1
|
Anwar S, Alrumaihi F, Sarwar T, Babiker AY, Khan AA, Prabhu SV, Rahmani AH. Exploring Therapeutic Potential of Catalase: Strategies in Disease Prevention and Management. Biomolecules 2024; 14:697. [PMID: 38927099 PMCID: PMC11201554 DOI: 10.3390/biom14060697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The antioxidant defense mechanisms play a critical role in mitigating the deleterious effects of reactive oxygen species (ROS). Catalase stands out as a paramount enzymatic antioxidant. It efficiently catalyzes the decomposition of hydrogen peroxide (H2O2) into water and oxygen, a potentially harmful byproduct of cellular metabolism. This reaction detoxifies H2O2 and prevents oxidative damage. Catalase has been extensively studied as a therapeutic antioxidant. Its applications range from direct supplementation in conditions characterized by oxidative stress to gene therapy approaches to enhance endogenous catalase activity. The enzyme's stability, bioavailability, and the specificity of its delivery to target tissues are significant hurdles. Furthermore, studies employing conventional catalase formulations often face issues related to enzyme purity, activity, and longevity in the biological milieu. Addressing these challenges necessitates rigorous scientific inquiry and well-designed clinical trials. Such trials must be underpinned by sound experimental designs, incorporating advanced catalase formulations or novel delivery systems that can overcome existing limitations. Enhancing catalase's stability, specificity, and longevity in vivo could unlock its full therapeutic potential. It is necessary to understand the role of catalase in disease-specific contexts, paving the way for precision antioxidant therapy that could significantly impact the treatment of diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Shehwaz Anwar
- Department of Medical Laboratory Technology, Mohan Institute of Nursing and Paramedical Sciences, Mohan Group of Institutions, Bareilly 243302, India;
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Tarique Sarwar
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ali Yousif Babiker
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Sitrarasu Vijaya Prabhu
- Department of Biotechnology, Microbiology and Bioinformatics, National College (Autonomous), Tiruchirapalli 620001, India;
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
2
|
Tong X, Fu X, Yu G, Qu H, Zou H, Song R, Ma Y, Yuan Y, Bian J, Gu J, Liu Z. Polystyrene exacerbates cadmium-induced mitochondrial damage to lung by blocking autophagy in mice. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 37022104 DOI: 10.1002/tox.23804] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 03/09/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Cadmium (Cd) is an environmental heavy metal, and its accumulation is harmful to animal and human health. The cytotoxicity of Cd includes oxidative stress, apoptosis, and mitochondrial histopathological changes. Furthermore, polystyrene (PS) is a kind of microplastic piece derived from biotic and abiotic weathering courses, and has toxicity in various aspects. However, the potential mechanism of action of Cd co-treated with PS is still poorly unclear. The objective of this study was to investigate the effects of PS on Cd-induced histopathological injury of mitochondria in the lung of mice. In this study, the results have showed that Cd could induce the activity of oxidative enzymes of the lung cells in mice, increasing the content of partial microelement and the phosphorylation of inflammatory factor NF-κB p65. Cd further destroys the integrity of mitochondria by increasing the expression of apoptotic protein and blocking the autophagy. In addition, PS solely group aggravated the lung damage in mice, especially mitochondrial toxicity, and played a synergistic effect with Cd in lung injury. However, how PS can augment mitochondrial damage and synergism with Cd in lung of mice requiring further exploration. Therefore, PS was able to exacerbate Cd-induced mitochondrial damage to the lung in mice by blocking autophagy, and was associated with the apoptosis.
Collapse
Affiliation(s)
- Xishuai Tong
- Institutes of Agricultural Science and Technology Development (Joint International Research laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China)/College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Xiaohui Fu
- Institutes of Agricultural Science and Technology Development (Joint International Research laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China)/College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Gengsheng Yu
- Institutes of Agricultural Science and Technology Development (Joint International Research laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China)/College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Huayi Qu
- Institutes of Agricultural Science and Technology Development (Joint International Research laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China)/College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Hui Zou
- Institutes of Agricultural Science and Technology Development (Joint International Research laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China)/College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Ruilong Song
- Institutes of Agricultural Science and Technology Development (Joint International Research laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China)/College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Yonggang Ma
- Institutes of Agricultural Science and Technology Development (Joint International Research laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China)/College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Yan Yuan
- Institutes of Agricultural Science and Technology Development (Joint International Research laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China)/College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Jianchun Bian
- Institutes of Agricultural Science and Technology Development (Joint International Research laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China)/College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Jianhong Gu
- Institutes of Agricultural Science and Technology Development (Joint International Research laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China)/College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Zongping Liu
- Institutes of Agricultural Science and Technology Development (Joint International Research laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China)/College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| |
Collapse
|
3
|
Quintana M, Saavedra E, del Rosario H, González I, Hernández I, Estévez F, Quintana J. Ethanol Enhances Hyperthermia-Induced Cell Death in Human Leukemia Cells. Int J Mol Sci 2021; 22:ijms22094948. [PMID: 34066632 PMCID: PMC8125413 DOI: 10.3390/ijms22094948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/04/2021] [Accepted: 05/04/2021] [Indexed: 12/23/2022] Open
Abstract
Ethanol has been shown to exhibit therapeutic properties as an ablative agent alone and in combination with thermal ablation. Ethanol may also increase sensitivity of cancer cells to certain physical and chemical antitumoral agents. The aim of our study was to assess the potential influence of nontoxic concentrations of ethanol on hyperthermia therapy, an antitumoral modality that is continuously growing and that can be combined with classical chemotherapy and radiotherapy to improve their efficiency. Human leukemia cells were included as a model in the study. The results indicated that ethanol augments the cytotoxicity of hyperthermia against U937 and HL60 cells. The therapeutic benefit of the hyperthermia/ethanol combination was associated with an increase in the percentage of apoptotic cells and activation of caspases-3, -8 and -9. Apoptosis triggered either by hyperthermia or hyperthermia/ethanol was almost completely abolished by a caspase-8 specific inhibitor, indicating that this caspase plays a main role in both conditions. The role of caspase-9 in hyperthermia treated cells acquired significance whether ethanol was present during hyperthermia since the alcohol enhanced Bid cleavage, translocation of Bax from cytosol to mitochondria, release of mitochondrial apoptogenic factors, and decreased of the levels of the anti-apoptotic factor myeloid cell leukemia-1 (Mcl-1). The enhancement effect of ethanol on hyperthermia-activated cell death was associated with a reduction in the expression of HSP70, a protein known to interfere in the activation of apoptosis at different stages. Collectively, our findings suggest that ethanol could be useful as an adjuvant in hyperthermia therapy for cancer.
Collapse
|
4
|
Wu J, Zhang W, Li C. Recent Advances in Genetic and Epigenetic Modulation of Animal Exposure to High Temperature. Front Genet 2020; 11:653. [PMID: 32733534 PMCID: PMC7358359 DOI: 10.3389/fgene.2020.00653] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022] Open
Abstract
Animals have evolved multiple systems, including genetic and epigenetic systems, to respond accordingly to heat exposure and heat acclimation. Heat exposure greatly affects immunity, changes metabolic processes, and poses a serious threat to animals. Heat acclimation is induced by repeated organism exposure to heat stress to dissipate heat. This review focuses on genetic modulation via heat shock transcription factors and calcium as two important factors and compares the changes in HSPs under heat stress and heat acclimation. Epigenetic regulation summarizes the role of HSPs in DNA methylation and histone modifications under heat stress and heat acclimation. These genetic and epigenetic modifications protect cells from thermal damage by mediating the transcriptional levels of heat-responsive genes. This review highlights recent advances in the genetic and epigenetic control of animal thermal responses and their interactions.
Collapse
Affiliation(s)
- Jiong Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Weiwei Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
5
|
Shrivastava P, Naoghare PK, Gandhi D, Devi SS, Krishnamurthi K, Bafana A, Kashyap SM, Chakrabarti T. Application of cell-based assays for toxicity characterization of complex wastewater matrices: Possible applications in wastewater recycle and reuse. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 142:555-566. [PMID: 28482324 DOI: 10.1016/j.ecoenv.2017.04.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 06/07/2023]
Abstract
Exposure to pre-concentrated inlet or outlet STP wastewater extracts at different concentrations (0.001% to 1%) induced dose-dependent toxicity in MCF-7 cells, whereas drinking water extracts did not induce cytotoxicity in cells treated. GC-MS analysis revealed the occurrence of xenobiotic compounds (Benzene, Phthalate, etc.) in inlet/outlet wastewater extracts. Cells exposed to inlet/outlet extract showed elevated levels of reactive oxygen species (ROS: inlet: 186.58%, p<0.05, outlet, 147.8%, p<0.01) and loss of mitochondrial membrane potential (Δψm: inlet, 74.91%, p<0.01; outlet, 86.70%, p<0.05) compared to the control. These concentrations induced DNA damage (Tail length: inlet: 34.4%, p<0.05, outlet, 26.7%, p<0.05) in treated cells compared to the control (Tail length: 7.5%). Cell cycle analysis displayed drastic reduction in the G1 phase in treated cells (inlet, G1:45.0%; outlet, G1:58.3%) compared to the control (G1:67.3%). Treated cells showed 45.18% and 28.0% apoptosis compared to the control (1.2%). Drinking water extracts did not show any significant alterations with respect to ROS, Δψm, DNA damage, cell cycle and apoptosis compared to the control. Genes involved in cell cycle and apoptosis were found to be differentially expressed in cells exposed to inlet/outlet extracts. Herein, we propose cell-based toxicity assays to evaluate the efficacies of wastewater treatment and recycling processes.
Collapse
Affiliation(s)
- Preeti Shrivastava
- Environmental Health Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Pravin K Naoghare
- Environmental Health Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India.
| | - Deepa Gandhi
- Environmental Health Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - S Saravana Devi
- Environmental Health Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Kannan Krishnamurthi
- Environmental Health Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Amit Bafana
- Environmental Health Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Sanjay M Kashyap
- Analytical Instrumentation Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | | |
Collapse
|
6
|
Kiran Kumar KM, Naveen Kumar M, Patil RH, Nagesh R, Hegde SM, Kavya K, Babu RL, Ramesh GT, Sharma SC. Cadmium induces oxidative stress and apoptosis in lung epithelial cells. Toxicol Mech Methods 2016; 26:658-666. [PMID: 27687512 DOI: 10.1080/15376516.2016.1223240] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cadmium (Cd) is one of the well-known highly toxic environmental and industrial pollutants. Cd first accumulates in the nucleus and later interacts with zinc finger proteins of antiapoptotic genes and inhibit the binding of transcriptional factors and transcription. However, the role of Cd in oxidative stress and apoptosis is less understood. Hence, the present study was undertaken to unveil the mechanism of action. A549 cells were treated with or without Cd and cell viability was measured by MTT assay. Treatment of cells with Cd shows reduced viability in a dose-dependent manner with IC50 of 45 μM concentration. Cd significantly induces the reactive oxygen species (ROS), lipid peroxidation followed by membrane damage with the leakage of lactate dehydrogenase (LDH). Cells with continuous exposure of Cd deplete the antioxidant super oxide dismutase (SOD) and glutathione peroxidase (GSH-Px) enzymes. Further, analysis of the expression of genes involved in apoptosis show that both the extrinsic and intrinsic apoptotic pathways were involved. Death receptor marker tumor necrosis factor-α (TNF-α), executor caspase-8 and pro-apoptotic gene (Bax) were induced, while antiapoptotic gene (Bcl-2) was decreased in Cd-treated cells. Fluorescence-activated cell sorting (FACS) analysis further confirms the induction of apoptosis in Cd-treated A549 cells.
Collapse
Affiliation(s)
- K M Kiran Kumar
- a Department of Microbiology and Biotechnology , Bangalore University, Jnana Bharathi , Bengaluru , Karnataka , India
| | - M Naveen Kumar
- a Department of Microbiology and Biotechnology , Bangalore University, Jnana Bharathi , Bengaluru , Karnataka , India
| | - Rajeshwari H Patil
- a Department of Microbiology and Biotechnology , Bangalore University, Jnana Bharathi , Bengaluru , Karnataka , India
| | - Rashmi Nagesh
- a Department of Microbiology and Biotechnology , Bangalore University, Jnana Bharathi , Bengaluru , Karnataka , India
| | - Shubha M Hegde
- a Department of Microbiology and Biotechnology , Bangalore University, Jnana Bharathi , Bengaluru , Karnataka , India
| | - K Kavya
- a Department of Microbiology and Biotechnology , Bangalore University, Jnana Bharathi , Bengaluru , Karnataka , India
| | - R L Babu
- b Department of Bioinformatics and Biotechnology , Karnataka State Women's University , Jnanashakthi Campus , Vijayapura , Karnataka , India
| | - Govindarajan T Ramesh
- c Department of Biology and Center for Biotechnology and Biomedical Sciences , Norfolk State University , Norfolk , VA , USA
| | - S Chidananda Sharma
- a Department of Microbiology and Biotechnology , Bangalore University, Jnana Bharathi , Bengaluru , Karnataka , India
| |
Collapse
|
7
|
Quintana C, Cabrera J, Perdomo J, Estévez F, Loro JF, Reiter RJ, Quintana J. Melatonin enhances hyperthermia-induced apoptotic cell death in human leukemia cells. J Pineal Res 2016; 61:381-95. [PMID: 27465521 DOI: 10.1111/jpi.12356] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/25/2016] [Indexed: 12/26/2022]
Abstract
Melatonin is an endogenous indoleamine with a wide range of biological functions. In addition to modulating circadian rhythms, it plays important roles in the health as an antioxidant. Melatonin has also the ability to induce apoptosis in cancer cells and to enhance the antitumoral activity of chemotherapeutic agents. In this study, the effect of melatonin on hyperthermia-induced apoptosis was explored using human leukemia cells. The results demonstrate that melatonin greatly improved the cytotoxicity of hyperthermia in U937 cells. The potentiation of cell death was achieved with 1 mmol/L concentrations of the indoleamine but not with concentrations close to physiological levels in blood (1 nmol/L). This effect was associated to an enhancement of the apoptotic response, revealed by an increase in cells with hypodiploid DNA content and activation of multiple caspases (caspase-2, caspase-3, caspase-8, and caspase-9). Melatonin also increased hyperthermia-induced Bid activation as well as translocation of Bax from the cytosol to mitochondria and cytochrome c release. Hyperthermia-provoked apoptosis and potentiation by melatonin were abrogated by a broad-spectrum caspase inhibitor (z-VAD-fmk) as well as by specific inhibitors against caspase-8 or caspase-3. In contrast, blocking of the mitochondrial pathway of apoptosis either with a caspase-9 inhibitor or overexpressing the anti-apoptotic protein Bcl-2 (U937/Bcl-2) reduced the number of apoptotic cells in response to hyperthermia but it was unable to suppress melatonin enhancement. Melatonin appears to modulate the apoptotic response triggered by hyperthermia in a cell type-specific manner as similar results were observed in HL-60 but not in K562 or MOLT-3 cells.
Collapse
Affiliation(s)
- Carlos Quintana
- Departamento de Bioquímica y Biología Molecular, Fisiología, Genética e Inmunología, Facultad de Ciencias de la Salud, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Javier Cabrera
- Departamento de Ciencias Clínicas, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Juan Perdomo
- Departamento de Bioquímica y Biología Molecular, Fisiología, Genética e Inmunología, Facultad de Ciencias de la Salud, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Francisco Estévez
- Departamento de Bioquímica y Biología Molecular, Fisiología, Genética e Inmunología, Facultad de Ciencias de la Salud, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Juan F Loro
- Departamento de Ciencias Clínicas, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Russel J Reiter
- Department of Cellular and Structural Biology, The University of Texas Health Science at San Antonio, San Antonio, TX, USA
| | - José Quintana
- Departamento de Bioquímica y Biología Molecular, Fisiología, Genética e Inmunología, Facultad de Ciencias de la Salud, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
8
|
Dawson NJ, Storey KB. A hydrogen peroxide safety valve: The reversible phosphorylation of catalase from the freeze-tolerant North American wood frog, Rana sylvatica. Biochim Biophys Acta Gen Subj 2015; 1860:476-85. [PMID: 26691137 DOI: 10.1016/j.bbagen.2015.12.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/26/2015] [Accepted: 12/11/2015] [Indexed: 01/14/2023]
Abstract
BACKGROUND The North American wood frog, Rana sylvatica, endures whole body freezing while wintering on land and has developed multiple biochemical adaptations to elude cell/tissue damage and optimize its freeze tolerance. Blood flow is halted in the frozen state, imparting both ischemic and oxidative stress on cells. A potential build-up of H2O2 may occur due to increased superoxide dismutase activity previously discovered. The effect of freezing on catalase (CAT), which catalyzes the breakdown of H2O2 into molecular oxygen and water, was investigated as a result. METHODS The present study investigated the purification and kinetic profile of CAT in relation to the phosphorylation state of CAT from the skeletal muscle of control and frozen R. sylvatica. RESULTS Catalase from skeletal muscle of frozen wood frogs showed a significantly higher Vmax (1.48 fold) and significantly lower Km for H2O2 (0.64 fold) in comparison to CAT from control frogs (5°C acclimated). CAT from frozen frogs also showed higher overall phosphorylation (1.73 fold) and significantly higher levels of phosphoserine (1.60 fold) and phosphotyrosine (1.27 fold) compared to control animals. Phosphorylation via protein kinase A or the AMP-activated protein kinase significantly decreased the Km for H2O2 of CAT, whereas protein phosphatase 2B or 2C action significantly increased the Km. CONCLUSION The physiological consequence of freeze-induced CAT phosphorylation appears to improve CAT function to alleviate H2O2 build-up in freezing frogs. GENERAL SIGNIFICANCE Augmented CAT activity via reversible phosphorylation may increase the ability of R. sylvatica to overcome oxidative stress associated with ischemia.
Collapse
Affiliation(s)
- Neal J Dawson
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Kenneth B Storey
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada.
| |
Collapse
|
9
|
Aging-related changes in oxidative stress response of human endothelial cells. Aging Clin Exp Res 2015; 27:547-53. [PMID: 25835220 DOI: 10.1007/s40520-015-0357-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/23/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND Oxidative stress is strongly associated with aging and age-related diseases and plays a crucial role in endothelial dysfunction development. AIM To better understand the molecular mechanisms of aging and stress response in humans, we examined changes to young and older human endothelial cells over time (72, 96 and 120 h), before and after H2O2-induced stress. METHODS We measured the expression of the deacetylase Sirtuin 1 (Sirt1) and its transcriptional target Forkhead box O3a (Foxo3a); TBARS, a well-known marker of overall oxidative stress, and catalase activity as index of antioxidation. Moreover, we quantified levels of cellular senescence by senescence-associated β galactosidase (SA-βgal) assay. RESULTS Under oxidative stress induction older cells showed a progressive decrease of Sirt1 and Foxo3a expression, persistently high TBARS levels with high, but ineffective Cat activity to counteract such levels. In addition cellular senescence drastically increased in older cells compared with Young cells both in presence and in the absence of oxidative stress. DISCUSSION By following the cell behavior during the time course, we can hypothesize that while in young cells an oxidative stress induction stimulated an adequate response through activation of molecular factor crucial to counteract oxidative stress, the older cells are not able to adequately adapt themselves to external stress stimuli. CONCLUSIONS During their life, endothelial cells impair the ability to defend themselves from oxidative stress stimuli. This dysfunction involves the pathway of Sirt1 a critical regulator of oxidative stress response and cellular lifespan, underlining its crucial role in endothelial homeostasis control during aging and age-associated diseases.
Collapse
|
10
|
Slimen IB, Najar T, Ghram A, Dabbebi H, Ben Mrad M, Abdrabbah M. Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage. A review. Int J Hyperthermia 2015; 30:513-23. [PMID: 25354680 DOI: 10.3109/02656736.2014.971446] [Citation(s) in RCA: 470] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In recent years there has been enormous interest in researching oxidative stress. Reactive oxygen species (ROS) are derived from the metabolism of oxygen as by-products of cell respiration, and are continuously produced in all aerobic organisms. Oxidative stress occurs as a consequence of an imbalance between ROS production and the available antioxidant defence against them. Nowadays, a variety of diseases and degenerative processes such as cancer, Alzheimer's and autoimmune diseases are mediated by oxidative stress. Heat stress was suggested to be an environmental factor responsible for stimulating ROS production because of similarities in responses observed following heat stress compared with that occurring following exposure to oxidative stress. This manuscript describes the main mitochondrial sources of ROS and the antioxidant defences involved to prevent oxidative damage in all the mitochondrial compartments. It also deals with discussions concerning the cytotoxic effect of heat stress, mitochondrial heat-induced alterations, as well as heat shock protein (HSP) expression as a defence mechanism.
Collapse
Affiliation(s)
- Imen Belhadj Slimen
- Laboratory of Materials, Molecules and Application, Preparatory Institute for Scientific and Technical Studies , Tunisia
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
The role of iron in the development of cancer remains unclear. We previously reported that iron reduces cell survival in a Ras/mitogen-activated protein kinase (MAPK)-dependent manner in ovarian cells; however, the underlying downstream pathway leading to reduced survival was unclear. Although levels of intracellular iron, ferritin/CD71 protein and reactive oxygen species did not correlate with iron-induced cell survival changes, we identified mitochondrial damage (via TEM) and reduced expression of outer mitochondrial membrane proteins (translocase of outer membrane: TOM20 and TOM70) in cell lines sensitive to iron. Interestingly, Ru360 (an inhibitor of the mitochondrial calcium uniporter) reversed mitochondrial changes and restored cell survival in HEY ovarian carcinoma cells treated with iron. Further, cells treated with Ru360 and iron also had reduced autophagic punctae with increased lysosomal numbers, implying cross-talk between these compartments. Mitochondrial changes were dependent on activation of the Ras/MAPK pathway since treatment with a MAPK inhibitor restored expression of TOM20/TOM70 proteins. Although glutathione antioxidant levels were reduced in HEY treated with iron, extracellular glutamate levels were unaltered. Strikingly, oxalomalate (inhibitor of aconitase, involved in glutamate production) reversed iron-induced responses in a similar manner to Ru360. Collectively, our results implicate iron in modulating cell survival in a mitochondria-dependent manner in ovarian cancer cells.
Collapse
|
12
|
Torrentes-Carvalho A, Marinho CF, de Oliveira-Pinto LM, de Oliveira DB, Damasco PV, Cunha RV, de Souza LJ, de Azeredo EL, Kubelka CF. Regulation of T lymphocyte apoptotic markers is associated to cell activation during the acute phase of dengue. Immunobiology 2014; 219:329-40. [DOI: 10.1016/j.imbio.2013.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 11/14/2013] [Indexed: 12/29/2022]
|
13
|
Beider K, Darash-Yahana M, Blaier O, Koren-Michowitz M, Abraham M, Wald H, Wald O, Galun E, Eizenberg O, Peled A, Nagler A. Combination of imatinib with CXCR4 antagonist BKT140 overcomes the protective effect of stroma and targets CML in vitro and in vivo. Mol Cancer Ther 2014; 13:1155-69. [PMID: 24502926 DOI: 10.1158/1535-7163.mct-13-0410] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Functional role of CXCR4 in chronic myelogenous leukemia (CML) progression was evaluated. Elevated CXCR4 significantly increased the in vitro survival and proliferation in response to CXCL12. CXCR4 stimulation resulted in activation of extracellular signal-regulated kinase (Erk)-1/2, Akt, S6K, STAT3, and STAT5 prosurvival signaling pathways. In accordance, we found that in vitro treatment with CXCR4 antagonist BKT140 directly inhibited the cell growth and induced cell death of CML cells. Combination of BKT140 with suboptimal concentrations of imatinib significantly increased the anti-CML effect. BKT140 induced apoptotic cell death, decreasing the levels of HSP70 and HSP90 chaperones and antiapoptotic proteins BCL-2 and BCL-XL, subsequently promoting the release of mitochondrial factors cytochrome c and SMAC/Diablo. Bone marrow (BM) stromal cells (BMSC) markedly increased the proliferation of CML cells and protected them from imatinib-induced apoptosis. Furthermore, BMSCs elevated proto-oncogene BCL6 expression in the CML cells in response to imatinib treatment, suggesting the possible role of BCL6 in stroma-mediated TKI resistance. BKT140 reversed the protective effect of the stroma, effectively promoted apoptosis, and decreased BCL6 levels in CML cells cocultured with BMSCs. BKT140 administration in vivo effectively reduced the growth of subcutaneous K562-produced xenografts. Moreover, the combination of BKT140 with low-dose imatinib markedly inhibited tumor growth, achieving 95% suppression. Taken together, our data indicate the importance of CXCR4/CXCL12 axis in CML growth and CML-BM stroma interaction. CXCR4 inhibition with BKT140 antagonist efficiently cooperated with imatinib in vitro and in vivo. These results provide the rational basis for CXCR4-targeted therapy in combination with TKI to override drug resistance and suppress residual disease.
Collapse
Affiliation(s)
- Katia Beider
- Authors' Affiliations: Hematology Division and CBB, Sheba Medical Center, Tel-Hashomer; Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem; and Biokine Therapeutics Ltd., Science Park, Ness Ziona, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Goyal MM, Basak A. Human catalase: looking for complete identity. Protein Cell 2010; 1:888-97. [PMID: 21204015 DOI: 10.1007/s13238-010-0113-z] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 09/19/2010] [Indexed: 12/11/2022] Open
Abstract
Catalases are well studied enzymes that play critical roles in protecting cells against the toxic effects of hydrogen peroxide. The ubiquity of the enzyme and the availability of substrates made heme catalases the focus of many biochemical and molecular biology studies over 100 years. In human, this has been implicated in various physiological and pathological conditions. Advancement in proteomics revealed many of novel and previously unknown features of this mysterious enzyme, but some functional aspects are yet to be explained. Along with discussion on future research area, this mini-review compile the information available on the structure, function and mechanism of action of human catalase.
Collapse
Affiliation(s)
- Madhur M Goyal
- Department of Biochemistry, J. N. Medical College, Datta Meghe Insatitute of Medical Sciences (Deemed University), Wardha 442004, India.
| | | |
Collapse
|
15
|
Arepalli SK, Sridhar V, Venkateswara Rao J, Kavin Kennady P, Venkateswarlu Y. Furano-sesquiterpene from soft coral, Sinularia kavarittiensis: induces apoptosis via the mitochondrial-mediated caspase-dependent pathway in THP-1, leukemia cell line. Apoptosis 2009; 14:729-40. [PMID: 19283488 DOI: 10.1007/s10495-009-0332-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Bioassay directed fractionation and purification led to the successful isolation of a furano sesquiterpene, Methyl 5-[(1E,5E)-2,6-Dimethyl octa-1,5,7-trienyl] furan-3-carboxylate (MDTFC), a bioactive component from a soft coral, Sinularia kavarittiensis. Its structure was determined by analyzing (1)H, (13)C NMR and FAB-MS. The results show that MDTFC could efficiently and selectively inhibit the proliferation of several human cancer cell lines. Among all the cell lines, THP-1 was found to be most sensitive (IC(50) 29.59 microM), whereas the peripheral blood mononuclear cells were least effected (IC(50) 464.16 microM). The molecular mechanism of MDTFC mediated apoptosis was investigated for the first time. Induction of apoptosis in THP-1 cells was characterized by cell membrane blebbing, chromatin condensation, DNA fragmentation, and decrease in level of pro-caspases 3, 9 and increase in Bax/Bcl-2 ratio. Our results were further strengthened through cleavage of poly (ADP-ribose) polymerase, reduction of mitochondrial membrane potential (Psim) and cytosolic release of cytochrome c, which are key events during apoptosis. Moreover, phosphatidyl serine exposure and appearance of sub-G1 peak also demonstrated cell death, when analyzed by flow cytometry. DNA fragmentation was prevented moderately when pretreated with caspase-9 inhibitor (Z-LEHD-FMK) and largely with caspase-3 inhibitor (Z-DEVD-FMK). In summary, MDTFC mediated apoptosis involves mitochondria-dependent pathway and the present compound of marine origin might have a therapeutic value against human cancer cell lines and especially on leukemia cells.
Collapse
Affiliation(s)
- S K Arepalli
- Toxicology Unit, Biology Division, Indian Institute of Chemical Technology, Hyderabad, 500 607, India
| | | | | | | | | |
Collapse
|
16
|
Brea-Calvo G, Siendones E, Sánchez-Alcázar JA, de Cabo R, Navas P. Cell survival from chemotherapy depends on NF-kappaB transcriptional up-regulation of coenzyme Q biosynthesis. PLoS One 2009; 4:e5301. [PMID: 19390650 PMCID: PMC2669882 DOI: 10.1371/journal.pone.0005301] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 03/26/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Coenzyme Q (CoQ) is a lipophilic antioxidant that is synthesized by a mitochondrial complex integrated by at least ten nuclear encoded COQ gene products. CoQ increases cell survival under different stress conditions, including mitochondrial DNA (mtDNA) depletion and treatment with cancer drugs such as camptothecin (CPT). We have previously demonstrated that CPT induces CoQ biosynthesis in mammal cells. METHODOLOGY/PRINCIPAL FINDINGS CPT activates NF-kappaB that binds specifically to two kappaB binding sites present in the 5'-flanking region of the COQ7 gene. This binding is functional and induces both the COQ7 expression and CoQ biosynthesis. The inhibition of NF-kappaB activation increases cell death and decreases both, CoQ levels and COQ7 expression induced by CPT. In addition, using a cell line expressing very low of NF-kappaB, we demonstrate that CPT was incapable of enhancing enhance both CoQ biosynthesis and COQ7 expression in these cells. CONCLUSIONS/SIGNIFICANCE We demonstrate here, for the first time, that a transcriptional mechanism mediated by NF-kappaB regulates CoQ biosynthesis. This finding contributes new data for the understanding of the regulation of the CoQ biosynthesis pathway.
Collapse
Affiliation(s)
- Gloria Brea-Calvo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC and Centre for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Sevilla, Spain
| | - Emilio Siendones
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC and Centre for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Sevilla, Spain
| | - José A. Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC and Centre for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Sevilla, Spain
| | - Rafael de Cabo
- Laboratory of Experimental Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC and Centre for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Sevilla, Spain
| |
Collapse
|
17
|
Costa VM, Silva R, Ferreira R, Amado F, Carvalho F, de Lourdes Bastos M, Carvalho RA, Carvalho M, Remião F. Adrenaline in pro-oxidant conditions elicits intracellular survival pathways in isolated rat cardiomyocytes. Toxicology 2009; 257:70-9. [DOI: 10.1016/j.tox.2008.12.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 12/08/2008] [Accepted: 12/09/2008] [Indexed: 11/25/2022]
|
18
|
Inhibition of the EGF receptor blocks autocrine growth and increases the cytotoxic effects of doxorubicin in rat hepatoma cells. Biochem Pharmacol 2008; 75:1935-45. [DOI: 10.1016/j.bcp.2008.02.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 02/12/2008] [Accepted: 02/13/2008] [Indexed: 12/19/2022]
|
19
|
Deng H, Ravikumar TS, Yang WL. Bone morphogenetic protein-4 inhibits heat-induced apoptosis by modulating MAPK pathways in human colon cancer HCT116 cells. Cancer Lett 2007; 256:207-17. [PMID: 17640799 DOI: 10.1016/j.canlet.2007.06.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 06/01/2007] [Accepted: 06/12/2007] [Indexed: 01/29/2023]
Abstract
Cancer thermotherapy and radiofrequency ablation (RFA) have been adopted as modalities for treating various kinds of cancer. We have previously demonstrated that bone morphogenetic protein-4 (BMP-4) is up-regulated in colonic adenocarcinoma. Here, we investigated whether an increase of BMP-4 expression changes cellular response to heat treatment in human colon cancer HCT116 cells. BMP-4 overexpressing HCT116 cells generated by stable transfection showed a significantly increased survival rate and a decreased apoptotic rate in comparison to empty vector controls after heat treatment at 45 degrees C for 20min. The expression levels and pattern of HSP90, HSP70, and HSP27 after heat treatment were similar between these two cell lines. There was no difference in expression levels of Bcl-2 and Bax in these two cell lines and their expression remained unchanged after heat treatment. Both activities of the extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) were stimulated by heat in these cells. Comparatively, BMP-4 overexpressing cells had an intense and prolonged ERK activation, while a less intense and short JNK activation. Correspondingly, treatment of BMP-4 overexpressing cells with noggin, a BMP-4 antagonist, resulted in a reduction of heat-activated ERK but an increase of heat-activated JNK and significantly increased heat-induced apoptotic rate. These results indicate that BMP-4 can protect colon cancer cells from heat-induced apoptosis through enhancing the activation of ERK as well as inhibiting the activation of JNK.
Collapse
Affiliation(s)
- Haiyun Deng
- Division of Surgical Research, Department of Surgery, North Shore University Hospital and Long Island-Jewish Medical Center, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA
| | | | | |
Collapse
|
20
|
Perisić T, Srećković M, Matić G. An imbalance in antioxidant enzymes and stress proteins in childhood asthma. Clin Biochem 2007; 40:1168-71. [PMID: 17689515 DOI: 10.1016/j.clinbiochem.2007.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 05/23/2007] [Accepted: 06/14/2007] [Indexed: 01/09/2023]
Abstract
OBJECTIVES The study was undertaken to examine antioxidant status and level of the major intracellular heat shock proteins (Hsps) in healthy children and children with mild and moderate asthma. DESIGN AND METHODS Native gel assays were performed to estimate activities of copper/zinc (CuZn) and manganese (Mn) superoxide dismutase (SOD), and catalase (CAT) in peripheral blood mononuclear cells (PBMC) of healthy and asthmatic children. Hsp70 and Hsp90 protein levels in PBMCs were assessed by Western blot analysis. RESULTS Moderate asthmatics displayed higher CuZnSOD/CAT activity ratio compared to healthy children, and increased Hsp90 level compared to mild asthmatics and healthy children. CONCLUSIONS With regard to the imbalance in the antioxidant enzyme activities children with moderate asthma differ from healthy children, while an increased Hsp90 expression could be associated with the disease severity, as well.
Collapse
Affiliation(s)
- Tatjana Perisić
- Department of Biochemistry, Institute for Biological Research Sinisa Stanković, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia and Montenegro
| | | | | |
Collapse
|
21
|
López-Lázaro M. Dual role of hydrogen peroxide in cancer: Possible relevance to cancer chemoprevention and therapy. Cancer Lett 2007; 252:1-8. [PMID: 17150302 DOI: 10.1016/j.canlet.2006.10.029] [Citation(s) in RCA: 493] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 10/30/2006] [Accepted: 10/31/2006] [Indexed: 12/12/2022]
Abstract
Accumulating evidence suggests that hydrogen peroxide (H(2)O(2)) plays an important role in cancer development. Experimental data have shown that cancer cells produce high amounts of H(2)O(2). An increase in the cellular levels of H(2)O(2) has been linked to several key alterations in cancer, including DNA alterations, cell proliferation, apoptosis resistance, metastasis, angiogenesis and hypoxia-inducible factor 1 (HIF-1) activation. It has also been observed that the malignant phenotype of cancer cells can be reversed just by decreasing the cellular levels of H(2)O(2). On the other hand, there is evidence that H(2)O(2) can induce apoptosis in cancer cells selectively and that the activity of several anticancer drugs commonly used in the clinic is mediated, at least in part, by H(2)O(2). The present report discusses that the high levels of H(2)O(2) commonly observed in cancer cells may be essential for cancer development; these high levels, however, seem almost incompatible with cell survival and may make cancer cells more susceptible to H(2)O(2)-induced cell death than normal cells. An understanding of this dual role of H(2)O(2) in cancer might be exploited for the development of cancer chemopreventive and therapeutic strategies.
Collapse
Affiliation(s)
- Miguel López-Lázaro
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Spain.
| |
Collapse
|
22
|
Cornejo-Garcia JA, Mayorga C, Torres MJ, Fernandez TD, R-Pena R, Bravo I, Mates JM, Blanca M. Anti-oxidant enzyme activities and expression and oxidative damage in patients with non-immediate reactions to drugs. Clin Exp Immunol 2006; 145:287-95. [PMID: 16879248 PMCID: PMC1809670 DOI: 10.1111/j.1365-2249.2006.03149.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2006] [Indexed: 01/12/2023] Open
Abstract
Adverse drug reactions with an immunological basis (ADRIB) may involve activation of other concomitant, non-specific mechanisms, amplifying the specific response and contributing to the severity and duration. One concomitant mechanism could be the generation of reactive oxygen species (ROS) and/or their detoxification by anti-oxidants, including anti-oxidant enzymes. We analysed the activity of the anti-oxidant enzymes Cu/Zn-superoxide dismutase (SOD), catalase (CAT) and cellular glutathione peroxidase (GPX), as well as certain markers of oxidative damage (thiobarbituric acid reactive substances (TBARS) and carbonyl content) in peripheral blood mononuclear cells from patients with non-immediate ADRIB using spectrophotometric methods and the anti-oxidant enzymes expression by quantitative real-time reverse transcription-polymerase chain reaction. SOD activity and expression were increased in all types of non-immediate reactions (urticaria, maculopapular exanthema and toxic epidermal necrolysis). Regarding oxidative damage, TBARS were increased in urticaria and maculopapular exanthema, and carbonyl groups in all types of reactions. Our observations indicate that oxidative damage occurs in non-immediate reactions. Carbonyl stress and the inadequacy of the anti-oxidant defences are probable causes.
Collapse
Affiliation(s)
- J A Cornejo-Garcia
- Research Laboratory for Allergic Diseases, Carlos Haya Hospital, Málaga, Spain
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Brea-Calvo G, Rodríguez-Hernández A, Fernández-Ayala DJM, Navas P, Sánchez-Alcázar JA. Chemotherapy induces an increase in coenzyme Q10 levels in cancer cell lines. Free Radic Biol Med 2006; 40:1293-302. [PMID: 16631519 DOI: 10.1016/j.freeradbiomed.2005.11.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 10/13/2005] [Accepted: 11/16/2005] [Indexed: 11/17/2022]
Abstract
Free radicals have been implicated in the action of many chemotherapeutic drugs. Here we tested the hypothesis that camptothecin and other chemotherapeutic drugs, such as etoposide, doxorubicin, and methotrexate, induce an increase in coenzyme Q(10) levels as part of the antioxidant defense against free radical production under these anticancer treatments in cancer cell lines. Chemotherapy treatment induced both free radical production and an increase in coenzyme Q(10) levels in all the cancer cell lines tested. Reduced coenzyme Q(10) form levels were particularly enhanced. Coenzyme Q(10)-increased levels were associated with up-regulation of COQ genes expression, involved in coenzyme Q(10) biosynthesis. At the translational level, COQ7 protein expression levels were also increased. Furthermore, coenzyme Q(10) biosynthesis inhibition blocked camptothecin-induced coenzyme Q(10) increase, and enhanced camptothecin cytotoxicity. Our findings suggest that coenzyme Q(10) increase is implicated in the cellular defense under chemotherapy treatment and may contribute to cell survival.
Collapse
Affiliation(s)
- Gloria Brea-Calvo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Carretera de Utrera Km 1, Sevilla, Spain
| | | | | | | | | |
Collapse
|
24
|
Sancho P, Fernández C, Yuste VJ, Amrán D, Ramos AM, de Blas E, Susin SA, Aller P. Regulation of apoptosis/necrosis execution in cadmium-treated human promonocytic cells under different forms of oxidative stress. Apoptosis 2006; 11:673-86. [PMID: 16532269 DOI: 10.1007/s10495-006-5879-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pulse-treatment of U-937 human promonocytic cells with cadmium chloride followed by recovery caused caspase-9/caspase-3-dependent, caspase-8-independent apoptosis. However, pre-incubation with the glutathione (GSH)-suppressing agent DL-buthionine-(S,R)-sulfoximine (cadmium/BSO), or co-treatment with H2O2 (cadmium/H2O2), switched the mode of death to caspase-independent necrosis. The switch from apoptosis to necrosis did not involve gross alterations in Apaf-1 and pro-caspase-9 expression, nor inhibition of cytochrome c release from mitochondria. However, cadmium/H2O2-induced necrosis involved ATP depletion and was prevented by 3-aminobenzamide, while cadmium/BSO-induced necrosis was ATP independent. Pre-incubation with BSO increased the intracellular cadmium accumulation, while co-treatment with H2O2 did not. Both treatments caused intracellular peroxide over-accumulation and disruption of mitochondrial transmembrane potential (delta psi m). However, while post-treatment with N-acetyl-L-cysteine or butylated hydroxyanisole reduced the cadmium/BSO-mediated necrosis and delta psi m disruption, it did not reduce the effects of cadmium/H2O2. Bcl-2 over-expression, which reduced peroxide accumulation without affecting the intracellular GSH content, attenuated necrosis generation by cadmium/H2O2 but not by cadmium/BSO. By contrast, AIF suppression, which reduced peroxide accumulation and increased the GSH content, attenuated the toxicity of both treatments. These results unravel the existence of two different oxidation-mediated necrotic pathways in cadmium-treated cells, one of them resulting from ATP-dependent apoptosis blockade, and the other involving the concurrence of multiple regulatory factors.
Collapse
Affiliation(s)
- P Sancho
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Liu WK, Ho JCK, Che CT. Apoptotic activity of isomalabaricane triterpenes on human promyelocytic leukemia HL60 cells. Cancer Lett 2005; 230:102-10. [PMID: 16253766 DOI: 10.1016/j.canlet.2004.12.034] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2004] [Revised: 12/19/2004] [Accepted: 12/20/2004] [Indexed: 11/30/2022]
Abstract
Four isomalabaricane triterpenes were isolated from marine sponge Geodia japonica [W.H. Zhang, C.T. Che, Isomalabaricane-type nortriterpenoids and other constituents of the marine sponge Geodia japonica, J. Nat. Prod. 64 (2001) 1489-1492. ] and their cytotoxicity was evaluated using a human promyelocytic leukemia HL60 cell line. Of the four triterpenes tested, geoditin A was the most cytotoxic to HL60 cells [IC50=3 microg/ml (<6.6 microM)], followed by stellettins A and B, whereas geoditin B exhibited relatively weak cytotoxicity. The treated cells manifested nuclear changes characteristic for apoptosis, and associated with dissipation of mitochondrial membrane potential, activation of caspase 3, and decrease of cytoplasmic proliferating cell nuclear antigen (PCNA), as demonstrated by fluorescence and immunofluorescence microscopy. When the HL60 cells were exposed to geoditin A ranging from 1.25 to 25 microg/ml, a dose-dependent increase of reactive oxygen species, a progressive dissipation of mitochondrial membrane potential, and an increase in annexin V-FITC binding were measured by flow cytometry. Taken together our results suggest that geoditin A markedly induced reactive oxygen species, decreased mitochondrial membrane potential and mediated a caspases 3 apoptosis pathway.
Collapse
Affiliation(s)
- W K Liu
- Department of Anatomy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | | | | |
Collapse
|
26
|
Morrison JP, Coleman MC, Aunan ES, Walsh SA, Spitz DR, Kregel KC. Aging reduces responsiveness to BSO- and heat stress-induced perturbations of glutathione and antioxidant enzymes. Am J Physiol Regul Integr Comp Physiol 2005; 289:R1035-41. [PMID: 15947071 DOI: 10.1152/ajpregu.00254.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aging alters cellular responses to both heat and oxidative stress. Thiol-mediated metabolism of reactive oxygen species (ROS) is believed to be important in aging. To begin to determine the role of thiols in aging and heat stress, we depleted liver glutathione (GSH) by administering l-buthionine sulfoximine (BSO) in young (6 mo) and old (24 mo) Fisher 344 rats before heat stress. Animals were given BSO (4 mmol/kg ip) or saline (1 ml ip) 2 h before heat stress and subsequently heated to a core temperature of 41°C over a 90-min period. Liver tissue was collected before and 0, 30, and 60 min after heat stress. BSO inhibited glutamate cysteine ligase (GCL, the rate-limiting enzyme in GSH synthesis) catalytic activity and resulted in a decline in liver GSH and GSSG that was more pronounced in young compared with old animals. Catalase activity did not change between groups until 60 min after heat stress in young BSO-treated rats. Young animals experienced a substantial and persistent reduction in Cu,Zn-SOD activity with BSO treatment. Mn-SOD activity increased with BSO but declined after heat stress. The differences in thiol depletion observed between young and old animals with BSO treatment may be indicative of age-related differences in GSH compartmentalization that could have an impact on maintenance of redox homeostasis and antioxidant balance immediately after a physiologically relevant stress. The significant changes in antioxidant enzyme activity after GSH depletion suggest that thiol status can influence the regulation of other antioxidant enzymes.
Collapse
Affiliation(s)
- Joanna P Morrison
- Integrative Physiology Laboratory, 532 FH, Department of Exercise Science, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
27
|
Morrison JP, Coleman MC, Aunan ES, Walsh SA, Spitz DR, Kregel KC. Thiol supplementation in aged animals alters antioxidant enzyme activity after heat stress. J Appl Physiol (1985) 2005; 99:2271-7. [PMID: 16099896 DOI: 10.1152/japplphysiol.00412.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Declines in oxidative and thermal stress tolerance are well documented in aging systems. It is thought that these alterations are due in part to reductions in antioxidant defenses. Although intracellular thiols are major redox buffers, their role in maintaining redox homeostasis is not completely understood, particularly during aging, where the reliance on antioxidant enzymes and proteins may be altered. To determine whether thiol supplementation improved the antioxidant enzyme profile of aged animals after heat stress, young and old Fischer 344 rats were treated with N-acetylcysteine (NAC; 4 mmol/kg ip) 2 h before heat stress. Liver tissue was collected before and 0, 30, and 60 min after heat stress. Aging was associated with a significant decline in tissue cysteine and glutathione (GSH) levels. There was also an age-related decrease in copper-zinc superoxide dismutase activity. Heat stress did not alter liver GSH, glutathione disulfide, or antioxidant enzyme activity. With NAC treatment, old animals took up more cysteine than young animals as reflected in an increase in liver GSH and a corresponding decrease in glutamate cysteine ligase activity. Catalase activity increased after NAC treatment in both age groups. Copper-zinc superoxide dismutase activity did not change with heat stress or drug treatment, whereas manganese superoxide dismutase activity was increased in old animals only. These data indicate that GSH synthesis is substrate limited in old animals. Furthermore, aged animals were characterized by large fluctuations in antioxidant enzyme balance after NAC treatment, suggesting a lack of fine control over these enzymes that may leave aged animals susceptible to subsequent stress.
Collapse
Affiliation(s)
- Joanna P Morrison
- Integrative Physiology Laboratory, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
The role of antioxidant enzymes can be interpreted in terms of fine tuning of the concentration of reactive oxygen species which are required in the redox regulation of the cell cycle and of programmed cell death. This review summarizes findings from papers published in the last few years which deal with the relation between apoptosis and the two antioxidant enzymes, manganous superoxide dismutase (MnSOD) and catalase. With respect to MnSOD, the literature is much in favor of an inhibitory action in apoptosis. Increased MnSOD activity has been shown to prevent cell death via the receptor-mediated apoptotic pathway as well as cell death via the mitochondrial pathway. The literature on the influence of catalase activity on apoptosis is less consistent. Evidence for both an antiapoptotic and a proapoptotic role of catalase can be found. From the results reviewed here, two schemes for the involvement of MnSOD and catalase in the regulation of apoptosis can be extracted: 1) Both MnSOD and catalase inhibit apoptosis by removing superoxide anion radicals or H2O2, respectively, because these reactive oxygen species are mediators required for the apoptotic program or inhibit a survival pathway. 2) An increase in H2O2 by downregulation or inhibition of catalase activity and/or upregulation of MnSOD activity inhibits apoptosis while a decrease in H2O2 by upregulation of catalase activity and/or downregulation of MnSOD activity supports apoptosis, possibly because of a supportive role of H2O2 in a survival pathway. The data reported so far do not allow for an explanation why some cell models appear to fit the first scheme while the second scheme appears to correctly describe other cell models. The present state of the literature reveals that antioxidant enzymes play a more intricate role in cell physiology than previously assumed.
Collapse
Affiliation(s)
- Regine Kahl
- Institute of Toxicology, Heinrich Heine University, Düsseldorf, Germany.
| | | | | | | |
Collapse
|
29
|
Abstract
Cadmium is a heavy metal, which is widely used in industry, affecting human health through occupational and environmental exposure. In mammals, it exerts multiple toxic effects and has been classified as a human carcinogen by the International Agency for Research on Cancer. Cadmium affects cell proliferation, differentiation, apoptosis and other cellular activities. Cd2+ does not catalyze Fenton-type reactions because it does not accept or donate electrons under physiological conditions, and it is only weakly genotoxic. Hence, indirect mechanisms are implicated in the carcinogenicity of cadmium. In this review multiple mechanisms are discussed, such as modulation of gene expression and signal transduction, interference with enzymes of the cellular antioxidant system and generation of reactive oxygen species (ROS), inhibition of DNA repair and DNA methylation, role in apoptosis and disruption of E-cadherin-mediated cell-cell adhesion. Cadmium affects both gene transcription and translation. The major mechanisms of gene induction by cadmium known so far are modulation of cellular signal transduction pathways by enhancement of protein phosphorylation and activation of transcription and translation factors. Cadmium interferes with antioxidant defense mechanisms and stimulates the production of reactive oxygen species, which may act as signaling molecules in the induction of gene expression and apoptosis. The inhibition of DNA repair processes by cadmium represents a mechanism by which cadmium enhances the genotoxicity of other agents and may contribute to the tumor initiation by this metal. The disruption of E-cadherin-mediated cell-cell adhesion by cadmium probably further stimulates the development of tumors. It becomes clear that there exist multiple mechanisms which contribute to the carcinogenicity of cadmium, although the relative weights of these contributions are difficult to estimate.
Collapse
Affiliation(s)
- Michael Waisberg
- Department of Land Resource Science, University of Guelph, Guelph, Ont., Canada.
| | | | | | | |
Collapse
|