1
|
Lin W, Chen T. Development of BODIPY FL SNS 032 as a Versatile Probe for Constitutive Androstane Receptor and Multiple Kinases. ACS Med Chem Lett 2024; 15:1987-1996. [PMID: 39563813 PMCID: PMC11571093 DOI: 10.1021/acsmedchemlett.4c00416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/28/2024] [Accepted: 10/23/2024] [Indexed: 11/21/2024] Open
Abstract
Human constitutive androstane receptor (hCAR) regulates xenobiotic metabolism. Its large and flexible ligand binding pocket can accommodate structurally diverse compounds. An assay for characterizing the binding of ligands to hCAR is needed but has not been reported. Here, we first discovered the promiscuous kinase inhibitor SNS-032 and its derivative THAL-SNS-032 as binders of hCAR, then developed BODIPY FL SNS 032 (14) as a high-affinity hCAR fluorescent probe (K d: 300 ± 30 nM) in a TR-FRET binding assay and used it to characterize hCAR ligands for their competitive binding activities. BODIPY FL SNS 032 also displayed high binding affinities to multiple kinases, such as hGSK3A (K d: 4.5 ± 0.2 nM), hCDK9/CycT1 (K d: 5.1 ± 0.6 nM), hMAPK15 (K d: 340 ± 20 nM), hCASK (K d: 550 ± 30 nM), and hCAMKK2 (K d: 530 ± 40 nM). BODIPY FL SNS 032 is therefore a versatile probe for hCAR and multiple kinases.
Collapse
Affiliation(s)
- Wenwei Lin
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 1000, Memphis, Tennessee 38105, United States
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 1000, Memphis, Tennessee 38105, United States
| |
Collapse
|
2
|
Huber AD, Jung YH, Li Y, Lin W, Wu J, Poudel S, Carrigan AG, Mishra A, High AA, Chen T. First-in-Class Small Molecule Degrader of Pregnane X Receptor Enhances Chemotherapy Efficacy. J Med Chem 2024; 67:18549-18575. [PMID: 39405362 PMCID: PMC11584202 DOI: 10.1021/acs.jmedchem.4c01926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Pregnane X receptor (PXR) is a ligand-activated transcription factor that binds diverse compounds and upregulates drug metabolism machinery in response. PXR activation is detrimental to drug efficacy and safety because it reduces active drug concentrations and increases reactive metabolites, leading to toxicity and/or drug-drug interactions. Thus, effort must be expended in drug development pipelines to assess PXR activation by lead candidates and chemically modify agonists to reduce PXR liabilities while maintaining on-target potencies. Coadministration of drugs with PXR antagonists could prevent PXR-mediated metabolism events, but such compounds are rare and may themselves be converted to agonists by metabolic enzymes or PXR mutations. Here, we report the design, synthesis, optimization, and biological validation of proteolysis targeting chimeras that induce PXR degradation through E3 ubiquitin ligase recruitment. PXR degradation blocks agonist-induced gene expression and enhances anticancer effects of the chemotherapy paclitaxel, a known PXR agonist and substrate of downstream metabolic enzymes.
Collapse
Affiliation(s)
- Andrew D. Huber
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS 1000, Memphis, TN, 38105-3678, USA
| | - Young-Hwan Jung
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS 1000, Memphis, TN, 38105-3678, USA
| | - Yongtao Li
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS 1000, Memphis, TN, 38105-3678, USA
| | - Wenwei Lin
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS 1000, Memphis, TN, 38105-3678, USA
| | - Jing Wu
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS 1000, Memphis, TN, 38105-3678, USA
| | - Shyaron Poudel
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS 1000, Memphis, TN, 38105-3678, USA
| | - Annalise G. Carrigan
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS 1000, Memphis, TN, 38105-3678, USA
| | - Ashutosh Mishra
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Anthony A. High
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS 1000, Memphis, TN, 38105-3678, USA
| |
Collapse
|
3
|
Huber AD, Poudel S, Wu J, Miller DJ, Lin W, Yang L, Bwayi MN, Rimmer MA, Gee RRF, Seetharaman J, Chai SC, Chen T. A bromodomain-independent mechanism of gene regulation by the BET inhibitor JQ1: direct activation of nuclear receptor PXR. Nucleic Acids Res 2024; 52:1661-1676. [PMID: 38084912 PMCID: PMC10899790 DOI: 10.1093/nar/gkad1175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 02/29/2024] Open
Abstract
Bromodomain and extraterminal (BET) proteins are extensively studied in multiple pathologies, including cancer. BET proteins modulate transcription of various genes, including those synonymous with cancer, such as MYC. Thus, BET inhibitors are a major area of drug development efforts. (+)-JQ1 (JQ1) is the prototype inhibitor and is a common tool to probe BET functions. While showing therapeutic promise, JQ1 is not clinically usable, partly due to metabolic instability. Here, we show that JQ1 and the BET-inactive (-)-JQ1 are agonists of pregnane X receptor (PXR), a nuclear receptor that transcriptionally regulates genes encoding drug-metabolizing enzymes such as CYP3A4, which was previously shown to oxidize JQ1. A PXR-JQ1 co-crystal structure identified JQ1's tert-butyl moiety as a PXR anchor and explains binding by (-)-JQ1. Analogs differing at the tert-butyl lost PXR binding, validating our structural findings. Evaluation in liver cell models revealed both PXR-dependent and PXR-independent modulation of CYP3A4 expression by BET inhibitors. We have characterized a non-BET JQ1 target, a mechanism of physiological JQ1 instability, a biological function of (-)-JQ1, and BET-dependent transcriptional regulation of drug metabolism genes.
Collapse
Affiliation(s)
- Andrew D Huber
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Shyaron Poudel
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Jing Wu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Darcie J Miller
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Wenwei Lin
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Lei Yang
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Monicah N Bwayi
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Mary Ashley Rimmer
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Rebecca R Florke Gee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Jayaraman Seetharaman
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Sergio C Chai
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
4
|
Rakateli L, Huchzermeier R, van der Vorst EPC. AhR, PXR and CAR: From Xenobiotic Receptors to Metabolic Sensors. Cells 2023; 12:2752. [PMID: 38067179 PMCID: PMC10705969 DOI: 10.3390/cells12232752] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Traditionally, xenobiotic receptors are known for their role in chemical sensing and detoxification, as receptor activation regulates the expression of various key enzymes and receptors. However, recent studies have highlighted that xenobiotic receptors also play a key role in the regulation of lipid metabolism and therefore function also as metabolic sensors. Since dyslipidemia is a major risk factor for various cardiometabolic diseases, like atherosclerosis and non-alcoholic fatty liver disease, it is of major importance to understand the molecular mechanisms that are regulated by xenobiotic receptors. In this review, three major xenobiotic receptors will be discussed, being the aryl hydrocarbon receptor (AhR), pregnane X receptor (PXR) and the constitutive androstane receptor (CAR). Specifically, this review will focus on recent insights into the metabolic functions of these receptors, especially in the field of lipid metabolism and the associated dyslipidemia.
Collapse
Affiliation(s)
- Leonida Rakateli
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany; (L.R.); (R.H.)
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany
| | - Rosanna Huchzermeier
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany; (L.R.); (R.H.)
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany; (L.R.); (R.H.)
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, 80336 Munich, Germany
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
5
|
Brožová ZR, Dušek J, Palša N, Maixnerová J, Kamaraj R, Smutná L, Matouš P, Braeuning A, Pávek P, Kuneš J, Gathergood N, Špulák M, Pour M, Carazo A. 2-Substituted quinazolines: Partial agonistic and antagonistic ligands of the constitutive androstane receptor (CAR). Eur J Med Chem 2023; 259:115631. [PMID: 37473690 DOI: 10.1016/j.ejmech.2023.115631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023]
Abstract
Following the discovery of 2-(3-methoxyphenyl)-3,4-dihydroquinazoline-4-one and 2-(3-methoxyphenyl)quinazoline-4-thione as potent, but non-specific activators of the human Constitutive Androstane Receptor (CAR, NR1I3), a series of quinazolinones substituted at the C2 phenyl ring was prepared to examine their ability to selectively modulate human CAR activity. Employing cellular and in vitro TR-FRET assays with wild-type CAR or its variant 3 (CAR3) ligand binding domains (LBD), several novel partial human CAR agonists and antagonists were identified. 2-(3-Methylphenyl) quinazolinone derivatives 7d and 8d acted as partial agonists with the recombinant CAR LBD, the former in nanomolar units (EC50 = 0.055 μM and 10.6 μM, respectively). Moreover, 7d did not activate PXR, and did not show any signs of cytotoxicity. On the other hand, 2-(4-bromophenyl)quinazoline-4-thione 7l possessed significant CAR antagonistic activity, although the compound displayed no agonistic or inverse agonistic activities. A compound possessing purely antagonistic effect was thus identified for the first time. These and related compounds may serve as a remedy in xenobiotic intoxication or, conversely, in suppression of undesirable hepatic CAR activation.
Collapse
Affiliation(s)
- Zuzana Rania Brožová
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Jan Dušek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic; Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Norbert Palša
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Jana Maixnerová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Rajamanikkam Kamaraj
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Lucie Smutná
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Petr Matouš
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Petr Pávek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Jiří Kuneš
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Nicholas Gathergood
- School of Chemistry, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, Lincolnshire, LN6 7DL, United Kingdom
| | - Marcel Špulák
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Milan Pour
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| | - Alejandro Carazo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
6
|
Collins JM, Wang D. A Comprehensive Evaluation of the Effects of RNA-Editing Proteins ADAR and ADARB1 on the Expression of the Drug-Metabolizing Enzymes in HepaRG Cells. Drug Metab Dispos 2023; 51:1508-1514. [PMID: 37532539 PMCID: PMC10586505 DOI: 10.1124/dmd.123.001396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023] Open
Abstract
Two RNA-editing proteins, the adenosine deaminase acting on RNA, ADAR, and ADARB1, broadly regulate gene expression in editing-dependent and editing-independent manners. Previous studies showed that the expression of the drug-metabolizing cytochrome P450s (P450s) and UDP glucuronosyltransferases (UGTs) changes upon knockdown (KD) of ADAR or ADARB1 in different hepatic cell lines. To systematically survey the effects of these two ADARs on the expression of P450s and UGTs, we used small interfering RNA in HepaRG cells and tested the association between the expression of the P450s and ADARs in a liver sample cohort (n = 246). KD of ADAR increased the expression of the CYP3As and CYP2C9 and reduced the expression of the others, whereas KD of ADARB1 reduced the expression of nearly all genes tested. ADAR KD also suppressed the induction of most P450s, whereas ADARB1 KD had mixed effects depending on the inducer/gene combination. P450 expression was positively associated with both ADARs in liver samples, consistent with the KD results. However, after adjusting for the expression of transcription factors (TFs) known to regulate P450 expression, the associations disappeared, indicating that the effects of ADAR or ADARB1 primarily occur through TFs. Moreover, we found that the expression of normally spliced CYP3A5 transcripts is increased in both KDs, indicating a direct effect of the ADARs on promoting the usage of the cryptic splice site generated by CYP3A5*3. Taken together, our results revealed the nonoverlapping regulatory effects of ADAR and ADARB1 and supported their broad roles in controlling the expression of drug-metabolizing enzymes in the liver. SIGNIFICANCE STATEMENT: Here, this study systematically surveyed the roles of ADAR and ADARB1 in both basal and induced expression of drug-metabolizing enzymes and assessed their coexpression in liver samples. This study's results support that ADAR and ADARB1 regulate the expression of the drug-metabolizing enzymes in the liver, suggesting that factors affecting ADAR expression also have the potential to impact drug metabolism.
Collapse
Affiliation(s)
- Joseph M Collins
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, Center for Pharmacogenomics, University of Florida, Gainesville, Florida
| | - Danxin Wang
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, Center for Pharmacogenomics, University of Florida, Gainesville, Florida
| |
Collapse
|
7
|
Leo S, Kato Y, Wu Y, Yokota M, Koike M, Yui S, Tsuchiya K, Shiraki N, Kume S. The Effect of Vitamin D3 and Valproic Acid on the Maturation of Human-Induced Pluripotent Stem Cell-Derived Enterocyte-Like Cells. Stem Cells 2023; 41:775-791. [PMID: 37228023 DOI: 10.1093/stmcls/sxad042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
Cytochrome P450 3A4 (CYP3A4) is involved in first-pass metabolism in the small intestine and is heavily implicated in oral drug bioavailability and pharmacokinetics. We previously reported that vitamin D3 (VD3), a known CYP enzyme inducer, induces functional maturation of iPSC-derived enterocyte-like cells (iPSC-ent). Here, we identified a Notch activator and CYP modulator valproic acid (VPA), as a promotor for the maturation of iPSC-ent. We performed bulk RNA sequencing to investigate the changes in gene expression during the differentiation and maturation periods of these cells. VPA potentiated gene expression of key enterocyte markers ALPI, FABP2, and transporters such as SULT1B1. RNA-sequencing analysis further elucidated several function-related pathways involved in fatty acid metabolism, significantly upregulated by VPA when combined with VD3. Particularly, VPA treatment in tandem with VD3 significantly upregulated key regulators of enterohepatic circulation, such as FGF19, apical bile acid transporter SLCO1A2 and basolateral bile acid transporters SLC51A and SLC51B. To sum up, we could ascertain the genetic profile of our iPSC-ent cells to be specialized toward fatty acid absorption and metabolism instead of transporting other nutrients, such as amino acids, with the addition of VD3 and VPA in tandem. Together, these results suggest the possible application of VPA-treated iPSC-ent for modelling enterohepatic circulation.
Collapse
Affiliation(s)
- Sylvia Leo
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Yusuke Kato
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Yumeng Wu
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Mutsumi Yokota
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masato Koike
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shiro Yui
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kiichiro Tsuchiya
- Department of Gastroenterology, Institute of Medicine, University of Tsukuba, Tennoudai, Tsukuba, Ibaraki, Japan
| | - Nobuaki Shiraki
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Shoen Kume
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| |
Collapse
|
8
|
Yan J, Gu Q, Meng C, Liu J, Liu F, Xia C. Panaxytriol upregulates CYP3A4 expression through the interaction between nuclear regulators and DNA response elements. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116398. [PMID: 36948264 DOI: 10.1016/j.jep.2023.116398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cytochrome P3A4 (CYP3A4) is a crucial drug-metabolizing enzyme, and its expression is regulated by the pregnane X receptor (PXR), constitutive androstane receptor (CAR), steroid receptor coactivator 1 (SRC-1), and acetyltransferase P300. Panaxytriol is a naturally derived active substance extracted from the roots of Panax ginseng C. A. Mey. which is widely used clinically. Our previous studies have shown that panaxytriol induces CYP3A4 expression through PXR activation, which is antagonized by high CAR expression. However, the underlying mechanism remains unclear. AIM OF THE STUDY This study aimed to investigate the mechanism of panaxytriol in inducing CYP3A4 expression via interactions between nuclear regulators and DNA response elements. MATERIALS AND METHODS Immunoprecipitation technique was used to assess the binding levels of PXR and CAR with the coactivators SRC-1 and P300 in HepG2 and Huh-7 cells. Furthermore, chromatin immunoprecipitation assay was used to investigate the PXR and CAR interaction with the CYP3A4 promoter response element ER-6/DR-3. RESULTS The binding of PXR to SRC-1, P300, and the response elements ER-6 and DR-3 was improved with an increase in panaxytriol concentration (10-80 μM), and the binding affinity was further enhanced upon CAR silencing. The binding of CAR to SRC-1 and the response elements ER-6 and DR-3 was significantly higher at 80 μM panaxytriol, whereas no significant binding was observed between CAR and P300. CONCLUSION Panaxytriol promoted the recruitment of PXR to SRC-1 and P300, binding to ER-6 and DR-3, and upregulating CYP3A4 expression. Furthermore, an interactive dialogue regulatory mechanism between PXR and CAR was observed.
Collapse
Affiliation(s)
- Jingdi Yan
- Clinical Pharmacology Institute, Pharmaceutical School, Nanchang University, Nanchang, 330031, PR China; Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, PR China
| | - Qi Gu
- Clinical Pharmacology Institute, Pharmaceutical School, Nanchang University, Nanchang, 330031, PR China
| | - Chao Meng
- Clinical Pharmacology Institute, Pharmaceutical School, Nanchang University, Nanchang, 330031, PR China
| | - Jianming Liu
- Clinical Pharmacology Institute, Pharmaceutical School, Nanchang University, Nanchang, 330031, PR China
| | - Fanglan Liu
- Clinical Pharmacology Institute, Pharmaceutical School, Nanchang University, Nanchang, 330031, PR China
| | - Chunhua Xia
- Clinical Pharmacology Institute, Pharmaceutical School, Nanchang University, Nanchang, 330031, PR China.
| |
Collapse
|
9
|
Mejdrová I, Dušek J, Škach K, Stefela A, Skoda J, Chalupský K, Dohnalová K, Pavkova I, Kronenberger T, Rashidian A, Smutná L, Duchoslav V, Smutny T, Pávek P, Nencka R. Discovery of Novel Human Constitutive Androstane Receptor Agonists with the Imidazo[1,2- a]pyridine Structure. J Med Chem 2023; 66:2422-2456. [PMID: 36756805 PMCID: PMC10017030 DOI: 10.1021/acs.jmedchem.2c01140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The nuclear constitutive androstane receptor (CAR, NR1I3) plays significant roles in many hepatic functions, such as fatty acid oxidation, biotransformation, liver regeneration, as well as clearance of steroid hormones, cholesterol, and bilirubin. CAR has been proposed as a hypothetical target receptor for metabolic or liver disease therapy. Currently known prototype high-affinity human CAR agonists such as CITCO (6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl)oxime) have limited selectivity, activating the pregnane X receptor (PXR) receptor, a related receptor of the NR1I subfamily. We have discovered several derivatives of 3-(1H-1,2,3-triazol-4-yl)imidazo[1,2-a]pyridine that directly activate human CAR in nanomolar concentrations. While compound 39 regulates CAR target genes in humanized CAR mice as well as human hepatocytes, it does not activate other nuclear receptors and is nontoxic in cellular and genotoxic assays as well as in rodent toxicity studies. Our findings concerning potent human CAR agonists with in vivo activity reinforce the role of CAR as a possible therapeutic target.
Collapse
Affiliation(s)
- Ivana Mejdrová
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Jan Dušek
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Kryštof Škach
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Alžbeta Stefela
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Josef Skoda
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Karel Chalupský
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
- Czech
Centre for Phenogenomics, Institute of Molecular
Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Klára Dohnalová
- Czech
Centre for Phenogenomics, Institute of Molecular
Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
- 1st
Medical Faculty, Charles University, Katerinska 32, 112 08 Prague, Czech Republic
| | - Ivona Pavkova
- Faculty
of Military Health Sciences, University
of Defense, Trebeska
1575, 500 01 Hradec
Kralove, Czech Republic
| | - Thales Kronenberger
- Department
of Internal Medicine VIII, University Hospital
of Tübingen, 72076 Tübingen, Germany
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
- Department
of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical
Sciences, Eberhard Karls Universität, 72076 Tübingen, Germany
| | - Azam Rashidian
- Department
of Internal Medicine VIII, University Hospital
of Tübingen, 72076 Tübingen, Germany
| | - Lucie Smutná
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Vojtěch Duchoslav
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Tomas Smutny
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Petr Pávek
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Radim Nencka
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
10
|
Poudel S, Huber AD, Chen T. Regulation of Nuclear Receptors PXR and CAR by Small Molecules and Signal Crosstalk: Roles in Drug Metabolism and Beyond. Drug Metab Dispos 2023; 51:228-236. [PMID: 36116789 PMCID: PMC9900866 DOI: 10.1124/dmd.122.000858] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/16/2022] [Accepted: 08/29/2022] [Indexed: 01/31/2023] Open
Abstract
Pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are ligand-activated transcription factors that regulate the expression of drug metabolizing enzymes and drug transporters. Since their discoveries, they have been studied as important factors for regulating processes related to drug efficacy, drug toxicity, and drug-drug interactions. However, their vast ligand-binding profiles extend into additional spaces, such as endogenously produced chemicals, microbiome metabolites, dietary compounds, and environmental pollutants. Therefore, PXR and CAR can respond to an enormous abundance of stimuli, resulting in significant shifts in metabolic programs and physiologic homeostasis. Naturally, PXR and CAR have been implicated in various diseases related to homeostatic perturbations, such as inflammatory bowel disorders, diabetes, and certain cancers. Recent findings have injected the field with new signaling mechanisms and tools to dissect the complex PXR and CAR biology and have strengthened the potential for future PXR and CAR modulators in the clinic. Here, we describe the historical and ongoing importance of PXR and CAR in drug metabolism pathways and how this history has evolved into new mechanisms that regulate and are regulated by these xenobiotic receptors, with a specific focus on small molecule ligands. To effectively convey the impact of newly emerging research, we have arranged five diverse and representative key recent advances, four specific challenges, and four perspectives on future directions. SIGNIFICANCE STATEMENT: PXR and CAR are key transcription factors that regulate homeostatic detoxification of the liver and intestines. Diverse chemicals bind to these nuclear receptors, triggering their transcriptional tuning of the cellular metabolic response. This minireview revisits the importance of PXR and CAR in pharmaceutical drug responses and highlights recent results with implications beyond drug metabolism.
Collapse
Affiliation(s)
- Shyaron Poudel
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Andrew D Huber
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
11
|
Malar DS, Prasanth MI, Verma K, Prasansuklab A, Tencomnao T. Hibiscus sabdariffa Extract Protects HaCaT Cells against Phenanthrene-Induced Toxicity through the Regulation of Constitutive Androstane Receptor/Pregnane X Receptor Pathway. Nutrients 2022; 14:nu14183829. [PMID: 36145217 PMCID: PMC9502750 DOI: 10.3390/nu14183829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Phenanthrene (Phe) exposure is associated with skin ageing, cardiotoxicity and developmental defects. Here, we investigated the mode of Phe toxicity in human keratinocytes (HaCaT cells) and the attenuation of toxicity on pre-treatment (6 h) with ethanol extract of Hibiscus sabdariffa calyxes (HS). Cell viability, reactive oxygen species (ROS) generation, mitochondrial membrane potential (ΔΨm) alteration, changes in the transcriptional activity of selected genes involved in phase I and II metabolism, antioxidant response and gluconeogenesis, western blot and docking studies were performed to determine the protective effect of HS against Phe. Phe (250 μM) induced cytotoxicity in HaCaT cells through AhR-independent, CAR/PXR/RXR-mediated activation of CYP1A1 and the subsequent alterations in phase I and II metabolism genes. Further, CYP1A1 activation by Phe induced ROS generation, reduced ΔΨm and modulated antioxidant response, phase II metabolism and gluconeogenesis-related gene expression. However, pre-treatment with HS extract restored the pathological changes observed upon Phe exposure through CYP1A1 inhibition. Docking studies showed the site-specific activation of PXR and CAR by Phe and inhibition of CYP1A1 and CYP3A4 by the bioactive compounds of HS similar to that of the positive controls tested. Our results conclude that HS extract can attenuate Phe-induced toxicity in HaCaT cells through CAR/PXR/RXR mediated inhibition of CYP1A1.
Collapse
Affiliation(s)
- Dicson Sheeja Malar
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Mani Iyer Prasanth
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kanika Verma
- Department of Parasite-Host Biology, ICMR-National Institute of Malaria Research (NIMR), New Delhi 110077, India
| | - Anchalee Prasansuklab
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (A.P.); (T.T.); Tel.: +66-218-8048 (A.P.); +66-2-218-1533 (T.T.)
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (A.P.); (T.T.); Tel.: +66-218-8048 (A.P.); +66-2-218-1533 (T.T.)
| |
Collapse
|
12
|
Dutta M, Lim JJ, Cui JY. Pregnane X Receptor and the Gut-Liver Axis: A Recent Update. Drug Metab Dispos 2022; 50:478-491. [PMID: 34862253 PMCID: PMC11022899 DOI: 10.1124/dmd.121.000415] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 12/02/2021] [Indexed: 02/04/2023] Open
Abstract
It is well-known that the pregnane X receptor (PXR)/Nr1i2 is a critical xenobiotic-sensing nuclear receptor enriched in liver and intestine and is responsible for drug-drug interactions, due to its versatile ligand binding domain (LBD) and target genes involved in xenobiotic biotransformation. PXR can be modulated by various xenobiotics including pharmaceuticals, nutraceuticals, dietary factors, and environmental chemicals. Microbial metabolites such as certain secondary bile acids (BAs) and the tryptophan metabolite indole-3-propionic acid (IPA) are endogenous PXR activators. Gut microbiome is increasingly recognized as an important regulator for host xenobiotic biotransformation and intermediary metabolism. PXR regulates and is regulated by the gut-liver axis. This review summarizes recent research advancements leveraging pharmaco- and toxico-metagenomic approaches that have redefined the previous understanding of PXR. Key topics covered in this review include: (1) genome-wide investigations on novel PXR-target genes, novel PXR-DNA interaction patterns, and novel PXR-targeted intestinal bacteria; (2) key PXR-modulating activators and suppressors of exogenous and endogenous sources; (3) novel bidirectional interactions between PXR and gut microbiome under physiologic, pathophysiological, pharmacological, and toxicological conditions; and (4) modifying factors of PXR-signaling including species and sex differences and time (age, critical windows of exposure, and circadian rhythm). The review also discusses critical knowledge gaps and important future research topics centering around PXR. SIGNIFICANCE STATEMENT: This review summarizes recent research advancements leveraging O'mics approaches that have redefined the previous understanding of the xenobiotic-sensing nuclear receptor pregnane X receptor (PXR). Key topics include: (1) genome-wide investigations on novel PXR-targeted host genes and intestinal bacteria as well as novel PXR-DNA interaction patterns; (2) key PXR modulators including microbial metabolites under physiological, pathophysiological, pharmacological, and toxicological conditions; and (3) modifying factors including species, sex, and time.
Collapse
Affiliation(s)
- Moumita Dutta
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Joe Jongpyo Lim
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| |
Collapse
|
13
|
Bwayi MN, Garcia-Maldonado E, Chai SC, Xie B, Chodankar S, Huber AD, Wu J, Annu K, Wright WC, Lee HM, Seetharaman J, Wang J, Buchman CD, Peng J, Chen T. Molecular basis of crosstalk in nuclear receptors: heterodimerization between PXR and CAR and the implication in gene regulation. Nucleic Acids Res 2022; 50:3254-3275. [PMID: 35212371 PMCID: PMC8989523 DOI: 10.1093/nar/gkac133] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/20/2022] [Accepted: 02/11/2022] [Indexed: 02/06/2023] Open
Abstract
The 48 human nuclear receptors (NRs) form a superfamily of transcription factors that regulate major physiological and pathological processes. Emerging evidence suggests that NR crosstalk can fundamentally change our understanding of NR biology, but detailed molecular mechanisms of crosstalk are lacking. Here, we report the molecular basis of crosstalk between the pregnane X receptor (PXR) and constitutive androstane receptor (CAR), where they form a novel heterodimer, resulting in their mutual inhibition. PXR and CAR regulate drug metabolism and energy metabolism. Although they have been broadly perceived as functionally redundant, a growing number of reports suggests a mutual inhibitory relation, but their precise mode of coordinated action remains unknown. Using methods including RNA sequencing, small-angle X-ray scattering and crosslinking mass spectrometry we demonstrate that the mutual inhibition altered gene expression globally and is attributed to the novel PXR–CAR heterodimerization via the same interface used by each receptor to heterodimerize with its functional partner, retinoid X receptor (RXR). These findings establish an unexpected functional relation between PXR, CAR and RXR, change the perceived functional relation between PXR and CAR, open new perspectives on elucidating their role and designing approaches to regulate them, and highlight the importance to comprehensively investigate nuclear receptor crosstalk.
Collapse
Affiliation(s)
- Monicah N Bwayi
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Efren Garcia-Maldonado
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Sergio C Chai
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Boer Xie
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Shirish Chodankar
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Andrew D Huber
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Jing Wu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Kavya Annu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - William C Wright
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Hyeong-Min Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Jayaraman Seetharaman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Jingheng Wang
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Cameron D Buchman
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Junmin Peng
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA.,Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA.,Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| |
Collapse
|
14
|
Honkakoski P. Searching for CAR modulators. Drug Metab Dispos 2022; 50:1002-1009. [DOI: 10.1124/dmd.121.000482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 02/01/2022] [Indexed: 11/22/2022] Open
|
15
|
Niu X, Wu T, Li G, Gu X, Tian Y, Cui H. Insights into the critical role of the PXR in preventing carcinogenesis and chemotherapeutic drug resistance. Int J Biol Sci 2022; 18:742-759. [PMID: 35002522 PMCID: PMC8741843 DOI: 10.7150/ijbs.68724] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/21/2021] [Indexed: 12/12/2022] Open
Abstract
Pregnane x receptor (PXR) as a nuclear receptor is well-established in drug metabolism, however, it has pleiotropic functions in regulating inflammatory responses, glucose metabolism, and protects normal cells against carcinogenesis. Most studies focus on its transcriptional regulation, however, PXR can regulate gene expression at the translational level. Emerging evidences have shown that PXR has a broad protein-protein interaction network, by which is implicated in the cross signaling pathways. Furthermore, the interactions between PXR and some critical proteins (e.g., p53, Tip60, p300/CBP-associated factor) in DNA damage pathway highlight its potential roles in this field. A thorough understanding of how PXR maintains genome stability and prevents carcinogenesis will help clinical diagnosis and finally benefit patients. Meanwhile, due to the regulation of CYP450 enzymes CYP3A4 and multidrug resistance protein 1 (MDR1), PXR contributes to chemotherapeutic drug resistance. It is worthy of note that the co-factor of PXR such as RXRα, also has contributions to this process, which makes the PXR-mediated drug resistance more complicated. Although single nucleotide polymorphisms (SNPs) vary between individuals, the amino acid substitution on exon of PXR finally affects PXR transcriptional activity. In this review, we have summarized the updated mechanisms that PXR protects the human body against carcinogenesis, and major contributions of PXR with its co-factors have made on multidrug resistance. Furthermore, we have also reviewed the current promising antagonist and their clinic applications in reversing chemoresistance. We believe our review will bring insight into PXR-targeted cancer therapy, enlighten the future study direction, and provide substantial evidence for the clinic in future.
Collapse
Affiliation(s)
- Xiaxia Niu
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| | - Ting Wu
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| | - Gege Li
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| | - Xinsheng Gu
- Department of Pharmacology, College of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Yanan Tian
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, USA
| | - Hongmei Cui
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| |
Collapse
|
16
|
Lv Y, Luo YY, Ren HW, Li CJ, Xiang ZX, Luan ZL. The role of pregnane X receptor (PXR) in substance metabolism. Front Endocrinol (Lausanne) 2022; 13:959902. [PMID: 36111293 PMCID: PMC9469194 DOI: 10.3389/fendo.2022.959902] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/28/2022] [Indexed: 12/04/2022] Open
Abstract
As a member of the nuclear receptor (NR) superfamily, pregnane X receptor (PXR; NR1I2) is a ligand-activated transcription factor that plays a crucial role in the metabolism of xenobiotics and endobiotics in mammals. The tissue distribution of PXR is parallel to its function with high expression in the liver and small intestine and moderate expression in the kidney, stomach, skin, and blood-brain barrier, which are organs and tissues in frequent contact with xenobiotics. PXR was first recognized as an exogenous substance receptor regulating metabolizing enzymes and transporters and functioning in detoxification and drug metabolism in the liver. However, further research revealed that PXR acts as an equally important endogenous substance receptor in the metabolism and homeostasis of endogenous substances. In this review, we summarized the functions of PXR in metabolism of different substances such as glucose, lipid, bile acid, vitamin, minerals, and endocrines, and also included insights of the application of PXR ligands (drugs) in specific diseases.
Collapse
Affiliation(s)
- Ye Lv
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Yi-Yang Luo
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Hui-Wen Ren
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
- Dalian Key Laboratory for Nuclear Receptors in Major Metabolic Diseases, Dalian Medical University, Dalian, China
| | - Cheng-Jie Li
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Zhi-Xin Xiang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Zhi-Lin Luan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
- Dalian Key Laboratory for Nuclear Receptors in Major Metabolic Diseases, Dalian Medical University, Dalian, China
- *Correspondence: Zhi-Lin Luan,
| |
Collapse
|
17
|
Cuko L, Duniec-Dmuchowski Z, Rondini EA, Pant A, Fallon JK, Wilson EM, Peraino NJ, Westrick JA, Smith PC, Kocarek TA. Negative Regulation of Human Hepatic Constitutive Androstane Receptor by Cholesterol Synthesis Inhibition: Role of Sterol Regulatory Element Binding Proteins. Drug Metab Dispos 2021; 49:706-717. [PMID: 34011532 PMCID: PMC11025015 DOI: 10.1124/dmd.120.000341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/27/2021] [Indexed: 11/22/2022] Open
Abstract
The squalene synthase inhibitor squalestatin 1 (Squal1) is a potent and efficacious inducer of CYP2B expression in primary cultured rat hepatocytes and rat liver. To determine whether Squal1 is also an inducer of human CYP2B, the effects of Squal1 treatment were evaluated in primary cultured human hepatocytes, differentiated HepaRG cells, and humanized mouse livers. Squal1 treatment did not increase CYP2B6 mRNA levels in human hepatocytes or HepaRG cells and only slightly and inconsistently increased CYP2B6 mRNA content in humanized mouse liver. However, treatment with farnesol, which mediates Squal1's effect on rat CYP2B expression, increased CYP2B6 mRNA levels in HepaRG cells expressing the constitutive androstane receptor (CAR), but not in cells with knocked-down CAR. To determine the impact of cholesterol biosynthesis inhibition on CAR activation, the effects of pravastatin (Prava) were determined on CITCO-mediated gene expression in primary cultured human hepatocytes. Prava treatment abolished CITCO-inducible CYP2B6 expression, but had less effect on rifampicin-mediated CYP3A4 induction, and CITCO treatment did not affect Prava-inducible HMG-CoA reductase (HMGCR) expression. Treatment with inhibitors of different steps of cholesterol biosynthesis attenuated CITCO-mediated CYP2B6 induction in HepaRG cells, and Prava treatment increased HMGCR expression and inhibited CYP2B6 induction with comparable potency. Transfection of HepG2 cells with transcriptionally active sterol regulatory element binding proteins (SREBPs) reduced CAR-mediated transactivation, and inducible expression of transcriptionally active SREBP2 attenuated CITCO-inducible CYP2B6 expression in HepaRG cells. These findings suggest that Squal1 does not induce CYP2B6 in human hepatocytes because Squal1's inhibitory effect on cholesterol biosynthesis interferes with CAR activation. SIGNIFICANCE STATEMENT: The cholesterol biosynthesis inhibitor squalestatin 1 induces rat hepatic CYP2B expression indirectly by causing accumulation of an endogenous isoprenoid that activates the constitutive androstane receptor (CAR). This study demonstrates that squalestatin 1 does not similarly induce CYP2B6 expression in human hepatocytes. Rather, inhibition of cholesterol biosynthesis interferes with CAR activity, likely by activating sterol regulatory element binding proteins. These findings increase our understanding of the endogenous processes that modulate human drug-metabolizing gene expression.
Collapse
Affiliation(s)
- Liberta Cuko
- Institute of Environmental Health Sciences (L.C., Z.D.-D., E.A.R., A.P., T.A.K.) and Department of Chemistry (N.J.P., J.A.W.), Wayne State University, Detroit, Michigan; Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, North Carolina (J.K.F., P.C.S.); and Yecuris Corporation, Tualatin, Oregon (E.M.W.)
| | - Zofia Duniec-Dmuchowski
- Institute of Environmental Health Sciences (L.C., Z.D.-D., E.A.R., A.P., T.A.K.) and Department of Chemistry (N.J.P., J.A.W.), Wayne State University, Detroit, Michigan; Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, North Carolina (J.K.F., P.C.S.); and Yecuris Corporation, Tualatin, Oregon (E.M.W.)
| | - Elizabeth A Rondini
- Institute of Environmental Health Sciences (L.C., Z.D.-D., E.A.R., A.P., T.A.K.) and Department of Chemistry (N.J.P., J.A.W.), Wayne State University, Detroit, Michigan; Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, North Carolina (J.K.F., P.C.S.); and Yecuris Corporation, Tualatin, Oregon (E.M.W.)
| | - Asmita Pant
- Institute of Environmental Health Sciences (L.C., Z.D.-D., E.A.R., A.P., T.A.K.) and Department of Chemistry (N.J.P., J.A.W.), Wayne State University, Detroit, Michigan; Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, North Carolina (J.K.F., P.C.S.); and Yecuris Corporation, Tualatin, Oregon (E.M.W.)
| | - John K Fallon
- Institute of Environmental Health Sciences (L.C., Z.D.-D., E.A.R., A.P., T.A.K.) and Department of Chemistry (N.J.P., J.A.W.), Wayne State University, Detroit, Michigan; Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, North Carolina (J.K.F., P.C.S.); and Yecuris Corporation, Tualatin, Oregon (E.M.W.)
| | - Elizabeth M Wilson
- Institute of Environmental Health Sciences (L.C., Z.D.-D., E.A.R., A.P., T.A.K.) and Department of Chemistry (N.J.P., J.A.W.), Wayne State University, Detroit, Michigan; Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, North Carolina (J.K.F., P.C.S.); and Yecuris Corporation, Tualatin, Oregon (E.M.W.)
| | - Nicholas J Peraino
- Institute of Environmental Health Sciences (L.C., Z.D.-D., E.A.R., A.P., T.A.K.) and Department of Chemistry (N.J.P., J.A.W.), Wayne State University, Detroit, Michigan; Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, North Carolina (J.K.F., P.C.S.); and Yecuris Corporation, Tualatin, Oregon (E.M.W.)
| | - Judy A Westrick
- Institute of Environmental Health Sciences (L.C., Z.D.-D., E.A.R., A.P., T.A.K.) and Department of Chemistry (N.J.P., J.A.W.), Wayne State University, Detroit, Michigan; Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, North Carolina (J.K.F., P.C.S.); and Yecuris Corporation, Tualatin, Oregon (E.M.W.)
| | - Philip C Smith
- Institute of Environmental Health Sciences (L.C., Z.D.-D., E.A.R., A.P., T.A.K.) and Department of Chemistry (N.J.P., J.A.W.), Wayne State University, Detroit, Michigan; Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, North Carolina (J.K.F., P.C.S.); and Yecuris Corporation, Tualatin, Oregon (E.M.W.)
| | - Thomas A Kocarek
- Institute of Environmental Health Sciences (L.C., Z.D.-D., E.A.R., A.P., T.A.K.) and Department of Chemistry (N.J.P., J.A.W.), Wayne State University, Detroit, Michigan; Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, North Carolina (J.K.F., P.C.S.); and Yecuris Corporation, Tualatin, Oregon (E.M.W.)
| |
Collapse
|
18
|
Effects of rifampicin on hepatic antioxidant enzymes in PXR and CAR double humanized mice. Mol Cell Toxicol 2021. [DOI: 10.1007/s13273-021-00134-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Li Y, Lin W, Wright WC, Chai SC, Wu J, Chen T. Building a Chemical Toolbox for Human Pregnane X Receptor Research: Discovery of Agonists, Inverse Agonists, and Antagonists Among Analogs Based on the Unique Chemical Scaffold of SPA70. J Med Chem 2021; 64:1733-1761. [PMID: 33497575 DOI: 10.1021/acs.jmedchem.0c02201] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pregnane X receptor (PXR) plays roles in detoxification and other physiological processes. PXR activation may enhance drug metabolism (leading to adverse drug reactions) or inhibit inflammation. Therefore, PXR agonists, antagonists, and inverse agonists may serve as research tools and drug candidates. However, a specific PXR modulator with an associated structure-activity relationship is lacking. Based on the scaffold of specific human PXR (hPXR) antagonist SPA70 (10), we developed 81 SPA70 analogs and evaluated their receptor-binding and cellular activities. Interestingly, analogs with subtle structural differences displayed divergent cellular activities, including agonistic, dual inverse agonistic and antagonistic, antagonistic, and partial agonistic/partial antagonistic activities (as in compounds 111, 10, 97, and 42, respectively). We generated a pharmacophore model that represents 81 SPA70 analogs, and docking models that correlate strong interactions between the compounds and residues in the AF-2 helix with agonistic activity. These compounds are novel chemical tools for studying hPXR.
Collapse
Affiliation(s)
- Yongtao Li
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-3678, United States
| | - Wenwei Lin
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-3678, United States
| | - William C Wright
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-3678, United States
| | - Sergio C Chai
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-3678, United States
| | - Jing Wu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-3678, United States
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-3678, United States
| |
Collapse
|
20
|
Diethelm-Varela B, Kumar A, Lynch C, Imler GH, Deschamps JR, Li Y, Xia M, MacKerell AD, Xue F. Stereoisomerization of human constitutive androstane receptor agonist CITCO. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Lin W, Li Y, Min J, Liu J, Yang L, Lee RE, Chen T. Development of BODIPY FL Thalidomide As a High-Affinity Fluorescent Probe for Cereblon in a Time-Resolved Fluorescence Resonance Energy Transfer Assay. Bioconjug Chem 2020; 31:2564-2575. [PMID: 33070611 DOI: 10.1021/acs.bioconjchem.0c00507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ligands for cereblon, a component of a functional E3 ligase complex that targets proteins for proteolysis, are critical for developing molecular glues and proteolysis-targeting chimeras (PROTACs), which have therapeutic implications for various diseases. However, the lack of sensitivity of previously reported assays limits characterization of cereblon ligands. To address this shortcoming, we developed BODIPY FL thalidomide (10) as a high-affinity fluorescent probe for the human cereblon protein, with a Kd value of 3.6 nM. We then used BODIPY FL thalidomide (10) to develop a cereblon time-resolved fluorescence resonance energy transfer (TR-FRET) binding assay. The IC50 values of the cereblon ligand pomalidomide (8) were 6.4 nM in our cereblon TR-FRET binding assay, 264.8 nM in a previously reported Cy5-conjugated thalidomide (7)-mediated fluorescence polarization (FP) assay, and 1.2 μM in a previously reported Cy5-conjugated cereblon modulator (compound 7) (9)-mediated TR-FRET assay, indicating that our cereblon TR-FRET binding assay is 41- and 187-fold more sensitive than these two previously published assays. With our cereblon TR-FRET binding assay, we detected binding of cereblon ligands but not binding of bromodomain-containing protein 4 or von Hippel-Lindau ligands, thereby demonstrating its selectivity. Our cereblon TR-FRET binding assay was very stable and detected changes in phthalimide activity due to thalidomide isomerization. Therefore, the BODIPY FL thalidomide (10)-mediated cereblon TR-FRET binding assay we designed is highly sensitive, selective, and stable and will aid the development and characterization of novel cereblon ligands.
Collapse
Affiliation(s)
- Wenwei Lin
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 1000, Memphis, Tennessee 38105, United States
| | - Yongtao Li
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 1000, Memphis, Tennessee 38105, United States
| | - Jaeki Min
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 1000, Memphis, Tennessee 38105, United States
| | - Jiuyu Liu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 1000, Memphis, Tennessee 38105, United States
| | - Lei Yang
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 1000, Memphis, Tennessee 38105, United States
| | - Richard E Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 1000, Memphis, Tennessee 38105, United States
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 1000, Memphis, Tennessee 38105, United States
| |
Collapse
|
22
|
Küblbeck J, Niskanen J, Honkakoski P. Metabolism-Disrupting Chemicals and the Constitutive Androstane Receptor CAR. Cells 2020; 9:E2306. [PMID: 33076503 PMCID: PMC7602645 DOI: 10.3390/cells9102306] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
During the last two decades, the constitutive androstane receptor (CAR; NR1I3) has emerged as a master activator of drug- and xenobiotic-metabolizing enzymes and transporters that govern the clearance of both exogenous and endogenous small molecules. Recent studies indicate that CAR participates, together with other nuclear receptors (NRs) and transcription factors, in regulation of hepatic glucose and lipid metabolism, hepatocyte communication, proliferation and toxicity, and liver tumor development in rodents. Endocrine-disrupting chemicals (EDCs) constitute a wide range of persistent organic compounds that have been associated with aberrations of hormone-dependent physiological processes. Their adverse health effects include metabolic alterations such as diabetes, obesity, and fatty liver disease in animal models and humans exposed to EDCs. As numerous xenobiotics can activate CAR, its role in EDC-elicited adverse metabolic effects has gained much interest. Here, we review the key features and mechanisms of CAR as a xenobiotic-sensing receptor, species differences and selectivity of CAR ligands, contribution of CAR to regulation hepatic metabolism, and evidence for CAR-dependent EDC action therein.
Collapse
Affiliation(s)
- Jenni Küblbeck
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70210 Kuopio, Finland;
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70210 Kuopio, Finland;
| | - Jonna Niskanen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70210 Kuopio, Finland;
| | - Paavo Honkakoski
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70210 Kuopio, Finland;
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Campus Box 7569, Chapel Hill, NC 27599-7569, USA
| |
Collapse
|
23
|
Toporova L, Grimaldi M, Boulahtouf A, Balaguer P. Assessing the Selectivity of FXR, LXRs, CAR, and RORγ Pharmaceutical Ligands With Reporter Cell Lines. Front Pharmacol 2020; 11:1122. [PMID: 32792956 PMCID: PMC7394005 DOI: 10.3389/fphar.2020.01122] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/10/2020] [Indexed: 01/01/2023] Open
Abstract
To characterize human nuclear receptor (NR) specificity of synthetic pharmaceutical chemicals we established stable cell lines expressing the ligand binding domains (LBDs) of human FXR, LXRα, LXRβ, CAR, and RORγ fused to the yeast GAL4 DNA binding domain (DBD). As we have already done for human PXR, a two-step transfection procedure was used. HeLa cells stably expressing a Gal4 responsive gene (HG5LN cell line) were transfected by Gal4-NRs expressing plasmids. At first, using these cell lines as well as the HG5LN PXR cells, we demonstrated that the basal activities varied from weak (FXR and LXRs), intermediate (PXR), to strong (CAR and RORγ), reflecting the recruitment of HeLa co-regulators in absence of ligand. Secondly, we finely characterized the activities of commercially available FXR, LXRα, LXRβ, CAR, RORγ, and PXR agonists/antagonists GW4064, feraxamine, DY268, T0901317, GW3965, WAY252623, SR9238, SR9243, GSK2033, CITCO, CINPA1, PK11195, S07662, SR1078, SR0987, SR1001, SR2211, XY018, clotrimazole, dabrafenib, SR12813, and SPA70, respectively. Among these compounds we revealed both, receptor specific agonists/antagonists, as well as less selective ligands, activating or inhibiting several nuclear receptors. FXR ligands manifested high receptor selectivity. Vice versa, LXR ligands behaved in non-selective manner, all activating at least PXR. CAR was selectively influenced by their ligands, while it also responded to several LXR ligands. Finally, although PXR was quite selectively activated or antagonized by its own ligands, it responded to several NRs ligands as well. Thus, using these reporter cell lines enabled us to precisely characterize the selectivity of pharmaceutical ligands for different nuclear receptors.
Collapse
Affiliation(s)
- Lucia Toporova
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, ICM, Univ Montpellier, Montpellier, France
| | - Marina Grimaldi
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, ICM, Univ Montpellier, Montpellier, France
| | - Abdelhay Boulahtouf
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, ICM, Univ Montpellier, Montpellier, France
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, ICM, Univ Montpellier, Montpellier, France
| |
Collapse
|
24
|
Torres-Vergara P, Ho YS, Espinoza F, Nualart F, Escudero C, Penny J. The constitutive androstane receptor and pregnane X receptor in the brain. Br J Pharmacol 2020; 177:2666-2682. [PMID: 32201941 DOI: 10.1111/bph.15055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/16/2022] Open
Abstract
Since their discovery, the orphan nuclear receptors constitutive androstane receptor (CAR;NR1I3) and pregnane X receptor (PXR;NR1I2) have been regarded as master regulators of drug disposition and detoxification mechanisms. They regulate the metabolism and transport of endogenous mediators and xenobiotics in organs including the liver, intestine and brain. However, with proposals of new physiological functions for NR1I3 and NR1I2, there is increasing interest in the role of these receptors in influencing brain function. This review will summarise key findings regarding the expression and function of NR1I3 and NR1I2 in the brain, hereby highlighting the need for further research in this field.
Collapse
Affiliation(s)
- Pablo Torres-Vergara
- Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile.,Centro de Microscopía Avanzada, CMA-BIO BIO, Laboratorio de Neurobiología y Células Madres NeuroCellT, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.,Group of Research and Innovation in Vascular Health (GRIVAS Health), Universidad del Bío Bío, Chillán, Chile
| | - Yu Siong Ho
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Health and Medicine, The University of Manchester, Manchester, UK
| | - Francisca Espinoza
- Centro de Microscopía Avanzada, CMA-BIO BIO, Laboratorio de Neurobiología y Células Madres NeuroCellT, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Francisco Nualart
- Centro de Microscopía Avanzada, CMA-BIO BIO, Laboratorio de Neurobiología y Células Madres NeuroCellT, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Carlos Escudero
- Laboratorio de FisiologíaVascular, Departamento de Ciencias Básicas, Facultad de Ciencias Básicas, Universidad del Bío-Bío, Chillán, Chile.,Group of Research and Innovation in Vascular Health (GRIVAS Health), Universidad del Bío Bío, Chillán, Chile
| | - Jeffrey Penny
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Health and Medicine, The University of Manchester, Manchester, UK
| |
Collapse
|