1
|
Rohou A, Morris EP, Makarova J, Tonevitsky AG, Ushkaryov YA. α-Latrotoxin Tetramers Spontaneously Form Two-Dimensional Crystals in Solution and Coordinated Multi-Pore Assemblies in Biological Membranes. Toxins (Basel) 2024; 16:248. [PMID: 38922143 PMCID: PMC11209280 DOI: 10.3390/toxins16060248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/15/2024] [Indexed: 06/27/2024] Open
Abstract
α-Latrotoxin (α-LTX) was found to form two-dimensional (2D) monolayer arrays in solution at relatively low concentrations (0.1 mg/mL), with the toxin tetramer constituting a unit cell. The crystals were imaged using cryogenic electron microscopy (cryoEM), and image analysis yielded a ~12 Å projection map. At this resolution, no major conformational changes between the crystalline and solution states of α-LTX tetramers were observed. Electrophysiological studies showed that, under the conditions of crystallization, α-LTX simultaneously formed multiple channels in biological membranes that displayed coordinated gating. Two types of channels with conductance levels of 120 and 208 pS were identified. Furthermore, we observed two distinct tetramer conformations of tetramers both when observed as monodisperse single particles and within the 2D crystals, with pore diameters of 11 and 13.5 Å, suggestive of a flickering pore in the middle of the tetramer, which may correspond to the two states of toxin channels with different conductance levels. We discuss the structural changes that occur in α-LTX tetramers in solution and propose a mechanism of α-LTX insertion into the membrane. The propensity of α-LTX tetramers to form 2D crystals may explain many features of α-LTX toxicology and suggest that other pore-forming toxins may also form arrays of channels to exert maximal toxic effect.
Collapse
Affiliation(s)
- Alexis Rohou
- Division of Cell and Molecular Biology, Imperial College London, Exhibition Road, London SW7 2AZ, UK;
| | - Edward P. Morris
- Division of Structural Biology, The Institute of Cancer Research (ICR), London SW7 3RP, UK;
| | - Julia Makarova
- Faculty of Biology and Biotechnology, HSE University, 117997 Moscow, Russia;
| | | | - Yuri A. Ushkaryov
- Division of Cell and Molecular Biology, Imperial College London, Exhibition Road, London SW7 2AZ, UK;
- Medway School of Pharmacy, University of Kent, Chatham ME4 4TB, UK
| |
Collapse
|
2
|
Chen M, Blum D, Engelhard L, Raunser S, Wagner R, Gatsogiannis C. Molecular architecture of black widow spider neurotoxins. Nat Commun 2021; 12:6956. [PMID: 34845192 PMCID: PMC8630228 DOI: 10.1038/s41467-021-26562-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
Latrotoxins (LaTXs) are presynaptic pore-forming neurotoxins found in the venom of Latrodectus spiders. The venom contains a toxic cocktail of seven LaTXs, with one of them targeting vertebrates (α-latrotoxin (α-LTX)), five specialized on insects (α, β, γ, δ, ε- latroinsectotoxins (LITs), and one on crustaceans (α-latrocrustatoxin (α-LCT)). LaTXs bind to specific receptors on the surface of neuronal cells, inducing the release of neurotransmitters either by directly stimulating exocytosis or by forming Ca2+-conductive tetrameric pores in the membrane. Despite extensive studies in the past decades, a high-resolution structure of a LaTX is not yet available and the precise mechanism of LaTX action remains unclear. Here, we report cryoEM structures of the α-LCT monomer and the δ-LIT dimer. The structures reveal that LaTXs are organized in four domains. A C-terminal domain of ankyrin-like repeats shields a central membrane insertion domain of six parallel α-helices. Both domains are flexibly linked via an N-terminal α-helical domain and a small β-sheet domain. A comparison between the structures suggests that oligomerization involves major conformational changes in LaTXs with longer C-terminal domains. Based on our data we propose a cyclic mechanism of oligomerization, taking place prior membrane insertion. Both recombinant α-LCT and δ-LIT form channels in artificial membrane bilayers, that are stabilized by Ca2+ ions and allow calcium flux at negative membrane potentials. Our comparative analysis between α-LCT and δ-LIT provides first crucial insights towards understanding the molecular mechanism of the LaTX family. The venom of Latrodectus spiders contains seven Latrotoxins (LaTXs), among them α-latrocrustatoxin (LCT) and δ- latroinsectotoxins δ-LIT. LaTXs bind to specific receptors on the surface of neuronal cells and target the molecular exocytosis machinery. Here, the authors present the cryo-EM structure of the α-LCT monomer and the δ-LIT dimer, which reveal that LaTXs are organized in four domains and they discuss the potential oligomerisation mechanism that takes place before LaTXs membrane insertion. Both recombinant α-LCT and δ-LIT form channels in artificial membrane bilayers, that are stabilized by Ca2+ ions.
Collapse
Affiliation(s)
- Minghao Chen
- Institute for Medical Physics and Biophysics and Center for Soft Nanoscience, Westfälische Wilhelms Universität Münster, 48149, Münster, Germany.,Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227, Dortmund, Germany
| | - Daniel Blum
- MOLIFE Research Center, Jacobs University Bremen, 28759, Bremen, Germany
| | - Lena Engelhard
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227, Dortmund, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227, Dortmund, Germany
| | - Richard Wagner
- MOLIFE Research Center, Jacobs University Bremen, 28759, Bremen, Germany
| | - Christos Gatsogiannis
- Institute for Medical Physics and Biophysics and Center for Soft Nanoscience, Westfälische Wilhelms Universität Münster, 48149, Münster, Germany. .,Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227, Dortmund, Germany.
| |
Collapse
|
3
|
Regan SL, Williams MT, Vorhees CV. Latrophilin-3 disruption: Effects on brain and behavior. Neurosci Biobehav Rev 2021; 127:619-629. [PMID: 34022279 DOI: 10.1016/j.neubiorev.2021.04.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 12/22/2022]
Abstract
Latrophilin-3 (LPHN3), a G-protein-coupled receptor belonging to the adhesion subfamily, is a regulator of synaptic function and maintenance in brain regions that mediate locomotor activity, attention, and memory for location and path. Variants of LPHN3 are associated with increased risk for attention deficit hyperactivity disorder (ADHD) in some patients. Here we review the role of LPHN3 in the central nervous system (CNS). We describe synaptic localization of LPHN3, its trans-synaptic binding partners, links to neurodevelopmental disorders, animal models of Lphn3 disruption in different species, and evidence that LPHN3 is involved in cognition as well as activity and attention. The evidence shows that LPHN3 plays a more significant role in neuroplasticity than previously appreciated.
Collapse
Affiliation(s)
- Samantha L Regan
- Neuroscience Graduate Program, University of Cincinnati, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
| | - Michael T Williams
- Neuroscience Graduate Program, University of Cincinnati, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
| | - Charles V Vorhees
- Neuroscience Graduate Program, University of Cincinnati, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA.
| |
Collapse
|
4
|
Di Paola G, Cirronis M, Scaravaggi G, Castorani L, Petrolini VM, Locatelli CA. Latrodectism in Italy: First report of successful treatment of L. tredecimguttatus envenomation using L. mactans antivenom from North America. Toxicon 2020; 179:107-110. [PMID: 32179049 DOI: 10.1016/j.toxicon.2020.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/18/2020] [Accepted: 03/09/2020] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Latrodectism is a rare, but potentially severe, clinical syndrome caused by spider of the genus Latrodectus. L. tredecimguttatus is widespread in Italy and its bite cause the injection of α-latrotoxin that cause depletion of acetylcholine at motor nerve endings and release of catecholamines at adrenergic nerve endings. We describe the first clinical case of L. tredecimguttatus poisoning successfully treated with L. mactans antivenom from North America. CASE REPORT A healthy 60-year-old patient was admitted to the emergency department after unknown insect sting or arachnid/snake bite. In the early morning, the patient was working in the countryside when he felt a sting-like pain in the medial area of the right lower leg, associated with an intense burning sensation. An hour later he developed agitation, hoarseness, sweating, abdominal distress and intense pain in his right leg. In the emergency room vital signs showed a hypertensive crisis, tachycardia and peripheral oxygen desaturation. ECG was normal and ABE showed mixed acid-base disorder. Blood tests showed leukocytosis with neutrophilia, high levels of myoglobin, with normal coagulation and normal plasmatic cholinesterase. Neck, thorax and abdomen CT scan, with and without contrast medium, was negative. Four hours after admission hypertension worsened with board like rigid abdomen and onset of fasciculations, tremors, miosis and intense regional sweating. The definitive diagnosis of poisoning by L tredecimguttatus was based on the clinical picture. Within short time the antidote was provided by the Poison Centre and administered. A marked improvement of the symptomatology was noted after 30 minutes, and 1 hour later all symptoms were under control. The patient was discharged after 2 days. CONCLUSIONS The clinical presentation of a patient suffering from latrodectism places the clinician in front of a challenging differential diagnosis. Following the suspicion, the first-line doctor is invited to discuss the case with a toxicologist, in order to confirm or exclude the diagnosis and implement all therapeutic measures. In our clinical case, the absence of organic lesions, laboratory tests not suggestive for other causes, and the presence of typical clinical feature suggested the diagnosis of L tredecimguttatus poisoning. This hypothesis was then supported by the close temporal relation between antivenom administration and symptoms improvement. With this case, we report the first use of L mactans antivenom from North America to treat L.tredecimguttatus poisoning and we confirm its effectiveness in counteracting latrodectism caused by this spider.
Collapse
Affiliation(s)
| | - Marco Cirronis
- Salvatore Maugeri Foundation Scientific Institute of Pavia Via Maugeri, Italy.
| | - Giulia Scaravaggi
- Salvatore Maugeri Foundation Scientific Institute of Pavia Via Maugeri, Italy
| | | | - Valeria M Petrolini
- Salvatore Maugeri Foundation Scientific Institute of Pavia Via Maugeri, Italy
| | - Carlo A Locatelli
- Salvatore Maugeri Foundation Scientific Institute of Pavia Via Maugeri, Italy
| |
Collapse
|
5
|
Porras-Villamil JF, Olivera MJ, Hinestroza-Ruiz ÁC, López-Moreno GA. Envenomation by an arachnid (Latrodectus or Steatoda): Case report involving a woman and her female dog. CASE REPORTS 2020. [DOI: 10.15446/cr.v6n1.79718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction: Accidents involving spiders bites usually cause mild medical reactions that lead to local symptoms and, less commonly, systemic effects. The most medically significant spiders belong to the genera Latrodectus and Loxosceles. This paper presents a posible case of steatodism in a young woman and her pet.Case description: 26-year-old female patient, who reports a clinical history characterized by paresthesia, malaise, fever, diarrea and a painful papule in the left cheek after being bitten by a spider. Immediately after being bit, the patient hit the spider with the back of her hand and it fell to the ground, where her dog swallowed it. The dog presented with vomiting and general discomfort after ingestion. Symptomatic therapy was given for comfort, and neither the patient nor the dog required antivenin therapy. Both evolved favorably.Discussion: The relevance of this case is the involvement of two mammals (a human and her dog) due to the accidental contact with a spider, possibly of the genus Latrodectus or Steatoda.Conclusion: Two possible cases of steatodism are described. Since spider bites are a relatively frequent reason for medical consultation in Colombia, it is important to diagnose and manage them properly.
Collapse
|
6
|
Cruz-Ortega JS, Boucard AA. Actin cytoskeleton remodeling defines a distinct cellular function for adhesion G protein-coupled receptors ADGRL/latrophilins 1, 2 and 3. Biol Open 2019; 8:bio.039826. [PMID: 30926595 PMCID: PMC6503996 DOI: 10.1242/bio.039826] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Latrophilins represent a subgroup of the adhesion G protein-coupled receptor family, which bind to actin-associated scaffolding proteins. They are expressed in various tissues, suggesting that they might participate in biological processes that are ubiquitous. Here we focus on actin cytoskeleton dynamics to explore the role of latrophilins in mammalian cells. Individual overexpression of each latrophilin isoform comparably increased cell volume while modifying the net profile of F-actin-dependent cell extensions, as evaluated by confocal microscopy analysis. Latrophilin deletion mutants evidenced that direct coupling to the intracellular machinery was a requirement for modulating cell extensions. The association between latrophilins and the actin cytoskeleton was detected by co-immunoprecipitation assays and corroborated with immunocytochemistry analysis. Consistent with the destabilization of F-actin structures, latrophilin isoforms constitutively induced a prominent increase in the activity of actin-depolymerizing factor, cofilin. Intercellular adhesion events stabilized by heterophilic Teneurin-4 trans-interactions disrupted latrophilin colocalization with F-actin and led to an isoform-specific rescue of cell extensions. Thus, we find that the actin cytoskeleton machinery constitutes an important component of constitutive as well as ligand-induced signaling for latrophilins. This article has an associated First Person interview with the first author of the paper. Summary: Synapses involve the adhesion function of latrophilins within existing neuronal extensions. We show that latrophilins engage the actin cytoskeleton, both constitutively and upon ligand stimulation, to dictate cell extension patterns.
Collapse
Affiliation(s)
- Judith S Cruz-Ortega
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México City 07360, México
| | - Antony A Boucard
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México City 07360, México
| |
Collapse
|
7
|
Vezain M, Lecuyer M, Rubio M, Dupé V, Ratié L, David V, Pasquier L, Odent S, Coutant S, Tournier I, Trestard L, Adle-Biassette H, Vivien D, Frébourg T, Gonzalez BJ, Laquerrière A, Saugier-Veber P. A de novo variant in ADGRL2 suggests a novel mechanism underlying the previously undescribed association of extreme microcephaly with severely reduced sulcation and rhombencephalosynapsis. Acta Neuropathol Commun 2018; 6:109. [PMID: 30340542 PMCID: PMC6195752 DOI: 10.1186/s40478-018-0610-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 09/29/2018] [Indexed: 12/13/2022] Open
Abstract
Extreme microcephaly and rhombencephalosynapsis represent unusual pathological conditions, each of which occurs in isolation or in association with various other cerebral and or extracerebral anomalies. Unlike microcephaly for which several disease-causing genes have been identified with different modes of inheritance, the molecular bases of rhombencephalosynapsis remain unknown and rhombencephalosynapsis presents mainly as a sporadic condition consistent with de novo dominant variations. We report for the first time the association of extreme microcephaly with almost no sulcation and rhombencephalosynapsis in a fœtus for which comparative patient-parent exome sequencing strategy revealed a heterozygous de novo missense variant in the ADGRL2 gene. ADGRL2 encodes latrophilin 2, an adhesion G-protein-coupled receptor whose exogenous ligand is α-latrotoxin. Adgrl2 immunohistochemistry and in situ hybridization revealed expression in the telencephalon, mesencephalon and rhombencephalon of mouse and chicken embryos. In human brain embryos and fœtuses, Adgrl2 immunoreactivity was observed in the hemispheric and cerebellar germinal zones, the cortical plate, basal ganglia, pons and cerebellar cortex. Microfluorimetry experiments evaluating intracellular calcium release in response to α-latrotoxin binding showed significantly reduced cytosolic calcium release in the fœtus amniocytes vs amniocytes from age-matched control fœtuses and in HeLa cells transfected with mutant ADGRL2 cDNA vs wild-type construct. Embryonic lethality was also observed in constitutive Adgrl2−/− mice. In Adgrl2+/− mice, MRI studies revealed microcephaly and vermis hypoplasia. Cell adhesion and wound healing assays demonstrated that the variation increased cell adhesion properties and reduced cell motility. Furthermore, HeLa cells overexpressing mutant ADGRL2 displayed a highly developed cytoplasmic F-actin network related to cytoskeletal dynamic modulation. ADGRL2 is the first gene identified as being responsible for extreme microcephaly with rhombencephalosynapsis. Increased cell adhesion, reduced cell motility and cytoskeletal dynamic alterations induced by the variant therefore represent a new mechanism responsible for microcephaly.
Collapse
|
8
|
Treatments for Latrodectism-A Systematic Review on Their Clinical Effectiveness. Toxins (Basel) 2017; 9:toxins9040148. [PMID: 28430165 PMCID: PMC5408222 DOI: 10.3390/toxins9040148] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/31/2017] [Accepted: 04/10/2017] [Indexed: 11/16/2022] Open
Abstract
Latrodectism or envenomation by widow-spiders is common and clinically significant worldwide. Alpha-latrotoxin is the mammalian-specific toxin in the venom that results in toxic effects observed in humans. Symptoms may be incapacitating and include severe pain that can persist for days. The management of mild to moderate latrodectism is primarily supportive while severe cases have variously been treated with intravenous calcium, muscle relaxants, widow-spider antivenom and analgesic opioids. The object of this systematic review is to examine the literature on the clinical effectiveness of past and current treatments for latrodectism. MEDLINE, EMBASE and Google Scholar were searched from 1946 to December 2016 to identify clinical studies on the treatment of latrodectism. Studies older than 40 years and not in English were not reviewed. There were only two full-publications and one abstract of placebo-controlled randomised trials on antivenom use for latrodectism. Another two randomised comparative trials compared the route of administration of antivenom for latrodectism. There were fourteen case series (including two abstracts), fourteen case reports and one letter investigating drug treatments for latrodectism with the majority of these also including antivenom for severe latrodectism. Antivenom with opioid analgesia is often the major treatment reported for latrodectism however; recent high quality evidence has cast doubt on the clinical effectiveness of this combination and suggests that other treatments need to be investigated.
Collapse
|
9
|
Wu SF, Yu HY, Jiang TT, Gao CF, Shen JL. Superfamily of genes encoding G protein-coupled receptors in the diamondback moth Plutella xylostella (Lepidoptera: Plutellidae). INSECT MOLECULAR BIOLOGY 2015; 24:442-453. [PMID: 25824261 DOI: 10.1111/imb.12171] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 01/13/2015] [Accepted: 02/04/2015] [Indexed: 06/04/2023]
Abstract
G protein-coupled receptors (GPCRs) are the largest and most versatile superfamily of cell membrane proteins, which mediate various physiological processes including reproduction, development and behaviour. The diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae), is one of the most notorious insect pests, preferentially feeding on cruciferous plants. P. xylostella is not only one of the world's most widespread lepidopteran insects, but has also developed resistance to nearly all classes of insecticides. Although the mechanisms of insecticide resistance have been studied extensively in many insect species, few investigations have been carried out on GPCRs in P. xylostella. In the present study, we identified 95 putative GPCRs in the P. xylostella genome. The identified GPCRs were compared with their homologues in Bombyx mori and Drosophila melanogaster. Our results suggest that GPCRs in different insect species may have evolved by a birth-and-death process. One of the differences among compared insects is the duplication of short neuropeptide F receptor and adipokinetic hormone receptors in P. xylostella and B. mori. Another divergence is the decrease in quantity and diversity of the stress-tolerance gene, Mth, in P. xylostella. The evolution by the birth-and-death process is probably involved in adaptation to the feeding behaviour, reproduction and stress responses of P. xylostella. Some of the genes identified in the present study could be potential targets for the development of novel pesticides.
Collapse
Affiliation(s)
- S-F Wu
- College of Plant Protection, Nanjing Agricultural University, Jiangsu/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, Jiangsu, China
| | - H-Y Yu
- College of Plant Protection, Nanjing Agricultural University, Jiangsu/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, Jiangsu, China
| | - T-T Jiang
- College of Plant Protection, Nanjing Agricultural University, Jiangsu/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, Jiangsu, China
| | - C-F Gao
- College of Plant Protection, Nanjing Agricultural University, Jiangsu/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, Jiangsu, China
| | - J-L Shen
- College of Plant Protection, Nanjing Agricultural University, Jiangsu/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Li C, Chen M, Sang M, Liu X, Wu W, Li B. Comparative genomic analysis and evolution of family-B G protein-coupled receptors from six model insect species. Gene 2013; 519:1-12. [PMID: 23428791 DOI: 10.1016/j.gene.2013.01.061] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/21/2012] [Accepted: 01/30/2013] [Indexed: 10/27/2022]
Abstract
Family-B G protein-coupled receptors (GPCR-Bs) play vital roles in many biological processes, including growth, development and reproduction. However, the evolution and function of GPCR-Bs have been poorly understood in insects. We have identified 87 GPCR-Bs from six model insect species, 20 from Tribolium castaneum, 9 from Apis mellifera, 11 from Bombyx mori, 9 from Acyrthosiphon pisum, 14 from Anopheles gambiae and 24 from Drosophila melanogaster. 22 of them were reported in this study for the first time. Phylogenetic analysis revealed that there are three kinds of evolutionary patterns that occurred among GPCR-Bs during insect evolution: one-to-one orthologous relationships, species-specific expansion and episodic duplication or loss in certain insect lineages. A striking finding was the discovery of a parathyroid hormone receptor like gene (pthrl) in invertebrates, which was independently duplicated in vertebrates and invertebrates, whereas this gene was lost at least twice during insect evolution. These results indicate that PTHRL is possibly divergent in the functions between mammals and insects. The information of family-B GPCRs in nondrosophiline insects has been established, and will promote the further study on the function of these GPCRs and deorphanization of them. On the other hand, this study provides us with multiple function of GPCR-Bs in differential organisms, which will be also the potential attacking targets for new pesticides and drugs.
Collapse
Affiliation(s)
- Chengjun Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Venoms and toxins are of significant interest due to their ability to cause a wide range of pathophysiological conditions that can potentially result in death. Despite their wide distribution among plants and animals, the biochemical pathways associated with these pathogenic agents remain largely unexplored. Impoverished and underdeveloped regions appear especially susceptible to increased incidence and severity due to poor socioeconomic conditions and lack of appropriate medical treatment infrastructure. To facilitate better management and treatment of envenomation victims, it is essential that the biochemical mechanisms of their action be elucidated. This review aims to characterize downstream envenomation mechanisms by addressing the major neuro-, cardio-, and hemotoxins as well as ion-channel toxins. Because of their use in folk and traditional medicine, the biochemistry behind venom therapy and possible implications on conventional medicine will also be addressed.
Collapse
|
12
|
Martinez AF, Muenke M, Arcos-Burgos M. From the black widow spider to human behavior: Latrophilins, a relatively unknown class of G protein-coupled receptors, are implicated in psychiatric disorders. Am J Med Genet B Neuropsychiatr Genet 2011; 156B:1-10. [PMID: 21184579 PMCID: PMC4101183 DOI: 10.1002/ajmg.b.31137] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 09/28/2010] [Indexed: 12/24/2022]
Abstract
The findings of a recent study associate LPHN3, a member of the latrophilin family, with an increased risk of developing attention deficit/hyperactivity disorder (ADHD), the most common psychiatric disorder in childhood and adolescence. Latrophilins comprise a new family of G protein-coupled receptors of unknown native physiological function that mediate the neurotoxic effects of α-latrotoxin, a potent toxin found in black widow spider venom. This receptor-toxin interaction has helped to elucidate the mechanistic aspects of neurotransmitter and hormone release in vertebrates. Such unprecedented discovery points to a new direction in the assessment of ADHD and suggest that further study of this receptor family may provide novel insights into the etiology and treatment of ADHD and other related psychiatric conditions.
Collapse
Affiliation(s)
| | | | - Mauricio Arcos-Burgos
- Correspondence to: Dr. Mauricio Arcos-Burgos, M.D., Ph.D., National Human Genome Research Institute, National Institutes of Health, 35 Convent Drive, MSC 3717, Building 35, Room 1B209, Bethesda, MD 20892.
| |
Collapse
|
13
|
Diaz-Garcia CM, Sanchez-Soto C, Hiriart M. Toxins that modulate ionic channels as tools for exploring insulin secretion. Cell Mol Neurobiol 2010; 30:1275-81. [PMID: 21046453 DOI: 10.1007/s10571-010-9586-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 09/02/2010] [Indexed: 01/26/2023]
Abstract
Glucose-induced insulin secretion is a cardinal process in glucose homeostasis and metabolic expenditure. Uncoupling of the insulin response to glucose variations may lead to type-2 diabetes mellitus. Thus the identification of more specific drugs to facilitate the study of insulin secretion mechanisms and to develop new pharmacological agents for therapeutics is fundamental. Venomous organisms possess a great diversity of toxic molecules and some of them are neurotoxins that affect membrane excitability. This article reviews properties of those toxins affecting ion channels pivotal for insulin secretion and the usefulness of such compounds in the study of pancreatic beta-cell physiology. Here we examine the major contributions of toxinology to the understanding of the ionic phase of insulin secretion, to the determination of ion channel composition in different insulin secreting cell-line models as well as from primary cultures of different mammal species. Finally, we present a summary of the many diverse toxins affecting insulin release and a brief discussion of the potential of novel toxins in therapeutics.
Collapse
Affiliation(s)
- Carlos Manlio Diaz-Garcia
- Instituto de Fisiología Celular, Neuroscience Division, Department of Neurodevelopment and Physiology, Universidad Nacional Autónoma de México, Ciudad Universitaria, AP 70-253 Coyoacán, 04510 Mexico, DF, Mexico
| | | | | |
Collapse
|
14
|
Association of the subunits of the calcium-independent receptor of α-latrotoxin. Biochem Biophys Res Commun 2010; 402:658-62. [PMID: 20971062 DOI: 10.1016/j.bbrc.2010.10.078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 10/18/2010] [Indexed: 11/22/2022]
Abstract
CIRL-1 also called latrophilin 1 or CL belongs to the family of adhesion G protein-coupled receptors (GPCRs). As all members of adhesion GPSR family CIRL-1 consists of two heterologous subunits, extracellular hydrophilic p120 and heptahelical membrane protein p85. Both CIRL-1 subunits are encoded by one gene but as a result of intracellular proteolysis of precursor, mature receptor has two-subunit structure. It was also shown that a minor portion of the CIRL-1 receptor complexes dissociates, producing the soluble receptor ectodomain, and this dissociation is due to the second cleavage at the site between the site of primary proteolysis and the first transmembrane domain. Recently model of independent localization p120 and p85 on the cell surface was proposed. In this article we evaluated the amount of p120-p85 complex still presented on the cellular membrane and confirmed that on cell surface major amount of mature CIRL-1 presented as a p120-p85 subunit complex.
Collapse
|
15
|
Deyev IE, Petrenko AG. Regulation of CIRL-1 proteolysis and trafficking. Biochimie 2010; 92:418-22. [PMID: 20100540 DOI: 10.1016/j.biochi.2010.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 01/15/2010] [Indexed: 10/19/2022]
Abstract
Calcium-independent receptor of alpha-latrotoxin (CIRL-1) is an adhesion G protein-coupled receptor implicated in the regulation of exocytosis. CIRL-1 biosynthesis involves constitutive proteolytic processing that takes place in the endoplasmic reticulum, requires the receptor's GPS domain, and yields heterologous two-subunit receptor complexes. It was proposed that the GPS-directed cleavage is based on cis-autoproteolysis. In this study, we demonstrate that activators of protein kinase C - PMA and ionomycin, can inhibit the cleavage of CIRL-1 precursor in transfected cells. Both reagents also downregulate trafficking of CIRL-1 to the cell surface that results in accumulation of the uncleaved receptor precursor inside the cells. Experiments with a non-cleavable soluble mutant of CIRL-1 showed that the downregulation of the receptor trafficking is independent of its cleavage. Our data suggest that the GPS proteolysis of CIRL-1 is not a purely autocatalytic process and may involve auxiliary proteins or factors that become available in the course of CIRL-1 trafficking.
Collapse
Affiliation(s)
- Igor E Deyev
- Laboratory of Receptor Cell Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
16
|
Abstract
For more than three decades, the venom of the black widow spider and its principal active components, latrotoxins, have been used to induce release of neurotransmitters and hormones and to study the mechanisms of exocytosis. Given the complex nature of alpha--latrotoxin (alpha-LTX) actions, this research has been continuously overshadowed by many enigmas, misconceptions and perpetual changes of the underlying hypotheses. Some of the toxin's mechanisms of action are still not completely understood. Despite all these difficulties, the extensive work of several generations of neurobiologists has brought about a great deal of fascinating insights into pre-synaptic processes and has led to the discovery of several novel proteins and synaptic systems. For example, alpha-LTX studies have contributed to the widespread acceptance of the vesicular theory of transmitter release. Pre-synaptic receptors for alpha-LTX--neurexins, latrophilins and protein tyrosine phosphatase sigma--and their endogenous ligands have now become centrepieces of their own areas of research, with a potential of uncovering new mechanisms of synapse formation and regulation that may have medical implications. However, any future success of alpha-LTX research will require a better understanding of this unusual natural tool and a more precise dissection of its multiple mechanisms.
Collapse
Affiliation(s)
- John-Paul Silva
- Division of Cell and Molecular Biology, Imperial College London, Exhibition Road, London, UK
| | | | | |
Collapse
|
17
|
Abstract
alpha-Latrotoxin (alpha-LTX) from black widow spider venom induces exhaustive release of neurotransmitters from vertebrate nerve terminals and endocrine cells. This 130-kDa protein has been employed for many years as a molecular tool to study exocytosis. However, its action is complex: in neurons, alpha-LTX induces massive secretion both in the presence of extracellular Ca(2+) (Ca(2+) (e)) and in its absence; in endocrine cells, it usually requires Ca(2+) (e). To use this toxin for further dissection of secretory mechanisms, one needs an in-depth understanding of its functions. One such function that explains some alpha-LTX effects is its ability to form cation-permeable channels in artificial lipid bilayers. The mechanism of alpha-LTX pore formation, revealed by cryo-electron microscopy, involves toxin assembly into homotetrameric complexes which harbor a central channel and can insert into lipid membranes. However, in biological membranes, alpha-LTX cannot exert its actions without binding to specific receptors of the plasma membrane. Three proteins with distinct structures have been found to bind alpha-LTX: neurexin Ialpha, latrophilin 1, and receptor-like protein tyrosine phosphatase sigma. Upon binding a receptor, alpha-LTX forms channels permeable to cations and small molecules; the toxin may also activate the receptor. To distinguish between the pore- and receptor-mediated effects, and to study structure-function relationships in the toxin, alpha-LTX mutants have been used.
Collapse
Affiliation(s)
- Yuri A Ushkaryov
- Division of Cell and Molecular Biology, Imperial College London, London, SW7 2AY, UK.
| | | | | |
Collapse
|
18
|
Rohou A, Nield J, Ushkaryov Y. Insecticidal toxins from black widow spider venom. Toxicon 2006; 49:531-49. [PMID: 17210168 PMCID: PMC2517654 DOI: 10.1016/j.toxicon.2006.11.021] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Accepted: 11/17/2006] [Indexed: 11/27/2022]
Abstract
The biological effects of Latrodectus spider venom are similar in animals from different phyla, but these symptoms are caused by distinct phylum-specific neurotoxins (collectively called latrotoxins) with molecular masses ranging from 110 to 140 kDa. To date, the venom has been found to contain five insecticidal toxins, termed α, β, γ, δ and ε-latroinsectotoxins (LITs). There is also a vertebrate-specific neurotoxin, α-latrotoxin (α-LTX), and one toxin affecting crustaceans, α-latrocrustatoxin (α-LCT). These toxins stimulate massive release of neurotransmitters from nerve terminals and act (1) by binding to specific receptors, some of which mediate an exocytotic signal, and (2) by inserting themselves into the membrane and forming ion-permeable pores. Specific receptors for LITs have yet to be identified, but all three classes of vertebrate receptors known to bind α-LTX are also present in insects. All LTXs whose structures have been elucidated (α-LIT, δ-LIT, α-LTX and α-LCT) are highly homologous and have a similar domain architecture, which consists of a unique N-terminal sequence and a large domain composed of 13–22 ankyrin repeats. Three-dimensional (3D) structure analysis, so far done for α-LTX only, has revealed its dimeric nature and an ability to form symmetrical tetramers, a feature probably common to all LTXs. Only tetramers have been observed to insert into membranes and form pores. A preliminary 3D reconstruction of a δ-LIT monomer demonstrates the spatial similarity of this toxin to the monomer of α-LTX.
Collapse
Affiliation(s)
| | | | - Y.A. Ushkaryov
- Corresponding author. Tel.: +44 20 7594 5237; fax: +44 20 7594 5207.
| |
Collapse
|
19
|
Li G, Lee D, Wang L, Khvotchev M, Chiew SK, Arunachalam L, Collins T, Feng ZP, Sugita S. N-terminal insertion and C-terminal ankyrin-like repeats of alpha-latrotoxin are critical for Ca2+-dependent exocytosis. J Neurosci 2006; 25:10188-97. [PMID: 16267226 PMCID: PMC6725796 DOI: 10.1523/jneurosci.3560-05.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alpha-latrotoxin, a potent stimulator of exocytosis from neurons and neuroendocrine cells, has been studied intensively, but the mechanisms of its actions are poorly understood. Here, we developed a new method to generate active recombinant alpha-latrotoxin and conducted a structure/function analysis of the toxin in stimulating Ca2+-dependent exocytosis. alpha-Latrotoxin consists of a conserved N-terminal domain and C-terminal ankyrin-like repeats. After cleavage of an N-terminally fused purification tag of glutathione S-transferase (GST), the recombinant toxin strongly stimulated exocytosis, whereas the GST-fused toxin was much less potent. The GST-fused toxin bound to the receptors [neurexin 1alpha; CL1 (CIRL/latrophilin 1)] as efficiently as did the GST-cleaved toxin but was much less effective in inserting into the plasma membrane and inducing cation conductance. The toxin with deletion of the last two ankyrin-like repeats still bound the receptors but could neither stimulate exocytosis nor induce cation conductance efficiently. The abilities of the mutated toxins to stimulate exocytosis correlated well with their abilities to induce cation conductance, but not their binding to the receptors. Our results indicate that (1) C-terminal ankyrin-like repeats and a free (unfused) N terminus are both required for the toxin to form pores, which is essential for Ca2+-dependent exocytosis, and (2) receptor binding alone is not sufficient to stimulate Ca2+-dependent exocytosis.
Collapse
Affiliation(s)
- Gang Li
- Division of Cellular and Molecular Biology, Toronto Western Research Institute, University Health Network, Toronto, Ontario, M5T 2S8, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lajus S, Vacher P, Huber D, Dubois M, Benassy MN, Ushkaryov Y, Lang J. α-Latrotoxin Induces Exocytosis by Inhibition of Voltage-dependent K+ Channels and by Stimulation of L-type Ca2+ Channels via Latrophilin in β-Cells. J Biol Chem 2006; 281:5522-31. [PMID: 16301314 DOI: 10.1074/jbc.m510528200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The spider venom alpha-latrotoxin (alpha-LTX) induces massive exocytosis after binding to surface receptors, and its mechanism is not fully understood. We have investigated its action using toxin-sensitive MIN6 beta-cells, which express endogenously the alpha-LTX receptor latrophilin (LPH), and toxin-insensitive HIT-T15 beta-cells, which lack endogenous LPH. alpha-LTX evoked insulin exocytosis in HIT-T15 cells only upon expression of full-length LPH but not of LPH truncated after the first transmembrane domain (LPH-TD1). In HIT-T15 cells expressing full-length LPH and in native MIN6 cells, alpha-LTX first induced membrane depolarization by inhibition of repolarizing K(+) channels followed by the appearance of Ca(2+) transients. In a second phase, the toxin induced a large inward current and a prominent increase in intracellular calcium ([Ca(2+)](i)) reflecting pore formation. Upon expression of LPH-TD1 in HIT-T15 cells just this second phase was observed. Moreover, the mutated toxin LTX(N4C), which is devoid of pore formation, only evoked oscillations of membrane potential by reversible inhibition of iberiotoxin-sensitive K(+) channels via phospholipase C, activated L-type Ca(2+) channels independently from its effect on membrane potential, and induced an inositol 1,4,5-trisphosphate receptor-dependent release of intracellular calcium in MIN6 cells. The combined effects evoked transient increases in [Ca(2+)](i) in these cells, which were sensitive to inhibitors of phospholipase C, protein kinase C, or L-type Ca(2+) channels. The latter agents also reduced toxin-induced insulin exocytosis. In conclusion, alpha-LTX induces signaling distinct from pore formation via full-length LPH and phospholipase C to regulate physiologically important K(+) and Ca(2+) channels as novel targets of its secretory activity.
Collapse
Affiliation(s)
- Sophie Lajus
- Institut Européen de Chimie et Biologie, JE 2390 and INSERM E347, 2 rue Robert Escarpit, 33607 Pessac/Bordeaux, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Numerous types of envenomations may be encountered by health care workers depending on where in North America they work. Clinicians should be familiar with the animals in their region that may lead to envenomation.A rational approach with use of poison center or medical toxicology consultation services ensures that cases are managed appropriately.
Collapse
Affiliation(s)
- Eunice M Singletary
- Department of Emergency Medicine, University of Virginia, Charlottesville, VA 22908-0774, USA
| | | | | | | |
Collapse
|
22
|
Silva AM, Liu-Gentry J, Dickey AS, Barnett DW, Misler S. alpha-Latrotoxin increases spontaneous and depolarization-evoked exocytosis from pancreatic islet beta-cells. J Physiol 2005; 565:783-99. [PMID: 15760942 PMCID: PMC1464562 DOI: 10.1113/jphysiol.2005.082586] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
alpha-Latrotoxin (alpha-LT), a potent excitatory neurotoxin, increases spontaneous, as well as action potential-evoked, quantal release at nerve terminals and increases hormone release from excitable endocrine cells. We have investigated the effects of alpha-LT on single human, mouse and canine beta-cells. In isolated and combined measurements, alpha-LT, at nanomolar concentrations, induces: (i) rises in cytosolic Ca(2+), into the micromolar range, that are dependent on extracellular Ca(2+); (ii) large conductance non-selective cation channels; and (iii) Ca(2+)-dependent insulin granule exocytosis, measured as increases in membrane capacitance and quantal release of preloaded serotonin. Furthermore, at picomolar concentrations, alpha-LT potentiates depolarization-induced exocytosis often without evidence of inducing channel activity or increasing cytosolic Ca(2+). These results strongly support the hypothesis that alpha-LT, after binding to specific receptors, has at least two complementary modes of action on excitable cells. (i) alpha-LT inserts into the plasma membrane to form Ca(2+) permeable channels and promote Ca(2+) entry thereby triggering Ca(2+)-dependent exocytosis in unstimulated cells. (ii) At lower concentrations, where its channel forming activity is hardly evident, alpha-LT augments depolarization-evoked exocytosis probably by second messenger-induced enhancement of the efficiency of the vesicle recruitment or vesicle fusion machinery. We suggest that both modes of action enhance exocytosis from a newly described highly Ca(2+)-sensitive pool of insulin granules activated by global cytosolic Ca(2+) concentrations in the range of approximately 1 microm.
Collapse
Affiliation(s)
- Amelia M Silva
- Department of Internal Medicine, Washington University Medical Center, St Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
23
|
Ushkaryov YA, Volynski KE, Ashton AC. The multiple actions of black widow spider toxins and their selective use in neurosecretion studies. Toxicon 2004; 43:527-42. [PMID: 15066411 DOI: 10.1016/j.toxicon.2004.02.008] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The black widow spider venom contains several large protein toxins--latrotoxins--that are selectively targeted against different classes of animals: vertebrates, insects, and crustaceans. These toxins are synthesised as large precursors that undergo proteolytic processing and activation in the lumen of the venom gland. The mature latrotoxins demonstrate strong functional structure conservation and contain multiple ankyrin repeats, which mediate toxin oligomerisation. The three-dimensional structure has been determined for alpha-latrotoxin (alphaLTX), a representative venom component toxic to vertebrates. This reconstruction explains the mechanism of alphaLTX pore formation by showing that it forms tetrameric complexes, harbouring a central channel, and that it is able to insert into lipid membranes. All latrotoxins cause massive release of neurotransmitters from nerve terminals of respective animals after binding to specific neuronal receptors. A G protein-coupled receptor latrophilin and a single-transmembrane receptor neurexin have been identified as major high-affinity receptors for alphaLTX. Latrotoxins act by several Ca(2+)-dependent and -independent mechanisms based on pore formation and activation of receptors. Mutant recombinant alphaLTX that does not form pores has been used to dissect the multiple actions of this toxin. As a result, important insights have been gained into the receptor signalling and the role of intracellular Ca(2+) stores in the effect of alphaLTX.
Collapse
Affiliation(s)
- Y A Ushkaryov
- Department of Biological Sciences, Imperial College, London, SW7 2AY, UK.
| | | | | |
Collapse
|
24
|
Abstract
The neurotoxin alpha-latrotoxin elicits spontaneous exocytosis of neurotransmitter from neurons and peptide hormones from endocrine cells. While the mechanism of action is not fully understood, both Ca(2+)-dependent and Ca(2+)-independent pathways participate in the facilitation of release, with the relative contribution of the pathways differing among neuronal and endocrine cell types. Here, we investigate the actions of alpha-latrotoxin on neuroendocrine nerve endings that emanate from central nervous system neurons and, therefore, are unique in that they possess properties of central nerve endings and endocrine cells. Using intracellular [Ca(2+)] measurements both calcium-independent receptors for latrotoxin (CIRL or latrophilin) and neurexin 1 alpha receptors were found to be functionally present. Interaction of alpha-latrotoxin with these receptors stimulated secretion of vasopressin and oxytocin neuropeptide. The secretory response was entirely dependent upon toxin-mediated extracellular Ca(2+) influx, although alpha-latrotoxin also consistently triggered mobilization of Ca(2+) from an intracellular store. The mobilization of intracellular Ca(2+) relied on alpha-latrotoxin-mediated Na(+) influx and was blocked by the protonophore FCCP, thereby implicating mitochondria as the Ca(2+) store being mobilized. Using the whole cell recording configuration of the patch clamp, we report that alpha-latrotoxin interaction with the CIRL receptor on these nerve endings resulted in ionic pore formation, generating unitary inward current steps of 20 pA and a channel conductance of approximately 220 pS in Ca(2+)-free saline. Thus, alpha-latrotoxin stimulates Ca(2+)-dependent exocytosis in neurohypophysial nerve endings through receptor interaction and insertion of Ca(2+) permeable membrane pores. While alpha-latrotoxin mobilizes intracellular Ca(2+) stores the elevation in [Ca(2+)] reached is insufficient to trigger measurable exocytosis.
Collapse
Affiliation(s)
- Michael Hlubek
- Department of Molecular and Integrative Physiology, 7807 Medical Sciences II Building, University of Michigan, Ann Arbor, MI 48109-0622, USA
| | | | | |
Collapse
|
25
|
Volynski KE, Capogna M, Ashton AC, Thomson D, Orlova EV, Manser CF, Ribchester RR, Ushkaryov YA. Mutant alpha-latrotoxin (LTXN4C) does not form pores and causes secretion by receptor stimulation: this action does not require neurexins. J Biol Chem 2003; 278:31058-66. [PMID: 12782639 DOI: 10.1074/jbc.m210395200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alpha-latrotoxin (LTX) causes massive release of neurotransmitters via a complex mechanism involving (i) activation of receptor(s) and (ii) toxin insertion into the plasma membrane with (iii) subsequent pore formation. Using cryo-electron microscopy, electrophysiological and biochemical methods, we demonstrate here that the recently described toxin mutant (LTXN4C) is unable to insert into membranes and form pores due to its inability to assemble into tetramers. However, this mutant still binds to major LTX receptors (latrophilin and neurexin) and causes strong transmitter exocytosis in synaptosomes, hippocampal slice cultures, neuromuscular junctions, and chromaffin cells. In the absence of mutant incorporation into the membrane, receptor activation must be the only mechanism by which LTXN4C triggers exocytosis. An interesting feature of this receptor-mediated transmitter release is its dependence on extracellular Ca2+. Because Ca2+ is also strictly required for LTX interaction with neurexin, the latter might be the only receptor mediating the LTXN4C action. To test this hypothesis, we used conditions (substitution of Ca2+ in the medium with Sr2+) under which LTXN4C does not bind to any member of the neurexin family but still interacts with latrophilin. We show that, in all the systems tested, Sr2+ fully replaces Ca2+ in supporting the stimulatory effect of LTXN4C. These results indicate that LTXN4C can cause neurotransmitter release just by stimulating a receptor and that neurexins are not critical for this receptor-mediated action.
Collapse
Affiliation(s)
- Kirill E Volynski
- Department of Biological Sciences, Imperial College London, London SW7 2AY, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
26
|
The alpha-latrotoxin mutant LTXN4C enhances spontaneous and evoked transmitter release in CA3 pyramidal neurons. J Neurosci 2003. [PMID: 12764091 DOI: 10.1523/jneurosci.23-10-04044.2003] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alpha-latrotoxin (LTX) stimulates vesicular exocytosis by at least two mechanisms that include (1) receptor binding-stimulation and (2) membrane pore formation. Here, we use the toxin mutant LTX(N4C) to selectively study the receptor-mediated actions of LTX. LTX(N4C) binds to both LTX receptors (latrophilin and neurexin) and greatly enhances the frequency of spontaneous and miniature EPSCs recorded from CA3 pyramidal neurons in hippocampal slice cultures. The effect of LTX(N4C) is reversible and is not attenuated by La3+ that is known to block LTX pores. On the other hand, LTX(N4C) action, which requires extracellular Ca2+, is inhibited by thapsigargin, a drug depleting intracellular Ca2+ stores, by 2-aminoethoxydiphenyl borate, a blocker of inositol(1,4,5)-trisphosphate-induced Ca2+ release, and by U73122, a phospholipase C inhibitor. Furthermore, measurements using a fluorescent Ca2+ indicator directly demonstrate that LTX(N4C) increases presynaptic, but not dendritic, free Ca2+ concentration; this Ca2+ rise is blocked by thapsigargin, suggesting, together with electrophysiological data, that the receptor-mediated action of LTX(N4C) involves mobilization of Ca2+ from intracellular stores. Finally, in contrast to wild-type LTX, which inhibits evoked synaptic transmission probably attributable to pore formation, LTX(N4C) actually potentiates synaptic currents elicited by electrical stimulation of afferent fibers. We suggest that the mutant LTX(N4C), lacking the ionophore-like activity of wild-type LTX, activates a presynaptic receptor and stimulates Ca2+ release from intracellular stores, leading to the enhancement of synaptic vesicle exocytosis.
Collapse
|
27
|
Affiliation(s)
- Dianne M Perez
- The Department of Molecular Cardiology, NB5, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Ave., Cleveland, OH 44195, USA.
| |
Collapse
|
28
|
Linetska MV, Storchak LG, Himmelreich NH. Phenylarsine oxide inhibits alpha-latrotoxin-stimulated [3H]GABA release from rat brain synaptosomes. Neurochem Int 2003; 42:583-90. [PMID: 12590941 DOI: 10.1016/s0197-0186(02)00158-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphatidylinositol 4,5-biphosphate has been implicated in a variety of membrane-trafficking processes, including exocytosis of neurotransmitters. However, there are contradictory findings concerned ability of phenylarsine oxide (PAO), an inhibitor of phosphatidylinositol 4-kinase, to affect exocytotic release of different types of neurotransmitters. We bent our efforts to a detailed analysis of action of PAO on Ca(2+)-dependent and Ca(2+)-independent [3H]GABA release produced by exposure of rat brain synaptosomes to different concentrations of alpha-latrotoxin. We also compared PAO action on alpha-latrotoxin- and 4-aminopyridine (4-AP)-evoked [3H]GABA release. The experiments have shown that release of [3H]GABA evoked by the depolarization with 4-AP was decreased by 80% as a result of action of 3 microM PAO and the complete inhibition of release was observed with 10 microM PAO. When alpha-latrotoxin as a stimulant was applied, release of [3H]GABA was increased as toxin concentration used was elevated from 0.5 to 3.0 nM, however, concomitantly, the response of the toxin-induced [3H]GABA release to PAO became attenuated: 10 microM PAO led to almost complete inhibition of the effect of 0.5 nM alpha-latrotoxin and only partly decreased (by 40%) the response to 3.0 nM alpha-latrotoxin. To test whether the efficacy of PAO depended on the toxin-induced outflow of cytosolic [3H]GABA, synaptosomes with depleted cytosolic [3H]GABA pool were also exploited. Depletion was performed by means of heteroexchange of cytosolic [3H]GABA with nipecotic acid. The experiments have shown that treatment of loaded synaptosomes with nipecotic acid resulted in some increase of [3H]GABA release evoked by 0.5 nM alpha-latrotoxin, but in the two-fold decrease of the response to 3.0 nM alpha-latrotoxin. PAO essentially inhibited [3H]GABA release from depleted synaptosomes irrespective of alpha-latrotoxin concentration used. Therefore, the amount of [3H]GABA released from cytosolic pool determined, in considerable degree, the insensitivity of alpha-latrotoxin action to PAO. Thus, our data show that subnanomolar concentrations of alpha-latrotoxin may be used for stimulation of exocytotic release of [3H]GABA. Exposure of synaptosomes with nanomolar toxin concentrations leads not only to stimulation of exocytosis, but also to leakage of [3H]GABA from cytosolic pool. PAO potently inhibits exocytotic release of [3H]GABA and its inhibitory effectiveness is diminished as far as the outflow of [3H]GABA is elevated.
Collapse
Affiliation(s)
- M V Linetska
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Science of Ukraine, Leontovich Street 9, Kiev 01601, Ukraine
| | | | | |
Collapse
|
29
|
Silinsky EM, Searl TJ. Phorbol esters and neurotransmitter release: more than just protein kinase C? Br J Pharmacol 2003; 138:1191-201. [PMID: 12711617 PMCID: PMC1573789 DOI: 10.1038/sj.bjp.0705213] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
This review focuses on the effects of phorbol esters and the role of phorbol ester receptors in the secretion of neurotransmitter substances. We begin with a brief background on the historical use of phorbol esters as tools to decipher the role of the enzyme protein kinase C in signal transduction cascades. Next, we illustrate the structural differences between active and inactive phorbol esters and the mechanism by which the binding of phorbol to its recognition sites (C1 domains) on a particular protein acts to translocate that protein to the membrane. We then discuss the evidence that the most important nerve terminal receptor for phorbol esters (and their endogenous counterpart diacylglycerol) is likely to be Munc13. Indeed, Munc13 and its invertebrate homologues are the main players in priming the secretory apparatus for its critical function in the exocytosis process.
Collapse
Affiliation(s)
- Eugene M Silinsky
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, 303 East Chicago Avenue, Chicago, IL 60611, U.S.A.
| | | |
Collapse
|
30
|
Storchak LG, Linetska MV, Himmelreich NH. Does extracellular calcium determine what pool of GABA is the target for alpha-latrotoxin? Neurochem Int 2002; 40:387-95. [PMID: 11821145 DOI: 10.1016/s0197-0186(01)00107-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Presynaptic neurotoxin alpha-latrotoxin, from the venom of Latrodectus mactans tredecimguttatus, causes massive [(3)H]GABA release from rat brain synaptosomes, irrespective of calcium presence in the extracellular medium. Whether the binding of alpha-latrotoxin to Ca(2+)-dependent (neurexin 1 alpha) or to Ca(2+)-independent (latrophilin) receptor triggers [(3)H]GABA release by the same mechanisms or different ones, inducing either exocytotic process or outflow by mobile membrane GABA transporter, is unknown. We examined alpha-latrotoxin-evoked [(3)H]GABA release from synaptosomes which cytosolic [(3)H]GABA pool was depleted either by applying competitive inhibitors of the GABA transporter, nipecotic acid and 2,4-diaminobutyric acid, or by permeation with digitonin. We also compared the effect of the GABA transporter inhibitors on depolarisation-evoked and alpha-latrotoxin-evoked [(3)H]GABA release using as depolarising agents 4-aminopyridine and high KCl in the Ca(2+)-containing and in Ca(2+)-free medium, respectively. Incubation of synaptosomes with nipecotic acid induced the essential acceleration of unstimulated [(3)H]GABA release and deep inhibition of high KCl-evoked Ca(2+)-independent [(3)H]GABA release. In contrast, at the similar conditions the effect of alpha-latrotoxin was greatly augmented with respect to the control response. Another way to assay what GABA pool was involved in alpha-latrotoxin-induced release lays in an analysis of the effects of depolarisation and alpha-latrotoxin in consecutive order. The preliminary 4-aminopyridine-stimulated [(3)H]GABA release attenuated the toxin effect. But when depolarisation occurred in Ca(2+)-free medium, no influence on alpha-latrotoxin effect was revealed. Employing digitonin-permeated synaptosomes, we have shown that alpha-latrotoxin could stimulate [3H]GABA release in the medium with 1mM EGTA, this effect of the toxin was blocked by concanavalin A and was ATP-dependent. The latter suggests that alpha-latrotoxin-released neurotransmitter has the vesicular nature. We assume that the type of the toxin membrane receptor does not determine the mechanisms of [(3)H]GABA release evoked by alpha-latrotoxin.
Collapse
Affiliation(s)
- L G Storchak
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Science of Ukraine, St. Leontovich 9, Kiev 01601, Ukraine
| | | | | |
Collapse
|
31
|
Mengerink KJ, Moy GW, Vacquier VD. suREJ3, a polycystin-1 protein, is cleaved at the GPS domain and localizes to the acrosomal region of sea urchin sperm. J Biol Chem 2002; 277:943-8. [PMID: 11696547 DOI: 10.1074/jbc.m109673200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The sea urchin sperm acrosome reaction (AR) is a prerequisite for sperm-egg fusion. This report identifies sea urchin sperm receptor for egg jelly-3 (suREJ3) as a new member of the polycystin-1 family (the protein mutated in autosomal dominant polycystic kidney disease). suREJ3 is a multidomain, 2,681-amino acid, heavily glycosylated orphan receptor with 11 putative transmembrane segments (TMS) that localize to the plasma membrane covering the sperm acrosomal vesicle. Like the latrophilins and other members of the secretin family of G-protein-coupled receptors, suREJ3 is cleaved at the consensus GPS (G-protein-coupled receptor proteolytic site) domain. Antibodies to the extracellular 1,455-residue NH(2)-terminal portion identify a band at 250 kDa that shifts in electrophoretic mobility to 180 kDa upon glycosidase digestion. Antibodies to the 1,226-residue COOH-terminal portion identify a band at 150 kDa that shifts to 140 kDa after glycosidase treatment. Antibodies to both portions of suREJ3 localize exclusively to the plasma membrane over the acrosomal vesicle. Immunoprecipitation shows that both portions of suREJ3 are associated in detergent extracts. This is the first report showing that a polycystin family member is cleaved at the GPS domain. Localization of suREJ3 to the acrosomal region provides the first suggestion for the role of a polycystin-1 protein (components of nonselective cation channels) in a specific cellular process.
Collapse
Affiliation(s)
- Kathryn J Mengerink
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093-0202, USA.
| | | | | |
Collapse
|
32
|
Abstract
alpha-Latrotoxin, a potent neurotoxin from black widow spider venom, triggers synaptic vesicle exocytosis from presynaptic nerve terminals. alpha-Latrotoxin is a large protein toxin (120 kDa) that contains 22 ankyrin repeats. In stimulating exocytosis, alpha-latrotoxin binds to two distinct families of neuronal cell-surface receptors, neurexins and CLs (Cirl/latrophilins), which probably have a physiological function in synaptic cell adhesion. Binding of alpha-latrotoxin to these receptors does not in itself trigger exocytosis but serves to recruit the toxin to the synapse. Receptor-bound alpha-latrotoxin then inserts into the presynaptic plasma membrane to stimulate exocytosis by two distinct transmitter-specific mechanisms. Exocytosis of classical neurotransmitters (glutamate, GABA, acetylcholine) is induced in a calcium-independent manner by a direct intracellular action of alpha-latrotoxin, while exocytosis of catecholamines requires extracellular calcium. Elucidation of precisely how alpha-latrotoxin works is likely to provide major insight into how synaptic vesicle exocytosis is regulated, and how the release machineries of classical and catecholaminergic neurotransmitters differ.
Collapse
Affiliation(s)
- T C Südhof
- Howard Hughes Medical Institute, Center for Basic Neuroscience, and the Department of Molecular Genetics, The University of Texas Southwestern Medical Center at Dallas, Texas 75390-9111, USA.
| |
Collapse
|
33
|
Nechiporuk T, Urness LD, Keating MT. ETL, a novel seven-transmembrane receptor that is developmentally regulated in the heart. ETL is a member of the secretin family and belongs to the epidermal growth factor-seven-transmembrane subfamily. J Biol Chem 2001; 276:4150-7. [PMID: 11050079 DOI: 10.1074/jbc.m004814200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Using differential display of rat fetal and postnatal cardiomyocytes, we have identified a novel seven-transmembrane receptor, ETL. The cDNA-predicted amino acid sequence of ETL indicated that it encodes a 738-aa protein composed of a large extracellular domain with epidermal growth factor (EGF)-like repeats, a seven-transmembrane domain, and a short cytoplasmic tail. ETL belongs to the secretin family of G-protein-coupled peptide hormone receptors and the EGF-TM7 subfamily of receptors. The latter are characterized by a variable number of extracellular EGF and cell surface domains and conserved seven transmembrane-spanning regions. ETL mRNA expression is up-regulated in the adult rat and human heart. In situ hybridization analyses revealed expression in rat cardiomyocytes and abundant expression in vascular and bronchiolar smooth muscle cells. In COS-7 cells transfected with Myc-tagged rat ETL, rat ETL exists as a stable dimer and undergoes endoproteolytic cleavage of the extracellular domain. The proteolytic activity can be abolished by a specific mutation, T455A, in this domain. In transfected mammalian cells, ETL is associated with cell membranes and is also observed in cytoplasmic vesicles. ETL is the first seven-transmembrane receptor containing EGF-like repeats that is developmentally regulated in the heart.
Collapse
Affiliation(s)
- T Nechiporuk
- Department of Human Genetics, Division of Cardiology, University of Utah, Eccles Institute of Human Genetics, Salt Lake City, Utah 84112, USA
| | | | | |
Collapse
|
34
|
Volynski KE, Meunier FA, Lelianova VG, Dudina EE, Volkova TM, Rahman MA, Manser C, Grishin EV, Dolly JO, Ashley RH, Ushkaryov YA. Latrophilin, neurexin, and their signaling-deficient mutants facilitate alpha -latrotoxin insertion into membranes but are not involved in pore formation. J Biol Chem 2000; 275:41175-83. [PMID: 11024019 DOI: 10.1074/jbc.m005857200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pure alpha-latrotoxin is very inefficient at forming channels/pores in artificial lipid bilayers or in the plasma membrane of non-secretory cells. However, the toxin induces pores efficiently in COS-7 cells transfected with the heptahelical receptor latrophilin or the monotopic receptor neurexin. Signaling-deficient (truncated) mutants of latrophilin and latrophilin-neurexin hybrids also facilitate pore induction, which correlates with toxin binding irrespective of receptor structure. This rules out the involvement of signaling in pore formation. With any receptor, the alpha-latrotoxin pores are permeable to Ca(2+) and small molecules including fluorescein isothiocyanate and norepinephrine. Bound alpha-latrotoxin remains on the cell surface without penetrating completely into the cytosol. Higher temperatures facilitate insertion of the toxin into the plasma membrane, where it co-localizes with latrophilin (under all conditions) and with neurexin (in the presence of Ca(2+)). Interestingly, on subsequent removal of Ca(2+), alpha-latrotoxin dissociates from neurexin but remains in the membrane and continues to form pores. These receptor-independent pores are inhibited by anti-alpha-latrotoxin antibodies. Our results indicate that (i) alpha-latrotoxin is a pore-forming toxin, (ii) receptors that bind alpha-latrotoxin facilitate its insertion into the membrane, (iii) the receptors are not physically involved in the pore structure, (iv) alpha-latrotoxin pores may be independent of the receptors, and (v) pore formation does not require alpha-latrotoxin interaction with other neuronal proteins.
Collapse
Affiliation(s)
- K E Volynski
- Biochemistry Department, Imperial College, London, SW7 2AY, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kreienkamp HJ, Zitzer H, Gundelfinger ED, Richter D, Bockers TM. The calcium-independent receptor for alpha-latrotoxin from human and rodent brains interacts with members of the ProSAP/SSTRIP/Shank family of multidomain proteins. J Biol Chem 2000; 275:32387-90. [PMID: 10964907 DOI: 10.1074/jbc.c000490200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Subtypes of the calcium-independent receptors for alpha-latrotoxin (CIRL1-3) define a distinct subgroup within the large family of the seven-transmembrane region cell surface receptors. The physiological function of CIRLs is unknown because neither extracellular ligands nor intracellular coupling proteins (G-proteins) have been identified. Using yeast two-hybrid screening, we identified a novel interaction between the C termini of CIRL1 and -2 and the PSD-95/discs large/ZO-1 (PDZ) domain of a recently discovered multidomain protein family (ProSAP/SSTRIP/Shank) present in human and rat brain. In vitro, CIRL1 and CIRL2 interacted strongly with the PDZ domain of ProSAP1. The specificity of this interaction has been verified by in vivo experiments using solubilized rat brain membrane fractions and ProSAP1 antibodies; only CIRL1, but not CIRL2, was co-immunoprecipitated with ProSAP1. In situ hybridization revealed that ProSAP1 and CIRL1 are co-expressed in the cortex, hippocampus, and cerebellum. Colocalization was also observed at the subcellular level, as both CIRL1 and ProSAP1 are enriched in the postsynaptic density fraction from rat brain. Expression of all three CIRL isoforms is highly regulated during postnatal brain development, with CIRL3 exhibiting its highest expression levels immediately after birth, followed by CIRL2 and finally CIRL1 in aged rats.
Collapse
Affiliation(s)
- H J Kreienkamp
- Institut für Zellbiochemie und Klinische Neurobiologie, Universität Hamburg, Martinistrasse 52, 20246 Hamburg, Germany
| | | | | | | | | |
Collapse
|
36
|
Pescatori M, Grasso A. Characterization of the epitope for 4C4.1 mAb on alpha-latrotoxin using phage display-peptide libraries: prevention of toxin-dependent 45Ca(2+) uptake in non-neuronal human embryonic cells transiently expressing latrophilin. Biochimie 2000; 82:909-14. [PMID: 11086220 DOI: 10.1016/s0300-9084(00)01170-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
alpha-Latrotoxin, a protein toxin present in the venom of black widow spider, interacts with membrane receptors of neurons and other secretory cells to stimulate exocytosis. Two types of receptors have been identified and cloned. Our attention has been focused on the calcium independent receptor, a G-protein coupled receptor, named latrophilin to see whether alpha-latrotoxin interaction was capable to produce an ionotropic effect, in alternative to the metabotropic hypothesis. Expression of latrophilin receptor is sufficient for the alpha-latrotoxin effect to become manifest. By inducing the transient expression of latrophilin receptor in non-neuronal human embryonic cells, we made them susceptible to toxin action as demonstrated by the increase in 45Ca(2+) accumulation detected after toxin treatment. Since the presence of a monoclonal antibody against alpha-latrotoxin (4C4.1 mAb) was able to obliterate toxin-dependent effects, we further investigated the nature of toxin-antibody interaction by characterization of the binding epitope using phage display-peptide libraries. A conformational epitope was recognized and partially localized on a region of the peptide toxin whereby a tetrameric structure is formed and inserted into the membrane of target cells where it functions as a pore.
Collapse
Affiliation(s)
- M Pescatori
- Istituto di Biologia Cellulare, CNR, Viale Marx 43, 00137, Rome, Italy
| | | |
Collapse
|
37
|
Bittner MA, Holz RW. Latrotoxin stimulates secretion in permeabilized cells by regulating an intracellular Ca2+ - and ATP-dependent event: a role for protein kinase C. J Biol Chem 2000; 275:25351-7. [PMID: 10851245 DOI: 10.1074/jbc.m004884200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
alpha-Latrotoxin, a component of black widow spider venom, stimulates transmitter release from nerve terminals and intact chromaffin cells and enhances secretion from permeabilized chromaffin cells already maximally stimulated by Ca(2+). In this study we demonstrate that chromaffin cells contain a protein antigenically similar to the cloned Ca(2+)-independent receptor for alpha-latrotoxin. Although this receptor has homology to the secretin family of G-protein-linked receptors, pertussis toxin has no effect on the ability of alpha-latrotoxin to enhance secretion, suggesting that neither G(i) nor G(o) is involved in the response. Furthermore, in the absence of Ca(2+), alpha-latrotoxin does not stimulate polyphosphoinositide-specific phospholipase C. alpha-Latrotoxin specifically enhances ATP-dependent secretion in permeabilized cells. An in situ assay for protein kinase C reveals that alpha-latrotoxin augments the activation of protein kinase C by Ca(2+), and use of protein kinase inhibitors demonstrates that this activation is important for the toxin's enhancing effect. This enhancement of secretion requires Ca(2+) concentrations above 3 microm and is not supported by Ba(2+) or nonhydrolyzable guanine nucleotides, which do not stimulate protein kinase C. We conclude that alpha-latrotoxin stimulates secretion in permeabilized cells by regulating a Ca(2+)- and ATP-dependent event involving protein kinase C.
Collapse
Affiliation(s)
- M A Bittner
- Department of Pharmacology, the University of Michigan Medical School, Ann Arbor 48109, USA.
| | | |
Collapse
|
38
|
Bittner MA. Alpha-latrotoxin and its receptors CIRL (latrophilin) and neurexin 1 alpha mediate effects on secretion through multiple mechanisms. Biochimie 2000; 82:447-52. [PMID: 10865131 DOI: 10.1016/s0300-9084(00)00222-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Alpha-Latrotoxin and its plasma membrane receptors cause a number of distinct effects in secretory cells. First, by tethering alpha-latrotoxin to the plasma membrane, CIRL/latrophilin and neurexin 1 alpha facilitate alpha-latrotoxin-induced channel formation. The stimulation of secretion by alpha-latrotoxin in neuroendocrine cells is a consequence of Ca(2+) influx through these alpha-latrotoxin-induced channels. In addition to channel formation, alpha-latrotoxin enhances secretion in permeabilized cells through interaction with the plasma membrane receptor CIRL/latrophilin. Finally, overexpression of CIRL/latrophilin inhibits Ca(2+)-dependent secretion in permeabilized chromaffin cells in the absence of alpha-latrotoxin. This effect represents a 'constitutive' action of the G-protein coupled receptor to specifically inhibit an ATP-dependent priming step in the secretory pathway. The effect suggests that the receptor may have an important modulatory role in synaptic transmission.
Collapse
Affiliation(s)
- M A Bittner
- M 1301 MSRB III, Department of Pharmacology, University of Michigan Medical School, 1150 W. Medical Center Drive, Ann Arbor 48109, USA.
| |
Collapse
|