1
|
Pollock TY, Vázquez Marrero VR, Brodsky IE, Shin S. TNF licenses macrophages to undergo rapid caspase-1, -11, and -8-mediated cell death that restricts Legionella pneumophila infection. PLoS Pathog 2023; 19:e1010767. [PMID: 37279255 DOI: 10.1371/journal.ppat.1010767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 05/25/2023] [Indexed: 06/08/2023] Open
Abstract
The inflammatory cytokine tumor necrosis factor (TNF) is necessary for host defense against many intracellular pathogens, including Legionella pneumophila. Legionella causes the severe pneumonia Legionnaires' disease and predominantly affects individuals with a suppressed immune system, including those receiving therapeutic TNF blockade to treat autoinflammatory disorders. TNF induces pro-inflammatory gene expression, cellular proliferation, and survival signals in certain contexts, but can also trigger programmed cell death in others. It remains unclear, however, which of the pleiotropic functions of TNF mediate control of intracellular bacterial pathogens like Legionella. In this study, we demonstrate that TNF signaling licenses macrophages to die rapidly in response to Legionella infection. We find that TNF-licensed cells undergo rapid gasdermin-dependent, pyroptotic death downstream of inflammasome activation. We also find that TNF signaling upregulates components of the inflammasome response, and that the caspase-11-mediated non-canonical inflammasome is the first inflammasome to be activated, with caspase-1 and caspase-8 mediating delayed pyroptotic death. We find that all three caspases are collectively required for optimal TNF-mediated restriction of bacterial replication in macrophages. Furthermore, caspase-8 is required for control of pulmonary Legionella infection. These findings reveal a TNF-dependent mechanism in macrophages for activating rapid cell death that is collectively mediated by caspases-1, -8, and -11 and subsequent restriction of Legionella infection.
Collapse
Affiliation(s)
- Tzvi Y Pollock
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Víctor R Vázquez Marrero
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Igor E Brodsky
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Sunny Shin
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
2
|
Singh AK, Awasthi D, Dubey M, Nagarkoti S, Chandra T, Barthwal MK, Tripathi AK, Dikshit M. Expression of inducible NOS is indispensable for the antiproliferative and proapoptotic effect of imatinib in BCR-ABL positive cells. J Leukoc Biol 2021; 110:853-866. [PMID: 33527482 DOI: 10.1002/jlb.1a0820-514r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/14/2020] [Accepted: 01/13/2021] [Indexed: 01/07/2023] Open
Abstract
Chronic myeloid leukemia (CML) is characterized by constitutive BCR-ABL kinase activity, an aggressive proliferation of immature cells, and reduced differentiation. Targeting tyrosine kinase activity of BCR-ABL with imatinib is an effective therapy for the newly diagnosed CML patients; however, 20%-30% of the patients initially treated with imatinib eventually experience treatment failure. Therefore, early identification of these patients is of high clinical relevance. In the present study, we by undertaking a direct comparison of inducible NOS (iNOS) status in neutrophils from healthy volunteers, newly diagnosed, imatinib responder, and resistant CML patients as well as by conducting in vitro studies in K562 cells demonstrated that inhibition of BCR-ABL by imatinib or siRNA significantly enhanced NO generation and iNOS expression. Indeed, patients exhibiting treatment failure or imatinib resistance were less likely to induce NO generation/iNOS expression. Our findings further demonstrated that imatinib mediated antiproliferative and proapoptotic effect in BCR-ABL+ cells associated with enhanced iNOS expression, and it was significantly prevented in the presence of L-NAME, 1400W, or iNOS siRNA. Overexpression of iNOS in K562 cells expectedly enhanced imatinib sensitivity on cytostasis and apoptosis, even at lower concentration (0.1 μM) of imatinib. Mechanistically, imatinib or BCR-ABL siRNA following deglutathionylation of NF-κB, enhanced its binding to iNOS promoter and induced iNOS transcription. Deglutathionylation of procaspase-3 however associated with increased caspase-3 activity and cell apoptosis. Taken together, results obtained suggest that monitoring NO/iNOS level could be useful to identify patients likely to be responsive or resistant to imatinib and can be used to personalized alternative therapy.
Collapse
Affiliation(s)
| | - Deepika Awasthi
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Megha Dubey
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sheela Nagarkoti
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Tulika Chandra
- Department of Transfusion Medicine, King George's Medical University, Lucknow, India
| | | | - Anil Kumar Tripathi
- Department of Clinical Hematology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India
| | - Madhu Dikshit
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
3
|
Nitz K, Lacy M, Atzler D. Amino Acids and Their Metabolism in Atherosclerosis. Arterioscler Thromb Vasc Biol 2019; 39:319-330. [DOI: 10.1161/atvbaha.118.311572] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
As a leading cause of death worldwide, cardiovascular disease is a global health concern. The development and progression of atherosclerosis, which ultimately gives rise to cardiovascular disease, has been causally linked to hypercholesterolemia. Mechanistically, the interplay between lipids and the immune system during plaque progression significantly contributes to the chronic inflammation seen in the arterial wall during atherosclerosis. Localized inflammation and increased cell-to-cell interactions may influence polarization and proliferation of immune cells via changes in amino acid metabolism. Specifically, the amino acids
l
-arginine (Arg),
l
-homoarginine (hArg) and
l
-tryptophan (Trp) have been widely studied in the context of cardiovascular disease, and their metabolism has been established as key regulators of vascular homeostasis, as well as immune cell function. Cyclic effects between endothelial cells, innate, and adaptive immune cells exist during Arg and hArg, as well as Trp metabolism, that may have distinct effects on the development of atherosclerosis. In this review, we describe the current knowledge surrounding the metabolism, biological function, and clinical perspective of Arg, hArg, and Trp in the context of atherosclerosis.
Collapse
Affiliation(s)
- Katrin Nitz
- From the Institute for Cardiovascular Prevention (K.N., M.L., D.A.), Ludwig-Maximilians-University, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (K.N., M.L., D.A.)
| | - Michael Lacy
- From the Institute for Cardiovascular Prevention (K.N., M.L., D.A.), Ludwig-Maximilians-University, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (K.N., M.L., D.A.)
| | - Dorothee Atzler
- From the Institute for Cardiovascular Prevention (K.N., M.L., D.A.), Ludwig-Maximilians-University, Munich, Germany
- Walther Straub Institute of Pharmacology and Toxicology (D.A.), Ludwig-Maximilians-University, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (K.N., M.L., D.A.)
| |
Collapse
|
4
|
Bae DH, Lane DJR, Jansson PJ, Richardson DR. The old and new biochemistry of polyamines. Biochim Biophys Acta Gen Subj 2018; 1862:2053-2068. [PMID: 29890242 DOI: 10.1016/j.bbagen.2018.06.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/02/2018] [Accepted: 06/04/2018] [Indexed: 10/14/2022]
Abstract
Polyamines are ubiquitous positively charged amines found in all organisms. These molecules play a crucial role in many biological functions including cell growth, gene regulation and differentiation. The three major polyamines produced in all mammalian cells are putrescine, spermidine and spermine. The intracellular levels of these polyamines depend on the interplay of the biosynthetic and catabolic enzymes of the polyamine and methionine salvage pathway, as well as the involvement of polyamine transporters. Polyamine levels are observed to be high in cancer cells, which contributes to malignant transformation, cell proliferation and poor patient prognosis. Considering the critical roles of polyamines in cancer cell proliferation, numerous anti-polyaminergic compounds have been developed as anti-tumor agents, which seek to suppress polyamine levels by specifically inhibiting polyamine biosynthesis, activating polyamine catabolism, or blocking polyamine transporters. However, in terms of the development of effective anti-cancer therapeutics targeting the polyamine system, these efforts have unfortunately resulted in little success. Recently, several studies using the iron chelators, O-trensox and ICL670A (Deferasirox), have demonstrated a decline in both iron and polyamine levels. Since iron levels are also high in cancer cells, and like polyamines, are required for proliferation, these latter findings suggest a biochemically integrated link between iron and polyamine metabolism.
Collapse
Affiliation(s)
- Dong-Hun Bae
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Darius J R Lane
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, Kenneth Myer Building, The University of Melbourne, Parkville, Victoria 3052, Australia.
| | - Patric J Jansson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
5
|
Muxel SM, Aoki JI, Fernandes JCR, Laranjeira-Silva MF, Zampieri RA, Acuña SM, Müller KE, Vanderlinde RH, Floeter-Winter LM. Arginine and Polyamines Fate in Leishmania Infection. Front Microbiol 2018; 8:2682. [PMID: 29379478 PMCID: PMC5775291 DOI: 10.3389/fmicb.2017.02682] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 12/22/2017] [Indexed: 01/22/2023] Open
Abstract
Leishmania is a protozoan parasite that alternates its life cycle between the sand fly and the mammalian host macrophages, involving several environmental changes. The parasite responds to these changes by promoting a rapid metabolic adaptation through cellular signaling modifications that lead to transcriptional and post-transcriptional gene expression regulation and morphological modifications. Molecular approaches such as gene expression regulation, next-generation sequencing (NGS), microRNA (miRNA) expression profiling, in cell Western blot analyses and enzymatic activity profiling, have been used to characterize the infection of murine BALB/c and C57BL/6 macrophages, as well as the human monocytic cell-lineage THP-1, with Leishmania amazonensis wild type (La-WT) or arginase knockout (La-arg-). These models are being used to elucidate physiological roles of arginine and polyamines pathways and the importance of arginase for the establishment of the infection. In this review, we will describe the main aspects of Leishmania-host interaction, focusing on the arginine and polyamines pathways and pointing to possible targets to be used for prognosis and/or in the control of the infection. The parasite enzymes, arginase and nitric oxide synthase-like, have essential roles in the parasite survival and in the maintenance of infection. On the other hand, in mammalian macrophages, defense mechanisms are activated inducing alterations in the mRNA, miRNA and enzymatic profiles that lead to the control of infection. Furthermore, the genetic background of both parasite and host are also important to define the fate of infection.
Collapse
Affiliation(s)
- Sandra M Muxel
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Juliana I Aoki
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Juliane C R Fernandes
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | - Ricardo A Zampieri
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Stephanie M Acuña
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Karl E Müller
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Rubia H Vanderlinde
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Lucile M Floeter-Winter
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Sarwar HS, Akhtar S, Sohail MF, Naveed Z, Rafay M, Nadhman A, Yasinzai M, Shahnaz G. Redox biology of Leishmania and macrophage targeted nanoparticles for therapy. Nanomedicine (Lond) 2017. [PMID: 28635366 DOI: 10.2217/nnm-2017-0049] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Intramacrophage parasite ‘Leishmania’ has developed various mechanisms for proficient uptake into macrophages and phagosome regulation to avoid macrophage's oxidative burst induced by peroxide, hydroxyl radical, hypochlorous acid and peroxynitrite production. One major barrier for impairing the accession of old fashioned anti-Leishmanial drugs is intrinsic incapability to pass through cell membranes and limiting their abilities to ultimately destroy intracellular pathogens. Receptor-mediated targeted drug delivery to the macrophages by using nanoparticles emerges as promising strategy to improve therapeutic efficacy of old-fashioned drug. Receptor-mediated targeted nanoparticles can migrate across the cell membrane barriers and release enclosed drug cargo at sites of infection. This review is focusing on Leishmania-macrophage signaling alterations, its association with drug resistance and role of nanoparticles for receptor mediated macrophage targeting.
Collapse
Affiliation(s)
| | - Sohail Akhtar
- Department of Entomology, University College of Agriculture & Environmental Sciences, The Islamia University, Bahawalpur, Pakistan
| | - Muhammad Farhan Sohail
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Harvard-MIT Division of Health Sciences & Technology, Massachusetts Institute of Technology, Cambridge, MA 0213, USA
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore 54000, Pakistan
| | - Zaeema Naveed
- Department of Epidemiology, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Muhammad Rafay
- Department of Forestry, Range & Wild Life Management, University College of Agriculture & Environmental Sciences, The Islamia University, Bahawalpur, Pakistan
| | - Akhtar Nadhman
- Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, Pakistan
| | - Masoom Yasinzai
- Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, Pakistan
| | - Gul Shahnaz
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
7
|
Yellon SM, Mackler AM, Kirby MA. The Role of Leukocyte Traffic and Activation in Parturition. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/s1071-55760300116-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- S. M. Yellon
- Loma Linda University School of Medicine Center for Perinatal Biology, Departments of Physiologyand Anatomy, Loma Linda, California and Organon Pharmaceuticals, West Orange, New Jersey
| | | | - M. A. Kirby
- Loma Linda University School of Medicine Center for Perinatal Biology, Departments of Physiologyand Anatomy, Loma Linda, California and Organon Pharmaceuticals, West Orange, New Jersey
| |
Collapse
|
8
|
Expression Profile of Cationic Amino Acid Transporters in Rats with Endotoxin-Induced Uveitis. Mediators Inflamm 2016; 2016:6586857. [PMID: 27413255 PMCID: PMC4927963 DOI: 10.1155/2016/6586857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 05/23/2016] [Indexed: 11/17/2022] Open
Abstract
Purpose. The transcellular arginine transportation via cationic amino acid transporter (CAT) is the rate-limiting step in nitric oxide (NO) synthesis, which is crucial in intraocular inflammation. In this study, CAT isoforms and inducible nitric oxide synthase (iNOS) expression was investigated in endotoxin-induced uveitis (EIU). Methods. EIU was induced in Lewis rats by lipopolysaccharide (LPS) injection. In the treatment group, the rats were injected intraperitoneally with the proteasome inhibitor bortezomib before EIU induction. After 24 hours, leukocyte quantification, NO measurement of the aqueous humor, and histopathological examination were evaluated. The expression of CAT isoforms and iNOS was determined by reverse transcription-polymerase chain reaction, western blotting, and immunofluorescence staining. Nuclear factor-kappa B (NF-κB) binding activity was evaluated by electrophoretic mobility shift assay. The mouse macrophage cell line RAW 264.7 was used to validate the in vivo findings. Results. LPS significantly stimulated iNOS, CAT-2A, and CAT-2B mRNA and protein expression but did not affect CAT-1 in EIU rats and RAW 264.7 cells. Bortezomib attenuated inflammation and inhibited iNOS, CAT-2A, and CAT-2B expression through NF-κB inhibition. Conclusions. CAT-2 and iNOS, but not CAT-1, are specifically involved in EIU. NF-κB is essential in the induction of CAT-2 and iNOS in EIU.
Collapse
|
9
|
Singh AK, Awasthi D, Dubey M, Nagarkoti S, Kumar A, Chandra T, Barthwal MK, Tripathi AK, Dikshit M. High oxidative stress adversely affects NFκB mediated induction of inducible nitric oxide synthase in human neutrophils: Implications in chronic myeloid leukemia. Nitric Oxide 2016; 58:28-41. [PMID: 27264783 DOI: 10.1016/j.niox.2016.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 02/07/2023]
Abstract
Increasing evidence support bimodal action of nitric oxide (NO) both as a promoter and as an impeder of oxygen free radicals in neutrophils (PMNs), however impact of high oxidative stress on NO generation is less explored. In the present study, we comprehensively investigated the effect of high oxidative stress on inducible nitric oxide synthase (iNOS) expression and NO generation in human PMNs. Our findings suggest that PMA or diamide induced oxidative stress in PMNs from healthy volunteers, and high endogenous ROS in PMNs of chronic myeloid leukemia (CML) patients attenuate basal as well as LPS/cytokines induced NO generation and iNOS expression in human PMNs. Mechanistically, we found that under high oxidative stress condition, S-glutathionylation of NFκB (p50 and p65 subunits) severely limits iNOS expression due to its reduced binding to iNOS promoter, which was reversed in presence of DTT. Furthermore, by using pharmacological inhibitors, scavengers and molecular approaches, we identified that enhanced ROS generation via NOX2 and mitochondria, reduced Grx1/2 expression and GSH level associated with NFκB S-glutathionylation in PMNs from CML patients. Altogether data obtained suggest that oxidative status act as an important regulator of NO generation/iNOS expression, and under enhanced oxidative stress condition, NOX2-mtROS-NFκB S-glutathionylation is a feed forward loop, which attenuate NO generation and iNOS expression in human PMNs.
Collapse
Affiliation(s)
| | - Deepika Awasthi
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Megha Dubey
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sheela Nagarkoti
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Ashutosh Kumar
- Department of Pathology, King George's Medical University, Lucknow, India
| | - Tulika Chandra
- Department of Transfusion Medicine, King George's Medical University, Lucknow, India
| | | | - Anil Kumar Tripathi
- Department of Clinical Haematology & Medical Oncology, King George's Medical University, Lucknow, India
| | - Madhu Dikshit
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India.
| |
Collapse
|
10
|
Zielińska M, Milewski K, Skowrońska M, Gajos A, Ziemińska E, Beręsewicz A, Albrecht J. Induction of inducible nitric oxide synthase expression in ammonia-exposed cultured astrocytes is coupled to increased arginine transport by upregulated y(+)LAT2 transporter. J Neurochem 2015; 135:1272-81. [PMID: 26448619 DOI: 10.1111/jnc.13387] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/10/2015] [Accepted: 09/25/2015] [Indexed: 12/17/2022]
Abstract
One of the aspects of ammonia toxicity to brain cells is increased production of nitric oxide (NO) by NO synthases (NOSs). Previously we showed that ammonia increases arginine (Arg) uptake in cultured rat cortical astrocytes specifically via y(+)L amino acid transport system, by activation of its member, a heteromeric y(+)LAT2 transporter. Here, we tested the hypothesis that up-regulation of y(+)LAT2 underlies ammonia-dependent increase of NO production via inducible NOS (iNOS) induction, and protein nitration. Treatment of rat cortical astrocytes for 48 with 5 mM ammonium chloride ('ammonia') (i) increased the y(+)L-mediated Arg uptake, (ii) raised the expression of iNOS and endothelial NOS (eNOS), (iii) stimulated NO production, as manifested by increased nitrite+nitrate (Griess) and/or nitrite alone (chemiluminescence), and consequently, (iv) evoked nitration of tyrosine residues of proteins in astrocytes. Except for the increase of eNOS, all the above described effects of ammonia were abrogated by pre-treatment of astrocytes with either siRNA silencing of the Slc7a6 gene coding for y(+)LAT2 protein, or antibody to y(+)LAT2, indicating their strict coupling to y(+)LAT2 activity. Moreover, induction of y(+)LAT2 expression by ammonia was sensitive to Nf-κB inhibitor, BAY 11-7085, linking y(+)LAT2 upregulation to the Nf-κB activation in this experimental setting as reported earlier and here confirmed. Importantly, ammonia did not affect y(+)LAT2 expression nor y(+)L-mediated Arg uptake activity in the cultured cerebellar neurons, suggesting astroglia-specificity of the above described mechanism. The described coupling of up-regulation of y(+)LAT2 transporter with iNOS in ammonia-exposed astrocytes may be considered as a mechanism to ensure NO supply for protein nitration. Ammonia (NH4(+)) increases the expression and activity of the L-arginine (Arg) transporter (Arg/neutral amino acids [NAA] exchanger) y(+)LAT2 in cultured rat cortical astrocytes by a mechanism involving activation (nuclear translocation) of the transcription factor nuclear factor-Nuclear factor-κB (Nf-κB-p65). Up-regulation of y(+)LAT2 transporter is coupled with increased inducible nitric oxide synthase (iNOS) expression, which leads to increase nitric oxide (NO) synthesis and protein nitration.
Collapse
Affiliation(s)
- Magdalena Zielińska
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Krzysztof Milewski
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Skowrońska
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Gajos
- Medical Center of Postgraduate Education, Warsaw, Poland
| | - Elżbieta Ziemińska
- Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | | | - Jan Albrecht
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
11
|
Aristoteles LRCRB, Righetti RF, Pinheiro NM, Franco RB, Starling CM, da Silva JCP, Pigati PA, Caperuto LC, Prado CM, Dolhnikoff M, Martins MA, Leick EA, Tibério IFLC. Modulation of the oscillatory mechanics of lung tissue and the oxidative stress response induced by arginase inhibition in a chronic allergic inflammation model. BMC Pulm Med 2013; 13:52. [PMID: 23947680 PMCID: PMC3751598 DOI: 10.1186/1471-2466-13-52] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 08/07/2013] [Indexed: 02/07/2023] Open
Abstract
Background The importance of the lung parenchyma in the pathophysiology of asthma has previously been demonstrated. Considering that nitric oxide synthases (NOS) and arginases compete for the same substrate, it is worthwhile to elucidate the effects of complex NOS-arginase dysfunction in the pathophysiology of asthma, particularly, related to distal lung tissue. We evaluated the effects of arginase and iNOS inhibition on distal lung mechanics and oxidative stress pathway activation in a model of chronic pulmonary allergic inflammation in guinea pigs. Methods Guinea pigs were exposed to repeated ovalbumin inhalations (twice a week for 4 weeks). The animals received 1400 W (an iNOS-specific inhibitor) for 4 days beginning at the last inhalation. Afterwards, the animals were anesthetized and exsanguinated; then, a slice of the distal lung was evaluated by oscillatory mechanics, and an arginase inhibitor (nor-NOHA) or vehicle was infused in a Krebs solution bath. Tissue resistance (Rt) and elastance (Et) were assessed before and after ovalbumin challenge (0.1%), and lung strips were submitted to histopathological studies. Results Ovalbumin-exposed animals presented an increase in the maximal Rt and Et responses after antigen challenge (p<0.001), in the number of iNOS positive cells (p<0.001) and in the expression of arginase 2, 8-isoprostane and NF-kB (p<0.001) in distal lung tissue. The 1400 W administration reduced all these responses (p<0.001) in alveolar septa. Ovalbumin-exposed animals that received nor-NOHA had a reduction of Rt, Et after antigen challenge, iNOS positive cells and 8-isoprostane and NF-kB (p<0.001) in lung tissue. The activity of arginase 2 was reduced only in the groups treated with nor-NOHA (p <0.05). There was a reduction of 8-isoprostane expression in OVA-NOR-W compared to OVA-NOR (p<0.001). Conclusions In this experimental model, increased arginase content and iNOS-positive cells were associated with the constriction of distal lung parenchyma. This functional alteration may be due to a high expression of 8-isoprostane, which had a procontractile effect. The mechanism involved in this response is likely related to the modulation of NF-kB expression, which contributed to the activation of the arginase and iNOS pathways. The association of both inhibitors potentiated the reduction of 8-isoprostane expression in this animal model.
Collapse
Affiliation(s)
- Luciana R C R B Aristoteles
- Department of Clinical Medicine, School of Medicine, University of Sao Paulo, 01246-903 São Paulo, SP, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kadam RS, Ramamoorthy P, LaFlamme DJ, McKinsey TA, Kompella UB. Hypoxia alters ocular drug transporter expression and activity in rat and calf models: implications for drug delivery. Mol Pharm 2013; 10:2350-61. [PMID: 23607566 PMCID: PMC3973437 DOI: 10.1021/mp3007133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Chronic hypoxia, a key stimulus for neovascularization, has been implicated in the pathology of proliferative diabetic retinopathy, retinopathy of prematurity, and wet age related macular degeneration. The aim of the present study was to determine the effect of chronic hypoxia on drug transporter mRNA expression and activity in ocular barriers. Sprague-Dawley rats were exposed to hypobaric hypoxia (PB = 380 mmHg) for 6 weeks, and neonatal calves were maintained under hypobaric hypoxia (PB = 445 mmHg) for 2 weeks. Age matched controls for rats, and calves were maintained at ambient altitude and normoxia. The effect of hypoxia on transporter expression was analyzed by qRT-PCR analysis of transporter mRNA expression in hypoxic and control rat choroid-retina. The effect of hypoxia on the activity of PEPT, OCT, ATB(0+), and MCT transporters was evaluated using in vitro transport studies of model transporter substrates across calf cornea and sclera-choroid-RPE (SCRPE). Quantitative gene expression analysis of 84 transporters in rat choroid-retina showed that 29 transporter genes were up regulated or down regulated by ≥1.5-fold in hypoxia. Nine ATP binding cassette (ABC) families of efflux transporters including MRP3, MRP4, MRP5, MRP6, MRP7, Abca17, Abc2, Abc3, and RGD1562128 were up-regulated. For solute carrier family transporters, 11 transporters including SLC10a1, SLC16a3, SLC22a7, SLC22a8, SLC29a1, SLC29a2, SLC2a1, SLC3a2, SLC5a4, SLC7a11, and SLC7a4 were up regulated, while 4 transporters including SLC22a2, SLC22a9, SLC28a1, and SLC7a9 were down-regulated in hypoxia. Of the three aquaporin (Aqp) water channels, Aqp-9 was down-regulated, and Aqp-1 was up-regulated during hypoxia. Gene expression analysis showed down regulation of OCT-1, OCT-2, and ATB(0+) and up regulation of MCT-3 in hypoxic rat choroid-retina, without any effect on the expression of PEPT-1 and PEPT-2. Functional activity assays of PEPT, OCT, ATB(0+), and MCT transporters in calf ocular tissues showed that PEPT, OCT, and ATB(0+) functional activity was down-regulated, whereas MCT functional activity was up-regulated in hypoxic cornea and SCRPE. Gene expression analysis of these transporters in rat tissues was consistent with the functional transport assays except for PEPT transporters. Chronic hypoxia results in significant alterations in the mRNA expression and functional activity of solute transporters in ocular tissues.
Collapse
Affiliation(s)
- Rajendra S. Kadam
- Pharmaceutical Sciences and Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | | | | | - Timothy A. McKinsey
- Division of Cardiology and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Uday B. Kompella
- Pharmaceutical Sciences and Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
13
|
Volke A, Rünkorg K, Wegener G, Vasar E, Volke V. Dual effect of nickel on L-arginine/nitric oxide system in RAW 264.7 macrophages. Int Immunopharmacol 2013; 15:511-6. [PMID: 23415871 DOI: 10.1016/j.intimp.2013.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 01/20/2013] [Accepted: 01/25/2013] [Indexed: 12/31/2022]
Abstract
The immunogenic mechanisms of the potent contact allergen nickel are not completely clear. Nitric oxide (NO) serves as a fundamental signalling and effector molecule in the immune system, but little is known about its possible role in immune reactions elicited by nickel. We investigated the effects of nickel on the L-arginine/inducible NO synthase (iNOS) system in a murine macrophage cell line, RAW 264.7. Both LPS-stimulated and non-stimulated RAW 264.7 cells were incubated in the presence of 0-100 μM nickel sulphate for 24 h. Subsequently, NO production, iNOS protein expression, L-arginine uptake and gene expression of iNOS and cationic amino acid transporter systems (CAT) were measured. We found that 100 μM NiSO4 increased LPS-induced nitrite production as well as the formation of [(3)H]-L-citrulline from [(3)H]-L-arginine in the RAW 264.7 cells. Correspondingly, the expression of iNOS gene and protein was also remarkably enhanced. Nevertheless, nickel had an inhibitory effect on L-arginine transport which disappeared gradually upon LPS-stimulation in parallel with an increase in NO output. LPS was found to significantly amplify CAT-3 as well as CAT-2 mRNA expression, mirroring the increase in L-arginine transport. In the range of 1-10 μM, NiSO4 did not have any additional effect on CAT mRNA expression, but at 100 μM it was able to enhance CAT-1 and CAT-3 mRNA expression upon LPS stimulation. Our data indicate that nickel interferes with macrophages' L-arginine/NOS system on multiple levels. Considering the potent biological effects of NO, these influences may contribute to nickel toxicity.
Collapse
Affiliation(s)
- Annika Volke
- Department of Dermatology, University of Tartu, Raja 31, 50417 Tartu, Estonia.
| | | | | | | | | |
Collapse
|
14
|
Huang Q, Huang C, Zhao Y, Wang B, Ren J, Li N, Li J. LPS-stimulated RAW264.7 macrophage CAT-2–mediated l-arginine uptake and nitric oxide biosynthesis is inhibited by omega fatty acid lipid emulsion. J Surg Res 2013; 179:e211-7. [DOI: 10.1016/j.jss.2012.02.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 01/18/2012] [Accepted: 02/13/2012] [Indexed: 12/01/2022]
|
15
|
Liu PW, Chen MF, Tsai APY, Lee TJF. STAT1 mediates oroxylin a inhibition of iNOS and pro-inflammatory cytokines expression in microglial BV-2 cells. PLoS One 2012; 7:e50363. [PMID: 23236370 PMCID: PMC3516518 DOI: 10.1371/journal.pone.0050363] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 10/23/2012] [Indexed: 11/19/2022] Open
Abstract
Microglia-mediated inflammation is implicated in pathogenesis of neurodegenerative diseases. Oroxylin A, a flavonoid isolated from Scutellariae baicalensis, has been shown to ameliorate microglia activation-mediated neurodegeneration in vivo. The molecular mechanism underlying the inhibitory effects of oroxylin A on microglia activation, however, remains unknown. In the present study, effects of oroxylin A co-treated with lipopolysaccharide (LPS, 100 ng/ml) on LPS-induced activation of cultured microglial BV-2 cells were examined. Nitric oxide (NO) production was determined by Greiss method. Expression of inducible nitric oxide synthase (iNOS), interleukin (IL)-1β and IL-6 was assessed using real-time RT-PCR or Western blot analysis. Furthermore, activation of the nuclear factor κB (NFκB) and the signal transducer and activator of transcription 1 (STAT1) was examined by Western blot analysis and transcription factor DNA-binding activity assay. Our results indicated that oroxylin A (10-100 µM) in a concentration-dependent manner inhibited LPS-induced NO production via blocking iNOS expression at both mRNA and protein levels without affecting the degradation rate of iNOS mRNA. Moreover, oroxylin A significantly attenuated LPS-induced late expression (20 hours after LPS challenge) of IL-1β and IL-6. Furthermore, oroxylin A significantly suppressed LPS-induced JAK2-mediated STAT1 phosphorylation without affecting LPS-induced NFκB-p65 nuclear translocation or NFκB-p65 DNA-binding activity. This is consistent with the finding that AG490, a specific JAK2 inhibitor, significantly inhibited LPS-induced STAT1 phosphorylation with almost completely diminished iNOS expression. These results suggest that oroxylin A, via suppressing STAT1 phosphorylation, inhibits LPS-induced expression of pro-inflammatory genes in BV-2 microglial cells.
Collapse
Affiliation(s)
- Po-Wen Liu
- Institute of Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan
| | - Mei-Fang Chen
- Center for Vascular Medicine, College of Life Sciences, Tzu Chi University, Hualien, Taiwan
- Department of Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
- Tzu Chi College of Technology, Hualien, Taiwan
| | - Andy Po-Yi Tsai
- Institute of Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan
| | - Tony J. F. Lee
- Institute of Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan
- Department of Life Sciences, Tzu Chi University, Hualien, Taiwan
- Center for Vascular Medicine, College of Life Sciences, Tzu Chi University, Hualien, Taiwan
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America
- * E-mail:
| |
Collapse
|
16
|
Post-transcriptional divergence in the regulation of CAT-2A, CAT-2B and iNOS expression by dexamethasone in vascular smooth muscle cells. Amino Acids 2011; 43:667-76. [DOI: 10.1007/s00726-011-1115-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 09/29/2011] [Indexed: 11/26/2022]
|
17
|
Benson RC, Hardy KA, Morris CR. Arginase and arginine dysregulation in asthma. J Allergy (Cairo) 2011; 2011:736319. [PMID: 21747870 PMCID: PMC3124954 DOI: 10.1155/2011/736319] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 02/07/2011] [Accepted: 02/10/2011] [Indexed: 01/01/2023] Open
Abstract
In recent years, evidence has accumulated indicating that the enzyme arginase, which converts L-arginine into L-ornithine and urea, plays a key role in the pathogenesis of pulmonary disorders such as asthma through dysregulation of L-arginine metabolism and modulation of nitric oxide (NO) homeostasis. Allergic asthma is characterized by airway hyperresponsiveness, inflammation, and remodeling. Through substrate competition, arginase decreases bioavailability of L-arginine for nitric oxide synthase (NOS), thereby limiting NO production with subsequent effects on airway tone and inflammation. By decreasing L-arginine bioavailability, arginase may also contribute to the uncoupling of NOS and the formation of the proinflammatory oxidant peroxynitrite in the airways. Finally, arginase may play a role in the development of chronic airway remodeling through formation of L-ornithine with downstream production of polyamines and L-proline, which are involved in processes of cellular proliferation and collagen deposition. Further research on modulation of arginase activity and L-arginine bioavailability may reveal promising novel therapeutic strategies for asthma.
Collapse
Affiliation(s)
- Renée C. Benson
- Bay Area Pediatric Pulmonary Medical Corporation, Children's Hospital & Research Center Oakland, Oakland, CA 94609, USA
| | - Karen A. Hardy
- Bay Area Pediatric Pulmonary Medical Corporation, Children's Hospital & Research Center Oakland, Oakland, CA 94609, USA
| | - Claudia R. Morris
- Department of Emergency Medicine, Children's Hospital & Research Center Oakland, Oakland, CA 94609, USA
| |
Collapse
|
18
|
Regulation of arginine transport and metabolism by protein kinase Calpha in endothelial cells: stimulation of CAT2 transporters and arginase activity. J Mol Cell Cardiol 2010; 49:260-70. [PMID: 20430034 DOI: 10.1016/j.yjmcc.2010.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 03/24/2010] [Accepted: 04/19/2010] [Indexed: 11/23/2022]
Abstract
Endothelial metabolism of arginine plays a key role in vascular homeostasis. While it is documented that the availability of extracellular arginine is critical for nitric oxide synthesis by eNOS, little is known about the relationships existing between arginine transport and the activity of arginase, the enzyme responsible for the production of ornithine and urea. The present study aims to characterize the role of PKC in the regulation of arginine transport and metabolism by human umbilical vein (HUVEC) and aortic (HAEC) endothelial cells. The results obtained demonstrate that the activation of PKCalpha by phorbol esters or thymeleatoxin causes a transient increase of arginine transport through system y(+), referable to the induction of SLC7A2 mRNAs and to the increased expression of CAT2 transporters. PKCalpha-dependent stimulation of arginine transport requires the activation of MEK/ERK1/2 cascade, which leads to the stimulation of AP-1 and to the consequent induction of CAT2 expression. In parallel, PKCalpha activation also increases arginase expression and activity and promotes eNOS phosphorylation, resulting in decreased NO production. It is concluded that the activation of PKCalpha stimulates arginine entry in human endothelial cells and shifts the metabolism of the cationic amino acid from NO synthesis to arginase-dependent production of ornithine and urea. This metabolic deviation may contribute to the endothelial dysfunction associated with conditions of PKC overactivity.
Collapse
|
19
|
Jones HN, Jansson T, Powell TL. IL-6 stimulates system A amino acid transporter activity in trophoblast cells through STAT3 and increased expression of SNAT2. Am J Physiol Cell Physiol 2009; 297:C1228-35. [PMID: 19741197 DOI: 10.1152/ajpcell.00195.2009] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Changes in placental nutrient transport are closely associated with abnormal fetal growth. However, the molecular mechanisms underlying the regulation of placental amino acid transporters are unknown. We demonstrate that physiological concentrations of the proinflammatory cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-alpha stimulate the activity of amino acid transporter system A, but not system L, in cultured human primary trophoblast cells. Both cytokines increased the gene and protein expression of the Na(+)-coupled neutral amino acid transporter (SNAT)2 isoform and upregulated SNAT1 protein expression. IL-6 increased Tyr705 phosphorylation of signal transducer and activator of transcription 3 (STAT3). In cells transfected with small interfering RNA (siRNA) targeting STAT3, the RNA and protein expression of SNAT2, but not SNAT1, was reduced and the stimulating effect of IL-6 on system A activity was abolished. Despite eliciting similar responses in amino acid transport activity and transporter expression, TNF-alpha effects on system A activity were not mediated through the JAK/STAT pathway. In conclusion, we have identified a novel regulatory pathway involving increased gene expression of the SNAT2 isoform mediated by a STAT-dependent pathway, which links IL-6 to increased activity of system A, a ubiquitously expressed transporter of neutral amino acids. From these new findings, we propose that upregulation of amino acid transporters by cytokines may contribute to increased placental nutrient transport and fetal overgrowth, which are commonly found in pregnancies complicated by maternal diabetes and obesity.
Collapse
Affiliation(s)
- H N Jones
- Department of Obstetrics and Gynecology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA.
| | | | | |
Collapse
|
20
|
Gookin JL, Stauffer SH, Stone MR. Induction of arginase II by intestinal epithelium promotes the uptake of L-arginine from the lumen of Cryptosporidium parvum-infected porcine ileum. J Pediatr Gastroenterol Nutr 2008; 47:417-27. [PMID: 18852633 PMCID: PMC3685577 DOI: 10.1097/mpg.0b013e31816f6c02] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES To determine the specific transport system activities and expression of transporter genes responsible for uptake of L-arginine from the lumen of normal and Cryptosporidium parvum-infected neonatal porcine ileum and the influence of L-arginine catabolic pathways on L-arginine uptake. METHODS Intact sheets of ileal mucosa from control and C parvum-infected neonatal piglets were mounted in Ussing chambers and the uptake of 14C-L-arginine was determined under initial rate conditions and in the presence of transport system-selective inhibitors. Epithelial expression of L-arginine transporter genes was quantified by real-time reverse transcription polymerase chain reaction. L-Arginine catabolic enzyme expression was examined by immunoblotting epithelial lysates for arginase I and II. The role of intracellular catabolism in promoting the uptake of L-arginine was determined by pharmacological inhibition of nitric oxide synthase and arginase activities. RESULTS C parvum-infected ileum transported L-arginine at rates equivalent to uninfected epithelium despite profound villous atrophy. This was attributed to enhanced uptake of L-arginine by individual epithelial cells in the infection. There were no differences in L-arginine transport system activities (y(+) and B(0, +)) or level of transporter gene expression (CAT-1, CAT-2A, and ATB(0, +)) between uninfected and C parvum-infected epithelial cells. However, infected epithelia had induced expression of the L-arginine hydrolytic enzyme arginase II and lower concentrations of L-arginine. Furthermore, transport of L-arginine by the infected epithelium was significantly inhibited by pharmacological blockade of arginase. CONCLUSIONS Intracellular catabolism by arginase II, the induction of which has not been described previously for intestinal epithelium, facilitates uptake of L-arginine by infected epithelium using transport systems that do not differ from those of uninfected cells. Induction of arginase II may limit nitric oxide synthesis by competing with nitric oxide synthase for utilization of L-arginine or promote use of L-arginine for the synthesis of reparative polyamines.
Collapse
Affiliation(s)
- Jody L Gookin
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA.
| | | | | |
Collapse
|
21
|
Weinberg JB, Lopansri BK, Mwaikambo E, Granger DL. Arginine, nitric oxide, carbon monoxide, and endothelial function in severe malaria. Curr Opin Infect Dis 2008; 21:468-75. [PMID: 18725795 PMCID: PMC2732119 DOI: 10.1097/qco.0b013e32830ef5cf] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE OF REVIEW Parasiticidal therapy of severe falciparum malaria improves outcome, but up to 30% of these patients die despite best therapy. Nitric oxide is protective against severe disease, and both nitric oxide and arginine (the substrate for nitric oxide synthase) are low in clinical malaria. Parasitized red blood cell interactions with endothelium are important in the pathophysiology of malaria. This review describes new information regarding nitric oxide, arginine, carbon monoxide, and endothelial function in malaria. RECENT FINDINGS Low arginine, low nitric oxide production, and endothelial dysfunction are common in severe malaria. The degree of hypoargininemia and endothelial dysfunction (measured by reactive hyperemia-peripheral artery tonometry) is proportional to parasite burden and severity of illness. Plasma arginase (an enzyme that catabolizes arginine) is elevated in severe malaria. Administering arginine intravenously reverses hypoargininemia and endothelial dysfunction. The cause(s) of hypoargininemia in malaria is unknown. Carbon monoxide (which shares certain functional properties with nitric oxide) protects against cerebral malaria in mice. SUMMARY Replenishment of arginine and restoration of nitric oxide production in clinical malaria should diminish parasitized red blood cells adherence to endothelium and reduce the sequelae of these interactions (e.g. cerebral malaria). Arginine therapy given in addition to conventional antimalaria treatment may prove to be beneficial in severe malaria.
Collapse
Affiliation(s)
- J Brice Weinberg
- Duke University and VA Medical Centers, Durham, North Carolina 27705, USA.
| | | | | | | |
Collapse
|
22
|
Wanasen N, Soong L. L-arginine metabolism and its impact on host immunity against Leishmania infection. Immunol Res 2008; 41:15-25. [PMID: 18040886 DOI: 10.1007/s12026-007-8012-y] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Leishmaniasis is a vector-borne disease found in many countries worldwide. The causative agent of the disease, Leishmania spp., lives as an obligate intracellular parasite within mammalian hosts. Since tissue macrophages are major target cells for parasite replication, the outcome of infection depends largely on the activation status of these cells. L-arginine is a crucial amino acid required for both nitric oxide (NO)-mediated parasite killing and polyamine-mediated parasite replication. This review highlights the significance of L-arginine as a factor determining the outcomes of Leishmania infection in vitro and its influences on host immune responses in vivo. Various therapeutic approaches targeting L-arginine metabolic pathways during infections with Leishmania are also discussed.
Collapse
Affiliation(s)
- Nanchaya Wanasen
- Department of Microbiology, Institute for Human Infections and Immunity, Center for Biodefense and Emerging Infections, Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | | |
Collapse
|
23
|
Mohapatra SS. Role of natriuretic peptide signaling in modulating asthma and inflammation. Can J Physiol Pharmacol 2007; 85:754-9. [PMID: 17823639 DOI: 10.1139/y07-066] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Atrial natriuretic peptide (ANP), the C-terminal peptide comprising residues 99-126 of the pro-ANP hormone, has been studied for 3 decades for its cardiovascular effects. Recent reports suggest that it plays a significant role in modulation of the immune system. Immune cells, including macrophages, dendritic cells, and T lymphocytes, express receptors for ANP. ANP plays a significant role in shaping the early immune response to environmental antigens and may play a critical role in the interaction between cells of the innate and adaptive immune systems; it also appears to be involved in polarizing the immune response to allergens. Thus, ability to alter the magnitude of natriuretic peptide receptor A (NPRA) signaling could be exploited to develop therapeutics for several allergic diseases, including asthma. This report will review and critically evaluate the role of the ANP pathway in asthma and inflammation.
Collapse
Affiliation(s)
- Shyam S Mohapatra
- Division of Allergy and Immunology-JMC Airway Disease Research Center, Department of Internal Medicine, University of South Florida and VA Hospital, Tampa, FL 33612, USA.
| |
Collapse
|
24
|
Inhibition of NADPH oxidase by apocynin inhibits lipopolysaccharide (LPS) induced up-regulation of arginase in rat alveolar macrophages. Eur J Pharmacol 2007; 579:403-10. [PMID: 18001708 DOI: 10.1016/j.ejphar.2007.10.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 10/16/2007] [Accepted: 10/18/2007] [Indexed: 11/22/2022]
Abstract
Reactive oxygen species participate in the pathogenesis of inflammatory airway diseases, in which increased arginase may play a role by interfering with nitric oxide (NO) synthesis and providing substrate for collagen synthesis. Therefore a modulatory role of reactive oxygen species for arginase was explored in alveolar macrophages using the NADPH oxidase inhibitor apocynin. The effects of lipopolysacharides (LPS) and apocynin on nitrite accumulation, arginase activity and mRNA for inducible NO synthase (iNOS), arginase I and II were determined. Superoxide anion (O(2)(-)) release was analysed by the iodonitrotetrazolium (INT) formazan assay. LPS (1 microg/ml) caused a 55%, transient increase in INT formation, i.e. O(2)(-) release which was inhibited by apocynin (500 microM). LPS caused a 2 fold increase in arginase activity and a marked increase in mRNA encoding arginase I, the predominant isoenzyme. Both effects were largely attenuated by apocynin. Apocynin did not affect the stability of arginase I mRNA, but accelerated the decline of arginase activity when protein synthesis was inhibited by cycloheximide. Apocynin also reduced LPS-induced nitrite accumulation (by 30%) and iNOS mRNA expression, but the magnitude of these effects was smaller than that on arginase I. Arginase I mRNA was also increased following exposure to hydrogen peroxide (H(2)O(2), 200 muM). In conclusion, inhibition of NADPH oxidase in alveolar macrophages causes down-regulation of arginase, indicating that reactive oxygen species exert stimulatory effects on arginase. Enhanced transcription of arginase mRNA and prolongation of the life time of the active enzyme appear to contribute to the enhanced arginase activity.
Collapse
|
25
|
Abstract
For many years, dietary arginine supplementation, often combined with other substances, has been used as a mechanism to boost the immune system. Considerable controversy, however, exists as to the benefits and indications of dietary arginine due in part to a poor understanding of the role played by this amino acid in maintaining immune function. Emerging knowledge promises to clear this controversy and allow for arginine's safe use. In myeloid cells, arginine is mainly metabolized either by inducible nitric oxide (NO) synthases (iNOS) or by arginase 1, enzymes that are stimulated by T helper 1 or 2 cytokines, respectively. Thus, activation of iNOS or arginase (or both) reflects the type of inflammatory response in a specific disease process. Myeloid suppressor cells (MSC) expressing arginase have been described in trauma (in both mice and humans), intra-abdominal sepsis, certain infections, and prominently, cancer. Myeloid cells expressing arginase have been shown to accumulate in patients with cancer. Arginase 1 expression is also detected in mononuclear cells after trauma or surgery. MSC efficiently deplete arginine and generate ornithine. Through arginine depletion, MSC may control NO production and regulate other arginine-dependent biological processes. Low circulating arginine has been documented in trauma and cancer, suggesting that MSC may exert a systemic effect and cause a state of arginine deficiency. Simultaneously, T lymphocytes depend on arginine for proliferation, zeta-chain peptide and T-cell receptor complex expression, and the development of memory. T-cells cocultured with MSC exhibit the molecular and functional effects associated with arginine deficiency. Not surprisingly, T-cell abnormalities, including decreased proliferation and loss of the zeta-chain, are observed in cancer and after trauma.
Collapse
Affiliation(s)
- Petar J Popovic
- Department of Surgery, University of Pittsburgh Medical School, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
26
|
Abstract
Arginine has multiple metabolic fates and thus is one of the most versatile amino acids. Not only is it metabolically interconvertible with the amino acids proline and glutamate, but it also serves as a precursor for synthesis of protein, nitric oxide, creatine, polyamines, agmatine, and urea. These processes do not all occur within each cell but are differentially expressed according to cell type, age and developmental stage, diet, and state of health or disease. Arginine metabolism also is modulated by activities of various transporters that move arginine and its metabolites across the plasma and mitochondrial membranes. Moreover, several key enzymes in arginine metabolism are expressed as multiple isozymes whose expression can change rapidly and dramatically in response to a variety of different stimuli in health and disease. As illustrated by the questions raised in this article, we currently have an imperfect and incomplete picture of arginine metabolism for any mammalian species. It has become clear that a more complete understanding of arginine metabolism will require integration of information obtained from multiple approaches, including genomics, proteomics, and metabolomics.
Collapse
Affiliation(s)
- Sidney M Morris
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
27
|
Weinberg JB, Fermor B, Guilak F. Nitric oxide synthase and cyclooxygenase interactions in cartilage and meniscus: relationships to joint physiology, arthritis, and tissue repair. Subcell Biochem 2007; 42:31-62. [PMID: 17612045 DOI: 10.1007/1-4020-5688-5_2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Rheumatoid arthritis and osteoarthritis are painful and debilitating diseases with complex pathophysiology. There is growing evidence that pro-inflammatory cytokines (e.g., interleukin-1 and tumor necrosis factor alpha) and mediators (e.g., prostaglandins, leukotrienes, and nitric oxide) play critical roles in the development and perpetuation of tissue inflammation and damage in joint tissues such as articular cartilage and meniscus. While earlier studies have generally focused on cells of the synovium (especially macrophages), there is increasing evidence that chondrocytes and meniscal cells actively contribute to inflammatory processes. In particular, it is now apparent that mechanical forces engendered by joint loading are transduced to biological signals at the cellular level and that these signals modulate gene expression and biochemical processes. Here we give an overview of the interplay of cytokines and mechanical stress in the production of cyclooxygenases and prostaglandins; lipoxygenases and leukotrienes; and nitric oxide synthases and nitric oxide in arthritis, with particular focus on the interactions of these pathways in articular cartilage and meniscus.
Collapse
MESH Headings
- Animals
- Arthritis, Rheumatoid/enzymology
- Arthritis, Rheumatoid/physiopathology
- Cartilage, Articular/enzymology
- Cartilage, Articular/pathology
- Cartilage, Articular/physiopathology
- Chondrocytes/enzymology
- Chondrocytes/pathology
- Gene Expression Regulation, Enzymologic
- Humans
- Inflammation/enzymology
- Inflammation/pathology
- Inflammation Mediators/metabolism
- Macrophages/enzymology
- Macrophages/pathology
- Menisci, Tibial/enzymology
- Menisci, Tibial/pathology
- Menisci, Tibial/physiopathology
- Nitric Oxide Synthase/biosynthesis
- Osteoarthritis, Knee/enzymology
- Osteoarthritis, Knee/pathology
- Osteoarthritis, Knee/physiopathology
- Prostaglandin-Endoperoxide Synthases/biosynthesis
- Regeneration
- Signal Transduction
- Stress, Mechanical
- Synovial Membrane/enzymology
- Synovial Membrane/pathology
Collapse
Affiliation(s)
- J Brice Weinberg
- Department of Medicine, Division of Hematology-Oncology, VA and Duke University Medical Centers, Durham, North Carolina 27705, USA.
| | | | | |
Collapse
|
28
|
Pérez-Neri I, Castro E, Montes S, Boll MC, Barges-Coll J, Soto-Hernández JL, Ríos C. Arginine, citrulline and nitrate concentrations in the cerebrospinal fluid from patients with acute hydrocephalus. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 851:250-6. [PMID: 17110176 DOI: 10.1016/j.jchromb.2006.10.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 10/12/2006] [Accepted: 10/16/2006] [Indexed: 12/20/2022]
Abstract
Citrulline and nitric oxide (NO) are synthesized by NO synthase (NOS) in a 1:1-stoichiometry. In this study, we determined by HPLC arginine and citrulline concentrations by fluorescence detection and nitrate levels by UV absorbance detection in the cerebrospinal fluid (CSF) from patients with acute hydrocephalus that underwent ventricular drainage. We found increased citrulline concentration (50.6+/-17.2 versus 20.9+/-2.0 microM) and decreased arginine/citrulline molar ratio (0.42+/-0.11 versus 1.12+/-0.16) in hydrocephalus patients, while arginine and nitrate concentrations and citrulline/nitrate molar ratio remained with little change. Citrulline has been determined as a marker of NOS activity in some studies, but it remains to be determined the extent at which this statement holds true, since other biochemical pathways also regulate the concentration of this amino acid. Our results suggest that citrulline is primarily synthesized from NOS in acute hydrocephalus. The evaluation of sample deproteinization by addition of methanol for the analysis of amino acids in CSF is also reported.
Collapse
Affiliation(s)
- Iván Pérez-Neri
- Department of Neurochemistry, National Institute of Neurology and Neurosurgery, Insurgentes Sur 3877, La Fama, Tlalpan, 14269, Mexico City, Mexico
| | | | | | | | | | | | | |
Collapse
|
29
|
Rotoli BM, Dall'asta V, Barilli A, D'Ippolito R, Tipa A, Olivieri D, Gazzola GC, Bussolati O. Alveolar macrophages from normal subjects lack the NOS-related system y+ for arginine transport. Am J Respir Cell Mol Biol 2007; 37:105-12. [PMID: 17363779 DOI: 10.1165/rcmb.2006-0262oc] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Systems y+ and y+L represent the main routes for arginine transport in mammalian cells. While system y+ activity is needed for the stimulated NO production in rodent alveolar macrophages (AM), no information is yet available about arginine transport in human AM. We study here arginine influx and genes for arginine transporters in AM from bronchoalveolar lavage of normal subjects. These cells express the y+ -related genes SLC7A1/CAT1 and SLC7A2/CAT2B, as well as the y+L genes SLC7A7/y+LAT1 and SLC7A6/y+LAT2. However, compared with human endothelial cells, AM express much less SLC7A2 mRNA and higher levels of SLC7A7 mRNA. Granulocyte macrophage colony-stimulating factor or IFN-gamma do not change the expression of any transporter gene, while lipopolysaccharide induces SLC7A2/CAT2B. Under all the conditions tested, leucine inhibits most of the arginine transport in the presence of Na+ and N-ethylmaleimide, an inhibitor of system y+, is completely ineffective, indicating that system y+L operates most of the arginine influx. Comparable results are obtained in AM from patients with interstitial lung disease, such as Nonspecific Interstitial Pneumonia (NSIP), although these cells have a higher SLC7A1 and a lower SLC7A7 expression than AM from normal subjects. It is concluded that AM from normal subjects or patients with NSIP lack a functional transport system y+, a situation that may limit arginine availability for NO synthesis. Moreover, since mutations of SLC7A7/y+LAT1 cause Lysinuric Protein Intolerance, a disease often associated with AM impairment and alveolar proteinosis, the high SLC7A7 expression observed in human AM suggests that y+LAT1 activity is important for the function of these cells.
Collapse
Affiliation(s)
- Bianca Maria Rotoli
- Sezione di Patologia Generale e Clinica, Dipartimento di Medicina Sperimentale, Università di Parma, Via Volturno 39, 43100 Parma, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Rotmann A, Simon A, Martiné U, Habermeier A, Closs EI. Activation of classical protein kinase C decreases transport via systems y+ and y+L. Am J Physiol Cell Physiol 2007; 292:C2259-68. [PMID: 17329401 DOI: 10.1152/ajpcell.00323.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation of protein kinase C (PKC) downregulates the human cationic amino acid transporters hCAT-1 (SLC7A1) and hCAT-3 (SLC7A3) (Rotmann A, Strand D, Martiné U, Closs EI. J Biol Chem 279: 54185-54192, 2004; Rotmann A, Vekony N, Gassner D, Niegisch G, Strand D, Martine U, Closs EI. Biochem J 395: 117-123, 2006). However, others found that PKC increased arginine transport in various mammalian cell types, suggesting that the expression of different arginine transporters might be responsible for the opposite PKC effects. We thus investigated the consequence of PKC activation by phorbol-12-myristate-13-acetate (PMA) in various human cell lines expressing leucine-insensitive system y(+) [hCAT-1, hCAT-2B (SLC7A2), or hCAT-3] as well as leucine-sensitive system y(+)L [y(+)LAT1 (SLC7A7) or y(+)LAT2 (SLC7A6)] arginine transporters. PMA reduced system y(+) activity in all cell lines tested, independent of the hCAT isoform expressed, while mRNAs encoding the individual hCAT isoforms were either unchanged or increased. System y(+)L activity was also inhibited by PMA. The extent and onset of inhibition varied between cell lines; however, a PMA-induced increase in arginine transport was never observed. In addition, when expressed in Xenopus laevis oocytes, y(+)LAT1 and y(+)LAT2 activity was reduced by PMA, and this inhibition could be prevented by the PKC inhibitor bisindolylmaleimide I. In ECV304 cells, PMA-induced inhibition of systems y(+) and y(+)L could be prevented by Gö6976, a specific inhibitor of conventional PKCs. Thymelea toxin, which activates preferentially classical PKC, had a similar inhibitory effect as PMA. In contrast, phosphatidylinositol-3,4,5-triphosphate-dipalmitoyl, an activator of atypical PKC, had no effect. These data demonstrate that systems y(+) and y(+)L are both downregulated by classical PKC.
Collapse
Affiliation(s)
- Alexander Rotmann
- Dept. of Pharmacology, Johannes Gutenberg University, Obere Zahlbacher Str. 67, 55101 Mainz, Germany
| | | | | | | | | |
Collapse
|
31
|
Motawi TK, Abd Elgawad HM, Shahin NN. Modulation of indomethacin-induced gastric injury by spermine and taurine in rats. J Biochem Mol Toxicol 2007; 21:280-8. [PMID: 17912696 DOI: 10.1002/jbt.20194] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This study investigated the involvement of neutrophil infiltration, nitric oxide (NO) generation, and oxidative stress in indomethacin-induced ulcer and the possible gastroprotective potentials of spermine and taurine, known for their tissue regenerating and antioxidant effects, respectively. Male Wistar albino rats (180-220 g) were allocated into a normal control group, ulcer control group (received a single dose of indomethacin 40 mg-kg p.o.), and two ulcer groups pretreated with spermine (150 mg-kg p.o. 1 h before ulcer induction) and taurine (250 mg-kg i.p. for three consecutive days before ulcer induction). The animals were killed 6 h after indomethacin administration, and the gastric juice, serum, and mucosal tissue were used for gastric injury evaluation. Both modulators significantly ameliorated the indomethacin-induced gastric lesions in glandular mucosa. Notably, spermine exhibited the most pronounced effect as manifested by great reduction in the gastric ulcer index, normalization of the elevated gastric acidity, and triggering of mucin production. Spermine and taurine were able to decrease the elevated levels of gastric myeloperoxidase, conjugated diene, and serum NO. However, the lowered tissue NO content was markedly elevated only by taurine. The antioxidant action of taurine was illustrated by restoration of the depressed content of glutathione, normalization of the inhibited activities of glutathione reductase, and superoxide dismutase. These results suggest that spermine and taurine confer significant gastroprotection against indomethacin-induced gastric injury with the priority of spermine.
Collapse
Affiliation(s)
- Tarek K Motawi
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | | | | |
Collapse
|
32
|
|
33
|
Huang YH, Tsai PS, Kai YF, Yang CH, Huang CJ. Lidocaine inhibition of inducible nitric oxide synthase and cationic amino acid transporter-2 transcription in activated murine macrophages may involve voltage-sensitive Na+ channel. Anesth Analg 2006; 102:1739-44. [PMID: 16717319 DOI: 10.1213/01.ane.0000219593.15109.db] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Lidocaine has been reported to inhibit nitric oxide (NO) production in activated murine macrophages, but the role of inducible NO synthase (iNOS) in lidocaine-induced inhibition of NO has not been explored. In addition, type-2 cationic amino acid transporter (CAT-2) and guanosine triphosphate cyclohydrolase I (GTPCH) also regulate iNOS activity. The effects of lidocaine on CAT-2 and GTPCH are unknown. To explore further these effects, confluent immortalized murine macrophages (RAW264.7 cells) were incubated with lipopolysaccharide (LPS) or in combination with lidocaine (5, 50, or 500 microM) for 18 h before harvesting. We also used tetrodotoxin (TTX) and veratridine to elucidate the possible role of voltage-sensitive Na+ channel. Our data demonstrated that LPS significantly upregulated transcription of iNOS and CAT-2 but not GTPCH in stimulated macrophages. In a dose-dependent manner, lidocaine significantly attenuated the LPS-induced upregulation of iNOS and CAT-2. Conversely, lidocaine significantly increased GTPCH transcription in LPS-stimulated macrophages. The effects of TTX on iNOS, CAT-2, and GTPCH expression were comparable to those of lidocaine. In addition, veratridine significantly attenuated the effects of lidocaine and TTX. We therefore concluded that lidocaine significantly inhibits iNOS and CAT-2 and, in turn, enhances GTPCH transcription in LPS-stimulated macrophages via a mechanism that possibly involves the voltage-sensitive Na+ channel.
Collapse
Affiliation(s)
- Ya-Hsien Huang
- Department of Anesthesiology, Mackay Memorial Hospital, Taipei, Taiwan.
| | | | | | | | | |
Collapse
|
34
|
Yeramian A, Martin L, Serrat N, Arpa L, Soler C, Bertran J, McLeod C, Palacín M, Modolell M, Lloberas J, Celada A. Arginine transport via cationic amino acid transporter 2 plays a critical regulatory role in classical or alternative activation of macrophages. THE JOURNAL OF IMMUNOLOGY 2006; 176:5918-24. [PMID: 16670299 DOI: 10.4049/jimmunol.176.10.5918] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Arginine is processed by macrophages in response to the cytokines to which these cells are exposed. Th1-type cytokines induce NO synthase 2, which metabolizes arginine into nitrites, while the Th2-type cytokines produce arginase, which converts arginine into polyamines and proline. Activation of bone marrow-derived macrophages by these two types of cytokines increases L-arginine transport only through the y(+) system. Analysis of the expression of the genes involved in this system showed that Slc7A1, encoding cationic amino acid transporters (CAT)1, is constitutively expressed and is not modified by activating agents, while Slc7A2, encoding CAT2, is induced during both classical and alternative activation. Macrophages from Slc7A2 knockout mice showed a decrease in L-arginine transport in response to the two kinds of cytokines. However, while NO synthase 2 and arginase expression were unmodified in these cells, the catabolism of arginine was impaired by both pathways, producing smaller amounts of nitrites and also of polyamines and proline. In addition, the induction of Slc7A2 expression was independent of the arginine available and of the enzymes that metabolize it. In conclusion, the increased arginine transport mediated by activators is strongly regulated by CAT2 expression, which could limit the function of macrophages.
Collapse
Affiliation(s)
- Andrée Yeramian
- Macrophage Biology Group, Institute of Biomedical Research, Barcelona Science Park, Josep Samitier 1-5, E-08028 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Chen CC, Lee JJ, Tsai PS, Lu YT, Huang CL, Huang CJ. Platonin attenuates LPS-induced CAT-2 and CAT-2B induction in stimulated murine macrophages. Acta Anaesthesiol Scand 2006; 50:604-12. [PMID: 16643232 DOI: 10.1111/j.1399-6576.2006.00750.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Platonin, a cyanine photosensitizing dye, is a potent immunomodulator that suppresses acute inflammation. Platonin not only inhibits interleukin (IL)-1beta, IL-6, and tumor necrosis factor (TNF)-alpha production but also improves circulatory failure in septic rats. In addition, platonin reduces plasma nitric oxide (NO) formation during sepsis. However, the effects of platonin on inducible NO synthase (iNOS) and cationic amino-acid transporter (including CAT-2, CAT-2 A, and CAT-2B) expressions during sepsis remain uninvestigated. METHODS Five groups of confluent murine macrophages (RAW264.7 cells) were randomly allocated to receive a 1-h pretreatment of one of five doses of platonin (0.1 microM, 1 microM, 10 microM, 100 microM, or 1000 microM) followed by lipopolysaccharide (LPS; 100 ng ml(-1)). For negative, positive, and platonin control, three other groups of cell cultures were randomly allocated to receive phosphate-buffered saline, LPS, or platonin (1000 microM). The cultures were harvested after exposing them to LPS for 18 h or a comparable duration in those groups without LPS. NO production, L-arginine transport, and expression of the relevant enzymes were then evaluated. RESULTS Platonin significantly attenuated LPS-induced up-regulation of iNOS expression and NO production in stimulated murine macrophages in a dose-dependent manner. Platonin also significantly inhibited up-regulation of CAT-2 and CAT-2B expression as well as L-arginine transport in LPS-stimulated murine macrophages in a dose-dependent manner. In contrast, CAT-2 A expression in murine macrophages was not affected by LPS and/or platonin. CONCLUSIONS Platonin attenuates NO production and L-arginine transport in LPS-stimulated murine macrophages possibly through inhibiting iNOS, CAT-2, and CAT-2B expression.
Collapse
Affiliation(s)
- C-C Chen
- Nursing and Management College [corrected] Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
36
|
Kagemann G, Henrich B, Kuhn M, Kleinert H, Schnorr O. Impact of Mycoplasma hyorhinis infection on L-arginine metabolism: differential regulation of the human and murine iNOS gene. Biol Chem 2005; 386:1055-63. [PMID: 16218877 DOI: 10.1515/bc.2005.121] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Infection with mycoplasma is a common problem in cell cultures, with Mycoplasma hyorhinis being the predominant species. Here we investigate the effect of M. hyorhinis infection on L-arginine metabolism, with focus on iNOS-mediated NO synthesis in murine keratinocytes and the human colon cancer cell line DLD-1. iNOS and arginase are L-arginine-metabolizing enzymes involved in the regulation of inflammatory processes, with NO contributing to innate immunity. In murine cells, M. hyorhinis infection enhances cytokine-induced iNOS expression and augments iNOS activity, whereas in the absence of cytokines it causes de novo induction of iNOS mRNA without subsequent translation into iNOS protein. In turn, arginase-1 mRNA expression is diminished in M. hyorhinis-infected murine keratinocytes, resulting in decreased arginase activity. One of the underlying upstream mechanisms is NF-kappaB activation. In contrast, in human cells neither iNOS mRNA nor protein expression is affected by M. hyorhinis infection, but NO synthesis is enhanced, which may be caused by increased L-arginine import. This demonstrates that infection with M. hyorhinis leads to different effects on gene regulation of the murine and human iNOS gene. Our study underlines the importance of routine checking of cell cultures for mycoplasma contamination, particularly in studies on NO-mediated effects or inflammatory processes.
Collapse
Affiliation(s)
- Guido Kagemann
- Institute for Biochemistry and Molecular Biology I, Heinrich-Heine-University of Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
37
|
Abstract
Atrial natriuretic peptide (ANP) is a hormone predominately produced by the heart atria which regulates the water and salt balance as well as blood pressure homeostasis. Being expressed in various parts of the immune system a link of the peptide to the immune system has been proposed. In fact, this review focus on effects of ANP in the immune system and reports about the role of the peptide in innate immune functions as well as in the adaptive immune response.
Collapse
Affiliation(s)
- Angelika M Vollmar
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University of Munich, Butenandtstr. 5-11, 81375 Munich, Germany.
| |
Collapse
|
38
|
Yang CH, Tsai PS, Lee JJ, Huang CH, Huang CJ. NF-kappaB inhibitors stabilize the mRNA of high-affinity type-2 cationic amino acid transporter in LPS-stimulated rat liver. Acta Anaesthesiol Scand 2005; 49:468-76. [PMID: 15777294 DOI: 10.1111/j.1399-6576.2005.00660.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Induction of inducible nitric oxide synthase (iNOS) results in nitric oxide (NO) overproduction during endotoxemia. Cellular uptake of L-arginine, modulated by the isozymes of type-2 cationic amino acid transporters (CAT), including CAT-2, CAT-2A and CAT-2B, has been reported to be a crucial factor in the regulation of iNOS activity. We sought to elucidate the expression of CAT-2 isozymes and the role of nuclear factor-kappaB (NF-kappaB) in this expression in lipopolysaccharide (LPS)-treated rat liver. METHODS Adult male Sprague-Dawley rats were randomly given intravenous (i.v.) injections of normal saline (N/S), LPS, LPS preceded by an NF-kappaB inhibitor (PDTC, dexamethasone or salicylate) or an NF-kappaB inhibitor alone. After injection, rats were sacrificed at different times and enzyme expression and liver injury were examined. Hepatic and systemic NO production were also measured. RESULTS CAT-2, CAT-2A and CAT-2B were constitutively expressed in un-stimulated rat liver. LPS stimulation not only significantly increased iNOS mRNA and NO concentrations but also decreased the mRNA concentrations of CAT-2 and CAT-2B, but not CAT-2A, in a time-dependent manner. LPS-induced hepatic and systemic NO overproduction was associated with hepatocellular injury. Pre-treatment with NF-kappaB inhibitors significantly attenuated LPS-induced iNOS induction as well as CAT-2/CAT-2B mRNA destabilization, which was associated with significant inhibition of NO biosynthesis and less liver injury. CONCLUSION NF-kappaB inhibitors stabilize CAT-2 and CAT-2B mRNA in LPS-stimulated rat liver. The hepatic CAT-2/CAT-2B pathway may be a constitutive part of cytoprotective mechanisms against sepsis.
Collapse
Affiliation(s)
- C-H Yang
- Department of Anesthesiology, Mackay Memorial Hospital, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
39
|
Reade MC, Millo JL, Young JD, Boyd CAR. Nitric oxide synthase is downregulated, while haem oxygenase is increased, in patients with septic shock. Br J Anaesth 2005; 94:468-73. [PMID: 15695546 DOI: 10.1093/bja/aei082] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The vasodilatation characteristic of human septic shock is conventionally attributed to increased nitric oxide production, primarily by extrapolation of animal and human in vitro studies. There are no conclusive studies of human disease, and the cellular source of nitric oxide in human sepsis is not known. Haem oxygenase is upregulated by oxidative stress, but little is known about haem oxygenase expression in human sepsis. Haem oxygenase may modulate nitric oxide production, and may also have a direct effect on vascular tone. METHODS Mesenteric arterial smooth muscle (ASM) (obtained during laparotomy) and peripheral blood mononuclear cells (PBMCs) were obtained from patients with early septic shock and from control patients. mRNA levels were determined by real-time RT-PCR. RESULTS mRNA for inducible and endothelial nitric oxide synthase was reduced in both ASM and PBMCs from septic patients. In contrast, inducible haem oxygenase mRNA was increased in sepsis in both cell types. CONCLUSIONS These results suggest that, rather than being induced, the enzymes which produce nitric oxide are reduced at this time point in human septic shock. Thus many of the in vitro models of sepsis studied to date may not fully replicate human disease. The increase in haem oxygenase expression confirms that these cells have been subjected to oxidative stress in sepsis. The activity of induced haem oxygenase may limit nitric oxide production, while possibly causing vasodilation through production of carbon monoxide.
Collapse
Affiliation(s)
- M C Reade
- Nuffield Department of Anaesthetics, University of Oxford, John Radcliffe Hospital, Headley Way, Headington, Oxford OX3 9DU, UK.
| | | | | | | |
Collapse
|
40
|
Blanc MC, Moinard C, Béziel A, Darquy S, Cynober L, De Bandt JP. Arginine and glutamine availability and macrophage functions in the obese insulin-resistant Zucker rat. J Cell Physiol 2005; 202:153-9. [PMID: 15389544 DOI: 10.1002/jcp.20092] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Increased susceptibility to infections in obese patients may be related to decreased availability of arginine and glutamine, which may affect immune cell functions. Our aim was to evaluate the in vitro effects of these amino acids on the function of macrophages from obese insulin-resistant Zucker rats. Macrophages, isolated from male Zucker obese or lean rats by peritoneal lavage, were incubated in Dulbecco's modified Eagle medium (DMEM) without arginine or glutamine. Arginine or glutamine was added to the medium at increasing final concentrations (0, 0.25, 0.5, 1 or 2 mM). After stimulation by lipopolysaccharide (LPS) from E. coli (40 microg/ml), productions of tumour necrosis factor alpha (TNFalpha) and of nitric oxide (NO) were measured after 3 or 48 h incubation, respectively. NO production, lower in macrophages from obese rats, decreased in macrophages from lean rats (0 mM: 2,423 +/- 1,174 vs. 2 mM: 198 +/- 31 microM/mg protein/24 h; P < 0.05), but not in those from obese rats, when glutamine was added. TNFalpha production, lower in macrophages from obese rats, was inversely correlated with glutamine concentration. In the presence of arginine, NO production was constantly higher in macrophages from obese rats. It peaked at 0.5 mM arginine and decreased thereafter in both groups. TNFalpha production in macrophages from lean rats was unaffected by arginine, but decreased in macrophages from obese rats (0 mM: 1920 +/- 450 vs. 2 mM: 810 +/- 90 microM/mg protein/3 h; P < 0.05). These results suggest that abnormalities in cell signalling or in arginine and glutamine metabolism in macrophages of obese rats, resulting in decreased TNFalpha production and increased NO release, may contribute to increased susceptibility to infection in insulin-resistant states.
Collapse
Affiliation(s)
- Marie-Céline Blanc
- Laboratoire de Biologie de la Nutrition, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris 5-René Descartes, Paris, France
| | | | | | | | | | | |
Collapse
|
41
|
Cui Z, Tuladhar R, Hart SL, Marber MS, Pearson JD, Baydoun AR. Rate of transport of l-arginine is independent of the expression of inducible nitric oxide synthase in HEK 293 cells. Nitric Oxide 2004; 12:21-30. [PMID: 15631944 DOI: 10.1016/j.niox.2004.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Revised: 10/19/2004] [Accepted: 11/08/2004] [Indexed: 11/24/2022]
Abstract
Expression of inducible nitric oxide synthase (iNOS) is generally accompanied by a parallel upregulation in l-arginine transport which is dependent, at least in part, on the synthesis of new carrier proteins. It is not clear however whether the induction of iNOS and its subsequent utilisation of l-arginine for NO synthesis contribute to the enhancement in l-arginine transport rates observed following induction of cells with pro-inflammatory mediators. To address this issue, we have transfected an iNOS construct in a pEGFP-N1 vector into HEK-293 cells and investigated the effects this has on l-arginine transport. The expression of iNOS through transfection resulted in the production of significant quantities of NO as detected by the standard Griess assay. Under these conditions, the transport of l-arginine was found to be unaltered, with rate of uptake being comparable in both transfected and non-transfected cells. Characterisation of the transporter(s) involved with uptake of l-arginine revealed features characteristic of the classical cationic amino acid transport system y(+). Further analysis of the expression profile of the cationic amino acid transporter (CAT) involved revealed the presence of transcripts for CAT-1 and CAT-2B. These data demonstrate that iNOS activity does not drive or enhance l-arginine transport despite the fact that HEK-293 cells transport l-arginine via the CATs, including CAT-2B which is thought to be critical for supply of substrate to iNOS.
Collapse
Affiliation(s)
- Zhaoqiang Cui
- Department of Biosciences, University of Hertfordshire, College Lane, Herts AL10 9AB, UK
| | | | | | | | | | | |
Collapse
|
42
|
Rotoli BM, Bussolati O, Sala R, Barilli A, Talarico E, Gazzola GC, Dall'Asta V. INFgamma stimulates arginine transport through system y+L in human monocytes. FEBS Lett 2004; 571:177-81. [PMID: 15280038 DOI: 10.1016/j.febslet.2004.06.086] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Revised: 06/15/2004] [Accepted: 06/22/2004] [Indexed: 11/20/2022]
Abstract
Freshly isolated human monocytes transport L-arginine mostly through a sodium independent, NEM insensitive pathway inhibited by L-leucine in the presence, but not in the absence of sodium. Interferon-gamma (IFNgamma) stimulates this pathway, identifiable with system y+L, and markedly enhances the expression of SLC7A7, the gene that encodes for system y+L subunit y+LAT1, but not of SLC7A6, that codes for the alternative subunit y+LAT2. System y+ plays a minor role in arginine uptake by monocytes and the expression of system y+-related genes, SLC7A1 and SLC7A2, is not changed by IFNgamma. These results demonstrate that system y+L is sensitive to IFNgamma.
Collapse
Affiliation(s)
- Bianca Maria Rotoli
- Dipartimento di Medicina Sperimentale, Sezione di Patologia Generale e Clinica, Plesso Biotecnologico Integrato, Università degli Studi di Parma, Via Volturno 39, 43100 Parma, Italy
| | | | | | | | | | | | | |
Collapse
|
43
|
Huang CJ, Tsai PS, Lu YT, Cheng CR, Stevens BR, Skimming JW, Pan WHT. NF-kappaB involvement in the induction of high affinity CAT-2 in lipopolysaccharide-stimulated rat lungs. Acta Anaesthesiol Scand 2004; 48:992-1002. [PMID: 15315617 DOI: 10.1111/j.1399-6576.2004.00454.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Endotoxemia stimulates nitric oxide (NO) biosynthesis through induction of inducible NO synthase (iNOS). Cellular uptake of L-arginine, the sole substrate for iNOS, is an important mechanism regulating NO biosynthesis by iNOS. The isozymes of type-2 cationic amino acid transporters, including CAT-2, CAT-2A, and CAT-2B, constitute the most important pathways responsible for trans-membrane L-arginine transportation. Therefore, regulation of CAT-2 isozymes expression may constitute one of the downstream regulatory pathways that control iNOS activity. We investigated the time course of enzyme induction and the role of nuclear factor-kappaB (NF-kappaB) in CAT-2 isozymes expression in lipopolysaccharide-(LPS) treated rat lungs. METHODS Adult male Sprague-Dawley rats were randomly given intravenous injections of normal saline (N/S), LPS, LPS plus NF-kappaB inhibitor pre-treatment (PDTC, dexamethasone, or salicylate), or an NF-kappaB inhibitor alone. The rats were sacrificed at different times after injection and enzyme expression and lung injury were examined. Pulmonary and systemic NO production were also measured. RESULTS LPS co-induced iNOS, CAT-2, and CAT-2B but not CAT-2A expression in the lungs. Furthermore, NF-kappaB actively participated in LPS-induction of iNOS, CAT-2, and CAT-2B. LPS induced pulmonary and systemic NO overproduction and resulted in lung injuries. Attenuation of LPS-induced iNOS, CAT-2, and CAT-2B induction significantly inhibited NO biosynthesis and lessened lung injury. CONCLUSION NF-kappaB actively participates in the induction of CAT-2 and CAT-2B in intact animals. Our data further support the idea that CAT-2 and CAT-2B are crucial in regulating iNOS activity.
Collapse
Affiliation(s)
- C-J Huang
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
44
|
Huang H, Rose JL, Hoyt DG. p38 Mitogen-activated protein kinase mediates synergistic induction of inducible nitric-oxide synthase by lipopolysaccharide and interferon-gamma through signal transducer and activator of transcription 1 Ser727 phosphorylation in murine aortic endothelial cells. Mol Pharmacol 2004; 66:302-11. [PMID: 15266021 DOI: 10.1124/mol.66.2.302] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nitric oxide (NO) can be produced in large amounts by up-regulation of inducible NO synthase (iNOS). iNOS is induced in many cell types by pro-inflammatory agents, such as bacterial lipopolysaccharide (LPS) and cytokines. Overproduction by endothelial cells (EC) may contribute to vascular diseases. In contrast to macrophages, murine aortic endothelial cells (MAEC) produced no NO in response to either LPS or interferon gamma (IFNgamma), whereas combined treatment was highly synergistic. In this study, we investigated the mechanisms of synergy in MAEC. LPS activated p38 mitogen-activated protein kinase (MAPK), whereas IFNgamma activated Janus kinase and signal transducer and activator of transcription-1 (STAT1). Both pathways were required for iNOS induction because herbimycin A, a tyrosine kinase inhibitor, and 4-(4-fluorophenyl)-2-(4-hydroxyphenyl)-5-(4-pyridyl)1H-imidazole. HCl (SB202190), a p38 MAPKalpha/beta inhibitor, each blocked induction. LPS increased the phosphorylation of STAT1alpha at serine 727 in IFNgamma-treated MAEC. SB202190, but not 2'-amino-3'-methoxyflavone (PD98059), an inhibitor of p44/p42 MAPK activation, abolished the phosphorylation and induction of iNOS. SB202190 did not affect tyrosine 701 phosphorylation or nuclear translocation of STAT1. However, STAT1-DNA binding activity was reduced by SB202190. Although LPS stimulated the DNA binding activity of nuclear factor kappaB and activating protein-1, combined treatment with IFNgamma did not enhance activation, and SB202190 did not inhibit it. The results indicate that p38 MAPKalpha and/or beta are required for the synergistic induction of iNOS by LPS and IFNgamma in MAEC. Furthermore, the synergistic induction is associated with phosphorylation of STAT1alpha serine 727 in MAEC. This observation may explain potentially beneficial effects of p38 MAPK inhibitors in vascular inflammatory diseases.
Collapse
Affiliation(s)
- Hong Huang
- Division of Pharmacology, The Ohio State University College of Pharmacy, and the Dorothy M. Davis Heart and Lung Research Institute, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
45
|
Visigalli R, Bussolati O, Sala R, Barilli A, Rotoli BM, Parolari A, Alamanni F, Gazzola GC, Dall'Asta V. The stimulation of arginine transport by TNFalpha in human endothelial cells depends on NF-kappaB activation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1664:45-52. [PMID: 15238257 DOI: 10.1016/j.bbamem.2004.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Revised: 03/12/2004] [Accepted: 04/06/2004] [Indexed: 10/26/2022]
Abstract
In human saphenous vein endothelial cells (HSVECs), tumor necrosis factor-alpha (TNFalpha) and bacterial lipopolysaccharide (LPS), but neither interferon gamma (IFNgamma) nor interleukin 1beta (IL-1beta), stimulate arginine transport. The effects of TNFalpha and LPS are due solely to the enhancement of system y+ activity, whereas system y+L is substantially unaffected. TNFalpha causes an increased expression of SLC7A2/CAT-2B gene while SLC7A1/CAT-1 expression is not altered by the cytokine. The suppression of PKC-dependent transduction pathways, obtained with the inhibitor chelerytrhine, the inhibitor peptide of PKCzeta isoform, or chronic exposure to phorbol esters, does not prevent TNFalpha effect on arginine transport. Likewise, ERK, JNK, and p38 MAP kinases are not involved in the cytokine effect, since arginine transport stimulation is unaffected by their specific inhibitors. On the contrary, inhibitors of NF-kappaB pathway hinder the increase in CAT2B mRNA and the stimulation of arginine uptake. These results indicate that in human endothelial cells the activation of NF-kappaB pathway mediates the TNFalpha effects on arginine transport.
Collapse
Affiliation(s)
- Rossana Visigalli
- Dipartimento di Medicina Sperimentale, Sezione di Patologia Generale e Clinica, Università degli Studi di Parma, Via Volturno, 39 Parma 43100, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Scumpia PO, Sarcia PJ, Kelly KM, DeMarco VG, Skimming JW. Hypothermia induces anti-inflammatory cytokines and inhibits nitric oxide and myeloperoxidase-mediated damage in the hearts of endotoxemic rats. Chest 2004; 125:1483-91. [PMID: 15078762 DOI: 10.1378/chest.125.4.1483] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
STUDY OBJECTIVE s: The impairment of cardiac contractility during endotoxemia involves induction of nitric oxide formation through a cascade of events initiated by overexpression of proinflammatory cytokines. We previously showed that hypothermia attenuates endotoxin-induced overexpression of nitric oxide in rat lungs. In the present study, we tested the hypothesis that hypothermia protects against endotoxin-induced myocardial inflammation by changing the balance of pro- and anti-inflammatory cytokines, inhibiting myeloperoxidase, an indicator of neutrophil activity, and inhibiting nitric oxide-mediated protein damage. DESIGN Rats were randomized to treatment with either hypothermia (n = 6; 18 to 24 degrees C) or normothermia (n = 6; 36 to 38 degrees C). Endotoxin (15 mg/kg) was administered intravascularly to anesthetized animals, and heart tissue was harvested 150 min later. MEASUREMENTS AND RESULTS Using enzyme-linked immunosorbent assays (ELISAs), we found that hypothermia induced myocardial expression of the anti-inflammatory cytokines interleukin (IL)-4 and IL-10, while decreasing concentrations of the pro-inflammatory cytokines IL-1beta and growth-related oncogene/cytokine-induced neutrophil chemoattractant (rat homolog of IL-8). Electromobility shift assay revealed that hypothermia inhibited the nuclear translocation of nuclear factor-kappaB. Reverse transcriptase-polymerase chain reaction and Western blot assays revealed that hypothermia attenuated the endotoxin-induced overexpression of both inducible nitric oxide synthase (iNOS) messenger RNA and iNOS protein, respectively. Hypothermia also attenuated nitric oxide-mediated myocardial protein damage, as determined by a nitrotyrosine ELISA. Myocardial myeloperoxidase content, an indicator of neutrophil accumulation and oxidative activity, was also inhibited by hypothermia in endotoxemic rats. CONCLUSION These data demonstrate that hypothermia induces an anti-inflammatory cytokine profile, inhibits neutrophil aggregation, and inhibits the formation of nitric oxide during endotoxemia in the rat.
Collapse
Affiliation(s)
- Philip O Scumpia
- Department of Pediatrics, University of Florida, Gainesville, USA
| | | | | | | | | |
Collapse
|
47
|
Yang S, Huang CJ, Tsai PS, Cheng CR, Stevens BR, Skimming JW. Renal transcription of high-affinity type-2 cationic amino acid transporter is up-regulated in LPS-stimulated rodents. Acta Anaesthesiol Scand 2004; 48:308-16. [PMID: 14982563 DOI: 10.1111/j.0001-5172.2004.0338.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Sepsis stimulates renal nitric oxide (NO) biosynthesis through up-regulation of inducible NO synthase (iNOS) expression. Type-2 cationic amino acid transporter (CAT-2) mediation of trans-membrane L-arginine (L-Arg) transportation has been identified as one of the crucial regulatory mechanisms involved in the formation of NO by iNOS. We had previously shown that CAT-2B, a high-affinity alternative-spliced transcript of the CAT-2, is involved in induced NO biosynthesis by iNOS (Nitric Oxide, 2002). In this present study, we sought to assess the effects of sepsis on the expression of CAT-2B in lipopolysaccharide (LPS)-stimulated rat kidney. METHODS Forty rats were randomized to either a normal saline (N/S)-treated group or a LPS-treated group. Renal NO production was determined using chemiluminescence. Semi-quantitative RT-PCR was used to determine the mRNA concentrations of iNOS and L-Arg transporters (CAT-1, CAT-2 and CAT-2B) in kidney. RESULTS Lipopolysaccharide-coinduced iNOS, CAT-2 and CAT-2B mRNA expression in kidney and caused renal NO overproduction. A significant linear regression relationship was defined between renal NO concentrations and iNOS, CAT-2 and CAT-2B, respectively. On the contrary, CAT-1 expression was not affected by LPS-stimulation. CONCLUSIONS We provide the first evidence to illustrate that sepsis/septic shock induces the transcription of high-affinity CAT-2B in renal tissues. Transcription of iNOS, CAT-2 and CAT-2B correlates well with renal NO biosynthesis. Regulation of L-Arg uptake by modulating the expression regulation of induced CAT-2 and CAT-2B might be a potential target for therapies against renal pathologic conditions related to NO overproduction.
Collapse
Affiliation(s)
- S Yang
- Department of Urology, Mackay Memorial Hospital, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
48
|
Koschorreck S, Wenzel F, Fuhrmann M, Racké K. Effects of phosphodiesterase inhibitors on L-arginine pathways in rat alveolar macrophages. Eur J Pharmacol 2003; 471:229-36. [PMID: 12826243 DOI: 10.1016/s0014-2999(03)01830-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Effects of phosphodiesterase inhibitors on L-arginine-dependent pathways in rat alveolar macrophages, inducible nitric oxide (NO) synthase (iNOS) and arginase, were studied. Culture of rat alveolar macrophages in the presence of lipopolysaccharides (20 h) caused an increase of arginase activity (by 135%) and nitrite concentration (fourfold). The nonselective phosphodiesterase inhibitor IBMX (2-isobutyl-1-methylxanthine) enhanced arginase activity by 35% and nitrite accumulation by 130%. IBMX caused a clear increase in iNOS protein levels and a relatively smaller increase in iNOS mRNA. The effect of IBMX on nitrite accumulation was largely attenuated by the protein kinase A inhibitor K 5720. The phosphodiesterase 4 inhibitor rolipram enhanced nitrite accumulation more effectively than the phosphodiesterase 3 inhibitor siguadozan (about 50% and 20% of IBMX effect, respectively), whereas the phosphodiesterase 3/4 inhibitor benzafendrine was as effective as IBMX. In conclusion, in rat alveolar macrophages, phosphodiesterase 4 and, to a smaller extent, phosphodiesterase 3 play a role in the control of iNOS-mediated NO synthesis.
Collapse
Affiliation(s)
- Sahra Koschorreck
- Institute of Pharmacology and Toxicology, University of Bonn, Reuterstr. 2b, D-53113 Bonn, Federal Republic of Germany
| | | | | | | |
Collapse
|
49
|
Schnorr O, Suschek CV, Kolb-Bachofen V. The importance of cationic amino acid transporter expression in human skin. J Invest Dermatol 2003; 120:1016-22. [PMID: 12787129 DOI: 10.1046/j.1523-1747.2003.12139.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Inducible nitric oxide synthase and arginase activities are acknowledged as important players in human skin epidermal function. For proper enzyme function the substrate availability of L-arginine for both enzymes and thus its transport across the cell membrane via the y+-system (also named cationic amino acid transporters) is critical. Here, we examine the expression of cationic amino acid transporters and their functional role in modulating inducible nitric oxide synthase and arginase activities in human skin and primary keratinocytes, fibroblasts and endothelial cells as well as their impact on keratinocyte proliferation. Skin biopsies were found to express constitutively both cationic amino acid transporter-1 and cationic amino acid transporter-2 mRNA, an expression pattern known to occur in hepatocytes and muscle cells only. To determine the cellular components expressing cationic amino acid transporter, we analyzed the expression patterns in the different human skin cell types in vitro, i.e., in fibroblasts, dermal endothelial cells, and keratinocytes as well as in the HaCaT cell line. An ubiquitous cationic amino acid transporter-1 mRNA expression was found in all cells, whereas constitutive cationic amino acid transporter-2 mRNA expression occurs in resident keratinocytes and dermal endothelial cells only. De novo induction of cationic amino acid transporter-2 and inducible nitric oxide synthase by proinflammatory cytokines was seen in fibroblasts and HaCaT. Competitive inhibition of the cationic amino acid transporter-mediated L-arginine transport by culturing primary human keratinocytes in the presence of increased L-lysine concentration led to decreased inducible nitric oxide synthase and arginase activities with a concomitant significant decrease in keratinocyte proliferation. In summary, our results demonstrate that human keratinocytes constitutively express cationic amino acid transporters 1 and 2 and that cationic amino acid transporter mediated L-arginine influx, is essential for both inducible nitric oxide synthase and arginase enzyme activities, which in turn modulate proliferation and differentiation of human epidermal skin cells.
Collapse
Affiliation(s)
- Oliver Schnorr
- Research Group Immunobiology, Biomedical Research Center, University of Düsseldorf, Düsseldorf, Germany.
| | | | | |
Collapse
|
50
|
Reade MC, Young JD. Of mice and men (and rats): implications of species and stimulus differences for the interpretation of studies of nitric oxide in sepsis. Br J Anaesth 2003; 90:115-8. [PMID: 12538363 DOI: 10.1093/bja/aeg033] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|