1
|
Zhang Y, Wang Z, Wang Y, Jin W, Zhang Z, Jin L, Qian J, Zheng L. CYP3A4 and CYP3A5: the crucial roles in clinical drug metabolism and the significant implications of genetic polymorphisms. PeerJ 2024; 12:e18636. [PMID: 39650550 PMCID: PMC11625447 DOI: 10.7717/peerj.18636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/12/2024] [Indexed: 12/11/2024] Open
Abstract
CYP3A, a key member of the cytochrome P450 (CYP450) superfamily, is integral to drug metabolism, processing a substantial portion of medications. Their role in drug metabolism is particularly prominent, as CYP3A4 and CYP3A5 metabolize approximately 30-50% of known drugs. The genetic polymorphism of CYP3A4/5 is significant inter-individual variability in enzymatic activity, which can result in different pharmacokinetic profiles in response to the same drug among individuals. These polymorphisms can lead to either increased drug toxicity or reduced therapeutic effects, requiring dosage adjustments based on genetic profiles. Consequently, the study of the enzymatic activity of CYP3A4/5 gene variants is of great importance for the formulation of personalized treatment regimens. This article first reviews the role of CYP3A4/5 in drug metabolism in the human body, including inhibitors and inducers of CYP3A4/5 and drug-drug interactions. In terms of genetic polymorphism, it discusses the detection methods, enzymatic kinetic characteristics, and clinical guidelines for CYP3A5. Finally, the article summarizes the importance of CYP3A4/5 in clinical applications, including personalized therapy, management of drug-drug interactions, and adjustment of drug doses. This review contributes to the understanding of the functions and genetic characteristics of CYP3A4/5, allowing for more effective clinical outcomes through optimized drug therapy.
Collapse
Affiliation(s)
- Yuqing Zhang
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ziying Wang
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuchao Wang
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weikai Jin
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zheyan Zhang
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lehao Jin
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianchang Qian
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Long Zheng
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
2
|
Collins JM, Wang D. DNA Methylation in the CYP3A Distal Regulatory Region (DRR) Is Associated with the Expression of CYP3A5 and CYP3A7 in Human Liver Samples. Molecules 2024; 29:5407. [PMID: 39598796 PMCID: PMC11596782 DOI: 10.3390/molecules29225407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
CYP3As are important drug-metabolizing enzymes in the liver. The causes for large inter-person variability in CYP3A expression/activity remain poorly understood. DNA methylation broadly regulates gene expression and the developmental transition from fetal CYP3A7 to adult CYP3A4, and CpG methylation upstream of the CYP3A4 promoter is associated with its expression. However, because non-promoter CYP3A regulatory regions remain largely uncharacterized, how DNA methylation influences CYP3A expression has yet to be fully explored. We recently identified a distal regulatory region (DRR) that controls the expression of CYP3A4, CYP3A5, and CYP3A7. Here, we investigated the relationship between CYP3A expression and the methylation status of 16 CpG sites within the DRR in 70 liver samples. We found significant associations between DRR methylation and the expression of CYP3A5 and CYP3A7 but not CYP3A4, indicating differential CYP3A regulation by the DRR. Also, we observed a dynamic reduction in DRR DNA methylation during the differentiation of induced pluripotent stem cells to hepatocytes, which correlated with increased CYP3A expression. We then evaluated the relative contribution of genetic variants, TFs, and DRR DNA methylation on CYP3A expression in liver samples. Our results reinforce the DRR as a CYP3A regulator and suggest that DNA methylation may impact CYP3A-mediated drug metabolism.
Collapse
Affiliation(s)
| | - Danxin Wang
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
3
|
Bone C, Squires EJ. Hepatic Gene Expression and Metabolite Profiles of Androstenone and Skatole Relative to Plasma Estrone Sulfate Levels in Boars. Biomolecules 2024; 14:850. [PMID: 39062564 PMCID: PMC11274532 DOI: 10.3390/biom14070850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Testicular steroids can alter the activity and expression of enzymes within the liver and may influence the metabolism of skatole and androstenone, which are responsible for boar taint. Plasma levels of estrone sulfate (E1S) are indicative of the steroidogenic capacity of the boar and are variable between animals of similar live weights at slaughter. This study aimed to characterize the relationship between steroidogenic capacity and the metabolism of boar taint compounds by relating plasma E1S levels at slaughter weight to the expression levels of genes regulating the metabolism of androstenone and skatole, along with their respective metabolite profiles. RT-qPCR was used to evaluate gene expression in the liver. Hepatocytes were also isolated and treated with androstenone or skatole, with metabolite levels in the incubation media quantified by high-performance liquid chromatography. Plasma E1S levels ranged from 2.2-108.5 ng/mL and were positively correlated with overall skatole metabolism (p = 0.038), the production of metabolites 3-methyloxindole (p = 0.026) and 3-hydroxy-3-methyloxindole (p = 0.036), and expression levels of key genes involved in skatole metabolism, specifically CYP2C33 (p = 0.0042), CYP2C49 (p = 0.022), and CYB5R1 (p = 0.017). There was no association between androstenone metabolism and plasma E1S concentrations; however, there was evidence of possible co-regulation amongst genes involved in the metabolism of androstenone, skatole, and estrogens. These findings indicate that steroidogenic capacity is related to the rate of skatole, but not androstenone metabolism, in slaughter-weight boars.
Collapse
Affiliation(s)
| | - E. James Squires
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G2W1, Canada;
| |
Collapse
|
4
|
Zhou L, Montalvo AD, Collins JM, Wang D. Quantitative analysis of the UDP-glucuronosyltransferase transcriptome in human tissues. Pharmacol Res Perspect 2023; 11:e01154. [PMID: 37983911 PMCID: PMC10659769 DOI: 10.1002/prp2.1154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/22/2023] Open
Abstract
UDP-glucuronosyltransferases (UGTs) are phase II drug metabolizing enzymes that play important roles in the detoxification of endogenous and exogenous substrates. The 22 human UGTs belong to four families (UGT1, UGT2, UGT3, and UGT8) and differ in their expression, substrate specificity, UDP-sugar preference, and physiological functions. Differential expression/activity of the UGTs contributes to interperson variability in drug responses and toxicity, hormone homeostasis, and disease/cancer risks. However, in normal tissues, the tissue-specific expression profiles and transcriptional regulation of the UGTs are still not fully understood. In this study, we comprehensively analyzed the transcriptome of 22 UGTs in 54 human tissues/regions using RNAseq data from GTEx. We then validated the findings in the liver and small intestine samples using real-time PCR. Our results showed large interindividual variability across tissues in the expression of each UGT and the overall composition of UGT pools, consisting of different UGTs and their splice isoforms. Our results also revealed coexpression of the UGTs, Cytochrome P450s, and many transcription factors in the liver, suggesting potential coregulation or functional coordination. Our results provide the groundwork for future studies to detail further the regulation of the expression and activity of the UGTs.
Collapse
Affiliation(s)
- Lucas Zhou
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, Center for PharmacogenomicsUniversity of FloridaGainesvilleFloridaUSA
| | - Abelardo D. Montalvo
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, Center for PharmacogenomicsUniversity of FloridaGainesvilleFloridaUSA
| | - Joseph M. Collins
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, Center for PharmacogenomicsUniversity of FloridaGainesvilleFloridaUSA
| | - Danxin Wang
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, Center for PharmacogenomicsUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
5
|
Huang H, Zhang S, Wen X, Sadee W, Wang D, Yang S, Li L. Transcription Factors and ncRNAs Associated with CYP3A Expression in Human Liver and Small Intestine Assessed with Weighted Gene Co-Expression Network Analysis. Biomedicines 2022; 10:biomedicines10123061. [PMID: 36551817 PMCID: PMC9775998 DOI: 10.3390/biomedicines10123061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022] Open
Abstract
CYP3A4, CYP3A5, and CYP3A7, which are located in a multigene locus (CYP3A), play crucial roles in drug metabolism. To understand the highly variable hepatic expression of CYP3As, regulatory network analyses have focused on transcription factors (TFs). Since long non-coding RNAs (lncRNAs) likely contribute to such networks, we assessed the regulatory effects of both TFs and lncRNAs on CYP3A expression in the human liver and small intestine, main organs of CYP3A expression. Using weighted gene co-expression network analysis (WGCNA) of GTEx v8 RNA expression data and multiple stepwise regression analysis, we constructed TF-lncRNA-CYP3A co-expression networks. Multiple lncRNAs and TFs displayed robust associations with CYP3A expression that differed between liver and small intestines (LINC02499, HNF4A-AS1, AC027682.6, LOC102724153, and RP11-503C24.6), indicating that lncRNAs contribute to variance in CYP3A expression in both organs. Of these, HNF4A-AS1 had been experimentally demonstrated to affect CYP3A expression. Incorporating ncRNAs into CYP3A expression regulatory network revealed additional candidate TFs associated with CYP3A expression. These results serve as a guide for experimental studies on lncRNA-TF regulation of CYP3A expression in the liver and small intestines.
Collapse
Affiliation(s)
- Huina Huang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Siqi Zhang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaozhen Wen
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wolfgang Sadee
- Center for Pharmacogenomics, Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Danxin Wang
- Center for Pharmacogenomics, Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Siyao Yang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Liang Li
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Experimental Education and Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Correspondence:
| |
Collapse
|
6
|
Collins JM, Nworu AC, Mohammad SJ, Li L, Li C, Li C, Schwendeman E, Cefalu M, Abdel‐Rasoul M, Sun JW, Smith SA, Wang D. Regulatory variants in a novel distal enhancer regulate the expression of CYP3A4 and CYP3A5. Clin Transl Sci 2022; 15:2720-2731. [PMID: 36045613 PMCID: PMC9652438 DOI: 10.1111/cts.13398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/11/2022] [Accepted: 08/23/2022] [Indexed: 01/26/2023] Open
Abstract
The cytochrome P450 3As (CYP3As) are abundantly expressed in the liver and metabolize many commonly prescribed medications. Their expression is highly variable between individuals with little known genetic cause. Despite extensive investigation, cis-acting genetic elements that control the expression of the CYP3As remain uncharacterized. Using chromatin conformation capture (4C assays), we detected reciprocal interaction between a distal regulatory region (DRR) and the CYP3A4 promoter. The DRR colocalizes with a variety of enhancer marks and was found to promote transcription in reporter assays. CRISPR-mediated deletion of the DRR decreased expression of CYP3A4, CYP3A5, and CYP3A7, supporting its role as a shared enhancer regulating the expression of three CYP3A genes. Using reporter gene assays, we identified two single-nucleotide polymorphisms (rs115025140 and rs776744/rs776742) that increased DRR-driven luciferase reporter expression. In a liver cohort (n = 246), rs115025140 was associated with increased expression of CYP3A4 mRNA (1.8-fold) and protein (1.6-fold) and rs776744/rs776742 was associated with 1.39-fold increased expression of CYP3A5 mRNA. The rs115025140 is unique to the African population and in a clinical cohort of African Americans taking statins for lipid control rs115025140 carriers showed a trend toward reduced statin-mediated lipid reduction. In addition, using a published cohort of Chinese patients who underwent renal transplantation taking tacrolimus, rs776744/rs776742 carriers were associated with reduced tacrolimus concentration after adjusting for CYP3A5*3. Our results elucidate a complex regulatory network controlling expression of three CYP3A genes and identify two novel regulatory variants with potential clinical relevance for predicting CYP3A4 and CYP3A5 expression.
Collapse
Affiliation(s)
- Joseph M. Collins
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of PharmacyUniversity of FloridaGainesvilleFloridaUSA
| | - Adaeze C. Nworu
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of PharmacyUniversity of FloridaGainesvilleFloridaUSA
| | - Somayya J. Mohammad
- Department of Internal Medicine, Division of Cardiology, College of MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Liang Li
- Department of Medical Genetics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Chengcheng Li
- Department of Medical Genetics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Chuanjiang Li
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Ethan Schwendeman
- Department of Internal Medicine, Division of Cardiology, College of MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Mattew Cefalu
- Department of Internal Medicine, Division of Cardiology, College of MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Mahmoud Abdel‐Rasoul
- Center for Biostatistics, Department of Biomedical Informatics, College of MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Jessie W. Sun
- Department of Internal Medicine, Division of Cardiology, College of MedicineThe Ohio State UniversityColumbusOhioUSA,School of Medicine and Health SciencesGeorge Washington UniversityWashingtonDCUSA
| | - Sakima A. Smith
- Department of Internal Medicine, Division of Cardiology, College of MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Danxin Wang
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of PharmacyUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
7
|
Klyushova LS, Perepechaeva ML, Grishanova AY. The Role of CYP3A in Health and Disease. Biomedicines 2022; 10:2686. [PMID: 36359206 PMCID: PMC9687714 DOI: 10.3390/biomedicines10112686] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
CYP3A is an enzyme subfamily in the cytochrome P450 (CYP) superfamily and includes isoforms CYP3A4, CYP3A5, CYP3A7, and CYP3A43. CYP3A enzymes are indiscriminate toward substrates and are unique in that these enzymes metabolize both endogenous compounds and diverse xenobiotics (including drugs); almost the only common characteristic of these compounds is lipophilicity and a relatively large molecular weight. CYP3A enzymes are widely expressed in human organs and tissues, and consequences of these enzymes' activities play a major role both in normal regulation of physiological levels of endogenous compounds and in various pathological conditions. This review addresses these aspects of regulation of CYP3A enzymes under physiological conditions and their involvement in the initiation and progression of diseases.
Collapse
Affiliation(s)
| | - Maria L. Perepechaeva
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, 630117 Novosibirsk, Russia
| | | |
Collapse
|
8
|
Tantawy M, Collins JM, Wang D. Genome-wide microRNA profiles identify miR-107 as a top miRNA associating with expression of the CYP3As and other drug metabolizing cytochrome P450 enzymes in the liver. Front Pharmacol 2022; 13:943538. [PMID: 36059981 PMCID: PMC9428441 DOI: 10.3389/fphar.2022.943538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Cytochrome P450 (CYP) drug metabolizing enzymes are responsible for the metabolism of over 70% of currently used medications with the CYP3A family being the most important CYP enzymes in the liver. Large inter-person variability in expression/activity of the CYP3As greatly affects drug exposure and treatment outcomes, yet the cause of such variability remains elusive. Micro-RNAs (miRNAs) are small noncoding RNAs that negatively regulate gene expression and are involved in diverse cellular processes including metabolism of xenobiotics and therapeutic outcomes. Target prediction and in vitro functional assays have linked several miRNAs to the control of CYP3A4 expression. Yet, their co-expression with CYP3As in the liver remain unclear. In this study, we used genome-wide miRNA profiling in liver samples to identify miRNAs associated with the expression of the CYP3As. We identified and validated both miR-107 and miR-1260 as strongly associated with the expression of CYP3A4, CYP3A5, and CYP3A43. Moreover, we found associations between miR-107 and nine transcription factors (TFs) that regulate CYP3A expression, with estrogen receptor alpha (ESR1) having the largest effect size. Including ESR1 and the other TFs in the regression model either diminished or abolished the associations between miR-107 and the CYP3As, indicating that the role of miR-107 in CYP3A expression may be indirect and occur through these key TFs. Indeed, testing the other nine CYPs previously shown to be regulated by ESR1 identified similar miR-107 associations that were dependent on the exclusion of ESR1 and other key TFs in the regression model. In addition, we found significant differences in miRNA expression profiles in liver samples between race and sex. Together, our results identify miR-107 as a potential epigenetic regulator that is strongly associated with the expression of many CYPs, likely via impacting the CYP regulatory network controlled by ESR1 and other key TFs. Therefore, both genetic and epigenetic factors that alter the expression of miR-107 may have a broad influence on drug metabolism.
Collapse
|
9
|
Zhao Y, Wang X, Liu Y, Wang HY, Xiang J. The effects of estrogen on targeted cancer therapy drugs. Pharmacol Res 2022; 177:106131. [DOI: 10.1016/j.phrs.2022.106131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/29/2022] [Accepted: 02/10/2022] [Indexed: 10/19/2022]
|
10
|
Collins JM, Lu R, Wang X, Zhu HJ, Wang D. Transcriptional Regulation of Carboxylesterase 1 in Human Liver: Role of the Nuclear Receptor Subfamily 1 Group H Member 3 and Its Splice Isoforms. Drug Metab Dispos 2022; 50:43-48. [PMID: 34697082 PMCID: PMC8969197 DOI: 10.1124/dmd.121.000649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/20/2021] [Indexed: 01/03/2023] Open
Abstract
Carboxylesterase 1 (CES1) is the predominant carboxylesterase in the human liver, involved in metabolism of both xenobiotics and endogenous substrates. Genetic or epigenetic factors that alter CES1 activity or expression are associated with changes in drug response, lipid, and glucose homeostasis. However, the transcriptional regulation of CES1 in the human liver remains uncertain. By applying both the random forest and Sobol's Sensitivity Indices (SSI) to analyze existing liver RNA expression microarray data (GSE9588), we identified nuclear receptor subfamily 1 group H member 3 (NR1H3) liver X receptor (LXR)α as a key factor regulating constitutive CES1 expression. This model prediction was validated using small interfering RNA (siRNA) knockdown and CRISPR-mediated transcriptional activation of NR1H3 in Huh7 and HepG2 cells. We found that NR1H3's activation of CES1 is splice isoform-specific, namely that increased expression of the NR1H3-211 isoform increased CES1 expression whereas NR1H3-201 did not. Also, in human liver samples, expression of NR1H3-211 and CES1 are correlated, whereas NR1H3-201 and CES1 are not. This trend also occurs during differentiation of induced pluripotent stem cells (iPSCs) to hepatocytes, where only expression of the NR1H3-211 isoform parallels expression of CES1 Moreover, we found that treatment with the NR1H3 agonist T0901317 in HepG2 cells had no effect on CES1 expression. Overall, our results demonstrate a key role of NR1H3 in maintaining the constitutive expression of CES1 in the human liver. Furthermore, our results support that the effect of NR1H3 is splice isoform-specific and appears to be ligand independent. SIGNIFICANCE STATEMENT: Despite the central role of carboxylesterase 1 (CES1) in metabolism of numerous medications, little is known about its transcriptional regulation. This study identifies nuclear receptor subfamily 1 group H member 3 as a key regulator of constitutive CES1 expression and therefore is a potential target for future studies to understand interperson variabilities in CES1 activity and drug metabolism.
Collapse
Affiliation(s)
- Joseph M Collins
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.C., D.W.); The Quantitative Sciences Unit, Division of Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, California (R.L.); Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, (X.W.); and Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan (H.-J.Z.)
| | - Rong Lu
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.C., D.W.); The Quantitative Sciences Unit, Division of Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, California (R.L.); Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, (X.W.); and Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan (H.-J.Z.)
| | - Xinwen Wang
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.C., D.W.); The Quantitative Sciences Unit, Division of Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, California (R.L.); Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, (X.W.); and Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan (H.-J.Z.)
| | - Hao-Jie Zhu
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.C., D.W.); The Quantitative Sciences Unit, Division of Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, California (R.L.); Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, (X.W.); and Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan (H.-J.Z.)
| | - Danxin Wang
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.C., D.W.); The Quantitative Sciences Unit, Division of Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, California (R.L.); Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, (X.W.); and Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan (H.-J.Z.)
| |
Collapse
|
11
|
Bergström H, Lindahl A, Warnqvist A, Diczfalusy U, Ekström L, Björkhem‐Bergman L. Studies on CYP3A activity during the menstrual cycle as measured by urinary 6β-hydroxycortisol/cortisol. Pharmacol Res Perspect 2021; 9:e00884. [PMID: 34664787 PMCID: PMC8525181 DOI: 10.1002/prp2.884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/29/2021] [Accepted: 09/29/2021] [Indexed: 11/26/2022] Open
Abstract
The 6β-OH-cortisol/cortisol ratio (6β-OHC/C) in urine is an endogenous marker of drug-metabolizing enzyme cytochrome P450 3A (CYP3A). The primary aim of this single center, prospective, non-interventional cohort study, was to investigate the variability of 6β-OHC/C during the menstrual cycle. In addition, possible associations between the CYP3A activity and sex hormones, gut microbiota metabolite trimethylamine-N-Oxide (TMAO) and microRNA-27b, respectively, were investigated. Serum and urinary samples from healthy, regularly menstruating women followed for two menstrual cycles were analyzed. Twenty-six complete menstrual cycles including follicular, ovulatory, and luteal phase were defined based on hormone analyses in serum. 6β-OHC/C were analyzed in urine and sex hormones, TMAO and miRNA-27b were analyzed in serum at the same time points. 6β-OHC/C did not vary between the follicular, ovulatory, or luteal phases. There was a difference in the relative miRNA-27b expression between the follicular and ovulatory phase (p = .03). A significant association was found between 6β-OHC/C and progesterone during the follicular (p = .005) and ovulatory (p = .01) phases (n = 26 for each phase). In addition, a significant association was found between the ratio and TMAO during the ovulatory (p = .02) and luteal (p = .002) phases. 6β-OHC/C and gut microbiota TMAO were significantly associated (p = .003) when evaluating all values, for all phases (n = 78). Interestingly, the finding of an association between 6β-OHC/C in urine and levels of TMAO in serum suggest that gut microbiota may affect CYP3A activity.
Collapse
Affiliation(s)
- Helena Bergström
- Department of NeurobiologyCare Sciences and Society (NVS)Division of Clinical GeriatricsKarolinska InstitutetHuddingeSweden
| | - Anna Lindahl
- Department of Laboratory MedicineDivision of Clinical ChemistryKarolinska InstitutetStockholmSweden
- Department of Clinical ChemistryKarolinska University LaboratoryKarolinska University HospitalStockholmSweden
| | - Anna Warnqvist
- Department of Environmental MedicineDivision of BiostatisticsKarolinska InstitutetStockholmSweden
| | - Ulf Diczfalusy
- Department of Laboratory MedicineDivision of Clinical ChemistryKarolinska InstitutetStockholmSweden
- Department of Clinical ChemistryKarolinska University LaboratoryKarolinska University HospitalStockholmSweden
| | - Lena Ekström
- Department of Laboratory MedicineDivision of Clinical PharmacologyKarolinska InstitutetKarolinska University HospitalStockholmSweden
| | - Linda Björkhem‐Bergman
- Department of NeurobiologyCare Sciences and Society (NVS)Division of Clinical GeriatricsKarolinska InstitutetHuddingeSweden
- Department of Palliative MedicineStockholms SjukhemStockholmSweden
| |
Collapse
|
12
|
Lu H, Jiang H, Yang S, Li C, Li C, Shao R, Zhang P, Wang D, Liu Z, Qi H, Cai Y, Xu W, Bao X, Wang H, Li L. Trans-eQTLs of the CYP3A4 and CYP3A5 associated with tacrolimus trough blood concentration in Chinese renal transplant patients. Biomed Pharmacother 2021; 145:112407. [PMID: 34781138 DOI: 10.1016/j.biopha.2021.112407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/23/2021] [Accepted: 11/03/2021] [Indexed: 12/15/2022] Open
Abstract
This study aimed to systematically investigate trans-eQTLs of CYP3A4 and CYP3A5 affecting tacrolimus trough blood concentrations in Chinese renal transplant patients. We used Plink v1.90 to perform data quality control and linear regression analysis on GTEx v8 data. SNPs with p-value < 0.05 were selected and the GTEx eQTL Calculator was used to further prioritize the eQTLs of CYP3A4 and CYP3A5 in the liver and small intestine. The eQTLs with a p-value < 5 × 10-5 and MAF≥ 0.05 in the CHB population were selected as candidate eQTLs. The genotyping of candidate eQTLs was performed using high-resolution melting (HRM) assays and Sanger DNA sequencing. This study included 845 Chinese renal transplant patients who received tacrolimus as an immunosuppressive agent. Association between 103 candidate eQTLs and log-transformed tacrolimus concentration/dose ratio (log (C0/D)) in this cohort was conducted using the SNPassoc package of R software. In the end, a total of 75,632 liver eQTLs of CYP3A4, 69,558 liver eQTLs of CYP3A5, 48,596 small intestine eQTLs of CYP3A4 and 28,616 small intestine eQTLs of CYP3A5 were obtained using the GTEx v8 eQTL Calculator. Of the 103 candidate eQTLs, rs75727207, rs181294422 and rs28522676 were significantly associated with tacrolimus log(C0/D) in different genetic models. We discovered a substantial number of novel eQTLs of CYP3A4 and CYP3A5 in liver and small intestine, also found that rs75727207, rs181294422 and rs28522676 may affect tacrolimus trough blood concentrations in Chinese renal transplant patients.
Collapse
Affiliation(s)
- Huijie Lu
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Haixia Jiang
- Department of Clinical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Siyao Yang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Chengcheng Li
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Chuanjiang Li
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery,Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Ruifan Shao
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Pai Zhang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Daoyi Wang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Zhiwei Liu
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Huana Qi
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yinuan Cai
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Wenbin Xu
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Xiaojie Bao
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Hailan Wang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Liang Li
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China; Experimental Education and Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
13
|
Fujino C, Sanoh S, Katsura T. Variation in Expression of Cytochrome P450 3A Isoforms and Toxicological Effects: Endo- and Exogenous Substances as Regulatory Factors and Substrates. Biol Pharm Bull 2021; 44:1617-1634. [PMID: 34719640 DOI: 10.1248/bpb.b21-00332] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The CYP3A subfamily, which includes isoforms CYP3A4, CYP3A5, and CYP3A7 in humans, plays important roles in the metabolism of various endogenous and exogenous substances. Gene and protein expression of CYP3A4, CYP3A5, and CYP3A7 show large inter-individual differences, which are caused by many endogenous and exogenous factors. Inter-individual differences can cause negative outcomes, such as adverse drug events and disease development. Therefore, it is important to understand the variations in CYP3A expression caused by endo- and exogenous factors, as well as the variation in the metabolism and kinetics of endo- and exogenous substrates. In this review, we summarize the factors regulating CYP3A expression, such as bile acids, hormones, microRNA, inflammatory cytokines, drugs, environmental chemicals, and dietary factors. In addition, variations in CYP3A expression under pathological conditions, such as coronavirus disease 2019 and liver diseases, are described as examples of the physiological effects of endogenous factors. We also summarize endogenous and exogenous substrates metabolized by CYP3A isoforms, such as cholesterol, bile acids, hormones, arachidonic acid, vitamin D, and drugs. The relationship between the changes in the kinetics of these substrates and the toxicological effects in our bodies are discussed. The usefulness of these substrates and metabolites as endogenous biomarkers for CYP3A activity is also discussed. Notably, we focused on discrimination between CYP3A4, CYP3A5, and CYP3A7 to understand inter-individual differences in CYP3A expression and function.
Collapse
Affiliation(s)
- Chieri Fujino
- Laboratory of Clinical Pharmaceutics and Therapeutics, College of Pharmaceutical Sciences, Ritsumeikan University
| | - Seigo Sanoh
- Graduate School of Biomedical and Health Sciences, Hiroshima University.,School of Pharmaceutical Sciences, Wakayama Medical University
| | - Toshiya Katsura
- Laboratory of Clinical Pharmaceutics and Therapeutics, College of Pharmaceutical Sciences, Ritsumeikan University
| |
Collapse
|
14
|
Della Torre S. Beyond the X Factor: Relevance of Sex Hormones in NAFLD Pathophysiology. Cells 2021; 10:2502. [PMID: 34572151 PMCID: PMC8470830 DOI: 10.3390/cells10092502] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major health issue worldwide, being frequently associated with obesity, unbalanced dietary regimens, and reduced physical activity. Despite their greater adiposity and reduced physical activity, women show a lower risk of developing NAFLD in comparison to men, likely a consequence of a sex-specific regulation of liver metabolism. In the liver, sex differences in the uptake, synthesis, oxidation, deposition, and mobilization of lipids, as well as in the regulation of inflammation, are associated with differences in NAFLD prevalence and progression between men and women. Given the major role of sex hormones in driving hepatic sexual dimorphism, this review will focus on the role of sex hormones and their signaling in the regulation of hepatic metabolism and in the molecular mechanisms triggering NAFLD development and progression.
Collapse
Affiliation(s)
- Sara Della Torre
- Department of Pharmaceutical Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| |
Collapse
|
15
|
Collins JM, Wang D. Cytochrome P450 3A4 (CYP3A4) protein quantification using capillary western blot technology and total protein normalization. J Pharmacol Toxicol Methods 2021; 112:107117. [PMID: 34474151 DOI: 10.1016/j.vascn.2021.107117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/27/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022]
Abstract
The western blot (WB) is the predominate method for protein quantification, frequently used in pharmacological and toxicological studies. To control for technical variation, WB signals are normalized through immunodetection of an internal standard "house-keeping" gene or total protein quantification via staining of the same blot or a duplicate, sister blot. Increasing evidence suggests that house-keeping genes are subject to change after drug treatment or under disease states, causing protein quantification errors in WB. Recent advances in automated capillary-based WB technologies enable measurement of the protein of interest, internal standards, and total protein in a single capillary. Using this approach, we quantified cytochrome P450 3A4 (CYP3A4) across 179 liver samples and compared normalization by both β-actin and total protein to determine which better functions as an internal standard. CYP3A4 is responsible for metabolism of a wide array of xenobiotics and is known to exhibit large inter-person variation, making it a good candidate to evaluate protein quantification. We observed significant differences in β-actin protein levels between liver samples (~20-fold) and found better correlation between CYP3A4 protein and mRNA using total protein normalization than β-actin, indicating total protein normalization to be less error prone for estimation of CYP3A4. Furthermore, by using total protein normalization, we confirmed significant association between CYP3A4 protein expression and the functional CYP3A4 variant CYP3A4*22, which contains two linked SNPs rs35599367 and rs62471956. Our results indicate that the automatic capillary WB instrument combined with total protein normalization provides a high throughput and robust approach for protein quantification.
Collapse
Affiliation(s)
- Joseph M Collins
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, FL 32610, United States of America
| | - Danxin Wang
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, FL 32610, United States of America.
| |
Collapse
|
16
|
Pinteur C, Julien B, Véga N, Vidal H, Naville D, Le Magueresse-Battistoni B. Impact of Estrogen Withdrawal and Replacement in Female Mice along the Intestinal Tract. Comparison of E2 Replacement with the Effect of a Mixture of Low Dose Pollutants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:8685. [PMID: 34444432 PMCID: PMC8394409 DOI: 10.3390/ijerph18168685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/18/2022]
Abstract
Postmenopausal women represent a vulnerable population towards endocrine disruptors due to hormonal deficit. We previously demonstrated that chronic exposure of ovariectomized C57Bl6/J mice fed a high-fat, high-sucrose diet to a low-dose mixture of chemicals with one dioxin, one polychlorobiphenyl, one phthalate, and bisphenol A triggered metabolic alterations in the liver but the intestine was not explored. Yet, the gastrointestinal tract is the main route by which pollutants enter the body. In the present study, we investigated the metabolic consequences of ovarian withdrawal and E2 replacement on the various gut segments along with investigating the impact of the mixture of pollutants. We showed that genes encoding estrogen receptors (Esr1, Gper1 not Esr2), xenobiotic processing genes (e.g., Cyp3a11, Cyp2b10), and genes related to gut homeostasis in the jejunum (e.g., Cd36, Got2, Mmp7) and to bile acid biosynthesis in the gut (e.g., Fgf15, Slc10a2) and liver (e.g., Abcb11, Slc10a1) were under estrogen regulation. Exposure to pollutants mimicked some of the effects of E2 replacement, particularly in the ileum (e.g., Esr1, Nr1c1) suggesting that the mixture had estrogen-mimetic activities. The present findings have important implications for the understanding of estrogen-dependent metabolic alterations with regards to situations of loss of estrogens as observed after menopause.
Collapse
Affiliation(s)
| | | | | | | | | | - Brigitte Le Magueresse-Battistoni
- Univ-Lyon, CarMeN Laboratory, INSERM U1060, INRAE U1397, Université Claude Bernard Lyon1, F-69310 Pierre-Bénite, France; (C.P.); (B.J.); (N.V.); (H.V.); (D.N.)
| |
Collapse
|
17
|
Sun D, Lu J, Zhang Y, Liu J, Liu Z, Yao B, Guo Y, Wang X. Characterization of a Novel CYP1A2 Knockout Rat Model Constructed by CRISPR/Cas9. Drug Metab Dispos 2021; 49:638-647. [PMID: 34074728 DOI: 10.1124/dmd.121.000403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/04/2021] [Indexed: 11/22/2022] Open
Abstract
CYP1A2, as one of the most important cytochrome P450 isoforms, is involved in the biotransformation of many important endogenous and exogenous substances. CYP1A2 also plays an important role in the development of many diseases because it is involved in the biotransformation of precancerous substances and poisons. Although the generation of Cyp1a2 knockout (KO) mouse model has been reported, there are still no relevant rat models for the study of CYP1A2-mediated pharmacokinetics and diseases. In this report, CYP1A2 KO rat model was established successfully by CRISPR/Cas9 without any detectable off-target effect. Compared with wild-type rats, this model showed a loss of CYP1A2 protein expression in the liver. The results of pharmacokinetics in vivo and incubation in vitro of specific substrates of CYP1A2 confirmed the lack of function of CYP1A2 in KO rats. In further studies of potential compensatory effects, we found that CYP1A1 was significantly upregulated, and CYP2E1, CYP3A2, and liver X receptor β were downregulated in KO rats. In addition, CYP1A2 KO rats exhibited a significant increase in serum cholesterol and free testosterone accompanied by mild liver damage and lipid deposition, suggesting that CYP1A2 deficiency affects lipid metabolism and liver function to a certain extent. In summary, we successfully constructed the CYP1A2 KO rat model, which provides a useful tool for studying the metabolic function and physiologic function of CYP1A2. SIGNIFICANCE STATEMENT: Human CYP1A2 not only metabolizes clinical drugs and pollutants but also mediates the biotransformation of endogenous substances and plays an important role in the development of many diseases. However, there are no relevant CYP1A2 rat models for the research of pharmacokinetics and diseases. This study successfully established CYP1A2 knockout rat model by using CRISPR/Cas9. This rat model provides a powerful tool to study the function of CYP1A2 in drug metabolism and diseases.
Collapse
Affiliation(s)
- Dongyi Sun
- Changning Maternity and Infant Health Hospital (D.S., J.Lu, Y.Z., J.Liu, B.Y., Y.G., X.W.), Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences (D.S, J.Lu, Y.Z., J.Liu, X.W.), East China Normal University, Shanghai, People's Republic of China and Department of Cardiology, Central Hospital of Shanghai Putuo District (Z.L.), Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jian Lu
- Changning Maternity and Infant Health Hospital (D.S., J.Lu, Y.Z., J.Liu, B.Y., Y.G., X.W.), Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences (D.S, J.Lu, Y.Z., J.Liu, X.W.), East China Normal University, Shanghai, People's Republic of China and Department of Cardiology, Central Hospital of Shanghai Putuo District (Z.L.), Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yuanjin Zhang
- Changning Maternity and Infant Health Hospital (D.S., J.Lu, Y.Z., J.Liu, B.Y., Y.G., X.W.), Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences (D.S, J.Lu, Y.Z., J.Liu, X.W.), East China Normal University, Shanghai, People's Republic of China and Department of Cardiology, Central Hospital of Shanghai Putuo District (Z.L.), Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jie Liu
- Changning Maternity and Infant Health Hospital (D.S., J.Lu, Y.Z., J.Liu, B.Y., Y.G., X.W.), Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences (D.S, J.Lu, Y.Z., J.Liu, X.W.), East China Normal University, Shanghai, People's Republic of China and Department of Cardiology, Central Hospital of Shanghai Putuo District (Z.L.), Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Zongjun Liu
- Changning Maternity and Infant Health Hospital (D.S., J.Lu, Y.Z., J.Liu, B.Y., Y.G., X.W.), Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences (D.S, J.Lu, Y.Z., J.Liu, X.W.), East China Normal University, Shanghai, People's Republic of China and Department of Cardiology, Central Hospital of Shanghai Putuo District (Z.L.), Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Bingyi Yao
- Changning Maternity and Infant Health Hospital (D.S., J.Lu, Y.Z., J.Liu, B.Y., Y.G., X.W.), Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences (D.S, J.Lu, Y.Z., J.Liu, X.W.), East China Normal University, Shanghai, People's Republic of China and Department of Cardiology, Central Hospital of Shanghai Putuo District (Z.L.), Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yuanqing Guo
- Changning Maternity and Infant Health Hospital (D.S., J.Lu, Y.Z., J.Liu, B.Y., Y.G., X.W.), Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences (D.S, J.Lu, Y.Z., J.Liu, X.W.), East China Normal University, Shanghai, People's Republic of China and Department of Cardiology, Central Hospital of Shanghai Putuo District (Z.L.), Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Xin Wang
- Changning Maternity and Infant Health Hospital (D.S., J.Lu, Y.Z., J.Liu, B.Y., Y.G., X.W.), Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences (D.S, J.Lu, Y.Z., J.Liu, X.W.), East China Normal University, Shanghai, People's Republic of China and Department of Cardiology, Central Hospital of Shanghai Putuo District (Z.L.), Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
18
|
Collins JM, Wang D. Co-expression of drug metabolizing cytochrome P450 enzymes and estrogen receptor alpha (ESR1) in human liver: racial differences and the regulatory role of ESR1. Drug Metab Pers Ther 2021; 36:205-214. [PMID: 33823094 DOI: 10.1515/dmpt-2020-0160] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/03/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The function and expression of cytochrome P450 (CYP) drug metabolizing enzymes is highly variable, greatly affecting drug exposure, and therapeutic outcomes. The expression of these enzymes is known to be controlled by many transcription factors (TFs), including ligand-free estrogen receptor alpha (ESR1, in the absence of estrogen). However, the relationship between the expression of ESR1, other TFs, and CYP enzymes in human liver is still unclear. METHODS Using real-time PCR, we quantified the mRNA levels of 12 CYP enzymes and nine TFs in 246 human liver samples from European American (EA, n = 133) and African American (AA, n = 113) donors. RESULTS Our results showed higher expression levels of ESR1 and six CYP enzymes in EA than in AA. Partial least square regression analysis showed that ESR1 is the top-ranking TF associating with the expression of eight CYP enzymes, six of which showed racial difference in expression. Conversely, four CYP enzymes without racial difference in expression did not have ESR1 as a top-ranking TF. These results indicate that ESR1 may contribute to variation in CYP enzyme expression between these two ancestral backgrounds. CONCLUSIONS These results are consistent with our previous study showing ESR1 as a master regulator for the expression of several CYP enzymes. Therefore, factors affecting ESR1 expression may have broad influence on drug metabolism through altered expression of CYP enzymes.
Collapse
Affiliation(s)
- Joseph M Collins
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Danxin Wang
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
19
|
Zhang H, Wang A, Shen G, Wang X, Liu G, Yang F, Chen B, Wang M, Xu Y. Hepcidin-induced reduction in iron content and PGC-1β expression negatively regulates osteoclast differentiation to play a protective role in postmenopausal osteoporosis. Aging (Albany NY) 2021; 13:11296-11314. [PMID: 33820875 PMCID: PMC8109081 DOI: 10.18632/aging.202817] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/30/2020] [Indexed: 12/20/2022]
Abstract
As a necessary trace element, iron is involved in many physiological processes. Clinical and basic studies have found that disturbances in iron metabolism, especially iron overload, might lead to bone loss and even be involved in postmenopausal osteoporosis. Hepcidin is a key regulator of iron homeostasis. However, the exact role of hepcidin in bone metabolism and the underlying mechanism remain unknown. In this study, we found that in postmenopausal osteoporosis cohort, the concentration of hepcidin in the serum was significantly reduced and positively correlated with bone mineral density. Ovariectomized (OVX) mice were then used to construct an osteoporosis model. Hepcidin overexpression in these mice significantly improved bone mass and rescued the phenotype of bone loss. Additionally, overexpression of hepcidin in OVX mice greatly reduced the number and differentiation of osteoclasts in vivo and in vitro. This study found that overexpression of hepcidin significantly inhibited ROS production, mitochondrial biogenesis, and PGC-1β expression. These data showed that hepcidin protected osteoporosis by reducing iron levels in bone tissue, and in conjunction with PGC-1β, reduced ROS production and the number of mitochondria, thus inhibiting osteoclast differentiation and bone absorption. Hepcidin could provide new targets for the clinical treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Institute of Osteoporosis Diagnosis and Treatments of Soochow University, Suzhou 215004, China
| | - Aifei Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Institute of Osteoporosis Diagnosis and Treatments of Soochow University, Suzhou 215004, China
| | - Guangsi Shen
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Xiao Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Institute of Osteoporosis Diagnosis and Treatments of Soochow University, Suzhou 215004, China
| | - Gongwen Liu
- Department of Orthopaedics, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215004, China
| | - Fan Yang
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Institute of Osteoporosis Diagnosis and Treatments of Soochow University, Suzhou 215004, China
| | - Bin Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Osteoporosis Clinical Center, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Institute of Osteoporosis Diagnosis and Treatments of Soochow University, Suzhou 215004, China
| | - Mingyong Wang
- Institute of Osteoporosis Diagnosis and Treatments of Soochow University, Suzhou 215004, China
| | - Youjia Xu
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Osteoporosis Clinical Center, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Institute of Osteoporosis Diagnosis and Treatments of Soochow University, Suzhou 215004, China
| |
Collapse
|
20
|
Fetke JK, Martinson JW, Flick RW, Huang W, Bencic DC, See MJ, Pilgrim EM, Debry RW, Biales AD. DNA methylation and expression of estrogen receptor alpha in fathead minnows exposed to 17α-ethynylestradiol. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 233:105788. [PMID: 33662878 PMCID: PMC8317993 DOI: 10.1016/j.aquatox.2021.105788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 05/12/2023]
Abstract
The gene expression response thought to underlie the negative apical effects resulting from estrogen exposure have been thoroughly described in fish. Although epigenetics are believed to play a critical role translating environmental exposures into the development of adverse apical effects, they remain poorly characterized in fish species. This study investigated alterations of DNA methylation of estrogen receptor alpha (esr1) in brain and liver tissues from 8 to 10 month old male fathead minnows (Pimephales promelas) after a 2d exposure to either 2.5 ng/L or 10 ng/L 17α-ethynylestradiol (EE2). Changes in the patterns of methylation were evaluated using targeted deep sequencing of bisulfite treated DNA in the 5' region of esr1. Methylation and gene expression were assessed at 2d of exposure and after a 7 and 14d depuration period. After 2d EE2 exposure, males exhibited significant demethylation in the 5' upstream region of esr1 in liver tissue, which was inversely correlated to gene expression. This methylation pattern reflected what was seen in females. No gene body methylation (GBM) was observed for liver of exposed males. Differential methylation was observed for a single upstream CpG site in the liver after the 14d depuration. A less pronounced methylation response was observed in the upstream region in brain tissue, however, several CpGs were necessarily excluded from the analysis. In contrast to the liver, a significant GBM response was observed across the entire gene body, which was sustained until at least 7d post-exposure. No differential expression was observed in the brain, limiting functional interpretation of methylation changes. The identification of EE2-dependent changes in methylation levels strongly suggests the importance of epigenetic mechanisms as a mediator of the organismal response to environmental exposures and the need for further characterization of the epigenome. Further, differential methylation following depuration indicates estrogenic effects persist well after the active exposure, which has implications for the risk posed by repeated exposures..
Collapse
Affiliation(s)
- J K Fetke
- Oak Ridge Institute for Science and Education (ORISE) Research Participant at US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, 45268, United States; Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - J W Martinson
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, 45268, United States
| | - R W Flick
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, 45268, United States
| | - W Huang
- US Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC, 27709, United States
| | - D C Bencic
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, 45268, United States
| | - M J See
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, 45268, United States
| | - E M Pilgrim
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, 45268, United States
| | - R W Debry
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - A D Biales
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, 45268, United States.
| |
Collapse
|
21
|
ESR1 ChIP-Seq Identifies Distinct Ligand-Free ESR1 Genomic Binding Sites in Human Hepatocytes and Liver Tissue. Int J Mol Sci 2021; 22:ijms22031461. [PMID: 33540646 PMCID: PMC7867289 DOI: 10.3390/ijms22031461] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/22/2021] [Accepted: 01/29/2021] [Indexed: 01/11/2023] Open
Abstract
The estrogen receptor alpha (ESR1) is an important gene transcriptional regulator, known to mediate the effects of estrogen. Canonically, ESR1 is activated by its ligand estrogen. However, the role of unliganded ESR1 in transcriptional regulation has been gaining attention. We have recently shown that ligand-free ESR1 is a key regulator of several cytochrome P450 (CYP) genes in the liver, however ligand-free ESR1 has not been characterized genome-wide in the human liver. To address this, ESR1 ChIP-Seq was conducted in human liver samples and in hepatocytes with or without 17beta-estradiol (E2) treatment. We identified both ligand-dependent and ligand-independent binding sites throughout the genome. These two ESR1 binding categories showed different genomic localization, pathway enrichment, and cofactor colocalization, indicating different ESR1 regulatory function depending on ligand availability. By analyzing existing ESR1 data from additional human cell lines, we uncovered a potential ligand-independent ESR1 activity, namely its co-enrichment with the zinc finger protein 143 (ZNF143). Furthermore, we identified ESR1 binding sites near many gene loci related to drug therapy, including the CYPs. Overall, this study shows distinct ligand-free and ligand-bound ESR1 chromatin binding profiles in the liver and suggests the potential broad influence of ESR1 in drug metabolism and drug therapy.
Collapse
|
22
|
Man Q, Deng Y, Li P, Ma J, Yang Z, Yang X, Zhou Y, Yan X. Licorice Ameliorates Cisplatin-Induced Hepatotoxicity Through Antiapoptosis, Antioxidative Stress, Anti-Inflammation, and Acceleration of Metabolism. Front Pharmacol 2020; 11:563750. [PMID: 33240085 PMCID: PMC7683576 DOI: 10.3389/fphar.2020.563750] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022] Open
Abstract
Cisplatin (CP) is one of the most effective antitumor drugs in the clinic, but has serious adverse reactions, and its hepatotoxicity has not been fully investigated. Licorice (GC), a traditional herbal medicine, has been commonly used as a detoxifier for poisons and drugs, and may be an effective drug for CP-induced hepatotoxicity. However, its mechanism and the effector molecules remain ambiguous. Therefore, in this study, a network pharmacology and proteomics-based approach was established, and a panoramic view of the detoxification of GC on CP-induced hepatotoxicity was provided. The experimental results indicated that GC can recover functional indices and pathological liver injury, inhibit hepatocyte apoptosis, upregulate B-cell lymphoma/leukemia 2 (Bcl-2) and superoxide dismutase (SOD) levels, and downregulate cellular tumor antigen p53 (p53), caspase-3, malondialdehyde high mobility group protein B1 (HMGB1), tumor necrosis factor alpha (TNF-α), and interleukin 1β (IL-1β) levels. Proteomics indicated that GC regulates phosphatidylcholine translocator ABCB1 (ABCB1B), canalicular multispecific organic anion transporter 1 (ABCC2), cytochrome P450 4A2 (CYP4A2), cytochrome P450 1A1 (CYP1A1), cytochrome P450 1A2 (CYP1A2), estrogen receptor (ESR1), and DNA topoisomerase 2-alpha (TOP2A), inhibits oxidative stress, apoptosis, and inflammatory responses, and accelerates drug metabolism. In this study, we provide the investigation of the efficacy of GC against CP-induced hepatotoxicity, and offer a promising alternative for the clinic.
Collapse
Affiliation(s)
- Qiong Man
- School of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Yi Deng
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China.,Key Laboratory of Pharmacology and Toxicology of Traditional Chinese Medicine of Gansu Province, Lanzhou, China
| | - Pengjie Li
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jun Ma
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhijun Yang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiujuan Yang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yan Zhou
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China.,Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiao Yan
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
23
|
Uncovering the Mechanism of the Effects of Pien-Tze-Huang on Liver Cancer Using Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4863015. [PMID: 32963562 PMCID: PMC7492898 DOI: 10.1155/2020/4863015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 01/25/2023]
Abstract
Pien-Tze-Huang (PTH) has a long history in the treatment of liver cancer. However, its molecular mechanism of action remains unclear. TCMSP and TCM were used to collect the active ingredients. Bioactive compounds targets were predicted by reverse pharmacophore models. The antiliver cancer targets of PTH were selected by gene comparison of liver cancer in the GEO database. Molecular docking was used to verify the binding activity of the targets and the active ingredients. The DAVID was used to analyze the gene function and signal pathway. A model was built with Cytoscape. The core genes were obtained by PPI network. We screened the 4 main medicinal ingredients of PTH to obtain 16 active ingredient, 190 potential targets, and 6 core genes. We found that active small molecules exert anticancer effects by multiple pathways. The core genes were involved in multiple biological processes. We also found that eight chemical components play a greater role in inhibiting liver cancer. PTH achieves the effect of inhibiting liver cancer through the synergistic effect of multiple components, multiple targets, and multiple pathways. This study provides a potential scientific basis for further elucidating the molecular mechanism of action of PTH against liver cancer.
Collapse
|
24
|
Yan J, Shu M, Li X, Yu H, Chen S, Xie S. Prognostic Score-based Clinical Factors and Metabolism-related Biomarkers for Predicting the Progression of Hepatocellular Carcinoma. Evol Bioinform Online 2020; 16:1176934320951571. [PMID: 33013158 PMCID: PMC7518001 DOI: 10.1177/1176934320951571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/24/2020] [Indexed: 11/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor representing more than 90% of primary liver cancer. This study aimed to identify metabolism-related biomarkers with prognostic value by developing the novel prognostic score (PS) model. Transcriptomic profiles derived from TCGA and EBIArray databases were analyzed to identify differentially expressed genes (DEGs) in HCC tumor samples compared with normal samples. The overlapped genes between DEGs and metabolism-related genes (crucial genes) were screened and functionally analyzed. A novel PS model was constructed to identify optimal signature genes. Cox regression analysis was performed to identify independent clinical factors related to prognosis. Nomogram model was constructed to estimate the predictability of clinical factors. Finally, protein expression of crucial genes was explored in different cancer tissues and cell types from the Human Protein Atlas (HPA). We screened a total of 305 overlapped genes (differentially expressed metabolism-related genes). These genes were mainly involved in "oxidation reduction," "steroid hormone biosynthesis," "fatty acid metabolic process," and "linoleic acid metabolism." Furthermore, we screened ten optimal DEGs (CYP2C9, CYP3A4, and TKT, among others) by using the PS model. Two clinical factors of pathologic stage (P < .001, HR: 1.512 [1.219-1.875]) and PS status (P <.001, HR: 2.259 [1.522-3.354]) were independent prognostic predictors by cox regression analysis. Nomogram model showed a high predicted probability of overall survival time, and the AUC value was 0.837. The expression status of 7 proteins was frequently altered in normal or differential tumor tissues, such as liver cancer and stomach cancer samples.We have identified several metabolism-related biomarkers for prognosis prediction of HCC based on the PS model. Two clinical factors were independent prognostic predictors of pathologic stage and PS status (high/low risk). The prognosis prediction model described in this study is a useful and stable method for novel biomarker identification.
Collapse
Affiliation(s)
- Jia Yan
- Department of Hepatobiliary Pancreatic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, Zhejiang, China
| | - Ming Shu
- Department of Hepatobiliary Pancreatic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, Zhejiang, China
| | - Xiang Li
- Department of Hepatobiliary Pancreatic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, Zhejiang, China
| | - Hua Yu
- Department of Hepatobiliary Pancreatic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, Zhejiang, China
| | - Shuhuai Chen
- Department of Hepatobiliary Pancreatic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, Zhejiang, China
| | - Shujie Xie
- Department of Hepatobiliary Pancreatic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, Zhejiang, China
| |
Collapse
|
25
|
Motifs enable communication efficiency and fault-tolerance in transcriptional networks. Sci Rep 2020; 10:9628. [PMID: 32541819 PMCID: PMC7296022 DOI: 10.1038/s41598-020-66573-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/22/2020] [Indexed: 11/23/2022] Open
Abstract
Analysis of the topology of transcriptional regulatory networks (TRNs) is an effective way to study the regulatory interactions between the transcription factors (TFs) and the target genes. TRNs are characterized by the abundance of motifs such as feed forward loops (FFLs), which contribute to their structural and functional properties. In this paper, we focus on the role of motifs (specifically, FFLs) in signal propagation in TRNs and the organization of the TRN topology with FFLs as building blocks. To this end, we classify nodes participating in FFLs (termed motif central nodes) into three distinct roles (namely, roles A, B and C), and contrast them with TRN nodes having high connectivity on the basis of their potential for information dissemination, using metrics such as network efficiency, path enumeration, epidemic models and standard graph centrality measures. We also present the notion of a three tier architecture and how it can help study the structural properties of TRN based on connectivity and clustering tendency of motif central nodes. Finally, we motivate the potential implication of the structural properties of motif centrality in design of efficient protocols of information routing in communication networks as well as their functional properties in global regulation and stress response to study specific disease conditions and identification of drug targets.
Collapse
|