1
|
Chen L, Zhou Y, Wang J, Li K, Zhang Z, Peng M. The adenosine A 2A receptor alleviates postoperative delirium-like behaviors by restoring blood cerebrospinal barrier permeability in rats. J Neurochem 2021; 158:980-996. [PMID: 34033116 DOI: 10.1111/jnc.15436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 12/14/2022]
Abstract
Postoperative delirium (POD) is a common post-operative complication in elderly patients that is associated with increased morbidity and mortality. However, the neuropathogenesis of this complication remains unknown. The blood-cerebrospinal fluid barrier (BCB) and brain-blood barrier (BBB) are composed of tight junctions between cells that form physical barriers, and BBB damage plays an important role in the neuropathogenesis of POD. Nevertheless, the role of BCB in POD remains to be elucidated. Herein, we investigated the effect of adenosine A2A receptor (A2A R), a key regulator of the permeability of barriers, on surgery-induced increased permeability of BCB and POD-like behaviors. Open field, buried food, and Y maze tests were used to evaluate behavioral changes in rats after surgery. Levels of tight junction proteins, adherens junction proteins, A2A R, GTP-RhoA, and ROCK2 in the choroid plexus were assessed by western blotting. The concentrations of NaFI and FITC-dextran in the cerebrospinal fluid (CSF) were detected by fluorescence spectrophotometry. Transmission electron microscopy was applied to observe the ultrastructure of the choroid plexus. Surgery/anesthesia decreased the levels of tight junction (e.g., ZO-1, occludin, and claudin1) proteins, increased concentrations of NaFI and FITC-dextran in CSF, damaged the ultrastructure of choroid plexus, and induced POD-like behaviors in rats. An A2A R antagonist alleviated POD-like behaviors in rats. Furthermore, the A2A R antagonist increased the levels of tight junction proteins and restored the permeability of BCB in rats with POD. Fasudil, a selective Rho-associated protein kinase 2 (ROCK2) inhibitor, ameliorated POD-like behaviors induced by A2A R activation. Moreover, fasudil also abolished the increased levels of GTP-RhoA/ROCK2, decreased levels of tight junction proteins, and increased permeability of BCB caused by A2A R activation. Our findings demonstrate that A2A R might participate in regulating BCB permeability in rats with POD via the RhoA/ROCK2 signaling pathway, which suggests the potential of A2A R as a therapeutic target for POD.
Collapse
Affiliation(s)
- Lei Chen
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ying Zhou
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiayu Wang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ke Li
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zongze Zhang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mian Peng
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Crespo M, León-Navarro DA, Martín M. Cerebellar oxidative stress and fine motor impairment in adolescent rats exposed to hyperthermia-induced seizures is prevented by maternal caffeine intake during gestation and lactation. Eur J Pharmacol 2018; 822:186-198. [DOI: 10.1016/j.ejphar.2018.01.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 01/12/2018] [Accepted: 01/17/2018] [Indexed: 12/17/2022]
|
3
|
Chinnaswamy S, Bhushan A, Behera AK, Ghosh S, Rampurkar V, Chandra V, Pandit B, Kundu TK. Roles for Transcription Factors Sp1, NF-κB, IRF3, and IRF7 in Expression of the Human IFNL4 Gene. Viral Immunol 2016; 29:49-63. [PMID: 26684959 DOI: 10.1089/vim.2015.0076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The expression of a biologically active human IFNλ4 depends on the presence of a frameshift deletion polymorphism within the first exon of the interferon lambda 4 (IFNL4) gene. In this report, we use the lung carcinoma-derived cell line, A549, which is genetically viable to express a functional IFNλ4, to address transcriptional requirements of the IFNL4 gene. We show that the GC-rich DNA-binding transcription factor (TF) specificity protein 1 (Sp1) is recruited to the IFNL4 promoter and has a role in induction of gene expression upon stimulation with viral RNA mimic poly(I:C). By using RNAi and overexpression strategies, we also show key roles in IFNL4 gene expression for the virus-inducible TFs, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), IFN regulatory factor 3 (IRF3), and IRF7. Interestingly, we also observe that overexpression of IFNλ4 influences IFNL4 promoter activity, which may further be dependent on the retinoic acid-inducible gene-I (RIG-I)-like receptor pathway. Together, our work for the first time reports on the functional characterization of the human IFNL4 promoter.
Collapse
Affiliation(s)
| | - Anand Bhushan
- 1 National Institute of Biomedical Genomics , Kalyani, West Bengal, India
| | - Amit K Behera
- 2 Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Bangalore, India
| | - Sumona Ghosh
- 1 National Institute of Biomedical Genomics , Kalyani, West Bengal, India
| | - Vijay Rampurkar
- 1 National Institute of Biomedical Genomics , Kalyani, West Bengal, India
| | - Vikas Chandra
- 1 National Institute of Biomedical Genomics , Kalyani, West Bengal, India
| | - Bhaswati Pandit
- 1 National Institute of Biomedical Genomics , Kalyani, West Bengal, India
| | - Tapas K Kundu
- 2 Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Bangalore, India
| |
Collapse
|
4
|
Sheth S, Brito R, Mukherjea D, Rybak LP, Ramkumar V. Adenosine receptors: expression, function and regulation. Int J Mol Sci 2014; 15:2024-52. [PMID: 24477263 PMCID: PMC3958836 DOI: 10.3390/ijms15022024] [Citation(s) in RCA: 271] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 01/15/2014] [Accepted: 01/15/2014] [Indexed: 02/06/2023] Open
Abstract
Adenosine receptors (ARs) comprise a group of G protein-coupled receptors (GPCR) which mediate the physiological actions of adenosine. To date, four AR subtypes have been cloned and identified in different tissues. These receptors have distinct localization, signal transduction pathways and different means of regulation upon exposure to agonists. This review will describe the biochemical characteristics and signaling cascade associated with each receptor and provide insight into how these receptors are regulated in response to agonists. A key property of some of these receptors is their ability to serve as sensors of cellular oxidative stress, which is transmitted by transcription factors, such as nuclear factor (NF)-κB, to regulate the expression of ARs. Recent observations of oligomerization of these receptors into homo- and heterodimers will be discussed. In addition, the importance of these receptors in the regulation of normal and pathological processes such as sleep, the development of cancers and in protection against hearing loss will be examined.
Collapse
Affiliation(s)
- Sandeep Sheth
- Department of Pharmacology and Neuroscience, Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| | - Rafael Brito
- Department of Pharmacology and Neuroscience, Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| | - Debashree Mukherjea
- Department of Surgery (Otolaryngology), Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| | - Leonard P Rybak
- Department of Pharmacology and Neuroscience, Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| | - Vickram Ramkumar
- Department of Pharmacology and Neuroscience, Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| |
Collapse
|
5
|
Ramkumar V, Jhaveri KA, Xie X, Jajoo S, Toth LA. Nuclear Factor κB and Adenosine Receptors: Biochemical and Behavioral Profiling. Curr Neuropharmacol 2011; 9:342-9. [PMID: 22131942 PMCID: PMC3131724 DOI: 10.2174/157015911795596559] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 05/26/2010] [Accepted: 07/02/2010] [Indexed: 12/20/2022] Open
Abstract
Adenosine is produced primarily by the metabolism of ATP and mediates its physiological actions by interacting primarily with adenosine receptors (ARs) on the plasma membranes of different cell types in the body. Activation of these G protein-coupled receptors promotes activation of diverse cellular signaling pathways that define their tissue-specific functions. One of the major actions of adenosine is cytoprotection, mediated primarily via two ARs - A(1) (A(1)AR) and A(3) (A(3)AR). These ARs protect cells exposed to oxidative stress and are also regulated by oxidative stress. Stress-mediated regulation of ARs involves two prominent transcription factors - activator protein-1 (AP-1) and nuclear factor (NF)-κB - that mediate the induction of genes important in cell survival. Mice that are genetically deficient in the p50 subunit of NF-κB (i.e., p50 knock-out mice) exhibit altered expression of A(1)AR and A(2A)AR and demonstrate distinct behavioral phenotypes under normal conditions or after drug challenges. These effects suggest an important role for NF-κB in dictating the level of expression of ARs in vivo, in regulating the cellular responses to stress, and in modifying behavior.
Collapse
Affiliation(s)
- Vickram Ramkumar
- Department of Pharmacology Southern Illinois University School of Medicine P.O. Box 19629 Springfield, IL 62794, USA
| | | | | | | | | |
Collapse
|
6
|
D’Alimonte I, D’Auro M, Citraro R, Biagioni F, Jiang S, Nargi E, Buccella S, Di Iorio P, Giuliani P, Ballerini P, Caciagli F, Russo E, De Sarro G, Ciccarelli R. Altered distribution and function of A2Aadenosine receptors in the brain of WAG/Rij rats with genetic absence epilepsy, before and after appearance of the disease. Eur J Neurosci 2009; 30:1023-35. [DOI: 10.1111/j.1460-9568.2009.06897.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Yung HS, Chow KBS, Lai KH, Wise H. Gi-coupled prostanoid receptors are the likely targets for COX-1-generated prostanoids in rat pheochromocytoma (PC12) cells. Prostaglandins Leukot Essent Fatty Acids 2009; 81:65-71. [PMID: 19497718 DOI: 10.1016/j.plefa.2009.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 02/10/2009] [Accepted: 04/24/2009] [Indexed: 10/20/2022]
Abstract
Cyclooxygenase-1 (COX-1) behaves as a delayed response gene in rat pheochromocytoma (PC12) cells exposed to nerve growth factor (NGF). To investigate the possible targets for COX-1 generated prostanoids in the early stages of neuronal differentiation, we have examined the expression of prostanoid receptors by PC12 cells using functional assays. Prostanoid receptor-specific agonists failed to activate adenylyl cyclase in undifferentiated and NGF-treated PC12 cells; neither did they stimulate phospholipase C activity. EP3 receptor agonists and PGF(2alpha) were the only active ligands, able to inhibit forskolin-stimulated adenylyl cyclase activity. PC12 cells expressed EP3 and FP receptor mRNA, but only the responses to EP3 receptor agonists were inhibited by the EP3 receptor antagonist ONO-AE3-240. The functional role of NGF-stimulated COX-1 remains to be determined since we found no strong evidence of a role for EP3 receptors in the morphological changes induced by NGF during the early stages of differentiation of PC12 cells.
Collapse
Affiliation(s)
- H S Yung
- Department of Pharmacology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | | | | | | |
Collapse
|
8
|
Leal S, Sá C, Gonçalves J, Fresco P, Diniz C. Immunohistochemical characterization of adenosine receptors in rat aorta and tail arteries. Microsc Res Tech 2008; 71:703-9. [PMID: 18570336 DOI: 10.1002/jemt.20609] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Adenosine plays an important role in the cardiovascular system, activating adenosine A(1), A(2A), A(2B), and A(3) receptors, and regulating blood flow either by acting directly on vascular cells or indirectly because of its effects on the central or peripheral nervous systems. The aim of the present study was to investigate whether the pattern of distribution of adenosine receptor subtypes is different on elastic and muscular, using abdominal aorta and tail arteries as models. Immunohistochemistry using anti-A(1), anti-A(2A), anti-A(2B), and anti-A(3) receptor antibodies was performed on perfused-fixed/paraffin-embedded arteries from Wistar rats. 3,3'-Diaminobenzidine tetrahydrochloride (DAB; activated by hydrogen peroxide) staining revealed significant differences in the abundance of A(1), A(2A), and A(3) receptors between abdominal aorta and tail artery and allowed the identification of distinct distribution patterns for A(1), A(2A), A(2B), and A(3) receptors in the tunica adventitia, media, and intima of muscular and elastic arteries. Data are compatible with several previous functional reports supporting that different adenosine receptor subtype expression and/or their distribution in the vessel wall may influence their respective contribution to the control of blood flow.
Collapse
Affiliation(s)
- Sandra Leal
- Serviço de Farmacologia, REQUIMTE/FARMA, Faculdade de Farmácia, Universidade do Porto, Rua Aníbal Cunha, 164, P 4050-047 Porto, Portugal
| | | | | | | | | |
Collapse
|
9
|
Picard N, Guénin S, Perrin Y, Hilaire G, Larnicol N. Prenatal diazepam exposure alters respiratory control system and GABAA and adenosine receptor gene expression in newborn rats. Pediatr Res 2008; 64:44-9. [PMID: 18360306 DOI: 10.1203/pdr.0b013e31817445cf] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In experimental animals, prenatal diazepam exposure has clearly been associated with behavioral disturbances. Its impact on newborn breathing has not been documented despite potential deleterious consequences for later brain development. We addressed this issue in neonatal rats (0-2 d) born from dams, which consumed 2 mg/kg/d diazepam via drinking fluid throughout gestation. In vivo, prenatal diazepam exposure significantly altered the normoxic-breathing pattern, lowering breathing frequency (105 vs. 125 breaths/min) and increasing tidal volume (16.2 vs. 12.7 mL/kg), and the ventilatory response to hypoxia, inducing an immediate and marked decrease in tidal volume (-30%) absent in controls. In vitro, prenatal diazepam exposure significantly increased the respiratory-like frequency produced by pontomedullary and medullary preparations (+38% and +19%, respectively) and altered the respiratory-like response to application of nonoxygenated superfusate. Both in vivo and in vitro, the recovery from oxygen deprivation challenges was delayed by prenatal diazepam exposure. Finally, real-time PCR showed that prenatal diazepam exposure affected mRNA levels of alpha1 and alpha2 GABAA receptor subunits and of A1 and A2A adenosine receptors in the brainstem. These mRNA changes, which are region-specific, suggest that prenatal diazepam exposure interferes with developmental events whose impact on the respiratory system maturation deserves further studies.
Collapse
Affiliation(s)
- Nathalie Picard
- DMAG, Université de Picardie Jules Verne, Amiens 80036, France
| | | | | | | | | |
Collapse
|
10
|
León Fernández OS, Ajamieh HH, Berlanga J, Menéndez S, Viebahn-Hánsler R, Re L, Carmona AM. Ozone oxidative preconditioning is mediated by A1 adenosine receptors in a rat model of liver ischemia/ reperfusion. Transpl Int 2007; 21:39-48. [PMID: 17927680 DOI: 10.1111/j.1432-2277.2007.00568.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The liver is damaged by sustained ischemia in liver transplantation, and the reperfusion after ischemia results in further functional impairment. Ozone oxidative preconditioning (OzoneOP) protected the liver against ischemia/reperfusion (I/R) injury. The aim of this study was to investigate the role of A(1) adenosine receptor on the protective actions conferred by OzoneOP in hepatic I/R. By using a specific agonist and antagonist of the A(1) subtype receptor (2-chloro N6 cyclopentyladenosine, CCPA and 8-cyclopentyl-1,3-dipropylxanthine, DPCPX respectively), we studied the role of A(1) receptor in the protective effects of OzoneOP on the liver damage, nitiric oxide (NO) generation, adenosine deaminase activity and preservation of the cellular redox balance. Immunohistochemical analysis of nuclear factor-kappa B (NF-kappaB), tumor necrosis factor alpha (TNF-alpha) and heat shock protein-70 (HSP-70) was performed. OzoneOP prevented and/or ameliorated ischemic damage. CCPA showed a similar effect to OzoneOP + I/R group. A(1)AR antagonist DPCPX blocked the protective effect of OzoneOP. OzoneOP largely reduced the intensity of the p65 expression, diminished TNF-alpha production, and promoted a reduction in HSP-70 immunoreactivity. In summary, OzoneOP exerted protective effects against liver I/R injury through activation of A(1) adenosine receptors (A(1)AR). Adenosine and (.)NO produced by OzoneOP may play a role in the pathways of cellular signalling which promote preservation of the cellular redox balance, mitochondrial function, glutathione pools as well as the regulation of NF-kappaB and HSP-70.
Collapse
Affiliation(s)
- Olga S León Fernández
- Center for Research and Biological Evaluation (CIEB-IFAL), University of Havana, Havana, Cuba
| | | | | | | | | | | | | |
Collapse
|
11
|
Xie X, Jhaveri KA, Ding M, Hughes LF, Toth LA, Ramkumar V. Expression of striatal adenosine and dopamine receptors in mice deficient in the p50 subunit of NF-kappaB. Life Sci 2007; 81:1031-41. [PMID: 17869311 PMCID: PMC2083656 DOI: 10.1016/j.lfs.2007.07.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 07/13/2007] [Accepted: 07/20/2007] [Indexed: 11/21/2022]
Abstract
The striatal dopamine D2 receptor (D2R) and adenosine A2A receptor (A2AAR) exhibit mutually antagonistic effects through physical interactions and by differential modulation of post-receptor signaling pathways. The expression of the A2AAR and the D2R is differentially regulated by nuclear factor-kappaB (NF-kappaB). In this report, we determined the role of NF-kappaB in regulation of these receptors by comparing mice deficient in the NF-kappaB p50 subunit (p50 KO) with genetically intact B6129PF2/J (F2) mice. Quantification of adenosine receptor (AR) subtypes in mouse striatum by real time PCR, immunocytochemistry and radioligand binding assays showed more A2AAR but less A1AR in p50 KO mice as compared with F2 mice. Striata from p50 KO mice also had less D2R mRNA and [(3)H]-methylspiperone binding than did striata from F2 mice. G(alphaolf) and G(alphas) proteins, which are transducers of A2AAR signals, were also present at a higher level in striata from the p50 KO versus F2 mice. In contrast, the G(alphai1) protein, which transduces signals from the A1AR and D2R, was significantly reduced in striata from p50 KO mice. Behaviorally, p50 KO mice exhibited increased locomotor activity relative to that of F2 mice after caffeine ingestion. These data are consistent with a role for the NF-kappaB in the regulation of A1AR, A2AAR, D2R and possibly their coupling G proteins in the striatum. Dysregulation of these receptors in the striata of p50 KO mice might sensitize these animals to locomotor stimulatory action of caffeine.
Collapse
Affiliation(s)
- Xiaobin Xie
- Department of Pharmacology, Southern Illinois University School of Medicine, PO Box 19629 Springfield, IL 62794-9629, United States
| | | | | | | | | | | |
Collapse
|
12
|
Pingle SC, Jajoo S, Mukherjea D, Sniderhan LF, Jhaveri KA, Marcuzzi A, Rybak LP, Maggirwar SB, Ramkumar V. Activation of the Adenosine A1Receptor Inhibits HIV-1 Tat-Induced Apoptosis by Reducing Nuclear Factor-κB Activation and Inducible Nitric-Oxide Synthase. Mol Pharmacol 2007; 72:856-67. [PMID: 17609415 DOI: 10.1124/mol.106.031427] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human immunodeficiency virus dementia (HIV-D) is a nonfocal central nervous system manifestation characterized by cognitive, behavioral, and motor abnormalities. The pathophysiology of neuronal damage in HIV-D includes a direct toxic effect of viral proteins on neuronal cells and an indirect effect caused by the release of inflammatory mediators and neurotoxins by activated macrophages/microglia and astrocytes, culminating into neuronal apoptosis. Previous studies have documented that the nucleoside adenosine mediates neuroprotection by activating adenosine A(1) receptor subtype (A(1)AR) linked to suppression of neuronal excitability. In this study, we show that A(1)AR activation protects against HIV-1 Tat-induced toxicity in primary cultures of rat cerebellar granule neurons and in rat pheochromocytoma (PC12) cell. In PC12 cells, HIV-1 Tat increased [Ca(2+)](i) levels, release of nitric oxide (NO), and expression of inducible nitric-oxide synthase (iNOS) and A(1)AR. Activation of A(1)AR suppressed Tat-mediated increases in [Ca(2+)](i) and NO. Furthermore, A(1)AR agonists inhibited iNOS expression in a nuclear factor-kappaB (NF-kappaB)-dependent manner. It is noteworthy that activation of the A(1)AR or inhibition of NOS protected against Tat-induced apoptosis in PC12 cells and cerebellar granule cells. Moreover, activation of the A(1)AR-inhibited Tat-induced increases in the levels of proapoptotic proteins Bax and caspase-3. Taken together, our results demonstrate that the A(1)AR protects against HIV-1 toxicity by inhibiting NF-kappaB, thereby reducing the expression of iNOS and NO radicals and neuronal apoptosis.
Collapse
Affiliation(s)
- Sandeep C Pingle
- Department of Pharmacology, Southern Illinois University School of Medicine, PO Box 19629, Springfield, IL 62794-9629, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Jhaveri KA, Reichensperger J, Toth LA, Sekino Y, Ramkumar V. Reduced basal and lipopolysaccharide-stimulated adenosine A1 receptor expression in the brain of nuclear factor-kappaB p50-/- mice. Neuroscience 2007; 146:415-26. [PMID: 17350174 PMCID: PMC2034751 DOI: 10.1016/j.neuroscience.2006.12.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 11/17/2006] [Accepted: 12/03/2006] [Indexed: 01/15/2023]
Abstract
Adenosine promotes cytoprotection under conditions of infection, ischemic preconditioning and oxidative stress. Previous studies from our laboratory indicate that the expression of the adenosine A1 receptor (A1AR) is induced by oxidative stress via activation of nuclear factor (NF)-kappaB. The prototypic transcription factor is composed of homo- or heterodimers of p50 and p65 subunits. To determine the role of NF-kappaB in the regulation of the A1AR in vivo, we compared the A1AR RNA and protein levels in the brains of mice lacking the p50 subunit of NF-kappaB (p50-/- mice) and age-matched B6129PF2/J (F2) controls. Radioligand binding assays in the cortex revealed a significantly lower number of A(1)AR (maximal binding capacity, Bmax) in the cortex of p50-/- mice (151+/-62 fmol/mg protein) versus 479+/-181 fmol/mg protein in the F2 (N=5 per strain, P<0.05), but no change in the equilibrium dissociation constant. Similar reductions in A1AR were measured in the hippocampus, brain stem and hypothalamus and in peripheral tissues, such as the adrenal gland, kidney and spleen. Estimation of the A1AR following purification by antibody affinity columns also indicated reduced A1AR in the p50-/- mice cortex, as compared with the F2 mice. A1AR immunocytochemistry indicates distinct neuronal labeling in the F2 cortex, which was substantially reduced in similar sections obtained from p50-/- mice. The p50-/- mice expressed lower levels of A1AR mRNA than F2 mice, as determined by real time PCR. Quantitation of the A1AR transducing G proteins by Western blotting show significantly less Galphai3, no change in Galphai1, but higher levels of Galphao and Gbeta in the cortices of p50-/-, as compared with F2 mice. Administration of bacterial lipopolysaccharide (LPS), an activator of NF-kappaB, increased A1AR expression in the cortices of F2 mice but not p50-/- mice. Cortical neurons cultures prepared from p50-/- mice showed a greater degree of apoptosis, compared with neurons from F2 mice. Activation of the A1AR reduced apoptosis with greater efficacy in cultures from F2 than p50-/- mice. Taken together, these data support a role for NF-kappaB in determining both the basal and LPS-stimulated A1AR expression in vivo which could contribute to neuronal survival.
Collapse
Affiliation(s)
- Krishna A. Jhaveri
- Department of Pharmacology Southern Illinois University School of Medicine PO Box 19629 Springfield, Illinois 62794−9629
| | - Joel Reichensperger
- Department of Pharmacology Southern Illinois University School of Medicine PO Box 19629 Springfield, Illinois 62794−9629
| | - Linda A. Toth
- Department of Pharmacology Southern Illinois University School of Medicine PO Box 19629 Springfield, Illinois 62794−9629
| | - Yuko Sekino
- Division of Neuronal Network Department of Basic Medical Sciences Institute of Medical Science University of Tokyo, Tokyo, Japan
| | - Vickram Ramkumar
- Department of Pharmacology Southern Illinois University School of Medicine PO Box 19629 Springfield, Illinois 62794−9629
| |
Collapse
|
14
|
Vlajkovic SM, Abi S, Wang CJH, Housley GD, Thorne PR. Differential distribution of adenosine receptors in rat cochlea. Cell Tissue Res 2007; 328:461-71. [PMID: 17285327 DOI: 10.1007/s00441-006-0374-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Accepted: 12/22/2006] [Indexed: 12/21/2022]
Abstract
Adenosine is a constitutive cell metabolite that can be released from cells via specific bi-directional transporters and is an end-point for nucleotide hydrolysis. In the extracellular space, adenosine becomes a signalling molecule for P1 (adenosine) receptors that modulate physiological responses in a wide range of mammalian tissues. Whereas adenosine signalling has been implicated in the regulation of cochlear blood flow and in cochlear protection from oxidative damage, the potential roles for adenosine signalling in the modulation of sound transduction and auditory neurotransmission have not been established. We have characterised the expression and distribution of adenosine receptors in the rat cochlea. mRNA transcripts for all four subtypes of adenosine receptors (A(1), A(2A), A(2B) and A(3)) were detected in dissected cochlear tissue by using reverse transcription/polymerase chain reaction analysis. The protein distribution for the A(1), A(2A) and A(3) receptor subtypes was identified by immunoperoxidase histochemistry and confocal immunofluorescence labelling. These receptors were differentially expressed in the organ of Corti, spiral ganglion neurones, lateral wall tissues and cochlear blood vessels. The distribution of adenosine receptors in sensory and neural tissues and in the vasculature coincided with other elements of purinergic signalling (P2X and P2Y receptors, ectonucleotidases), consistent with the integrative regulation of many physiological processes in the cochlea by extracellular nucleotides and nucleosides. Our study provides a framework for further investigation of adenosine signalling in the inner ear, including putative roles in oxidative stress responses.
Collapse
MESH Headings
- Animals
- Antibody Specificity
- Cochlea/metabolism
- Gene Expression Regulation
- Male
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Receptor, Adenosine A1/genetics
- Receptor, Adenosine A1/metabolism
- Receptor, Adenosine A2A/genetics
- Receptor, Adenosine A2A/metabolism
- Receptor, Adenosine A3/genetics
- Receptor, Adenosine A3/metabolism
- Receptors, Purinergic P1/genetics
- Receptors, Purinergic P1/metabolism
- Tissue Distribution
Collapse
Affiliation(s)
- Srdjan M Vlajkovic
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
15
|
Ponzio TA, Wang YF, Hatton GI. Activation of adenosine A2A receptors alters postsynaptic currents and depolarizes neurons of the supraoptic nucleus. Am J Physiol Regul Integr Comp Physiol 2006; 291:R359-66. [PMID: 16644907 DOI: 10.1152/ajpregu.00747.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Supraoptic nucleus (SON) neurons secrete oxytocin or vasopressin in response to various physiological stimuli (e.g., lactation/suckling, dehydration). Released near fenestrated capillaries of the neurohypophysis, these peptides enter the blood and travel to peripheral target organs. The pervasive neuromodulator adenosine, acting at A1 receptors, is an important inhibitory regulator of magnocellular neuroendocrine cell activity. Another high-affinity adenosine receptor exists in this system, however. We examined the physiological effects of adenosine A2A receptor activation and determined its localization among various cell types within the SON. In whole cell patch-clamp recordings from rat brain slices, application of the selective adenosine A2A receptor agonist CGS-21680 caused membrane depolarizations in SON neurons, often leading to increased firing activity. Membrane potential changes were persistent (>10 min) and could be blocked by the selective A2A receptor antagonist ZM-241385, or GDP-beta-S, the latter suggesting postsynaptic sites of action. However, +/--alpha-methyl-(4-carboxyphenyl)glycine or TTX also blocked CGS-21680 effects, indicating secondary actions on postsynaptic neurons. In voltage-clamp mode, application of CGS-21680 caused a slight increase (approximately 8%) in high-frequency clusters of excitatory postsynaptic currents. With the use of specific antibodies, adenosine A2A receptors were immunocytochemically localized to both the magnocellular neurons and astrocytes of the SON. Ecto-5'nucleotidase, an enzyme involved in the metabolism of ATP to adenosine, was also localized to astrocytes of the SON. These results demonstrate that adenosine acting at A2A receptors can enhance the excitability of SON neurons and modulate transmitter release from glutamatergic afferents projecting to the nucleus. We suggest that adenosine A2A receptors may function in neuroendocrine regulation through both direct neuronal mechanisms and via actions involving glia.
Collapse
Affiliation(s)
- Todd A Ponzio
- Department of Cell Biology and Neuroscience, University of California, Riverside, USA.
| | | | | |
Collapse
|
16
|
Chen YL, Law PY, Loh HH. Sustained activation of phosphatidylinositol 3-kinase/Akt/nuclear factor kappaB signaling mediates G protein-coupled delta-opioid receptor gene expression. J Biol Chem 2005; 281:3067-74. [PMID: 16316997 DOI: 10.1074/jbc.m506721200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Expression of the delta-opioid receptor gene (dor) is tightly controlled during neuronal differentiation and developmental stages. Such distinct temporal and spatial expression of dor during development suggests a role for the delta-opioid receptor in early developmental events. However, little is known about intracellular signaling pathways that control dor expression. A well established cell line model for the study of gene expression during neuronal differentiation is the rat adrenal pheochromocytoma PC12 cell line. Here we found that the constitutively activated TrkA/phosphatidylinositol 3-kinase/Akt (protein kinase B)/NF-kappaB survival cascade mediates dor expression during nerve growth factor (NGF)-induced differentiation of PC12h cells. Biochemical experiments showed that constitutive phosphorylation of Akt and IkappaBalpha correlates with NGF-induced dor expression. Overexpression of the transcriptional activator NF-kappaB/p65 increased dor promoter activity. Overexpression of the NF-kappaB signaling super inhibitor mutant IkappaBalpha (S32A/S36A) abolished the effect of p65 and blocked NGF-induced activation of NF-kappaB signaling, resulting in a significant reduction in dor promoter activity. Treatment with SN50, an NF-kappaB-specific nuclear translocation peptide inhibitor, inhibited the translocation of NF-kappaB, resulting in a reduction of dor mRNA. The gel shift assay supported the fact that there exists an NF-kappaB-binding site on the dor promoter. RNA interference experiments using NF-kappaB/p65 small interfering RNA confirmed that NF-kappaB signaling is required for dor expression. Our findings not only provide a new mechanistic explanation for NGF-induced dor expression but also shed some light on the molecular mechanism of the temporal and spatial expression of dor and the roles of the delta-opioid receptor during neuronal differentiation.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Animals
- Binding Sites
- Binding, Competitive
- Blotting, Western
- Cell Differentiation
- Cell Nucleus/metabolism
- Enzyme Activation
- Gene Expression Regulation, Enzymologic
- Genes, Reporter
- I-kappa B Proteins/metabolism
- Mutation
- NF-KappaB Inhibitor alpha
- NF-kappa B/metabolism
- Nerve Growth Factor/metabolism
- Neurons/metabolism
- Oligonucleotide Probes/chemistry
- PC12 Cells
- Peptides/pharmacology
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphorylation
- Plasmids/metabolism
- Promoter Regions, Genetic
- Proto-Oncogene Proteins c-akt/metabolism
- RNA Interference
- RNA, Small Interfering/metabolism
- Rats
- Receptors, G-Protein-Coupled/biosynthesis
- Receptors, Opioid, delta/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Time Factors
- Transcription Factor RelA/metabolism
- Transcriptional Activation
- Transfection
Collapse
Affiliation(s)
- Yulong L Chen
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
| | | | | |
Collapse
|
17
|
Diniz C, Fresco P, Leal S, Gonçalves J. Adenosine receptors involved in modulation of noradrenaline release in isolated rat tail artery. Eur J Pharmacol 2004; 504:17-25. [PMID: 15507216 DOI: 10.1016/j.ejphar.2004.09.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Revised: 05/16/2004] [Accepted: 09/21/2004] [Indexed: 11/24/2022]
Abstract
Adenosine receptors involved in the modulation of noradrenaline release from postganglionic sympathetic nerves in rat tail artery were characterized by studying the effects of adenosine-receptor agonists and antagonists on electrically evoked tritium overflow (100 pulses, 5 Hz) and by immunohistochemistry. The adenosine A1 receptor-selective agonist N6-cyclopentyladenosine (CPA; 1-100 nM) and the non-selective adenosine receptor agonist N-ethylcarboxamidoadenosine (NECA; 1-10 microM) decreased tritium overflow. These effects were blocked by the adenosine A1 receptor-selective antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 30 nM). The adenosine A(2A) receptor-selective agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamido adenosine (CGS 21680; 1-100 nM) enhanced tritium overflow, an effect blocked by the adenosine A(2A) receptor-selective antagonist 5-amino-7-(2-phenylethyl)-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine (SCH 58261; 20 nM) but not changed by the adenosine A(2B) receptor-selective antagonist N-(4-acetylphenyl)-2-[4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3-dipropyl-1H-purin-8-yl) phenoxy]acetamide (MRS 1706; 20 nM). In the presence of DPCPX (30 nM), NECA enhanced tritium overflow, an effect abolished by MRS 1706 but not influenced by SCH 58261. Immunohistochemistry revealed immunoreactivity for all adenosine-receptor subtypes. Areas of co-localization were found for neurofilament with adenosine A1, A(2A) and A(2B) but not A3 receptors. In conclusion, the present study provides functional and morphological evidence for the occurrence of multiple adenosine receptor-mediated modulation of noradrenaline release in the rat tail: inhibition mediated by adenosine A1 receptors and facilitation mediated by both adenosine A(2A) and A(2B) receptors.
Collapse
Affiliation(s)
- Carmen Diniz
- Serviço de Farmacologia, CEQOFFUP, Faculdade de Farmácia, Universidade do Porto, Rua Anibal Cunha, 164, P 4050-047 Porto, Portugal
| | | | | | | |
Collapse
|
18
|
Puntambekar P, Van Buren J, Raisinghani M, Premkumar LS, Ramkumar V. Direct interaction of adenosine with the TRPV1 channel protein. J Neurosci 2004; 24:3663-71. [PMID: 15071115 PMCID: PMC6729738 DOI: 10.1523/jneurosci.4773-03.2004] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Vanilloid receptor 1 (TRPV1), a nonspecific cation channel expressed primarily in small sensory neurons, mediates inflammatory thermal pain sensation. The function and expression of TRPV1 are enhanced during inflammation and certain neuropathies, leading to sustained hyperalgesia. Activation of TRPV1 in the spinal cord and periphery promotes release of adenosine, which produces analgesia by activating A(1) and A(2A) adenosine receptor (AR) on central and peripheral neurons. This study provides evidence of a direct interaction of AR analogs with TRPV1. Adenosine analogs inhibit TRPV1-mediated Ca(2+) entry in human embryonic kidney (HEK293) cells stably expressing TRPV1 (HEK/TRPV1) and DRG neurons. This inhibition was independent of A(2A)AR activation. Specific binding of [(3)H]resiniferatoxin (RTX) in plasma membrane preparations was inhibited by CGS21680, an A(2A)AR agonist. Similar degrees of inhibition were observed with both agonists and antagonists of ARs. Adenosine analogs inhibited [(3)H]RTX binding to affinity-purified TRPV1, indicative of a direct interaction of these ligands with the receptor. Furthermore, specific capsaicin-sensitive binding of [(3)H]CGS21680 was observed in Xenopus oocyte membranes expressing TRPV1. Capsaicin-induced inward currents in DRG neurons were inhibited by adenosine and agonist and antagonist of A(2A)AR at nanomolar concentrations. Increasing the concentrations of capsaicin reversed the inhibitory response to capsaicin, suggesting a competitive inhibition at TRPV1. Finally, exposure of HEK/TRPV1 cells to capsaicin induced an approximately 2.4-fold increase in proapoptotic cells that was abolished by adenosine analogs. Together, these data suggest that adenosine could serve as an endogenous inhibitor of TRPV1 activity by directly interacting with the receptor protein.
Collapse
Affiliation(s)
- Preeti Puntambekar
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois 62794-9629, USA
| | | | | | | | | |
Collapse
|
19
|
Yip L, Kwok YN. Role of adenosine A2A receptor in the regulation of gastric somatostatin release. J Pharmacol Exp Ther 2004; 309:804-15. [PMID: 14742743 DOI: 10.1124/jpet.103.061986] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Adenosine has been demonstrated to inhibit gastric acid secretion. In the rat stomach, this inhibitory effect may be mediated indirectly by increasing the release of somatostatin-like immunoreactivity (SLI). Results show that adenosine analogs augmented SLI release in the isolated vascularly perfused rat stomach. The rank order of potency of the analogs in stimulating SLI release was 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS 21680) approximately 5'-N-ethylcarboxamidoadenosine > 2-chloroadenosine > R-(-)-N(6)-(2-phenylisopropyl)adenosine >1-deoxy-1-[6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-N-methyl-beta-d-ribofuranuronamide > N(6)-cyclopentyladenosine approximately N(6)-cyclohexyladenosine > S-(+)-N(6)-(2-phenylisopropyl) adenosine, suggesting the involvement of the A(2A) receptor. In agreement, 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a] [1,3,5]triazin-5-ylamino]ethyl)phenol (ZM 241385), an A(2A) receptor antagonist, was shown to abolish the adenosine- and CGS 21680-stimulated SLI release. Immunohistochemical studies reveal the presence of A(2A) receptor immunoreactivity on the gastric plexi and mucosal D-cells, but not on parietal cells and G-cells, suggesting that adenosine may act directly on D-cells or indirectly on the gastric plexi to augment SLI release. The present study also demonstrates that the structure of the mucosal A(2A) receptor is identical to that in the rat brain, and that alternative splicing of this gene does not occur. A real-time reverse transcription-polymerase chain reaction assay has also been established to quantify the levels of A(2A) receptor mRNA. Results show that gastric tissues contained significantly lower levels of A(2A) receptor mRNA compared with the striatum. The lowest level was detected in the mucosa. In conclusion, adenosine may act on A(2A) receptors to augment SLI release and consequently control gastric acid secretion.
Collapse
Affiliation(s)
- Linda Yip
- Department of Physiology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
20
|
Zafar KS, Siddiqui A, Sayeed I, Ahmad M, Saleem S, Islam F. Protective effect of adenosine in rat model of Parkinson's disease: neurobehavioral and neurochemical evidences. J Chem Neuroanat 2003; 26:143-51. [PMID: 14599664 DOI: 10.1016/j.jchemneu.2003.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Normal cellular metabolism produces oxidants which are neutralized within the cell by antioxidant enzymes and other antioxidants. An imbalance between oxidant and antioxidant has been postulated to lead the degeneration of dopaminergic neurons in Parkinson's disease. In this study, we examined whether adenosine, an antioxidant, can prevent or slowdown neuronal injury in 6-hydroxydopamine (6-OHDA) model of Parkinsonism. Rats were treated with adenosine (500, 250, 125 mg/kg b.wt.) once before surgery and five times after surgery (1 h interval). 2 microl 6-OHDA (12.5 microg in 0.2% ascorbic acid in normal saline) was infused in the right striatum. Two weeks after 6-OHDA infused rats were tested for neurobehavioral activity and sacrificed after 3 weeks of 6-OHDA infusion, for the estimation of glutathione peroxidase, glutathione-S-transferase, glutathione reductase, glutathione content, lipid peroxidation and dopamine and its metabolites. Adenosine was found to be successful in up-regulating the antioxidant status, lowering the dopamine loss and functional recovery returned close to the baseline dose. This study revealed that adenosine, which is an essential part of our body, might be helpful in slowing down the progression of neurodegeneration in Parkinsonism.
Collapse
Affiliation(s)
- Khan Shoeb Zafar
- Department of Medical Elementology and Toxicology, Neurotoxicology Laboratory, Hamdard University, 110062 New Delhi, India.
| | | | | | | | | | | |
Collapse
|
21
|
Diniz C, Leal S, Gonçalves J. Regional differences in the adenosine A(2) receptor-mediated modulation of contractions in rat vas deferens. Eur J Pharmacol 2003; 460:191-9. [PMID: 12559381 DOI: 10.1016/s0014-2999(02)02926-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Adenosine receptors involved in modulation of contractions were characterized in the bisected rat vas deferens by combining pharmacological and immunohistochemical approaches. In both portions, noradrenaline-elicited contractions were enhanced by the adenosine A(1) receptor agonist N(6)-cyclopentyladenosine (CPA), and inhibited by the non-selective adenosine receptor agonist 5'-N-ethylcarboxamidoadenosine (NECA) in the presence of the adenosine A(1) receptor antagonist 1,3-dipropyl-8-cyclopentyl-l,3-dipropylxanthine (DPCPX). The adenosine A(2A) receptor agonist 2-p-(2-carboxyethyl)phenethyl-amino-5'-N-ethylcarboxamidoadenosine (CGS 21680) also inhibited noradrenaline-elicited contractions but only in the prostatic portion. Contractions elicited by the stable ATP analogue alpha,beta-methyleneATP (alpha,beta-MeATP) were inhibited only by NECA in the presence of DPCPX and only in the prostatic portion. This study provides functional evidence for the presence, in both portions of the rat vas deferens, of an adenosine A(1) receptor-mediated enhancement and of an adenosine A(2) receptor-mediated inhibition of contractions. The latter effect is mediated by both A(2A) and A(2B) subtypes in the prostatic portion but only by the A(2B) subtype in the epididymal portion. This regional variation is supported by the immunohistochemical results that revealed an adenosine A(2A) receptor immunoreactivity not co-localized with nerve fibres more abundant in the prostatic than in the epididymal portion.
Collapse
Affiliation(s)
- Carmen Diniz
- Laboratório de Farmacologia, CEQOFF/FCT, Faculdade de Farmácia, Universidade do Porto, Rua Anibal Cunha 164, P 4050-047 Porto, Portugal
| | | | | |
Collapse
|
22
|
Trincavelli ML, Costa B, Tuscano D, Lucacchini A, Martini C. Up-regulation of A(2A) adenosine receptors by proinflammatory cytokines in rat PC12 cells. Biochem Pharmacol 2002; 64:625-31. [PMID: 12167481 DOI: 10.1016/s0006-2952(02)01222-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The purpose of this study was to examine the regulation of A(2A) adenosine receptor (A(2A) AR) gene expression induced by proinflammatory cytokines in PC12 cells. The A(2A) AR mRNA levels were substantially increased following 3-48 hr PC12 cell treatment with interleukin 1 beta (500 unit/mL) or tumor necrosis factor alpha (1000 unit/mL), as revealed by RT-PCR analysis. In parallel, cell cytokine treatment induced an up-regulation of A(2A) receptor protein. Equilibrium radioligand binding studies on treated-cells showed a significant increase in maximum density of [3H] 2-(carboxyethylphenylethylamino) adenosine-5'-carboxamide binding sites, with no significant changes in the affinity constant value. The increase in A(2A) receptor density was also demonstrated by Western blot analysis. Interleukin 1 beta and tumor necrosis factor alpha effects on A(2A) AR mRNA and protein levels were detectable after 3 hr cytokine treatment and reached a maximum within 24 and 48 hr, respectively. These results demonstrated the existence of heterologous regulation of A(2A) ARs by proinflammatory cytokines. The biological significance of this regulation might be associated with modulating cellular activity in response to tissue damage associated with inflammatory mediator production.
Collapse
Affiliation(s)
- Maria L Trincavelli
- Dipartimento di Psichiatria, Neurobiologia, Farmacologia e Biotecnologie, Università di Pisa, Via Bonanno 6, Italy
| | | | | | | | | |
Collapse
|
23
|
Ramkumar V, Hallam DM, Nie Z. Adenosine, oxidative stress and cytoprotection. JAPANESE JOURNAL OF PHARMACOLOGY 2001; 86:265-74. [PMID: 11488425 DOI: 10.1254/jjp.86.265] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Adenosine, a metabolite of ATP, serves a number of important physiological roles in the body. These actions contribute to sedation, bradycardia, vasorelaxation, inhibition of lipolysis and regulation of the immune system and are mediated, in part, through activation of three distinct adenosine receptor (AR) subtypes. To date, four receptor types have been cloned: A1, A2A, A2B and A3. It is becoming increasing clear that adenosine contributes significantly to cytoprotection, a function mediated principally by the A1AR and A3AR. In this review, we survey the literature on the role of adenosine and the mechanisms underlying cytoprotection and ischemic preconditioning, a process characterized by cytoprotection derived from repeated brief ischemic challenges. An important recent observation is that the expression of several AR subtypes could be regulated by oxidative stress to provide a greater cytoprotective role. Thus, like other proteins known to be regulated during ischemia, the A1AR and A3AR can be considered as being inducible receptors.
Collapse
Affiliation(s)
- V Ramkumar
- Southern Illinois University School of Medicine, Department of Pharmacology, Springfield 62794-9620, USA.
| | | | | |
Collapse
|
24
|
Rowlands DK, Kao CL, Wise H. Regulation of prostacyclin and prostaglandin E(2) receptor mediated responses in adult rat dorsal root ganglion cells, in vitro. Br J Pharmacol 2001; 133:13-22. [PMID: 11325789 PMCID: PMC1572751 DOI: 10.1038/sj.bjp.0704028] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Primary cultures of adult rat dorsal root ganglia (DRG) were prepared to examine the properties of prostacyclin (IP) receptors and prostaglandin E(2) (EP) receptors in sensory neurones. 2. IP receptor agonists, cicaprost and iloprost, stimulated adenylyl cyclase activity with EC(50) values of 22 and 28 nM, respectively. Prostaglandin E(1) (PGE(1)) and prostaglandin E(2) (PGE(2)) were 7 fold less potent than cicaprost and iloprost, with PGE(2) displaying a lower maximal response. 3. Adenylyl cyclase activation by iloprost, PGE(1) and PGE(2), but not by forskolin, was highly dependent on DRG cell density. Although the potency of iloprost and PGE(2) for stimulating adenylyl cyclase was unchanged, their maximal responses were significantly increased at low cell density. 4. Both IP and EP(2/4) receptors could be down-regulated by agonist pretreatment, however the presence of cyclo-oxygenase (COX) inhibitors did not prevent this apparent down-regulation of IP and EP(2/4) receptors at high DRG cell densities. 5. Stimulation of adenylyl cyclase by the neuropeptide calcitonin gene-related peptide was also decreased at high DRG cell density, whereas the responses to beta-adrenoceptor agonists were increased at high DRG cell density. 6. Addition of nerve growth factor (NGF), or the addition of anti-neurotrophin antibodies during the 5-day culture of DRG cells, had no effect on IP receptor-mediated responses. 7. These results indicate that G(s)-coupled receptors involved in nociception are regulated in a variable manner in adult rat sensory neurones, and that this cell density-dependent regulation may be agonist-independent for IP and EP(2/4) receptors.
Collapse
MESH Headings
- Adenylyl Cyclases/metabolism
- Aging/physiology
- Alprostadil/pharmacology
- Animals
- Antineoplastic Agents/pharmacology
- Cell Count
- Cells, Cultured
- Colforsin/pharmacology
- Cyclic AMP/metabolism
- Cyclooxygenase Inhibitors/pharmacology
- Dinoprostone/analogs & derivatives
- Dinoprostone/pharmacology
- Down-Regulation/drug effects
- Enzyme Activation/drug effects
- Epoprostenol/analogs & derivatives
- Epoprostenol/pharmacology
- Ganglia, Spinal/cytology
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/enzymology
- Ganglia, Spinal/metabolism
- Iloprost/pharmacology
- Male
- Neurons, Afferent/drug effects
- Neurons, Afferent/enzymology
- Neurons, Afferent/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Epoprostenol
- Receptors, Prostaglandin/agonists
- Receptors, Prostaglandin/metabolism
Collapse
Affiliation(s)
- Dewi K Rowlands
- Department of Pharmacology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong S.A.R., China
| | - Chung-lei Kao
- Department of Pharmacology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong S.A.R., China
| | - Helen Wise
- Department of Pharmacology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong S.A.R., China
- Author for correspondence:
| |
Collapse
|
25
|
Cunha RA. Adenosine as a neuromodulator and as a homeostatic regulator in the nervous system: different roles, different sources and different receptors. Neurochem Int 2001; 38:107-25. [PMID: 11137880 DOI: 10.1016/s0197-0186(00)00034-6] [Citation(s) in RCA: 466] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Adenosine exerts two parallel modulatory roles in the CNS, acting as a homeostatic modulator and also as a neuromodulator at the synaptic level. We will present evidence to suggest that these two different modulatory roles are fulfilled by extracellular adenosine originated from different metabolic sources, and involve receptors with different sub-cellular localisation. It is widely accepted that adenosine is an inhibitory modulator in the CNS, a notion that stems from the preponderant role of inhibitory adenosine A(1) receptors in defining the homeostatic modulatory role of adenosine. However, we will review recent data that suggests that the synaptically localised neuromodulatory role of adenosine depend on a balanced activation of inhibitory A(1) receptors and mostly facilitatory A(2A) receptors. This balanced activation of A(1) and A(2A) adenosine receptors depends not only on the transient levels of extracellular adenosine, but also on the direct interaction between A(1) and A(2A) receptors, which control each other's action.
Collapse
Affiliation(s)
- R A Cunha
- Laboratory of Neurosciences, Faculty of Medicine, University of Lisbon, Portugal.
| |
Collapse
|