mild and less frequently reported during maintenance versus titration. Headache was most commonly reported (7-21%); 0 to 13% reported cholinergic TEAEs (abdominal pain, diarrhea, fatigue, nausea) and two patients discontinued due to TEAEs. At 1 to 2 hours post-dose, HTL0018318-related mean maximum elevations in systolic and diastolic blood pressure of 5 to 10 mmHg above placebo were observed during up-titration but not maintenance. Postive effects of HTL0018318 were found on specific attention and memory endpoints. DISCUSSION HTL0018318 was well tolerated in mild-to-moderate AD patients and showed positive effects on attention and episodic memory on top of therapeutic doses of donepezil.
Collapse
Affiliation(s)
- Pradeep J. Nathan
- Heptares Therapeutics LtdCambridgeUK
- Department of PsychiatryUniversity of CambridgeCambridgeUK
| | | | | | | | | | | | | | | | | | | | - Gregory A. Light
- Departmentof PsychiatryUniversity of San DiegoSan DiegoCaliforniaUSA
| | | | | | | | | |
Collapse
|
9
|
Walker LC, Campbell EJ, Huckstep KL, Chen NA, Langmead CJ, Lawrence AJ. M 1 muscarinic receptor activation decreases alcohol consumption via a reduction in consummatory behavior. Pharmacol Res Perspect 2021; 10:e00907. [PMID: 34962108 PMCID: PMC8929368 DOI: 10.1002/prp2.907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/21/2021] [Indexed: 11/07/2022] Open
Abstract
Muscarinic acetylcholine receptors (mAChRs) have been shown to mediate alcohol consumption and seeking. Both M4 and M5 mAChRs have been highlighted as potential novel treatment targets for alcohol use disorders (AUD). Similarly, M1 mAChRs are expressed throughout reward circuitry, and their signaling has been implicated in cocaine consumption. However, whether the same effects are seen for alcohol consumption, or whether natural reward intake is inadvertently impacted is still unknown. To determine the role of M1 mAChRs in alcohol consumption, we tested operant self-administration of alcohol under both fixed ratio (FR3) and progressive ratio (PR3-4) schedules. Enhancing M1 mAChR signaling (via the M1 PAM-Agonist PF-06767832, 1 mg/kg, i.p.) reduced operant alcohol consumption on a fixed schedule but had no effect on motivation to acquire alcohol. To determine whether these actions were specific to alcohol, we examined the effects of M1 enhancement on natural reward (sucrose) self-administration. Systemic administration of PF-06767832 (1 mg/kg, i.p.) also reduced operant sucrose self-administration, suggesting the actions of the M1 receptor may be non-selective across drug and natural rewards. Finally, to understand whether this reduction extended to natural consummatory behaviors, we assessed home cage standard chow and water consumption. M1 enhancement via systemic PF-06767832 administration reduced food and water consumption. Together our results suggest the M1 PAM-agonist, PF-06767832, non-specifically reduces consummatory behaviors that are not associated with motivational strength for the reward. These data highlight the need to further characterize M1 agonists, PAMs, and PAM-agonists, which may have varying degrees of utility in the treatment of neuropsychiatric disorders including AUD.
Collapse
Affiliation(s)
- Leigh C. Walker
- Florey Institute of Neuroscience and Mental HealthParkvilleAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneParkvilleAustralia
| | - Erin J. Campbell
- Florey Institute of Neuroscience and Mental HealthParkvilleAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneParkvilleAustralia
| | - Kate L. Huckstep
- Florey Institute of Neuroscience and Mental HealthParkvilleAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneParkvilleAustralia
| | - Nicola A. Chen
- Florey Institute of Neuroscience and Mental HealthParkvilleAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneParkvilleAustralia
| | - Christopher J. Langmead
- Drug Discovery BiologyMonash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoriaAustralia
| | - Andrew J. Lawrence
- Florey Institute of Neuroscience and Mental HealthParkvilleAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneParkvilleAustralia
| |
Collapse
|
10
|
Brown AJH, Bradley SJ, Marshall FH, Brown GA, Bennett KA, Brown J, Cansfield JE, Cross DM, de Graaf C, Hudson BD, Dwomoh L, Dias JM, Errey JC, Hurrell E, Liptrot J, Mattedi G, Molloy C, Nathan PJ, Okrasa K, Osborne G, Patel JC, Pickworth M, Robertson N, Shahabi S, Bundgaard C, Phillips K, Broad LM, Goonawardena AV, Morairty SR, Browning M, Perini F, Dawson GR, Deakin JFW, Smith RT, Sexton PM, Warneck J, Vinson M, Tasker T, Tehan BG, Teobald B, Christopoulos A, Langmead CJ, Jazayeri A, Cooke RM, Rucktooa P, Congreve MS, Weir M, Tobin AB. From structure to clinic: Design of a muscarinic M1 receptor agonist with potential to treatment of Alzheimer's disease. Cell 2021; 184:5886-5901.e22. [PMID: 34822784 PMCID: PMC7616177 DOI: 10.1016/j.cell.2021.11.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 04/29/2021] [Accepted: 11/01/2021] [Indexed: 12/31/2022]
Abstract
Current therapies for Alzheimer's disease seek to correct for defective cholinergic transmission by preventing the breakdown of acetylcholine through inhibition of acetylcholinesterase, these however have limited clinical efficacy. An alternative approach is to directly activate cholinergic receptors responsible for learning and memory. The M1-muscarinic acetylcholine (M1) receptor is the target of choice but has been hampered by adverse effects. Here we aimed to design the drug properties needed for a well-tolerated M1-agonist with the potential to alleviate cognitive loss by taking a stepwise translational approach from atomic structure, cell/tissue-based assays, evaluation in preclinical species, clinical safety testing, and finally establishing activity in memory centers in humans. Through this approach, we rationally designed the optimal properties, including selectivity and partial agonism, into HTL9936-a potential candidate for the treatment of memory loss in Alzheimer's disease. More broadly, this demonstrates a strategy for targeting difficult GPCR targets from structure to clinic.
Collapse
Affiliation(s)
- Alastair J H Brown
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Sophie J Bradley
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK; The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Fiona H Marshall
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Giles A Brown
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Kirstie A Bennett
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Jason Brown
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Julie E Cansfield
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - David M Cross
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK; Cross Pharma Consulting Ltd, 20-22 Wenlock Road, London, N17GU, UK
| | - Chris de Graaf
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Brian D Hudson
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Louis Dwomoh
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - João M Dias
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - James C Errey
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Edward Hurrell
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Jan Liptrot
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Giulio Mattedi
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Colin Molloy
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Pradeep J Nathan
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK; Brain Mapping Unit, University of Cambridge, Department of Psychiatry, Herchel Smith Building, Cambridge, CB20SZ, UK
| | - Krzysztof Okrasa
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Greg Osborne
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Jayesh C Patel
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Mark Pickworth
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Nathan Robertson
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Shahram Shahabi
- Eli Lilly & Co, Neuroscience Discovery, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - Christoffer Bundgaard
- Eli Lilly & Co, Neuroscience Discovery, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK; H. Lundbeck A/S, Neuroscience Research, Ottiliavej 9, 2500 Valby, Copenhagen, Denmark
| | - Keith Phillips
- Eli Lilly & Co, Neuroscience Discovery, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - Lisa M Broad
- Eli Lilly & Co, Neuroscience Discovery, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - Anushka V Goonawardena
- Center for Neuroscience, Biosciences Division, SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
| | - Stephen R Morairty
- Center for Neuroscience, Biosciences Division, SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
| | - Michael Browning
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX12JD, UK; P1vital, Manor house, Howbery Buisness Park, Wallingford, OX108BA, UK
| | - Francesca Perini
- Centre for Cognitive Neuroscience - Duke-NUS Medical School, 8 College Road, 169857, Singapore
| | - Gerard R Dawson
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX12JD, UK
| | - John F W Deakin
- Neuroscience and Psychiatry Unit, University of Manchester, Manchester, M139PT UK
| | - Robert T Smith
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville 3052, Victoria, Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Julie Warneck
- Protogenia Consulting Ltd, PO-Box 289, Ely, CB79DR, UK
| | - Mary Vinson
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Tim Tasker
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Benjamin G Tehan
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Barry Teobald
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville 3052, Victoria, Australia
| | - Christopher J Langmead
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville 3052, Victoria, Australia
| | - Ali Jazayeri
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Robert M Cooke
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Prakash Rucktooa
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Miles S Congreve
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Malcolm Weir
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK.
| | - Andrew B Tobin
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
11
|
Ozenil M, Aronow J, Millard M, Langer T, Wadsak W, Hacker M, Pichler V. Update on PET Tracer Development for Muscarinic Acetylcholine Receptors. Pharmaceuticals (Basel) 2021; 14:530. [PMID: 34199622 PMCID: PMC8229778 DOI: 10.3390/ph14060530] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023] Open
Abstract
The muscarinic cholinergic system regulates peripheral and central nervous system functions, and, thus, their potential as a therapeutic target for several neurodegenerative diseases is undoubted. A clinically applicable positron emission tomography (PET) tracer would facilitate the monitoring of disease progression, elucidate the role of muscarinic acetylcholine receptors (mAChR) in disease development and would aid to clarify the diverse natural functions of mAChR regulation throughout the nervous system, which still are largely unresolved. Still, no mAChR PET tracer has yet found broad clinical application, which demands mAChR tracers with improved imaging properties. This paper reviews strategies of mAChR PET tracer design and summarizes the binding properties and preclinical evaluation of recent mAChR tracer candidates. Furthermore, this work identifies the current major challenges in mAChR PET tracer development and provides a perspective on future developments in this area of research.
Collapse
Affiliation(s)
- Marius Ozenil
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Wien, Austria; (M.O.); (J.A.); (W.W.); (M.H.)
| | - Jonas Aronow
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Wien, Austria; (M.O.); (J.A.); (W.W.); (M.H.)
| | - Marlon Millard
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, 1090 Wien, Austria; (M.M.); (T.L.)
| | - Thierry Langer
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, 1090 Wien, Austria; (M.M.); (T.L.)
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Wien, Austria; (M.O.); (J.A.); (W.W.); (M.H.)
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Wien, Austria; (M.O.); (J.A.); (W.W.); (M.H.)
| | - Verena Pichler
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, 1090 Wien, Austria; (M.M.); (T.L.)
| |
Collapse
|
12
|
Volpato D, Kauk M, Messerer R, Bermudez M, Wolber G, Bock A, Hoffmann C, Holzgrabe U. The Role of Orthosteric Building Blocks of Bitopic Ligands for Muscarinic M1 Receptors. ACS OMEGA 2020; 5:31706-31715. [PMID: 33344823 PMCID: PMC7745449 DOI: 10.1021/acsomega.0c04220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/16/2020] [Indexed: 05/13/2023]
Abstract
The muscarinic M1 acetylcholine receptor is an important drug target for the treatment of various neurological disorders. Designing M1 receptor-selective drugs has proven challenging, mainly due to the high conservation of the acetylcholine binding site among muscarinic receptor subtypes. Therefore, less conserved and topographically distinct allosteric binding sites have been explored to increase M1 receptor selectivity. In this line, bitopic ligands, which target orthosteric and allosteric binding sites simultaneously, may provide a promising strategy. Here, we explore the allosteric, M1-selective BQCAd scaffold derived from BQCA as a starting point for the design, synthesis, and pharmacological evaluation of a series of novel bitopic ligands in which the orthosteric moieties and linker lengths are systematically varied. Since β-arrestin recruitment seems to be favorable to therapeutic implication, all the compounds were investigated by G protein and β-arrestin assays. Some bitopic ligands are partial to full agonists for G protein activation, some activate β-arrestin recruitment, and the degree of β-arrestin recruitment varies according to the respective modification. The allosteric BQCAd scaffold controls the positioning of the orthosteric ammonium group of all ligands, suggesting that this interaction is essential for stimulating G protein activation. However, β-arrestin recruitment is not affected. The novel set of bitopic ligands may constitute a toolbox to study the requirements of β-arrestin recruitment during ligand design for therapeutic usage.
Collapse
Affiliation(s)
- Daniela Volpato
- Department
of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Michael Kauk
- Institute
for Molecular Cell Biology, CMB-Center for Molecular Biomedicine,
University Hospital Jena, Friedrich-Schiller University Jena, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - Regina Messerer
- Department
of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Marcel Bermudez
- Institute
of Pharmacy, Freie Universitaet Berlin, Königin-Luise-Str. 2-4 in 14195 Berlin-Dahlem, Germany
| | - Gerhard Wolber
- Institute
of Pharmacy, Freie Universitaet Berlin, Königin-Luise-Str. 2-4 in 14195 Berlin-Dahlem, Germany
| | - Andreas Bock
- Max
Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Carsten Hoffmann
- Institute
for Molecular Cell Biology, CMB-Center for Molecular Biomedicine,
University Hospital Jena, Friedrich-Schiller University Jena, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - Ulrike Holzgrabe
- Department
of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
- . Tel.: +49 931 31-85460
| |
Collapse
|
13
|
Hatzipantelis C, Langiu M, Vandekolk TH, Pierce TL, Nithianantharajah J, Stewart GD, Langmead CJ. Translation-Focused Approaches to GPCR Drug Discovery for Cognitive Impairments Associated with Schizophrenia. ACS Pharmacol Transl Sci 2020; 3:1042-1062. [PMID: 33344888 PMCID: PMC7737210 DOI: 10.1021/acsptsci.0c00117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Indexed: 01/07/2023]
Abstract
There are no effective therapeutics for cognitive impairments associated with schizophrenia (CIAS), which includes deficits in executive functions (working memory and cognitive flexibility) and episodic memory. Compounds that have entered clinical trials are inadequate in terms of efficacy and/or tolerability, highlighting a clear translational bottleneck and a need for a cohesive preclinical drug development strategy. In this review we propose hippocampal-prefrontal-cortical (HPC-PFC) circuitry underlying CIAS-relevant cognitive processes across mammalian species as a target source to guide the translation-focused discovery and development of novel, procognitive agents. We highlight several G protein-coupled receptors (GPCRs) enriched within HPC-PFC circuitry as therapeutic targets of interest, including noncanonical approaches (biased agonism and allosteric modulation) to conventional clinical targets, such as dopamine and muscarinic acetylcholine receptors, along with prospective novel targets, including the orphan receptors GPR52 and GPR139. We also describe the translational limitations of popular preclinical cognition tests and suggest touchscreen-based assays that probe cognitive functions reliant on HPC-PFC circuitry and reflect tests used in the clinic, as tests of greater translational relevance. Combining pharmacological and behavioral testing strategies based in HPC-PFC circuit function creates a cohesive, translation-focused approach to preclinical drug development that may improve the translational bottleneck currently hindering the development of treatments for CIAS.
Collapse
Affiliation(s)
- Cassandra
J. Hatzipantelis
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Monica Langiu
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Teresa H. Vandekolk
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Tracie L. Pierce
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Jess Nithianantharajah
- Florey
Institute of Neuroscience
and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Gregory D. Stewart
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Christopher J. Langmead
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
14
|
Modulation of arousal and sleep/wake architecture by M 1 PAM VU0453595 across young and aged rodents and nonhuman primates. Neuropsychopharmacology 2020; 45:2219-2228. [PMID: 32868847 PMCID: PMC7784923 DOI: 10.1038/s41386-020-00812-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/13/2020] [Indexed: 02/01/2023]
Abstract
Degeneration of basal forebrain cholinergic circuitry represents an early event in the development of Alzheimer's disease (AD). These alterations in central cholinergic function are associated with disruptions in arousal, sleep/wake architecture, and cognition. Changes in sleep/wake architecture are also present in normal aging and may represent a significant risk factor for AD. M1 muscarinic acetylcholine receptor (mAChR) positive allosteric modulators (PAMs) have been reported to enhance cognition across preclinical species and may also provide beneficial effects for age- and/or neurodegenerative disease-related changes in arousal and sleep. In the present study, electroencephalography was conducted in young animals (mice, rats and nonhuman primates [NHPs]) and in aged mice to examine the effects of the selective M1 PAM VU0453595 in comparison with the acetylcholinesterase inhibitor donepezil, M1/M4 agonist xanomeline (in NHPs), and M1 PAM BQCA (in rats) on sleep/wake architecture and arousal. In young wildtype mice, rats, and NHPs, but not in M1 mAChR KO mice, VU0453595 produced dose-related increases in high frequency gamma power, a correlate of arousal and cognition enhancement, without altering duration of time across all sleep/wake stages. Effects of VU0453595 in NHPs were observed within a dose range that did not induce cholinergic-mediated adverse effects. In contrast, donepezil and xanomeline increased time awake in rodents and engendered dose-limiting adverse effects in NHPs. Finally, VU0453595 attenuated age-related decreases in REM sleep duration in aged wildtype mice. Development of M1 PAMs represents a viable strategy for attenuating age-related and dementia-related pathological disturbances of sleep and arousal.
Collapse
|
15
|
Marsango S, Barki N, Jenkins L, Tobin AB, Milligan G. Therapeutic validation of an orphan G protein-coupled receptor: The case of GPR84. Br J Pharmacol 2020; 179:3529-3541. [PMID: 32869860 PMCID: PMC9361006 DOI: 10.1111/bph.15248] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/04/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the importance of members of the GPCR superfamily as targets of a broad range of effective medicines many GPCRs remain poorly characterised. GPR84 is an example. Expression of GPR84 is strongly up regulated in immune cells in a range of pro-inflammatory settings and clinical trials to treat idiopathic pulmonary fibrosis are currently ongoing using ligands with differing levels of selectivity and affinity as GPR84 antagonists. Although blockade of GPR84 may potentially prove effective also in diseases associated with inflammation of the lower gut there is emerging interest in defining if agonists of GPR84 might find utility in conditions in which regulation of metabolism or energy sensing is compromised. Here, we consider the physiological and pathological expression profile of GPR84 and, in the absence of direct structural information, recent developments and use of GPR84 pharmacological tool compounds to study its broader role and biology.
Collapse
Affiliation(s)
- Sara Marsango
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Natasja Barki
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Laura Jenkins
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Andrew B Tobin
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Graeme Milligan
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
16
|
Thompson KJ, Tobin AB. Crosstalk between the M 1 muscarinic acetylcholine receptor and the endocannabinoid system: A relevance for Alzheimer's disease? Cell Signal 2020; 70:109545. [PMID: 31978506 PMCID: PMC7184673 DOI: 10.1016/j.cellsig.2020.109545] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder which accounts for 60-70% of the 50 million worldwide cases of dementia and is characterised by cognitive impairments, many of which have long been associated with dysfunction of the cholinergic system. Although the M1 muscarinic acetylcholine receptor (mAChR) is considered a promising drug target for AD, ligands targeting this receptor have so far been unsuccessful in clinical trials. As modulatory receptors to cholinergic transmission, the endocannabinoid system may be a promising drug target to allow fine tuning of the cholinergic system. Furthermore, disease-related changes have been found in the endocannabinoid system during AD progression and indeed targeting the endocannabinoid system at specific disease stages alleviates cognitive symptoms in numerous mouse models of AD. Here we review the role of the endocannabinoid system in AD, and its crosstalk with mAChRs as a potential drug target for cholinergic dysfunction.
Collapse
Affiliation(s)
- Karen J Thompson
- Centre for Translational Pharmacology, Institute of Molecular Cell and Systems Biology, Davidson Building, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Andrew B Tobin
- Centre for Translational Pharmacology, Institute of Molecular Cell and Systems Biology, Davidson Building, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
17
|
Bradley SJ, Molloy C, Valuskova P, Dwomoh L, Scarpa M, Rossi M, Finlayson L, Svensson KA, Chernet E, Barth VN, Gherbi K, Sykes DA, Wilson CA, Mistry R, Sexton PM, Christopoulos A, Mogg AJ, Rosethorne EM, Sakata S, John Challiss RA, Broad LM, Tobin AB. Biased M1-muscarinic-receptor-mutant mice inform the design of next-generation drugs. Nat Chem Biol 2020; 16:240-249. [PMID: 32080630 PMCID: PMC7616160 DOI: 10.1038/s41589-019-0453-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/12/2019] [Indexed: 01/17/2023]
Abstract
Cholinesterase inhibitors, the current frontline symptomatic treatment for Alzheimer's disease (AD), are associated with low efficacy and adverse effects. M1 muscarinic acetylcholine receptors (M1 mAChRs) represent a potential alternate therapeutic target; however, drug discovery programs focused on this G protein-coupled receptor (GPCR) have failed, largely due to cholinergic adverse responses. Employing novel chemogenetic and phosphorylation-deficient, G protein-biased, mouse models, paired with a toolbox of probe molecules, we establish previously unappreciated pharmacologically targetable M1 mAChR neurological processes, including anxiety-like behaviors and hyper-locomotion. By mapping the upstream signaling pathways regulating these responses, we determine the importance of receptor phosphorylation-dependent signaling in driving clinically relevant outcomes and in controlling adverse effects including 'epileptic-like' seizures. We conclude that M1 mAChR ligands that promote receptor phosphorylation-dependent signaling would protect against cholinergic adverse effects in addition to driving beneficial responses such as learning and memory and anxiolytic behavior relevant for the treatment of AD.
Collapse
Affiliation(s)
- Sophie J Bradley
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| | - Colin Molloy
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Paulina Valuskova
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Louis Dwomoh
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Miriam Scarpa
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Mario Rossi
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Lisa Finlayson
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Kjell A Svensson
- Eli Lilly & Co, Neuroscience Discovery, Lilly Corporate Center, Indianapolis, IN, USA
| | - Eyassu Chernet
- Eli Lilly & Co, Neuroscience Discovery, Lilly Corporate Center, Indianapolis, IN, USA
| | - Vanessa N Barth
- Eli Lilly & Co, Neuroscience Discovery, Lilly Corporate Center, Indianapolis, IN, USA
| | - Karolina Gherbi
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
- Excellerate Bioscience Ltd, BioCity, Nottingham, UK
| | - David A Sykes
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
- Centre of Membrane and Protein and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Caroline A Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Rajendra Mistry
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, UK
| | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Adrian J Mogg
- Eli Lilly & Co, Neuroscience Discovery, Lilly Corporate Center, Indianapolis, IN, USA
| | - Elizabeth M Rosethorne
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
- Centre of Membrane and Protein and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Shuzo Sakata
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - R A John Challiss
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, UK
| | - Lisa M Broad
- Eli Lilly & Co, Neuroscience Discovery, Erl Wood Manor, Windlesham, Surrey, UK
| | - Andrew B Tobin
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
18
|
Mandai T, Sako Y, Kurimoto E, Shimizu Y, Nakamura M, Fushimi M, Maeda R, Miyamoto M, Kimura H. T-495, a novel low cooperative M 1 receptor positive allosteric modulator, improves memory deficits associated with cholinergic dysfunction and is characterized by low gastrointestinal side effect risk. Pharmacol Res Perspect 2020; 8:e00560. [PMID: 31990455 PMCID: PMC6986443 DOI: 10.1002/prp2.560] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 12/20/2022] Open
Abstract
M1 muscarinic acetylcholine receptor (M1 R) activation can be a new therapeutic approach for the treatment of cognitive deficits associated with cholinergic hypofunction. However, M1 R activation causes gastrointestinal (GI) side effects in animals. We previously found that an M1 R positive allosteric modulator (PAM) with lower cooperativity (α-value) has a limited impact on ileum contraction and can produce a wider margin between cognitive improvement and GI side effects. In fact, TAK-071, a novel M1 R PAM with low cooperativity (α-value of 199), improved scopolamine-induced cognitive deficits with a wider margin against GI side effects than a high cooperative M1 R PAM, T-662 (α-value of 1786), in rats. Here, we describe the pharmacological characteristics of a novel low cooperative M1 R PAM T-495 (α-value of 170), using the clinically tested higher cooperative M1 R PAM MK-7622 (α-value of 511) as a control. In rats, T-495 caused diarrhea at a 100-fold higher dose than that required for the improvement of scopolamine-induced memory deficits. Contrastingly, MK-7622 showed memory improvement and induction of diarrhea at an equal dose. Combination of T-495, but not of MK-7622, and donepezil at each sub-effective dose improved scopolamine-induced memory deficits. Additionally, in mice with reduced acetylcholine levels in the forebrain via overexpression of A53T α-synuclein (ie, a mouse model of dementia with Lewy bodies and Parkinson's disease with dementia), T-495, like donepezil, reversed the memory deficits in the contextual fear conditioning test and Y-maze task. Thus, low cooperative M1 R PAMs are promising agents for the treatment of memory deficits associated with cholinergic dysfunction.
Collapse
Affiliation(s)
- Takao Mandai
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Yuu Sako
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Emi Kurimoto
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Yuji Shimizu
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan.,Biomolecular Research Laboratories, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Minoru Nakamura
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Makoto Fushimi
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Ryouta Maeda
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Maki Miyamoto
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Haruhide Kimura
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| |
Collapse
|
19
|
Scarpa M, Hesse S, Bradley SJ. M1 muscarinic acetylcholine receptors: A therapeutic strategy for symptomatic and disease-modifying effects in Alzheimer's disease? ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2020; 88:277-310. [PMID: 32416870 DOI: 10.1016/bs.apha.2019.12.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The M1 muscarinic acetylcholine receptor (mAChR) plays a crucial role in learning and memory processes and has long been identified as a promising therapeutic target for the improvement of cognitive decline in Alzheimer's disease (AD). As such, clinical trials with xanomeline, a mAChR orthosteric agonist, showed an improvement in cognitive and behavioral symptoms associated with AD. Despite this, the clinical utility of xanomeline was hampered by a lack of M1 receptor selectivity and adverse cholinergic responses attributed to activation of peripheral M2 and M3 mAChRs. More recently, efforts have focused on developing more selective M1 compounds via targeting the less-conserved allosteric binding pockets. As such, positive allosteric modulators (PAMs) have emerged as an exciting strategy to achieve exquisite selectivity for the M1 mAChR in order to deliver improvements in cognitive function in AD. Furthermore, over recent years it has become increasingly apparent that M1 therapeutics may also offer disease-modifying effects in AD, due to the modulation of pathogenic amyloid processing. This article will review the progress made in the development of M1 selective ligands for the treatment of cognitive decline in AD, and will discuss the current evidence that selective targeting of the M1 mAChR could also have the potential to modify AD progression.
Collapse
Affiliation(s)
- Miriam Scarpa
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sarah Hesse
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sophie J Bradley
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
20
|
Reinecke BA, Wang H, Zhang Y. Recent Advances in the Drug Discovery and Development of Dualsteric/ Bitopic Activators of G Protein-Coupled Receptors. Curr Top Med Chem 2019; 19:2378-2392. [PMID: 31833462 DOI: 10.2174/1568026619666191009164609] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/26/2019] [Accepted: 09/05/2019] [Indexed: 01/20/2023]
Abstract
G protein-coupled receptors (GPCRs) represent the largest family of proteins targeted by drug design and discovery efforts. Of these efforts, the development of GPCR agonists is highly desirable, due to their therapeutic robust utility in treating diseases caused by deficient receptor signaling. One of the challenges in designing potent and selective GPCR agonists lies in the inability to achieve combined high binding affinity and subtype selectivity, due to the high homology between orthosteric sites among GPCR subtypes. To combat this difficulty, researchers have begun to explore the utility of targeting topographically distinct and less conserved binding sites, namely "allosteric" sites. Pursuing these sites offers the benefit of achieving high subtype selectivity, however, it also can result in a decreased binding affinity and potency as compared to orthosteric agonists. Therefore, bitopic ligands comprised of an orthosteric agonist and an allosteric modulator connected by a spacer and allowing binding with both the orthosteric and allosteric sites within one receptor, have been developed. It may combine the high subtype selectivity of an allosteric modulator with the high binding affinity of an orthosteric agonist and provides desired advantages over orthosteric agonists or allosteric modulators alone. Herein, we review the recent advances in the development of bitopic agonists/activators for various GPCR targets and their novel therapeutic potentials.
Collapse
Affiliation(s)
- Bethany A Reinecke
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 East Leigh Street, Richmond, VA 23298, United States
| | - Huiqun Wang
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 East Leigh Street, Richmond, VA 23298, United States
| | - Yan Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 East Leigh Street, Richmond, VA 23298, United States
| |
Collapse
|
21
|
Moran SP, Maksymetz J, Conn PJ. Targeting Muscarinic Acetylcholine Receptors for the Treatment of Psychiatric and Neurological Disorders. Trends Pharmacol Sci 2019; 40:1006-1020. [PMID: 31711626 DOI: 10.1016/j.tips.2019.10.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 12/12/2022]
Abstract
Muscarinic acetylcholine receptors (mAChR) play important roles in regulating complex behaviors such as cognition, movement, and reward, making them ideally situated as potential drug targets for the treatment of several brain disorders. Recent advances in the discovery of subtype-selective allosteric modulators for mAChRs has provided an unprecedented opportunity for highly specific modulation of signaling by individual mAChR subtypes in the brain. Recently, mAChR allosteric modulators have entered clinical development for Alzheimer's disease (AD) and schizophrenia, and have potential utility for other brain disorders. However, mAChR allosteric modulators can display a diverse array of pharmacological properties, and a more nuanced understanding of the mAChR will be necessary to best translate preclinical findings into successful clinical treatments.
Collapse
Affiliation(s)
- Sean P Moran
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - James Maksymetz
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - P Jeffrey Conn
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
22
|
Schramm S, Agnetta L, Bermudez M, Gerwe H, Irmen M, Holze J, Littmann T, Wolber G, Tränkle C, Decker M. Novel BQCA- and TBPB-Derived M 1 Receptor Hybrid Ligands: Orthosteric Carbachol Differentially Regulates Partial Agonism. ChemMedChem 2019; 14:1349-1358. [PMID: 31166078 DOI: 10.1002/cmdc.201900283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/05/2019] [Indexed: 11/07/2022]
Abstract
Recently, investigations of the complex mechanisms of allostery have led to a deeper understanding of G protein-coupled receptor (GPCR) activation and signaling processes. In this context, muscarinic acetylcholine receptors (mAChRs) are highly relevant due to their exemplary role in the study of allosteric modulation. In this work, we compare and discuss two sets of putatively dualsteric ligands, which were designed to connect carbachol to different types of allosteric ligands. We chose derivatives of TBPB [1-(1'-(2-tolyl)-1,4'-bipiperidin-4-yl)-1H-benzo[d]imidazol-2(3H)-one] as M1 -selective putative bitopic ligands, and derivatives of benzyl quinolone carboxylic acid (BQCA) as an M1 positive allosteric modulator, varying the distance between the allosteric and orthosteric building blocks. Luciferase protein complementation assays demonstrated that linker length must be carefully chosen to yield either agonist or antagonist behavior. These findings may help to design biased signaling and/or different extents of efficacy.
Collapse
Affiliation(s)
- Simon Schramm
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Luca Agnetta
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Marcel Bermudez
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Strasse 2+4, 14195, Berlin, Germany
| | - Hubert Gerwe
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Matthias Irmen
- Pharmacology and Toxicology, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Strasse 3, 53121, Bonn, Germany
| | - Janine Holze
- Pharmacology and Toxicology, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Strasse 3, 53121, Bonn, Germany
| | - Timo Littmann
- Institute of Pharmacy, University of Regensburg, 93053, Regensburg, Germany
| | - Gerhard Wolber
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Strasse 2+4, 14195, Berlin, Germany
| | - Christian Tränkle
- Pharmacology and Toxicology, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Strasse 3, 53121, Bonn, Germany
| | - Michael Decker
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
23
|
TAK-071, a novel M 1 positive allosteric modulator with low cooperativity, improves cognitive function in rodents with few cholinergic side effects. Neuropsychopharmacology 2019; 44:950-960. [PMID: 30089885 PMCID: PMC6461781 DOI: 10.1038/s41386-018-0168-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/29/2018] [Accepted: 07/20/2018] [Indexed: 12/15/2022]
Abstract
The muscarinic M1 receptor (M1R) is a promising target for treating cognitive impairment associated with cholinergic deficits in disorders such as Alzheimer's disease and schizophrenia. We previously reported that cooperativity (α-value) was key to lowering the risk of diarrhea by M1R positive allosteric modulators (M1 PAMs). Based on this, we discovered a low α-value M1 PAM, TAK-071 (α-value: 199), and characterized TAK-071 using T-662 as a reference M1 PAM with high α-value of 1786. Both TAK-071 and T-662 were potent and highly selective M1 PAMs, with inflection points of 2.7 and 0.62 nM, respectively. However, T-662 but not TAK-071 augmented isolated ileum motility. TAK-071 and T-662 increased hippocampal inositol monophosphate production through M1R activation and improved scopolamine-induced cognitive deficits in rats at 0.3 and 0.1 mg/kg, respectively. TAK-071 and T-662 also induced diarrhea at 10 and 0.1 mg/kg, respectively, in rats. Thus, taking into consideration the fourfold lower brain penetration ratio of T-662, TAK-071 had a wider margin between cognitive improvement and diarrhea induction than T-662. Activation of M1R increases neural excitability via membrane depolarization, reduced afterhyperpolarization, and generation of afterdepolarization in prefrontal cortical pyramidal neurons. T-662 induced all three processes, whereas TAK-071 selectively induced afterdepolarization. Combining sub-effective doses of TAK-071, but not T-662, with an acetylcholinesterase inhibitor, significantly ameliorated scopolamine-induced cognitive deficits in rats. TAK-071 may therefore provide therapeutic opportunities for cognitive dysfunction related to cholinergic deficits or reduced M1R expression, while minimizing peripheral cholinergic side effects.
Collapse
|
24
|
Engers JL, Bender AM, Kalbfleisch JJ, Cho HP, Lingenfelter KS, Luscombe VB, Han C, Melancon BJ, Blobaum AL, Dickerson JW, Rook JM, Niswender CM, Emmitte KA, Conn PJ, Lindsley CW. Discovery of Tricyclic Triazolo- and Imidazopyridine Lactams as M 1 Positive Allosteric Modulators. ACS Chem Neurosci 2019; 10:1035-1042. [PMID: 30086237 DOI: 10.1021/acschemneuro.8b00311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
This Letter describes the chemical optimization of a new series of muscarinic acetylcholine receptor subtype 1 (M1) positive allosteric modulators (PAMs) based on novel tricyclic triazolo- and imidazopyridine lactam cores, devoid of M1 agonism, e.g., no M1 ago-PAM activity, in high expressing recombinant cell lines. While all the new tricyclic congeners afforded excellent rat pharmacokinetic (PK) properties (CLp < 8 mL/min/kg and t1/2 > 5 h), regioisomeric triazolopyridine analogues were uniformly not CNS penetrant ( Kp < 0.05), despite a lack of hydrogen bond donors. However, removal of a single nitrogen atom to afford imidazopyridine derivatives proved to retain the excellent rat PK and provide high CNS penetration ( Kp > 2), despite inclusion of a basic nitrogen. Moreover, 24c was devoid of M1 agonism in high expressing recombinant cell lines and did not induce cholinergic seizures in vivo in mice. Interestingly, all of the new M1 PAMs across the diverse tricyclic heterocyclic cores possessed equivalent CNS MPO scores (>4.5), highlighting the value of both "medicinal chemist's eye" and experimental data, e.g., not sole reliance (or decision bias) on in silico calculated properties, for parameters as complex as CNS penetration.
Collapse
Affiliation(s)
- Julie L. Engers
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Aaron M. Bender
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Jacob J. Kalbfleisch
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Hyekyung P. Cho
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Kaelyn S. Lingenfelter
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Vincent B. Luscombe
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Changho Han
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Bruce J. Melancon
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Warren Family Research Center for Drug Discovery & Development, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Anna L. Blobaum
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Jonathan W. Dickerson
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Jerri M. Rook
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Colleen M. Niswender
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Kyle A. Emmitte
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - P. Jeffrey Conn
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Craig W. Lindsley
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|