1
|
Taggi V, Schäfer AM, Oswald S, Kinzi JH, Seibert I, Al-Khatib A, Schwabedissen HEMZ. Pregnenolone Sulfate Permeation at the Blood-Brain Barrier is Independent of OATP2B1-In Vivo and In Vitro Insights. Biopharm Drug Dispos 2025; 46:33-46. [PMID: 40070341 DOI: 10.1002/bdd.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/17/2025] [Accepted: 02/27/2025] [Indexed: 03/26/2025]
Abstract
Sulfated steroids such as pregnenolone sulfate (PregS) are important for neuronal development and cognitive functions. Given the hydrophilic sulfate moiety, it is assumed that PregS requires an active transport mechanism to cross the blood-brain barrier (BBB). The human organic anion transporting polypeptide (OATP)2B1 has been previously shown to transport sulfated steroids and is therefore a proposed candidate for the transport of PregS. In this study, we aimed to investigate the role of OATP2B1 in the uptake of PregS in the brain. Tritium-labeled PregS was intravenously administered to humanized (SLCO2B1+/+), knockout (rSlco2b1-/-), and wildtype (WT) rats. Accumulation of the radiotracer was analyzed in rat brain, liver, small intestine, kidney, heart, and muscle. Moreover, transporter expression in brain microvessels was assessed through targeted proteomics and Western blot analysis. The involvement of hOATP2B1 in PregS transport across the BBB was further studied using a hBMEC-based in vitro BBB model. Our results indicated no significant difference in accumulation of the radiotracer among the different rat genotypes in the brain or in other tissues. In line with what we observed in the rat model, the subsequent in vitro study showed no involvement of hOATP2B1 in the transport of PregS. Taken together, our findings highlight the species-specific differences in transporter expression and suggest that OATP2B1 does not mediate PregS uptake across the BBB.
Collapse
Affiliation(s)
- Valerio Taggi
- Department of Pharmaceutical Sciences, Biopharmacy, University of Basel, Basel, Switzerland
| | - Anima M Schäfer
- Department of Pharmaceutical Sciences, Biopharmacy, University of Basel, Basel, Switzerland
| | - Stefan Oswald
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| | - Jonny Hanna Kinzi
- Department of Pharmaceutical Sciences, Biopharmacy, University of Basel, Basel, Switzerland
| | - Isabell Seibert
- Department of Pharmaceutical Sciences, Biopharmacy, University of Basel, Basel, Switzerland
| | - Alaa Al-Khatib
- Department of Pharmaceutical Sciences, Biopharmacy, University of Basel, Basel, Switzerland
| | | |
Collapse
|
2
|
Marin JJG, Cives-Losada C, Macias RIR, Romero MR, Marijuan RP, Hortelano-Hernandez N, Delgado-Calvo K, Villar C, Gonzalez-Santiago JM, Monte MJ, Asensio M. Impact of liver diseases and pharmacological interactions on the transportome involved in hepatic drug disposition. Biochem Pharmacol 2024; 228:116166. [PMID: 38527556 DOI: 10.1016/j.bcp.2024.116166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
The liver plays a pivotal role in drug disposition owing to the expression of transporters accounting for the uptake at the sinusoidal membrane and the efflux across the basolateral and canalicular membranes of hepatocytes of many different compounds. Moreover, intracellular mechanisms of phases I and II biotransformation generate, in general, inactive compounds that are more polar and easier to eliminate into bile or refluxed back toward the blood for their elimination by the kidneys, which becomes crucial when the biliary route is hampered. The set of transporters expressed at a given time, i.e., the so-called transportome, is encoded by genes belonging to two gene superfamilies named Solute Carriers (SLC) and ATP-Binding Cassette (ABC), which account mainly, but not exclusively, for the uptake and efflux of endogenous substances and xenobiotics, which include many different drugs. Besides the existence of genetic variants, which determines a marked interindividual heterogeneity regarding liver drug disposition among patients, prevalent diseases, such as cirrhosis, non-alcoholic steatohepatitis, primary sclerosing cholangitis, primary biliary cirrhosis, viral hepatitis, hepatocellular carcinoma, cholangiocarcinoma, and several cholestatic liver diseases, can alter the transportome and hence affect the pharmacokinetics of drugs used to treat these patients. Moreover, hepatic drug transporters are involved in many drug-drug interactions (DDI) that challenge the safety of using a combination of agents handled by these proteins. Updated information on these questions has been organized in this article by superfamilies and families of members of the transportome involved in hepatic drug disposition.
Collapse
Affiliation(s)
- Jose J G Marin
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain.
| | - Candela Cives-Losada
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Rocio I R Macias
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Marta R Romero
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Rebeca P Marijuan
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain
| | | | - Kevin Delgado-Calvo
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Carmen Villar
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Department of Gastroenterology and Hepatology, University Hospital of Salamanca, Salamanca, Spain
| | - Jesus M Gonzalez-Santiago
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain; Department of Gastroenterology and Hepatology, University Hospital of Salamanca, Salamanca, Spain
| | - Maria J Monte
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Maitane Asensio
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| |
Collapse
|
3
|
Villa M, Wu J, Hansen S, Pahnke J. Emerging Role of ABC Transporters in Glia Cells in Health and Diseases of the Central Nervous System. Cells 2024; 13:740. [PMID: 38727275 PMCID: PMC11083179 DOI: 10.3390/cells13090740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
ATP-binding cassette (ABC) transporters play a crucial role for the efflux of a wide range of substrates across different cellular membranes. In the central nervous system (CNS), ABC transporters have recently gathered significant attention due to their pivotal involvement in brain physiology and neurodegenerative disorders, such as Alzheimer's disease (AD). Glial cells are fundamental for normal CNS function and engage with several ABC transporters in different ways. Here, we specifically highlight ABC transporters involved in the maintenance of brain homeostasis and their implications in its metabolic regulation. We also show new aspects related to ABC transporter function found in less recognized diseases, such as Huntington's disease (HD) and experimental autoimmune encephalomyelitis (EAE), as a model for multiple sclerosis (MS). Understanding both their impact on the physiological regulation of the CNS and their roles in brain diseases holds promise for uncovering new therapeutic options. Further investigations and preclinical studies are warranted to elucidate the complex interplay between glial ABC transporters and physiological brain functions, potentially leading to effective therapeutic interventions also for rare CNS disorders.
Collapse
Affiliation(s)
- Maria Villa
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
| | - Jingyun Wu
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
| | - Stefanie Hansen
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
| | - Jens Pahnke
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
- Institute of Nutritional Medicine (INUM)/Lübeck Institute of Dermatology (LIED), University of Lübeck (UzL) and University Medical Center Schleswig-Holstein (UKSH), Ratzeburger Allee 160, D-23538 Lübeck, Germany
- Department of Pharmacology, Faculty of Medicine, University of Latvia (LU), Jelgavas iela 3, LV-1004 Rīga, Latvia
- School of Neurobiology, Biochemistry and Biophysics, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University (TAU), Tel Aviv IL-6997801, Israel
| |
Collapse
|
4
|
Schulz JA, Hartz AMS, Bauer B. ABCB1 and ABCG2 Regulation at the Blood-Brain Barrier: Potential New Targets to Improve Brain Drug Delivery. Pharmacol Rev 2023; 75:815-853. [PMID: 36973040 PMCID: PMC10441638 DOI: 10.1124/pharmrev.120.000025] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
The drug efflux transporters ABCB1 and ABCG2 at the blood-brain barrier limit the delivery of drugs into the brain. Strategies to overcome ABCB1/ABCG2 have been largely unsuccessful, which poses a tremendous clinical problem to successfully treat central nervous system (CNS) diseases. Understanding basic transporter biology, including intracellular regulation mechanisms that control these transporters, is critical to solving this clinical problem.In this comprehensive review, we summarize current knowledge on signaling pathways that regulate ABCB1/ABCG2 at the blood-brain barrier. In Section I, we give a historical overview on blood-brain barrier research and introduce the role that ABCB1 and ABCG2 play in this context. In Section II, we summarize the most important strategies that have been tested to overcome the ABCB1/ABCG2 efflux system at the blood-brain barrier. In Section III, the main component of this review, we provide detailed information on the signaling pathways that have been identified to control ABCB1/ABCG2 at the blood-brain barrier and their potential clinical relevance. This is followed by Section IV, where we explain the clinical implications of ABCB1/ABCG2 regulation in the context of CNS disease. Lastly, in Section V, we conclude by highlighting examples of how transporter regulation could be targeted for therapeutic purposes in the clinic. SIGNIFICANCE STATEMENT: The ABCB1/ABCG2 drug efflux system at the blood-brain barrier poses a significant problem to successful drug delivery to the brain. The article reviews signaling pathways that regulate blood-brain barrier ABCB1/ABCG2 and could potentially be targeted for therapeutic purposes.
Collapse
Affiliation(s)
- Julia A Schulz
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| | - Anika M S Hartz
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| |
Collapse
|
5
|
Okamoto N, Fujinaga D, Yamanaka N. Steroid hormone signaling: What we can learn from insect models. VITAMINS AND HORMONES 2023; 123:525-554. [PMID: 37717997 DOI: 10.1016/bs.vh.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Ecdysteroids are a group of steroid hormones in arthropods with pleiotropic functions throughout their life history. Ecdysteroid research in insects has made a significant contribution to our current understanding of steroid hormone signaling in metazoans, but how far can we extrapolate our findings in insects to other systems, such as mammals? In this chapter, we compare steroid hormone signaling in insects and mammals from multiple perspectives and discuss similarities and differences between the two lineages. We also highlight a few understudied areas and remaining questions of steroid hormone biology in metazoans and propose potential future research directions.
Collapse
Affiliation(s)
- Naoki Okamoto
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Daiki Fujinaga
- Department of Entomology, University of California, Riverside, CA, United States
| | - Naoki Yamanaka
- Department of Entomology, University of California, Riverside, CA, United States.
| |
Collapse
|
6
|
Zhang S, Gan L, Cao F, Wang H, Gong P, Ma C, Ren L, Lin Y, Lin X. The barrier and interface mechanisms of the brain barrier, and brain drug delivery. Brain Res Bull 2022; 190:69-83. [PMID: 36162603 DOI: 10.1016/j.brainresbull.2022.09.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 08/25/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022]
Abstract
Three different barriers are formed between the cerebrovascular and the brain parenchyma: the blood-brain barrier (BBB), the blood-cerebrospinal fluid barrier (BCSFB), and the cerebrospinal fluid-brain barrier (CBB). The BBB is the main regulator of blood and central nervous system (CNS) material exchange. The semipermeable nature of the BBB limits the passage of larger molecules and hydrophilic small molecules, Food and Drug Administration (FDA)-approved drugs for the CNS have been generally limited to lipid-soluble small molecules. Although the complexity of the BBB affects CNS drug delivery, understanding the composition and function of the BBB can provide a platform for the development of new methods for CNS drug delivery. This review summarizes the classification of the brain barrier, the composition and role of the basic structures of the BBB, and the transport, barrier, and destruction mechanisms of the BBB; discusses the advantages and disadvantages of different drug delivery methods and prospects for future drug delivery strategies.
Collapse
Affiliation(s)
- Shanshan Zhang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, Zhejiang Province, China
| | - Lin Gan
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Fengye Cao
- Yiyang The First Hospital of Traditional Chinese Medicine, Yiyang, Hunan Province, 413000, China
| | - Hao Wang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Peng Gong
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Congcong Ma
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Li Ren
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Yubo Lin
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Xianming Lin
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China.
| |
Collapse
|
7
|
Dudas B, Decleves X, Cisternino S, Perahia D, Miteva M. ABCG2/BCRP transport mechanism revealed through kinetically excited targeted molecular dynamics simulations. Comput Struct Biotechnol J 2022; 20:4195-4205. [PMID: 36016719 PMCID: PMC9389183 DOI: 10.1016/j.csbj.2022.07.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 12/03/2022] Open
Abstract
ABCG2/BCRP is an ABC transporter that plays an important role in tissue protection by exporting endogenous substrates and xenobiotics. ABCG2 is of major interest due to its involvement in multidrug resistance (MDR), and understanding its complex efflux mechanism is essential to preventing MDR and drug-drug interactions (DDI). ABCG2 export is characterized by two major conformational transitions between inward- and outward-facing states, the structures of which have been resolved. Yet, the entire transport cycle has not been characterized to date. Our study bridges the gap between the two extreme conformations by studying connecting pathways. We developed an innovative approach to enhance molecular dynamics simulations, ‘kinetically excited targeted molecular dynamics’, and successfully simulated the transitions between inward- and outward-facing states in both directions and the transport of the endogenous substrate estrone 3-sulfate. We discovered an additional pocket between the two substrate-binding cavities and found that the presence of the substrate in the first cavity is essential to couple the movements between the nucleotide-binding and transmembrane domains. Our study shed new light on the complex efflux mechanism, and we provided transition pathways that can help to identify novel substrates and inhibitors of ABCG2 and probe new drug candidates for MDR and DDI.
Collapse
|
8
|
Nwabufo CK. Relevance of ABC Transporters in Drug Development. Curr Drug Metab 2022; 23:434-446. [PMID: 35726814 DOI: 10.2174/1389200223666220621113524] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/22/2022]
Abstract
ATP-binding cassette (ABC) transporters play a critical role in protecting vital organs such as the brain and placenta against xenobiotics, as well as in modulating the pharmacological and toxicological profile of several drug candidates by restricting their penetration through cellular and tissue barriers. This review paper provides a description of the structure and function of ABC transporters as well as the role of P-glycoprotein, multidrug resistance-associated protein 2 and breast cancer resistance protein in the disposition of drugs. Furthermore, a review of the in vitro and in vivo techniques for evaluating the interaction between drugs and ABC transporters are provided.
Collapse
Affiliation(s)
- Chukwunonso K Nwabufo
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada.,Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Inhibition of Xenobiotics Transporters’ Efflux Ability after Nanoplastics Exposure in Larval Japanese Medaka. WATER 2022. [DOI: 10.3390/w14060863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Nanoplastics can enter into the aquatic environment as primary nano-sized or fragmented from larger-sized plastic particles, and their ecological effects and environmental fate have aroused increasing public concerns. Here, we identified the disruption of ATP-binding cassette (ABC) efflux after polystyrene (PS) nanoplastics (76 ± 7 nm) exposure in larval Japanese medaka (Oryzias latipes). Nanoplastics (0.001–10 μg/mL) caused 3–6-fold higher lipid peroxidation in fish larvae than the control, with concomitant downregulated expression of efflux transporter-related genes (abcb6a, abcc2, abcg2). Two probes of rhodamine (indicative of p-glycoprotein function for parent compounds’ efflux, P-gp) and fluorescein (indicative of multidrug resistance-associated protein function for metabolites’ efflux, MRP) were further used to verify the inhibited ABC efflux ability, via rhodamine and fluorescein bioaccumulation results. Three-fold higher accumulation of rhodamine was observed following treatment with 10 μg/mL of nanoplastics. Excessive accumulation also occurred for fluorescein, with 1.7–1.8-fold higher concentrations than controls in larvae treated with 0.01–0.1 μg/mL of nanoplastics. Although the inhibition of ABC transporters diminished after two hours of depuration, the co-existence of nanoplastics and other contaminants still raises concerns. Collectively, this study suggests that nanoplastics can negatively impact ABC transporters’ efflux ability and could cause unanticipated accumulation of co-existing organic pollutants in aquatic organisms.
Collapse
|
10
|
Litjens CHC, Verscheijden LFM, Bolwerk C, Greupink R, Koenderink JB, van den Broek PHH, van den Heuvel JJMW, Svensson EM, Boeree MJ, Magis-Escurra C, Hoefsloot W, van Crevel R, van Laarhoven A, van Ingen J, Kuipers S, Ruslami R, Burger DM, Russel FGM, Aarnoutse RE, Te Brake LHM. Prediction of Moxifloxacin Concentrations in Tuberculosis Patient Populations by Physiologically Based Pharmacokinetic Modeling. J Clin Pharmacol 2021; 62:385-396. [PMID: 34554580 PMCID: PMC9297990 DOI: 10.1002/jcph.1972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 09/18/2021] [Indexed: 02/03/2023]
Abstract
Moxifloxacin has an important role in the treatment of tuberculosis (TB). Unfortunately, coadministration with the cornerstone TB drug rifampicin results in suboptimal plasma exposure. We aimed to gain insight into the moxifloxacin pharmacokinetics and the interaction with rifampicin. Moreover, we provided a mechanistic framework to understand moxifloxacin pharmacokinetics. We developed a physiologically based pharmacokinetic model in Simcyp version 19, with available and newly generated in vitro and in vivo data, to estimate pharmacokinetic parameters of moxifloxacin alone and when administered with rifampicin. By combining these strategies, we illustrate that the role of P-glycoprotein in moxifloxacin transport is limited and implicate MRP2 as transporter of moxifloxacin-glucuronide followed by rapid hydrolysis in the gut. Simulations of multiple dose area under the plasma concentration-time curve (AUC) of moxifloxacin (400 mg once daily) with and without rifampicin (600 mg once daily) were in accordance with clinically observed data (predicted/observed [P/O] ratio of 0.87 and 0.80, respectively). Importantly, increasing the moxifloxacin dose to 600 mg restored the plasma exposure both in actual patients with TB as well as in our simulations. Furthermore, we extrapolated the single dose model to pediatric populations (P/O AUC ratios, 1.04-1.52) and the multiple dose model to children with TB (P/O AUC ratio, 1.51). In conclusion, our combined approach resulted in new insights into moxifloxacin pharmacokinetics and accurate simulations of moxifloxacin exposure with and without rifampicin. Finally, various knowledge gaps were identified, which may be considered as avenues for further physiologically based pharmacokinetic refinement.
Collapse
Affiliation(s)
- Carlijn H C Litjens
- Department of Pharmacy, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laurens F M Verscheijden
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Celine Bolwerk
- Department of Pharmacy, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rick Greupink
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan B Koenderink
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Petra H H van den Broek
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeroen J M W van den Heuvel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Elin M Svensson
- Department of Pharmacy, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Martin J Boeree
- Department of Pulmonary Diseases, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cecile Magis-Escurra
- Department of Pulmonary Diseases, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wouter Hoefsloot
- Department of Pulmonary Diseases, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Reinout van Crevel
- Department of Internal Medicine, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arjan van Laarhoven
- Department of Internal Medicine, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jakko van Ingen
- Department of Medical Microbiology, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Saskia Kuipers
- Department of Medical Microbiology, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rovina Ruslami
- TB/HIV Research Centre, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia.,Department of Biomedical Sciences, Division of Pharmacology and Therapy, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - David M Burger
- Department of Pharmacy, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob E Aarnoutse
- Department of Pharmacy, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lindsey H M Te Brake
- Department of Pharmacy, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
11
|
Fashe M, Yi M, Sueyoshi T, Negishi M. Sex-specific expression mechanism of hepatic estrogen inactivating enzyme and transporters in diabetic women. Biochem Pharmacol 2021; 190:114662. [PMID: 34157297 DOI: 10.1016/j.bcp.2021.114662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 12/21/2022]
Abstract
Circulating estrogens levels significantly decrease in menopause and levels off in postmenopausal women. Accordingly, the liver represses levels of enzymes and membrane transporters, thereby decreasing capability of inactivating and excreting estrogens. Women increasingly develop type 2 diabetes during or after menopause. Estrogens are known to promote liver diseases in these women. Here, we have found that the estrogen inactivating sulfotransferase (SULT1E1) and an ATP-binding cassette subfamily G member 2 (ABCG2), a gene encoding breast cancer resistance protein that exports sulfated estrogens, increased their expression levels in diabetic women but not men. For the sulfotransferase gene, phosphorylated nuclear receptors ERα and RORα, at Ser212 and Ser100, respectively, bind their response elements to activate the SULT1E1 promoter in women. This coordinated increase in estrogen inactivation and excretion, and the phosphorylated nuclear receptor-mediated gene activation could be a defense mechanism against toxicities of estrogens through inactivation and excretion in the livers of women.
Collapse
Affiliation(s)
- Muluneh Fashe
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | - MyeongJin Yi
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Tatsuya Sueyoshi
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Masahiko Negishi
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
12
|
Zhao A, Jiang S, Miao J. Effects of BαP and TBBPA on multixenobiotic resistance (MXR) related efflux transporter activity and gene expressions in gill cells of scallop Chlamys farreri. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:21110-21118. [PMID: 33405114 DOI: 10.1007/s11356-020-12302-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
The multixenobiotic resistance mechanism (MXR) provides aquatic organisms with the capacity to adapt to polluted environments, which can be inhibited by chemosensitizers. In the present study, the effect of two typical marine persistent organic pollutants, benzo(a)pyrene (BaP) and tetrabromobisphenol A (TBBPA), on the most relevant ABC transporters, ABCB1, ABCC1, and ABCG2 of scallop Chlamys farreri was tested. MXR transporter efflux activity of cultured gill cells of the scallops was evaluated by measuring the intracellular fluorescent intensity of Calcein-AM and rhodamine 123 with flow cytometry. The results showed that ABCB1 and ABCC1 transporters demonstrated increased activity compared with ABCG2 in mediating MXR efflux activity. BaP and TBBPA were able to suppress the efflux transporter activity of ABC transporters significantly, of which BaP revealed block effects by acting on the ABCB1 transporter. Additionally, exposure of BaP and TBBPA only significantly upregulated the expression level of ABCC1 gene. This study demonstrated the promising utility of efflux transporter activity in conjunction with biomarkers such as mRNA levels in identification of chemosensitizer.
Collapse
Affiliation(s)
- Anran Zhao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Shanshan Jiang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, People's Republic of China.
| |
Collapse
|
13
|
Kowal J, Ni D, Jackson SM, Manolaridis I, Stahlberg H, Locher KP. Structural Basis of Drug Recognition by the Multidrug Transporter ABCG2. J Mol Biol 2021; 433:166980. [PMID: 33838147 DOI: 10.1016/j.jmb.2021.166980] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 11/25/2022]
Abstract
ABCG2 is an ATP-binding cassette (ABC) transporter whose function affects the pharmacokinetics of drugs and contributes to multidrug resistance of cancer cells. While its interaction with the endogenous substrate estrone-3-sulfate (E1S) has been elucidated at a structural level, the recognition and recruitment of exogenous compounds is not understood at sufficiently high resolution. Here we present three cryo-EM structures of nanodisc-reconstituted, human ABCG2 bound to anticancer drugs tariquidar, topotecan and mitoxantrone. To enable structural insight at high resolution, we used Fab fragments of the ABCG2-specific monoclonal antibody 5D3, which binds to the external side of the transporter but does not interfere with drug-induced stimulation of ATPase activity. We observed that the binding pocket of ABCG2 can accommodate a single tariquidar molecule in a C-shaped conformation, similar to one of the two tariquidar molecules bound to ABCB1, where tariquidar acts as an inhibitor. We also found single copies of topotecan and mitoxantrone bound between key phenylalanine residues. Mutagenesis experiments confirmed the functional importance of two residues in the binding pocket, F439 and N436. Using 3D variability analyses, we found a correlation between substrate binding and reduced dynamics of the nucleotide binding domains (NBDs), suggesting a structural explanation for drug-induced ATPase stimulation. Our findings provide additional insight into how ABCG2 differentiates between inhibitors and substrates and may guide a rational design of new modulators and substrates.
Collapse
Affiliation(s)
- Julia Kowal
- Institute of Molecular Biology and Biophysics, ETH Zurich, Switzerland.
| | - Dongchun Ni
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Switzerland
| | - Scott M Jackson
- Institute of Molecular Biology and Biophysics, ETH Zurich, Switzerland
| | | | - Henning Stahlberg
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Switzerland.
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, ETH Zurich, Switzerland.
| |
Collapse
|
14
|
Mammalian ABCG-transporters, sterols and lipids: To bind perchance to transport? Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158860. [PMID: 33309976 DOI: 10.1016/j.bbalip.2020.158860] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/15/2020] [Accepted: 12/08/2020] [Indexed: 02/08/2023]
Abstract
Members of the ATP binding cassette (ABC) transporter family perform a critical function in maintaining lipid homeostasis in cells as well as the transport of drugs. In this review, we provide an update on the ABCG-transporter subfamily member proteins, which include the homodimers ABCG1, ABCG2 and ABCG4 as well as the heterodimeric complex formed between ABCG5 and ABCG8. This review focusses on progress made in this field of research with respect to their function in health and disease and the recognised transporter substrates. We also provide an update on post-translational regulation, including by transporter substrates, and well as the involvement of microRNA as regulators of transporter expression and activity. In addition, we describe progress made in identifying structural elements that have been recognised as important for transport activity. We furthermore discuss the role of lipids such as cholesterol on the transport function of ABCG2, traditionally thought of as a drug transporter, and provide a model of potential cholesterol binding sites for ABCG2.
Collapse
|
15
|
Beaudoin JJ, Brouwer KLR, Malinen MM. Novel insights into the organic solute transporter alpha/beta, OSTα/β: From the bench to the bedside. Pharmacol Ther 2020; 211:107542. [PMID: 32247663 PMCID: PMC7480074 DOI: 10.1016/j.pharmthera.2020.107542] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/25/2020] [Indexed: 12/14/2022]
Abstract
Organic solute transporter alpha/beta (OSTα/β) is a heteromeric solute carrier protein that transports bile acids, steroid metabolites and drugs into and out of cells. OSTα/β protein is expressed in various tissues, but its expression is highest in the gastrointestinal tract where it facilitates the recirculation of bile acids from the gut to the liver. Previous studies established that OSTα/β is upregulated in liver tissue of patients with extrahepatic cholestasis, obstructive cholestasis, and primary biliary cholangitis (PBC), conditions that are characterized by elevated bile acid concentrations in the liver and/or systemic circulation. The discovery that OSTα/β is highly upregulated in the liver of patients with nonalcoholic steatohepatitis (NASH) further highlights the clinical relevance of this transporter because the incidence of NASH is increasing at an alarming rate with the obesity epidemic. Since OSTα/β is closely linked to the homeostasis of bile acids, and tightly regulated by the nuclear receptor farnesoid X receptor, OSTα/β is a potential drug target for treatment of cholestatic liver disease, and other bile acid-related metabolic disorders such as obesity and diabetes. Obeticholic acid, a semi-synthetic bile acid used to treat PBC, under review for the treatment of NASH, and in development for the treatment of other metabolic disorders, induces OSTα/β. Some drugs associated with hepatotoxicity inhibit OSTα/β, suggesting a possible role for OSTα/β in drug-induced liver injury (DILI). Furthermore, clinical cases of homozygous genetic defects in both OSTα/β subunits resulting in diarrhea and features of cholestasis have been reported. This review article has been compiled to comprehensively summarize the recent data emerging on OSTα/β, recapitulating the available literature on the structure-function and expression-function relationships of OSTα/β, the regulation of this important transporter, the interaction of drugs and other compounds with OSTα/β, and the comparison of OSTα/β with other solute carrier transporters as well as adenosine triphosphate-binding cassette transporters. Findings from basic to more clinically focused research efforts are described and discussed.
Collapse
Affiliation(s)
- James J Beaudoin
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Melina M Malinen
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
16
|
Deng F, Ghemtio L, Grazhdankin E, Wipf P, Xhaard H, Kidron H. Binding Site Interactions of Modulators of Breast Cancer Resistance Protein, Multidrug Resistance-Associated Protein 2, and P-Glycoprotein Activity. Mol Pharm 2020; 17:2398-2410. [PMID: 32496785 PMCID: PMC7497665 DOI: 10.1021/acs.molpharmaceut.0c00155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
ATP-binding cassette (ABC)-transporters
protect tissues by pumping
their substrates out of the cells in many physiological barriers,
such as the blood–brain barrier, intestine, liver, and kidney.
These substrates include various endogenous metabolites, but, in addition,
ABC transporters recognize a wide range of compounds, therefore affecting
the disposition and elimination of clinically used drugs and their
metabolites. Although numerous ABC-transporter inhibitors are known,
the underlying mechanism of inhibition is not well characterized.
The aim of this study is to deepen our understanding of transporter
inhibition by studying the molecular basis of ligand recognition.
In the current work, we compared the effect of 44 compounds on the
active transport mediated by three ABC transporters: breast cancer
resistance protein (BCRP and ABCG2), multidrug-resistance associated
protein (MRP2 and ABCC2), and P-glycoprotein (P-gp and ABCB1). Eight
compounds were strong inhibitors of all three transporters, while
the activity of 36 compounds was transporter-specific. Of the tested
compounds, 39, 25, and 11 were considered as strong inhibitors, while
1, 4, and 11 compounds were inactive against BCRP, MRP2, and P-gp,
respectively. In addition, six transport-enhancing stimulators were
observed for P-gp. In order to understand the observed selectivity,
we compared the surface properties of binding cavities in the transporters
and performed structure–activity analysis and computational
docking of the compounds to known binding sites in the transmembrane
domains and nucleotide-binding domains. Based on the results, the
studied compounds are more likely to interact with the transmembrane
domain than the nucleotide-binding domain. Additionally, the surface
properties of the substrate binding site in the transmembrane domains
of the three transporters were in line with the observed selectivity.
Because of the high activity toward BCRP, we lacked the dynamic range
needed to draw conclusions on favorable interactions; however, we
identified amino acids in both P-gp and MRP2 that appear to be important
for ligand recognition.
Collapse
Affiliation(s)
- Feng Deng
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Helsinki 00014, Finland
| | - Leo Ghemtio
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Helsinki 00014, Finland
| | - Evgeni Grazhdankin
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Helsinki 00014, Finland
| | - Peter Wipf
- Department of Chemistry, The Center for Chemical Methodologies and Library Development, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Henri Xhaard
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Helsinki 00014, Finland
| | - Heidi Kidron
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Helsinki 00014, Finland
| |
Collapse
|
17
|
Deferm N, De Vocht T, Qi B, Van Brantegem P, Gijbels E, Vinken M, de Witte P, Bouillon T, Annaert P. Current insights in the complexities underlying drug-induced cholestasis. Crit Rev Toxicol 2019; 49:520-548. [PMID: 31589080 DOI: 10.1080/10408444.2019.1635081] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Drug-induced cholestasis (DIC) poses a major challenge to the pharmaceutical industry and regulatory agencies. It causes both drug attrition and post-approval withdrawal of drugs. DIC represents itself as an impaired secretion and flow of bile, leading to the pathological hepatic and/or systemic accumulation of bile acids (BAs) and their conjugate bile salts. Due to the high number of mechanisms underlying DIC, predicting a compound's cholestatic potential during early stages of drug development remains elusive. A profound understanding of the different molecular mechanisms of DIC is, therefore, of utmost importance. Although many knowledge gaps and caveats still exist, it is generally accepted that alterations of certain hepatobiliary membrane transporters and changes in hepatocellular morphology may cause DIC. Consequently, liver models, which represent most of these mechanisms, are valuable tools to predict human DIC. Some of these models, such as membrane-based in vitro models, are exceptionally well-suited to investigate specific mechanisms (i.e. transporter inhibition) of DIC, while others, such as liver slices, encompass all relevant biological processes and, therefore, offer a better representation of the in vivo situation. In the current review, we highlight the principal molecular mechanisms associated with DIC and offer an overview and critical appraisal of the different liver models that are currently being used to predict the cholestatic potential of drugs.
Collapse
Affiliation(s)
- Neel Deferm
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - Tom De Vocht
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - Bing Qi
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - Pieter Van Brantegem
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - Eva Gijbels
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Peter de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Thomas Bouillon
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - Pieter Annaert
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| |
Collapse
|
18
|
Transporters in the Mammary Gland-Contribution to Presence of Nutrients and Drugs into Milk. Nutrients 2019; 11:nu11102372. [PMID: 31590349 PMCID: PMC6836069 DOI: 10.3390/nu11102372] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/19/2019] [Accepted: 09/25/2019] [Indexed: 02/07/2023] Open
Abstract
A large number of nutrients and bioactive ingredients found in milk play an important role in the nourishment of breast-fed infants and dairy consumers. Some of these ingredients include physiologically relevant compounds such as vitamins, peptides, neuroactive compounds and hormones. Conversely, milk may contain substances-drugs, pesticides, carcinogens, environmental pollutants-which have undesirable effects on health. The transfer of these compounds into milk is unavoidably linked to the function of transport proteins. Expression of transporters belonging to the ATP-binding cassette (ABC-) and Solute Carrier (SLC-) superfamilies varies with the lactation stages of the mammary gland. In particular, Organic Anion Transporting Polypeptides 1A2 (OATP1A2) and 2B1 (OATP2B1), Organic Cation Transporter 1 (OCT1), Novel Organic Cation Transporter 1 (OCTN1), Concentrative Nucleoside Transporters 1, 2 and 3 (CNT1, CNT2 and CNT3), Peptide Transporter 2 (PEPT2), Sodium-dependent Vitamin C Transporter 2 (SVCT2), Multidrug Resistance-associated Protein 5 (ABCC5) and Breast Cancer Resistance Protein (ABCG2) are highly induced during lactation. This review will focus on these transporters overexpressed during lactation and their role in the transfer of products into the milk, including both beneficial and harmful compounds. Furthermore, additional factors, such as regulation, polymorphisms or drug-drug interactions will be described.
Collapse
|
19
|
Fu G, Huang X, Qin B, Wu Y, Wang Y, Zhao S, Zhou J, Fang W. Effects of emodin on ABC transporter gene expression in grass carp (Ctenopharyngodon idellus) exposed to diazinon. PLoS One 2019; 14:e0219866. [PMID: 31365567 PMCID: PMC6668774 DOI: 10.1371/journal.pone.0219866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022] Open
Abstract
This study aimed to investigate the function of ATP-binding cassette (ABC) transporter genes in grass carp treated with emodin combined with diazinon (DZN) exposure. The transcription levels of five ABC transporter genes in different tissues of grass carp and at different time points were measured by real-time quantitative PCR (qRT-PCR). The analysis of different tissues showed higher ABCB1 expression in the skin (26-fold) and gill (2-fold) than in the liver. In addition, ABCB11 expression was higher in the skin (109-fold) and gill (57-fold) than in the liver, ABCC1 was more highly expressed in the gill (50-fold) than in the liver, and ABCG2 was expressed at higher levels in the skin (659-fold, p < 0.01), gill (628-fold, p < 0.01) and liver (659-fold, p < 0.01) than in brain tissue. The analysis of different time points revealed that the ABCB1, ABCB11, ABCC1, ABCC2 and ABCG2 genes were highly expressed at 24 h in the liver in the experimental group. However, analysis of the intestinal tissue of the experimental group showed that the expression of ABCB1 and ABCB11 peaked at 6 h, the expression of ABCC1 and ABCC2 peaked at 5 d, and the expression of ABCG2 peaked at 3 d. Furthermore, the emodin concentrations in the liver and intestine reached their peak levels (50.18 and 117.24 μg·ml−1, respectively) after 48 and 1 h of treatment with emodin combined with DZN, respectively. The peak DZN concentrations in the liver (1.42 ng·ml−1) and intestine (0.2 ng·ml−1) were detected 3 and 6 h after emodin treatment combined with DZN, respectively. In conclusion, this study shows that the transcript levels of ABC transporters respond to the presence of emodin, which indicates their potential involvement in and contribution with the metabolic process in grass carp.
Collapse
Affiliation(s)
- Guihong Fu
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Xuanyun Huang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Bo Qin
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Yanqing Wu
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Yuan Wang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Shu Zhao
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Junfang Zhou
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Wenhong Fang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
20
|
Sjöstedt N, Salminen TA, Kidron H. Endogenous, cholesterol-activated ATP-dependent transport in membrane vesicles from Spodoptera frugiperda cells. Eur J Pharm Sci 2019; 137:104963. [PMID: 31226387 DOI: 10.1016/j.ejps.2019.104963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 06/04/2019] [Accepted: 06/17/2019] [Indexed: 12/19/2022]
Abstract
Transport proteins of the ATP-binding cassette (ABC) family are found in all kingdoms of life. In humans, several ABC efflux transporters play a role in drug disposition and excretion. Therefore, in vitro methods have been developed to characterize the substrate and inhibitor properties of drugs with respect to these transporters. In the vesicular transport assay, transport is studied using inverted membrane vesicles produced from transporter overexpressing cell lines of both mammalian and insect origin. Insect cell expression systems benefit from a higher expression compared to background, but are not as well characterized as their mammalian counterparts regarding endogenous transport. Therefore, the contribution of this transport in the assay might be underappreciated. In this study, endogenous transport in membrane vesicles from Spodoptera frugiperda -derived Sf9 cells was characterized using four typical substrates of human ABC transporters: 5(6)-carboxy-2,'7'-dichlorofluorescein (CDCF), estradiol-17β-glucuronide, estrone sulfate and N-methyl-quinidine. Significant ATP-dependent transport was observed for three of the substrates with cholesterol-loading of the vesicles, which is sometimes used to improve the activity of human transporters expressed in Sf9 cells. The highest effect of cholesterol was on CDCF transport, and this transport in the cholesterol-loaded Sf9 vesicles was time and concentration dependent with a Km of 8.06 ± 1.11 μM. The observed CDCF transport was inhibited by known inhibitors of human ABCC transporters, but not by ABCB1 and ABCG2 inhibitors verapamil and Ko143, respectively. Two candidate genes for ABCC-type transporters in the S. frugiperda genome (SfABCC2 and SfABCC3) were identified based on sequence analysis as a hypothesis to explain the observed endogenous ABCC-type transport in Sf9 vesicles. Although further studies are needed to verify the role of SfABCC2 and SfABCC3 in Sf9 vesicles, the findings of this study highlight the need to carefully characterize background transport in Sf9 derived membrane vesicles to avoid false positive substrate findings for human ABC transporters studied with this overexpression system.
Collapse
Affiliation(s)
- Noora Sjöstedt
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| | - Tiina A Salminen
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Heidi Kidron
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
21
|
Szilagyi JT, Gorczyca L, Brinker A, Buckley B, Laskin JD, Aleksunes LM. Placental BCRP/ABCG2 Transporter Prevents Fetal Exposure to the Estrogenic Mycotoxin Zearalenone. Toxicol Sci 2019; 168:394-404. [PMID: 30576553 PMCID: PMC6432861 DOI: 10.1093/toxsci/kfy303] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In the placenta, the breast cancer resistance protein (BCRP)/ABCG2 efflux transporter limits the maternal-to-fetal transfer of drugs and chemicals. Previous research has pointed to the estrogenic mycotoxin zearalenone as a potential substrate for BCRP. Here, we sought to assess the role of the BCRP transporter in the transplacental disposition of zearalenone during pregnancy. In vitro transwell transport assays employing BCRP/Bcrp-transfected Madine-Darby canine kidney cells and BeWo trophoblasts with reduced BCRP expression were used to characterize the impact of BCRP on the bidirectional transport of zearalenone. In both models, the presence of BCRP protein increased the basolateral-to-apical transport and reduced the apical-to-basolateral transport of zearalenone over a 2-h period. In vivo pharmacokinetic analyses were then performed using pregnant wild-type and Bcrp-/- mice after a single tail vein injection of zearalenone. Zearalenone and its metabolite α-zearalenol were detectable in serum, placentas, and fetuses from all animals, and β-zearalenol was detected in serum and fetuses, but not placentas. There were no significant differences in the maternal serum concentrations of any analytes between the two genotypes. In Bcrp-/- mice, the free fetal concentrations of zearalenone, α-zearalenol, and β-zearalenol were increased by 115%, 84%, and 150%, respectively, when compared with wild-type mice. Concentrations of free zearalenone and α-zearalenol were elevated 145% and 78% in Bcrp-/- placentas, respectively, when compared with wild-type placentas. Taken together, these data indicate that the placental BCRP transporter functions to reduce the fetal accumulation of zearalenone, which may impact susceptibility to developmental toxicities associated with in utero zearalenone exposure.
Collapse
Affiliation(s)
- John T Szilagyi
- Joint Graduate Program in Toxicology, Rutgers University School of Graduate Studies, Piscataway, New Jersey 08854
| | - Ludwik Gorczyca
- Joint Graduate Program in Toxicology, Rutgers University School of Graduate Studies, Piscataway, New Jersey 08854
| | - Anita Brinker
- Environmental and Occupational Health Sciences Institute
| | - Brian Buckley
- Environmental and Occupational Health Sciences Institute
| | - Jeffrey D Laskin
- Environmental and Occupational Health Sciences Institute
- Department of Environmental and Occupational Health, School of Public Health
| | - Lauren M Aleksunes
- Environmental and Occupational Health Sciences Institute
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey 08854
| |
Collapse
|
22
|
Lofthouse EM, Torrens C, Manousopoulou A, Nahar M, Cleal JK, O'Kelly IM, Sengers BG, Garbis SD, Lewis RM. Ursodeoxycholic acid inhibits uptake and vasoconstrictor effects of taurocholate in human placenta. FASEB J 2019; 33:8211-8220. [PMID: 30922127 PMCID: PMC6593889 DOI: 10.1096/fj.201900015rr] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intrahepatic cholestasis of pregnancy (ICP) causes increased transfer of maternal bile acids to the fetus and an increased incidence of sudden fetal death. Treatment includes ursodeoxycholic acid (UDCA), but it is not clear if UDCA protects the fetus. This study explores the placental transport of the bile acid taurocholate (TC) by the organic anion-transporting polypeptide, (OATP)4A1, its effects on the placental proteome and vascular function, and how these are modified by UDCA. Various methodological approaches including placental villous fragments and Xenopus laevis oocytes were used to investigate UDCA transport. Placental perfusions and myography investigated the effect of TC on vasculature. The effects of acute TC exposure on placental tissue were investigated using quantitative proteomics. UDCA inhibited OATP4A1 activity in placental villous fragments and oocytes. TC induced vasoconstriction in placental and rat vasculature, which was attenuated by UDCA. Quantitative proteomic analysis of villous fragments showed direct effects of TC on multiple placental pathways, including oxidative stress and autophagy. The effects of TC on the placental proteome and vasculature demonstrate how bile acids may cause fetal distress in ICP. UDCA inhibition of OATP4A1 suggests it will protect the mother and fetus against the vascular effects of TC by inhibiting its cellular uptake. UDCA may protect the fetus in ICP by inhibiting OATP4A1-mediated bile acid transfer and TC-induced placental vasoconstriction. Understanding the physiologic mechanisms of UDCA may allow better therapeutic interventions to be designed specifically for the fetus in the future.-Lofthouse, E. M., Torrens, C., Manousopoulou, A., Nahar, M., Cleal, J. K., O'Kelly, I. M., Sengers, B. G., Garbis, S. D., Lewis, R. M. Ursodeoxycholic acid inhibits uptake and vasoconstrictor effects of taurocholate in human placenta.
Collapse
Affiliation(s)
- Emma M Lofthouse
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Christopher Torrens
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | | | - Monica Nahar
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jane K Cleal
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,Faculty of Engineering, University of Southampton, Southampton, United Kingdom; and
| | - Ita M O'Kelly
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Bram G Sengers
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom.,Faculty of Engineering, University of Southampton, Southampton, United Kingdom; and
| | - Spiros D Garbis
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,Institute for Life Sciences, University of Southampton, Southampton, United Kingdom.,Division of Biology and Biological Engineering, Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, California, USA
| | - Rohan M Lewis
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
23
|
Safar Z, Kis E, Erdo F, Zolnerciks JK, Krajcsi P. ABCG2/BCRP: variants, transporter interaction profile of substrates and inhibitors. Expert Opin Drug Metab Toxicol 2019; 15:313-328. [PMID: 30856014 DOI: 10.1080/17425255.2019.1591373] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION ABCG2 has a broad substrate specificity and is one of the most important efflux proteins modulating pharmacokinetics of drugs, nutrients and toxicokinetics of toxicants. ABCG2 is an important player in transporter-mediated drug-drug interactions (tDDI). Areas covered: The aims of the review are i) to cover transporter interaction profile of substrates and inhibitors that can be utilized to test interaction of drug candidates with ABCG2, ii) to highlight main characteristics of in vitro testing and iii) to describe the structural basis of the broad substrate specificity of the protein. Preclinical data utilizing Abcg2/Bcrp1 knockouts and clinical studies showing effect of ABCG2 c.421C>A polymorphism on pharmacokinetics of drugs have provided evidence for a broad array of drug substrates and support drug - ABCG2 interaction testing. A consensus on using rosuvastatin and sulfasalazine as intestinal substrates for clinical studies is in the formation. Other substrates relevant to the therapeutic area can be considered. Monolayer efflux assays and vesicular transport assays have been extensively utilized in vitro. Expert opinion: Clinical substrates display complex pharmacokinetics due to broad interaction profiles with multiple transporters and metabolic enzymes. Substrate-dependent inhibition has been observed for several inhibitors. Harmonization of in vitro and in vivo testing makes sense. However, rosuvastatin and sulfasalazine are not efficiently transported in either MDCKII or LLC-PK1-based monolayers. Caco-2 monolayer assays and vesicular transport assays are potential alternatives.
Collapse
Affiliation(s)
| | - Emese Kis
- a SOLVO Biotechnology , Szeged , Hungary
| | - Franciska Erdo
- b Faculty of Information Technology and Bionics , Pázmány Péter Catholic University , Budapest , Hungary
| | | | - Peter Krajcsi
- a SOLVO Biotechnology , Szeged , Hungary.,d Department of Morphology and Physiology. Faculty of Health Sciences , Semmelweis University , Budapest , Hungary
| |
Collapse
|
24
|
Cryo-EM structures of a human ABCG2 mutant trapped in ATP-bound and substrate-bound states. Nature 2018; 563:426-430. [PMID: 30405239 PMCID: PMC6379061 DOI: 10.1038/s41586-018-0680-3] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/24/2018] [Indexed: 12/13/2022]
Abstract
ABCG2 is a multidrug ATP-binding cassette transporter expressed in the plasma membranes of various tissues and tissue barrier [1–4]. It translocates endogenous substrates, affects the pharmacokinetics of many drugs, and has a protective role against a wide array of xenobiotics, including anti-cancer drugs [5–12]. Previous studies have revealed the architecture of ABCG2 and the structural basis of small-molecule and antibody inhibition [13, 14], but the mechanism of substrate recognition and ATP-driven transport are currently unknown. Here we present high-resolution cryo-EM structures of human ABCG2 in two key states, a substrate-bound pre-translocation state and an ATP-bound post-translocation state. For both structures, a mutant containing a glutamine replacing the catalytic glutamate (ABCG2EQ) was used, which resulted in reduced ATPase and transport rates and facilitated conformational trapping for structural studies. In the substrate-bound state, a single molecule of estrone-3-sulphate (E1S) is bound in a central, hydrophobic, and cytoplasm-facing cavity about halfway across the membrane. Only one molecule of E1S can bind in the observed binding mode. In the ATP-boundstate, the substrate-binding cavity has completely collapsed while an external cavity has opened to the extracellular side of the membrane. The ATP-induced conformational changes include rigid-body shifts of the transmembrane domains (TMDs), pivoting of the nucleotide-binding domains (NBDs), and a change in the relative orientation of the NBD subdomains. Mutagenesis of residues contacting bound E1S or in the translocation pathway, followed by in vitro characterization of transport and ATPase activities, demonstrated their roles in substrate recognition and revealed the importance of a leucine residue forming a ‘plug’ between the two cavities. Our results reveal how ABCG2 harnesses the energy of ATP binding to extrude E1S and other substrates and suggest that the size and binding affinity of compounds are important parameters in distinguishing substrates from inhibitors.
Collapse
|
25
|
Urakami-Takebayashi Y, Kuroda Y, Murata T, Miyazaki M, Nagai J. Pioglitazone induces hypoxia-inducible factor 1 activation in human renal proximal tubular epithelial cell line HK-2. Biochem Biophys Res Commun 2018; 503:1682-1688. [DOI: 10.1016/j.bbrc.2018.07.099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 02/02/2023]
|
26
|
Grube M, Hagen P, Jedlitschky G. Neurosteroid Transport in the Brain: Role of ABC and SLC Transporters. Front Pharmacol 2018; 9:354. [PMID: 29695968 PMCID: PMC5904994 DOI: 10.3389/fphar.2018.00354] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/27/2018] [Indexed: 12/17/2022] Open
Abstract
Neurosteroids, comprising pregnane, androstane, and sulfated steroids can alter neuronal excitability through interaction with ligand-gated ion channels and other receptors and have therefore a therapeutic potential in several brain disorders. They can be formed in brain cells or are synthesized by an endocrine gland and reach the brain by penetrating the blood–brain barrier (BBB). Especially sulfated steroids such as pregnenolone sulfate (PregS) and dehydroepiandrosterone sulfate (DHEAS) depend on transporter proteins to cross membranes. In this review, we discuss the involvement of ATP-binding cassette (ABC)- and solute carrier (SLC)-type membrane proteins in the transport of these compounds at the BBB and in the choroid plexus (CP), but also in the secretion from neurons and glial cells. Among the ABC transporters, especially BCRP (ABCG2) and several MRP/ABCC subfamily members (MRP1, MRP4, MRP8) are expressed in the brain and known to efflux conjugated steroids. Furthermore, several SLC transporters have been shown to mediate cellular uptake of steroid sulfates. These include members of the OATP/SLCO subfamily, namely OATP1A2 and OATP2B1, as well as OAT3 (SLC22A3), which have been reported to be expressed at the BBB, in the CP and in part in neurons. Furthermore, a role of the organic solute transporter OSTα-OSTβ (SLC51A/B) in brain DHEAS/PregS homeostasis has been proposed. This transporter was reported to be localized especially in steroidogenic cells of the cerebellum and hippocampus. To date, the impact of transporters on neurosteroid homeostasis is still poorly understood. Further insights are desirable also with regard to the therapeutic potential of these compounds.
Collapse
Affiliation(s)
- Markus Grube
- Department of Pharmacology, Center of Drug Absorption and Transport, University Medicine Greifswald, Greifswald, Germany
| | - Paul Hagen
- Department of Pharmacology, Center of Drug Absorption and Transport, University Medicine Greifswald, Greifswald, Germany
| | - Gabriele Jedlitschky
- Department of Pharmacology, Center of Drug Absorption and Transport, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
27
|
Jackson SM, Manolaridis I, Kowal J, Zechner M, Taylor NMI, Bause M, Bauer S, Bartholomaeus R, Bernhardt G, Koenig B, Buschauer A, Stahlberg H, Altmann KH, Locher KP. Structural basis of small-molecule inhibition of human multidrug transporter ABCG2. Nat Struct Mol Biol 2018; 25:333-340. [PMID: 29610494 DOI: 10.1038/s41594-018-0049-1] [Citation(s) in RCA: 251] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 02/12/2018] [Indexed: 01/16/2023]
Abstract
ABCG2 is an ATP-binding cassette (ABC) transporter that protects tissues against xenobiotics, affects the pharmacokinetics of drugs and contributes to multidrug resistance. Although many inhibitors and modulators of ABCG2 have been developed, understanding their structure-activity relationship requires high-resolution structural insight. Here, we present cryo-EM structures of human ABCG2 bound to synthetic derivatives of the fumitremorgin C-related inhibitor Ko143 or the multidrug resistance modulator tariquidar. Both compounds are bound to the central, inward-facing cavity of ABCG2, blocking access for substrates and preventing conformational changes required for ATP hydrolysis. The high resolutions allowed for de novo building of the entire transporter and also revealed tightly bound phospholipids and cholesterol interacting with the lipid-exposed surface of the transmembrane domains (TMDs). Extensive chemical modifications of the Ko143 scaffold combined with in vitro functional analyses revealed the details of ABCG2 interactions with this compound family and provide a basis for the design of novel inhibitors and modulators.
Collapse
Affiliation(s)
- Scott M Jackson
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Ioannis Manolaridis
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Julia Kowal
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Melanie Zechner
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Nicholas M I Taylor
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel, Switzerland.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Manuel Bause
- Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg, Germany
| | - Stefanie Bauer
- Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg, Germany
| | - Ruben Bartholomaeus
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Guenther Bernhardt
- Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg, Germany
| | - Burkhard Koenig
- Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg, Germany
| | - Armin Buschauer
- Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg, Germany
| | - Henning Stahlberg
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel, Switzerland
| | - Karl-Heinz Altmann
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
28
|
Järvinen E, Deng F, Kidron H, Finel M. Efflux transport of estrogen glucuronides by human MRP2, MRP3, MRP4 and BCRP. J Steroid Biochem Mol Biol 2018; 178:99-107. [PMID: 29175180 DOI: 10.1016/j.jsbmb.2017.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/02/2017] [Accepted: 11/16/2017] [Indexed: 01/01/2023]
Abstract
Estrone, estradiol and estriol are endogenous human estrogens that are rapidly conjugated with glucuronic acid in both intestinal and hepatic epithelial cells. The resulting glucuronides, estrone-3-glucuronide (E1-G), estradiol-3- and 17-glucuronides (E2-3G and E2-17G), as well as estriol-3- and 16-glucuronides (E3-3G and E3-16G) are found in human plasma and urine. Unlike E2-17G, the efflux transport of other estrogen glucuronides by human transporters has not yet been investigated comprehensively. We have studied the transport of E1-G, E2-3G, E3-3G, E3-16G and estrone-3-sulfate (E1-S), another important estrogen conjugate, using the vesicular transport assay with recombinant human MRP2, MRP3, MRP4, MDR1 and BCRP that were expressed in insect cells. The transport screening assays revealed that whereas E1-S was a good and specific substrate for BCRP, the less transporter-specific conjugates, E1-G and E2-3G, were still transported by BCRP at 10-fold higher rates than E1-S. BCRP also transported E3-16G at higher rates than the studied MRPs, while it transported E3-3G at lower rates than MRP3. MRP2 exhibited lower or equal transport rates of E1-G, E2-3G, E3-3G and E3-16G in comparison to MRP3 and BCRP in the screening assays, mainly due to its high Km values, between 180 and 790 μM. MRP3 transported all the tested glucuronides at rather similar rates, at Km values below 20 μM, but lower Vmax values than other transporters. In the case of E3-3G, MRP3 was the most active transporter in the screening assay. MRP4 transported only E3-16G at considerable rates, while none of the tested estrogen conjugates was transported by MDR1 at higher rates than control vesicles. These new results, in combination with previously reported in vivo human data, stimulate our understanding on the substrate specificity and role of efflux transporters in disposition of estrogen glucuronides in humans.
Collapse
Affiliation(s)
- Erkka Järvinen
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Finland
| | - Feng Deng
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Finland
| | - Heidi Kidron
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Finland
| | - Moshe Finel
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Finland.
| |
Collapse
|
29
|
Sjöstedt N, Deng F, Rauvala O, Tepponen T, Kidron H. Interaction of Food Additives with Intestinal Efflux Transporters. Mol Pharm 2017; 14:3824-3833. [DOI: 10.1021/acs.molpharmaceut.7b00563] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Noora Sjöstedt
- Division of Pharmaceutical
Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Feng Deng
- Division of Pharmaceutical
Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Oskari Rauvala
- Division of Pharmaceutical
Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Tuomas Tepponen
- Division of Pharmaceutical
Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Heidi Kidron
- Division of Pharmaceutical
Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| |
Collapse
|
30
|
Rižner TL, Thalhammer T, Özvegy-Laczka C. The Importance of Steroid Uptake and Intracrine Action in Endometrial and Ovarian Cancers. Front Pharmacol 2017; 8:346. [PMID: 28674494 PMCID: PMC5474471 DOI: 10.3389/fphar.2017.00346] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/22/2017] [Indexed: 01/06/2023] Open
Abstract
Endometrial and ovarian cancers predominately affect women after menopause, and are more frequently observed in developed countries. These are considered to be hormone-dependent cancers, as steroid hormones, and estrogens in particular, have roles in their onset and progression. After the production of estrogens in the ovary has ceased, estrogen synthesis occurs in peripheral tissues. This depends on the cellular uptake of estrone-sulfate and dehydroepiandrosterone-sulfate, as the most important steroid precursors in the plasma of postmenopausal women. The uptake through transporter proteins, such as those of the organic anion-transporting polypeptide (OATP) and organic anion-transporter (OAT) families, is followed by the synthesis and action of estradiol E2. Here, we provide an overview of the current understanding of this intracrine action of steroid hormones, which depends on the availability of the steroid precursors and transmembrane transporters for precursor uptake, along with the enzymes for the synthesis of E2. The data is also provided relating to the selected transmembrane transporters from the OATP, OAT, SLC51, and ABC-transporter families, and the enzymes involved in the E2-generating pathways in cancers of the endometrium and ovary. Finally, we discuss these transporters and enzymes as potential drug targets.
Collapse
Affiliation(s)
- Tea Lanišnik Rižner
- Institute of Biochemistry, Faculty of Medicine, University of LjubljanaLjubljana, Slovenia
| | - Theresia Thalhammer
- Department of Pathophysiology and Allergy Research, Centre for Pathophysiology, Infectiology and Immunology, Medical University of ViennaVienna, Austria
| | - Csilla Özvegy-Laczka
- Momentum Membrane Protein Research Group, Research Centre for Natural Sciences, Institute of Enzymology, Hungarian Academy of SciencesBudapest, Hungary
| |
Collapse
|
31
|
Jeong CB, Kim HS, Kang HM, Lee JS. ATP-binding cassette (ABC) proteins in aquatic invertebrates: Evolutionary significance and application in marine ecotoxicology. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 185:29-39. [PMID: 28183065 DOI: 10.1016/j.aquatox.2017.01.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/23/2017] [Indexed: 06/06/2023]
Abstract
The ATP-binding cassette (ABC) protein superfamily is known to play a fundamental role in biological processes and is highly conserved across animal taxa. The ABC proteins function as active transporters for multiple substrates across the cellular membrane by ATP hydrolysis. As this superfamily is derived from a common ancestor, ABC genes have evolved via lineage-specific duplications through the process of adaptation. In this review, we summarized information about the ABC gene families in aquatic invertebrates, considering their evolution and putative functions in defense mechanisms. Phylogenetic analysis was conducted to examine the evolutionary significance of ABC gene families in aquatic invertebrates. Particularly, a massive expansion of multixenobiotic resistance (MXR)-mediated efflux transporters was identified in the absence of the ABCG2 (BCRP) gene in Ecdysozoa and Platyzoa, suggesting that a loss of Abcg2 gene occurred sporadically in these species during divergence of Protostome to Lophotrochozoa. Furthermore, in aquatic invertebrates, the ecotoxicological significance of MXR is discussed while considering the role of MXR-mediated efflux transporters in response to various environmental pollutants.
Collapse
Affiliation(s)
- Chang-Bum Jeong
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hui-Su Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hye-Min Kang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
32
|
Sjöstedt N, van den Heuvel JJMW, Koenderink JB, Kidron H. Transmembrane Domain Single-Nucleotide Polymorphisms Impair Expression and Transport Activity of ABC Transporter ABCG2. Pharm Res 2017; 34:1626-1636. [PMID: 28281205 PMCID: PMC5498656 DOI: 10.1007/s11095-017-2127-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/16/2017] [Indexed: 01/29/2023]
Abstract
Purpose To study the function and expression of nine naturally occurring single-nucleotide polymorphisms (G406R, F431L, S441N, P480L, F489L, M515R, L525R, A528T and T542A) that are predicted to reside in the transmembrane regions of the ABC transporter ABCG2. Methods The transport activity of the variants was tested in inside-out membrane vesicles from Sf9 insect and human derived HEK293 cells overexpressing ABCG2. Lucifer Yellow and estrone sulfate were used as probe substrates of activity. The expression levels and cellular localization of the variants was compared to the wild-type ABCG2 by western blotting and immunofluorescence microscopy. Results All studied variants of ABCG2 displayed markedly decreased transport in both Sf9-ABCG2 and HEK293-ABCG2 vesicles. Impaired transport could be explained for some variants by altered expression levels and cellular localization. Moreover, the destructive effect on transport activity of variants G406R, P480L, M515R and T542A is, to our knowledge, reported for the first time. Conclusions These results indicate that the transmembrane region of ABCG2 is sensitive to amino acid substitution and that patients harboring these ABCG2 variant forms could suffer from unexpected pharmacokinetic events of ABCG2 substrate drugs or have an increased risk for diseases such as gout where ABCG2 is implicated. Electronic supplementary material The online version of this article (doi:10.1007/s11095-017-2127-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Noora Sjöstedt
- Centre for Drug Research, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00014, Helsinki, Finland
| | - Jeroen J M W van den Heuvel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan B Koenderink
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Heidi Kidron
- Centre for Drug Research, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00014, Helsinki, Finland.
| |
Collapse
|
33
|
Pedersen JM, Khan EK, Bergström CAS, Palm J, Hoogstraate J, Artursson P. Substrate and method dependent inhibition of three ABC-transporters (MDR1, BCRP, and MRP2). Eur J Pharm Sci 2017; 103:70-76. [PMID: 28263911 DOI: 10.1016/j.ejps.2017.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 12/21/2022]
Abstract
Drug transport and drug-drug interactions (DDI) with human ABC transporters are generally investigated in mammalian cell lines or inverted membrane vesicles from insect cells (Sf9) overexpressing the transporter of interest. In this study, we instead used membrane vesicles from human embryonic kidney cells (HEK293) overexpressing wild type MDR1/Pgp (ABCB1), BCRP (ABCG2), and MRP2 (ABCC2) with the aim to study the concentration dependent inhibition of shared and prototypic probe substrates. We first investigated 15 substrates and identified estrone-17-beta-glucorinide (E17G) as shared substrate. Nine specific and general inhibitors were then studied using E17G and prototypic probe substrates. The results were compared with those previously obtained in Sf9 vesicles and cell lines of canine (MDCKII) and human (Saos-2) origin. For the majority of inhibitors, Ki values differed <10-fold between E17G and probe substrates. Significant differences in Ki values were observed for about one third of the inhibitors. The transport inhibition potencies in HEK293 vesicles were in good agreement with those obtained in Sf9 vesicles. Large differences were found in the inhibition potencies observed in the vesicular systems compared to the cellular systems. Nevertheless, the rank order correlations between the different experimental systems were generally good. Our study provides further information on substrate dependent inhibition of ABC-transporters, and suggests that simple ranking of compounds can be used as a tier one approach to bridge results obtained in different experimental systems.
Collapse
Affiliation(s)
| | - Elin K Khan
- Department of Pharmacy, Uppsala Univeristy, Uppsala, Sweden
| | | | - Johan Palm
- Pharmaceutical Technology and Development, AstraZeneca R&D Gothenburg, SE-43183 Mölndal, Sweden
| | - Janet Hoogstraate
- CNS and Pain Innovative Medicines DMPK, AstraZeneca R&D, Södertälje, Sweden
| | - Per Artursson
- Department of Pharmacy and Uppsala University Drug Optimization and Pharmaceutical Profiling Platform, Chemical Biology Consortium, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
34
|
Multidrug resistance transporter-1 and breast cancer resistance protein protect against ovarian toxicity, and are essential in ovarian physiology. Reprod Toxicol 2017; 69:121-131. [PMID: 28216407 DOI: 10.1016/j.reprotox.2017.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 02/03/2017] [Accepted: 02/03/2017] [Indexed: 12/14/2022]
Abstract
Ovarian protection from chemotoxicity is essential for reproductive health. Our objective is to determine the role of ATP-dependent, Multidrug Resistance Transporters (MDRs) in this protection. Previously we identified MDR-dependent cytoprotection from cyclophosphamide in mouse and human oocytes by use of MDR inhibitors. Here we use genetic deletions in MDR1a/b/BCRP of mice to test MDR function in ovarian somatic cells and find that mdr1a/b/bcrp-/- mice had significantly increased sensitivity to cyclophosphamide. Further, estrus cyclicity and follicle distribution in mdr1a/b/bcrp-/- mice also differed from age-matched wildtype ovaries. We found that MDR gene activity cycles through estrus and that MDR-1b cyclicity correlated with 17β-estradiol surges. We also examined the metabolite composition of the ovary and learned that the mdr1a/b/bcrp-/- mice have increased accumulation of metabolites indicative of oxidative stress and inflammation. We conclude that MDRs are essential to ovarian protection from chemotoxicity and may have an important physiological role in the ovary.
Collapse
|
35
|
Nishihashi K, Kawashima K, Nomura T, Urakami-Takebayashi Y, Miyazaki M, Takano M, Nagai J. Cobalt Chloride Induces Expression and Function of Breast Cancer Resistance Protein (BCRP/ABCG2) in Human Renal Proximal Tubular Epithelial Cell Line HK-2. Biol Pharm Bull 2017; 40:82-87. [PMID: 28049953 DOI: 10.1248/bpb.b16-00684] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The human breast cancer resistance protein (BCRP/ABCG2), a member of the ATP-binding cassette transporter family, is a drug transporter restricting absorption and enhancing excretion of many compounds including anticancer drugs. The cis-regulatory elements in the BCRP promoter include a hypoxia response element, i.e., the DNA binding site for hypoxia-inducible factor-1 (HIF-1). In this study, we investigated the effect of cobalt chloride, a chemical inducer of HIF-1α, on the expression and function of BCRP in human renal proximal tubular cell line HK-2. Cobalt chloride treatment significantly increased the mRNA expression of not only glucose transporter 1 (GLUT1), a typical HIF-1 target gene mRNA, but also ABCG2 mRNA in HK-2 cells. The BCRP inhibitor Ko143-sensitive accumulation of BCRP substrates such as Hoechst33342 and mitoxantrone was significantly enhanced by cobalt chloride treatment. In addition, treatment with cobalt chloride significantly increased the Ko143-sensitive accumulation of fluorescein isothiocyanate-labeled methotrexate in HK-2 cells. Furthermore, cobalt chloride treatment attenuated the cytotoxicity induced by mitoxantrone and methotrexate, which might be, at least in part, due to the increase in BCRP-mediated transport activity via HIF-1 activation. These findings indicate that HIF-1 activation protects renal proximal tubular cells against BCRP substrate-induced cytotoxicity by enhancing the expression and function of BCRP in renal proximal tubular cells.
Collapse
Affiliation(s)
- Katsuki Nishihashi
- Laboratory of Pharmaceutics, Osaka University of Pharmaceutical Sciences
| | | | | | | | | | | | | |
Collapse
|
36
|
Sjöstedt N, Holvikari K, Tammela P, Kidron H. Inhibition of Breast Cancer Resistance Protein and Multidrug Resistance Associated Protein 2 by Natural Compounds and Their Derivatives. Mol Pharm 2016; 14:135-146. [DOI: 10.1021/acs.molpharmaceut.6b00754] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Noora Sjöstedt
- Centre for Drug Research, Division of Pharmaceutical
Biosciences, Faculty of Pharmacy, University of Helsinki, P.O, Box 56, Viikinkaari 5E, FI-00014 Helsinki, Finland
| | - Kira Holvikari
- Centre for Drug Research, Division of Pharmaceutical
Biosciences, Faculty of Pharmacy, University of Helsinki, P.O, Box 56, Viikinkaari 5E, FI-00014 Helsinki, Finland
| | - Päivi Tammela
- Centre for Drug Research, Division of Pharmaceutical
Biosciences, Faculty of Pharmacy, University of Helsinki, P.O, Box 56, Viikinkaari 5E, FI-00014 Helsinki, Finland
| | - Heidi Kidron
- Centre for Drug Research, Division of Pharmaceutical
Biosciences, Faculty of Pharmacy, University of Helsinki, P.O, Box 56, Viikinkaari 5E, FI-00014 Helsinki, Finland
| |
Collapse
|
37
|
Yamanaka N, Marqués G, O'Connor MB. Vesicle-Mediated Steroid Hormone Secretion in Drosophila melanogaster. Cell 2016; 163:907-19. [PMID: 26544939 DOI: 10.1016/j.cell.2015.10.022] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 08/05/2015] [Accepted: 09/15/2015] [Indexed: 01/29/2023]
Abstract
Steroid hormones are a large family of cholesterol derivatives regulating development and physiology in both the animal and plant kingdoms, but little is known concerning mechanisms of their secretion from steroidogenic tissues. Here, we present evidence that in Drosophila, endocrine release of the steroid hormone ecdysone is mediated through a regulated vesicular trafficking mechanism. Inhibition of calcium signaling in the steroidogenic prothoracic gland results in the accumulation of unreleased ecdysone, and the knockdown of calcium-mediated vesicle exocytosis components in the gland caused developmental defects due to deficiency of ecdysone. Accumulation of synaptotagmin-labeled vesicles in the gland is observed when calcium signaling is disrupted, and these vesicles contain an ABC transporter that functions as an ecdysone pump to fill vesicles. We propose that trafficking of steroid hormones out of endocrine cells is not always through a simple diffusion mechanism as presently thought, but instead can involve a regulated vesicle-mediated release process.
Collapse
Affiliation(s)
- Naoki Yamanaka
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA; Department of Entomology, Institute for Integrative Genome Biology, Center for Disease Vector Research, University of California, Riverside, Riverside, CA 92521, USA.
| | - Guillermo Marqués
- University Imaging Centers, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael B O'Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
38
|
Westover D, Li F. New trends for overcoming ABCG2/BCRP-mediated resistance to cancer therapies. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:159. [PMID: 26714461 PMCID: PMC4696234 DOI: 10.1186/s13046-015-0275-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 12/17/2015] [Indexed: 12/18/2022]
Abstract
ATP-binding cassette (ABC) transporters make up a superfamily of transmembrane proteins that play a critical role in the development of drug resistance. This phenomenon is especially important in oncology, where superfamily member ABCG2 (also called BCRP - breast cancer resistance protein) is known to interact with dozens of anti-cancer agents that are ABCG2 substrates. In addition to the well-studied and well-reviewed list of cytotoxic and targeted agents that are substrates for the ABCG2 transporter, a growing body of work links ABCG2 to multiple photodynamic therapy (PDT) agents, and there is a limited body of evidence suggesting that ABCG2 may also play a role in resistance to radiation therapy. In addition, the focus of ABC transporter research in regards to therapeutic development has begun to shift in the past few years. The shift has been away from using pump inhibitors for reversing resistance, toward the development of therapeutic agents that are poor substrates for these efflux pump proteins. This approach may result in the development of drug regimens that circumvent ABC transporter-mediated resistance entirely. Here, it is our intention to review: 1) recent discoveries that further characterize the role of ABCG2 in oncology, and 2) advances in reversing and circumventing ABC transporter-mediated resistance to anti-cancer therapies.
Collapse
Affiliation(s)
- David Westover
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, 14263, USA.
| | - Fengzhi Li
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, 14263, USA.
| |
Collapse
|
39
|
Demidenko R, Razanauskas D, Daniunaite K, Lazutka JR, Jankevicius F, Jarmalaite S. Frequent down-regulation of ABC transporter genes in prostate cancer. BMC Cancer 2015; 15:683. [PMID: 26459268 PMCID: PMC4603841 DOI: 10.1186/s12885-015-1689-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 10/07/2015] [Indexed: 12/18/2022] Open
Abstract
Background ATP-binding cassette (ABC) transporters are transmembrane proteins responsible for the efflux of a wide variety of substrates, including steroid metabolites, through the cellular membranes. For better characterization of the role of ABC transporters in prostate cancer (PCa) development, the profile of ABC transporter gene expression was analyzed in PCa and noncancerous prostate tissues (NPT). Methods TaqMan Low Density Array (TLDA) human ABC transporter plates were used for the gene expression profiling in 10 PCa and 6 NPT specimens. ABCB1 transcript level was evaluated in a larger set of PCa cases (N = 78) and NPT (N = 15) by real-time PCR, the same PCa cases were assessed for the gene promoter hypermethylation by methylation-specific PCR. Results Expression of eight ABC transporter genes (ABCA8, ABCB1, ABCC6, ABCC9, ABCC10, ABCD2, ABCG2, and ABCG4) was significantly down-regulated in PCa as compared to NPT, and only two genes (ABCC4 and ABCG1) were up-regulated. Down-regulation of ABC transporter genes was prevalent in the TMPRSS2-ERG-negative cases. A detailed analysis of ABCB1 expression confirmed TLDA results: a reduced level of the transcript was identified in PCa in comparison to NPT (p = 0.048). Moreover, the TMPRSS2-ERG-negative PCa cases showed significantly lower expression of ABCB1 in comparison to NPT (p = 0.003) or the fusion-positive tumors (p = 0.002). Promoter methylation of ABCB1 predominantly occurred in PCa and was rarely detected in NPT (p < 0.001). Conclusions The study suggests frequent down-regulation of the ABC transporter genes in PCa, especially in the TMPRSS2-ERG-negative tumors. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1689-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rita Demidenko
- Division of Human Genome Research Centre, Faculty of Nature Sci., Vilnius University, Ciurlionio 21, Vilnius, LT-03101, Lithuania.
| | - Deividas Razanauskas
- Division of Human Genome Research Centre, Faculty of Nature Sci., Vilnius University, Ciurlionio 21, Vilnius, LT-03101, Lithuania.
| | - Kristina Daniunaite
- Division of Human Genome Research Centre, Faculty of Nature Sci., Vilnius University, Ciurlionio 21, Vilnius, LT-03101, Lithuania.
| | - Juozas Rimantas Lazutka
- Division of Human Genome Research Centre, Faculty of Nature Sci., Vilnius University, Ciurlionio 21, Vilnius, LT-03101, Lithuania.
| | - Feliksas Jankevicius
- Faculty of Medicine, Vilnius University, Ciurlionio 21, Vilnius, LT-03101, Lithuania. .,Urology Centre, Vilnius University, Santariskiu 2, Vilnius, LT-08661, Lithuania.
| | - Sonata Jarmalaite
- Division of Human Genome Research Centre, Faculty of Nature Sci., Vilnius University, Ciurlionio 21, Vilnius, LT-03101, Lithuania.
| |
Collapse
|
40
|
Mutsaers HA, Caetano-Pinto P, Seegers AE, Dankers AC, van den Broek PH, Wetzels JF, van den Brand JA, van den Heuvel LP, Hoenderop JG, Wilmer MJ, Masereeuw R. Proximal tubular efflux transporters involved in renal excretion of p-cresyl sulfate and p-cresyl glucuronide: Implications for chronic kidney disease pathophysiology. Toxicol In Vitro 2015. [DOI: 10.1016/j.tiv.2015.07.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Mueller JW, Gilligan LC, Idkowiak J, Arlt W, Foster PA. The Regulation of Steroid Action by Sulfation and Desulfation. Endocr Rev 2015; 36:526-63. [PMID: 26213785 PMCID: PMC4591525 DOI: 10.1210/er.2015-1036] [Citation(s) in RCA: 311] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/21/2015] [Indexed: 12/14/2022]
Abstract
Steroid sulfation and desulfation are fundamental pathways vital for a functional vertebrate endocrine system. After biosynthesis, hydrophobic steroids are sulfated to expedite circulatory transit. Target cells express transmembrane organic anion-transporting polypeptides that facilitate cellular uptake of sulfated steroids. Once intracellular, sulfatases hydrolyze these steroid sulfate esters to their unconjugated, and usually active, forms. Because most steroids can be sulfated, including cholesterol, pregnenolone, dehydroepiandrosterone, and estrone, understanding the function, tissue distribution, and regulation of sulfation and desulfation processes provides significant insights into normal endocrine function. Not surprisingly, dysregulation of these pathways is associated with numerous pathologies, including steroid-dependent cancers, polycystic ovary syndrome, and X-linked ichthyosis. Here we provide a comprehensive examination of our current knowledge of endocrine-related sulfation and desulfation pathways. We describe the interplay between sulfatases and sulfotransferases, showing how their expression and regulation influences steroid action. Furthermore, we address the role that organic anion-transporting polypeptides play in regulating intracellular steroid concentrations and how their expression patterns influence many pathologies, especially cancer. Finally, the recent advances in pharmacologically targeting steroidogenic pathways will be examined.
Collapse
Affiliation(s)
- Jonathan W Mueller
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Lorna C Gilligan
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jan Idkowiak
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Wiebke Arlt
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Paul A Foster
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
42
|
Zhang Y, Li F, Wang Y, Pitre A, Fang ZZ, Frank MW, Calabrese C, Krausz KW, Neale G, Frase S, Vogel P, Rock CO, Gonzalez FJ, Schuetz JD. Maternal bile acid transporter deficiency promotes neonatal demise. Nat Commun 2015; 6:8186. [PMID: 26416771 PMCID: PMC4598356 DOI: 10.1038/ncomms9186] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 07/28/2015] [Indexed: 12/27/2022] Open
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is associated with adverse neonatal survival and is estimated to impact between 0.4 and 5% of pregnancies worldwide. Here we show that maternal cholestasis (due to Abcb11 deficiency) produces neonatal death among all offspring within 24 h of birth due to atelectasis-producing pulmonary hypoxia, which recapitulates the neonatal respiratory distress of human ICP. Neonates of Abcb11-deficient mothers have elevated pulmonary bile acids and altered pulmonary surfactant structure. Maternal absence of Nr1i2 superimposed on Abcb11 deficiency strongly reduces maternal serum bile acid concentrations and increases neonatal survival. We identify pulmonary bile acids as a key factor in the disruption of the structure of pulmonary surfactant in neonates of ICP. These findings have important implications for neonatal respiratory failure, especially when maternal bile acids are elevated during pregnancy, and highlight potential pathways and targets amenable to therapeutic intervention to ameliorate this condition.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Fei Li
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Yao Wang
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Aaron Pitre
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Zhong-Ze Fang
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Matthew W Frank
- Department of Infectious Diseases, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Christopher Calabrese
- Small Animal Imaging Core, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Kristopher W Krausz
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Geoffrey Neale
- Hartwell Center, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Sharon Frase
- Cellular Imaging Shared Resource, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Peter Vogel
- Department of Pathology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Charles O Rock
- Department of Infectious Diseases, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - John D Schuetz
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| |
Collapse
|
43
|
Estiú MC, Monte MJ, Rivas L, Moirón M, Gomez-Rodriguez L, Rodriguez-Bravo T, Marin JJG, Macias RIR. Effect of ursodeoxycholic acid treatment on the altered progesterone and bile acid homeostasis in the mother-placenta-foetus trio during cholestasis of pregnancy. Br J Clin Pharmacol 2015; 79:316-29. [PMID: 25099365 DOI: 10.1111/bcp.12480] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIM Intrahepatic cholestasis of pregnancy (ICP) is characterized by pruritus and elevated bile acid concentrations in maternal serum. This is accompanied by an enhanced risk of intra-uterine and perinatal complications. High concentrations of sulphated progesterone metabolites (PMS) have been suggested to be involved in the multifactorial aetiopathogenesis of ICP. The aim of this study was to investigate further the mechanism accounting for the beneficial effect of oral administration of ursodeoxycholic acid (UDCA), which is the standard treatment, regarding bile acid and PMS homeostasis in the mother-placenta-foetus trio. METHOD Using HPLC-MS/MS bile acids and PMS were determined in maternal and foetal serum and placenta. The expression of ABC proteins in placenta was determined by real time quantitative PCR (RT-QPCR) and immunofluorescence. RESULTS In ICP, markedly increased concentrations of bile acids (tauroconjugates > glycoconjugates >> unconjugated), progesterone and PMS in placenta and maternal serum were accompanied by enhanced concentrations in foetal serum of bile acids, but not of PMS. UDCA treatment reduced bile acid accumulation in the mother-placenta-foetus trio, but had no significant effect on progesterone and PMS concentrations. ABCG2 mRNA abundance was increased in placentas from ICP patients vs. controls and remained stable following UDCA treatment, despite an apparent further increase in ABCG2. CONCLUSION UDCA administration partially reduces ICP-induced bile acid accumulation in mothers and foetuses despite the lack of effect on concentrations of progesterone and PMS in maternal serum. Up-regulation of placental ABCG2 may play an important role in protecting the foetus from high concentrations of bile acids and PMS during ICP.
Collapse
Affiliation(s)
- Maria C Estiú
- Ramón Sardá Mother' and Children's Hospital, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Lee CA, O'Connor MA, Ritchie TK, Galetin A, Cook JA, Ragueneau-Majlessi I, Ellens H, Feng B, Taub ME, Paine MF, Polli JW, Ware JA, Zamek-Gliszczynski MJ. Breast cancer resistance protein (ABCG2) in clinical pharmacokinetics and drug interactions: practical recommendations for clinical victim and perpetrator drug-drug interaction study design. Drug Metab Dispos 2015; 43:490-509. [PMID: 25587128 DOI: 10.1124/dmd.114.062174] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Breast cancer resistance protein (BCRP; ABCG2) limits intestinal absorption of low-permeability substrate drugs and mediates biliary excretion of drugs and metabolites. Based on clinical evidence of BCRP-mediated drug-drug interactions (DDIs) and the c.421C>A functional polymorphism affecting drug efficacy and safety, both the US Food and Drug Administration and European Medicines Agency recommend preclinical evaluation and, when appropriate, clinical assessment of BCRP-mediated DDIs. Although many BCRP substrates and inhibitors have been identified in vitro, clinical translation has been confounded by overlap with other transporters and metabolic enzymes. Regulatory recommendations for BCRP-mediated clinical DDI studies are challenging, as consensus is lacking on the choice of the most robust and specific human BCRP substrates and inhibitors and optimal study design. This review proposes a path forward based on a comprehensive analysis of available data. Oral sulfasalazine (1000 mg, immediate-release tablet) is the best available clinical substrate for intestinal BCRP, oral rosuvastatin (20 mg) for both intestinal and hepatic BCRP, and intravenous rosuvastatin (4 mg) for hepatic BCRP. Oral curcumin (2000 mg) and lapatinib (250 mg) are the best available clinical BCRP inhibitors. To interrogate the worst-case clinical BCRP DDI scenario, study subjects harboring the BCRP c.421C/C reference genotype are recommended. In addition, if sulfasalazine is selected as the substrate, subjects having the rapid acetylator phenotype are recommended. In the case of rosuvastatin, subjects with the organic anion-transporting polypeptide 1B1 c.521T/T genotype are recommended, together with monitoring of rosuvastatin's cholesterol-lowering effect at baseline and DDI phase. A proof-of-concept clinical study is being planned by a collaborative consortium to evaluate the proposed BCRP DDI study design.
Collapse
Affiliation(s)
- Caroline A Lee
- Drug Metabolism and Pharmacokinetics, QPS LLC, Research Triangle Park, North Carolina (C.A.L.); Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (M.A.O., M.E.T.); Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, The University of Manchester, Manchester, United Kingdom (A.G.); Pharmacokinetics and Drug Metabolism (B.F.) and Clinical Pharmacology, Global Innovative Pharma Business (J.A.C.), Pfizer Inc., Groton, Connecticut; School of Pharmacy, University of Washington, Seattle, Washington (I.R.-M., T.K.R.); Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Research Triangle Park, North Carolina (M.J.Z.-G., J.W.P.) and King of Prussia, Pennsylvania (H.E.); College of Pharmacy, Washington State University, Spokane, Washington (M.F.P.); and Clinical Pharmacology, Genentech, South San Francisco, California (J.A.W.)
| | - Meeghan A O'Connor
- Drug Metabolism and Pharmacokinetics, QPS LLC, Research Triangle Park, North Carolina (C.A.L.); Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (M.A.O., M.E.T.); Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, The University of Manchester, Manchester, United Kingdom (A.G.); Pharmacokinetics and Drug Metabolism (B.F.) and Clinical Pharmacology, Global Innovative Pharma Business (J.A.C.), Pfizer Inc., Groton, Connecticut; School of Pharmacy, University of Washington, Seattle, Washington (I.R.-M., T.K.R.); Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Research Triangle Park, North Carolina (M.J.Z.-G., J.W.P.) and King of Prussia, Pennsylvania (H.E.); College of Pharmacy, Washington State University, Spokane, Washington (M.F.P.); and Clinical Pharmacology, Genentech, South San Francisco, California (J.A.W.)
| | - Tasha K Ritchie
- Drug Metabolism and Pharmacokinetics, QPS LLC, Research Triangle Park, North Carolina (C.A.L.); Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (M.A.O., M.E.T.); Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, The University of Manchester, Manchester, United Kingdom (A.G.); Pharmacokinetics and Drug Metabolism (B.F.) and Clinical Pharmacology, Global Innovative Pharma Business (J.A.C.), Pfizer Inc., Groton, Connecticut; School of Pharmacy, University of Washington, Seattle, Washington (I.R.-M., T.K.R.); Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Research Triangle Park, North Carolina (M.J.Z.-G., J.W.P.) and King of Prussia, Pennsylvania (H.E.); College of Pharmacy, Washington State University, Spokane, Washington (M.F.P.); and Clinical Pharmacology, Genentech, South San Francisco, California (J.A.W.)
| | - Aleksandra Galetin
- Drug Metabolism and Pharmacokinetics, QPS LLC, Research Triangle Park, North Carolina (C.A.L.); Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (M.A.O., M.E.T.); Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, The University of Manchester, Manchester, United Kingdom (A.G.); Pharmacokinetics and Drug Metabolism (B.F.) and Clinical Pharmacology, Global Innovative Pharma Business (J.A.C.), Pfizer Inc., Groton, Connecticut; School of Pharmacy, University of Washington, Seattle, Washington (I.R.-M., T.K.R.); Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Research Triangle Park, North Carolina (M.J.Z.-G., J.W.P.) and King of Prussia, Pennsylvania (H.E.); College of Pharmacy, Washington State University, Spokane, Washington (M.F.P.); and Clinical Pharmacology, Genentech, South San Francisco, California (J.A.W.)
| | - Jack A Cook
- Drug Metabolism and Pharmacokinetics, QPS LLC, Research Triangle Park, North Carolina (C.A.L.); Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (M.A.O., M.E.T.); Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, The University of Manchester, Manchester, United Kingdom (A.G.); Pharmacokinetics and Drug Metabolism (B.F.) and Clinical Pharmacology, Global Innovative Pharma Business (J.A.C.), Pfizer Inc., Groton, Connecticut; School of Pharmacy, University of Washington, Seattle, Washington (I.R.-M., T.K.R.); Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Research Triangle Park, North Carolina (M.J.Z.-G., J.W.P.) and King of Prussia, Pennsylvania (H.E.); College of Pharmacy, Washington State University, Spokane, Washington (M.F.P.); and Clinical Pharmacology, Genentech, South San Francisco, California (J.A.W.)
| | - Isabelle Ragueneau-Majlessi
- Drug Metabolism and Pharmacokinetics, QPS LLC, Research Triangle Park, North Carolina (C.A.L.); Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (M.A.O., M.E.T.); Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, The University of Manchester, Manchester, United Kingdom (A.G.); Pharmacokinetics and Drug Metabolism (B.F.) and Clinical Pharmacology, Global Innovative Pharma Business (J.A.C.), Pfizer Inc., Groton, Connecticut; School of Pharmacy, University of Washington, Seattle, Washington (I.R.-M., T.K.R.); Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Research Triangle Park, North Carolina (M.J.Z.-G., J.W.P.) and King of Prussia, Pennsylvania (H.E.); College of Pharmacy, Washington State University, Spokane, Washington (M.F.P.); and Clinical Pharmacology, Genentech, South San Francisco, California (J.A.W.)
| | - Harma Ellens
- Drug Metabolism and Pharmacokinetics, QPS LLC, Research Triangle Park, North Carolina (C.A.L.); Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (M.A.O., M.E.T.); Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, The University of Manchester, Manchester, United Kingdom (A.G.); Pharmacokinetics and Drug Metabolism (B.F.) and Clinical Pharmacology, Global Innovative Pharma Business (J.A.C.), Pfizer Inc., Groton, Connecticut; School of Pharmacy, University of Washington, Seattle, Washington (I.R.-M., T.K.R.); Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Research Triangle Park, North Carolina (M.J.Z.-G., J.W.P.) and King of Prussia, Pennsylvania (H.E.); College of Pharmacy, Washington State University, Spokane, Washington (M.F.P.); and Clinical Pharmacology, Genentech, South San Francisco, California (J.A.W.)
| | - Bo Feng
- Drug Metabolism and Pharmacokinetics, QPS LLC, Research Triangle Park, North Carolina (C.A.L.); Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (M.A.O., M.E.T.); Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, The University of Manchester, Manchester, United Kingdom (A.G.); Pharmacokinetics and Drug Metabolism (B.F.) and Clinical Pharmacology, Global Innovative Pharma Business (J.A.C.), Pfizer Inc., Groton, Connecticut; School of Pharmacy, University of Washington, Seattle, Washington (I.R.-M., T.K.R.); Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Research Triangle Park, North Carolina (M.J.Z.-G., J.W.P.) and King of Prussia, Pennsylvania (H.E.); College of Pharmacy, Washington State University, Spokane, Washington (M.F.P.); and Clinical Pharmacology, Genentech, South San Francisco, California (J.A.W.)
| | - Mitchell E Taub
- Drug Metabolism and Pharmacokinetics, QPS LLC, Research Triangle Park, North Carolina (C.A.L.); Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (M.A.O., M.E.T.); Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, The University of Manchester, Manchester, United Kingdom (A.G.); Pharmacokinetics and Drug Metabolism (B.F.) and Clinical Pharmacology, Global Innovative Pharma Business (J.A.C.), Pfizer Inc., Groton, Connecticut; School of Pharmacy, University of Washington, Seattle, Washington (I.R.-M., T.K.R.); Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Research Triangle Park, North Carolina (M.J.Z.-G., J.W.P.) and King of Prussia, Pennsylvania (H.E.); College of Pharmacy, Washington State University, Spokane, Washington (M.F.P.); and Clinical Pharmacology, Genentech, South San Francisco, California (J.A.W.)
| | - Mary F Paine
- Drug Metabolism and Pharmacokinetics, QPS LLC, Research Triangle Park, North Carolina (C.A.L.); Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (M.A.O., M.E.T.); Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, The University of Manchester, Manchester, United Kingdom (A.G.); Pharmacokinetics and Drug Metabolism (B.F.) and Clinical Pharmacology, Global Innovative Pharma Business (J.A.C.), Pfizer Inc., Groton, Connecticut; School of Pharmacy, University of Washington, Seattle, Washington (I.R.-M., T.K.R.); Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Research Triangle Park, North Carolina (M.J.Z.-G., J.W.P.) and King of Prussia, Pennsylvania (H.E.); College of Pharmacy, Washington State University, Spokane, Washington (M.F.P.); and Clinical Pharmacology, Genentech, South San Francisco, California (J.A.W.)
| | - Joseph W Polli
- Drug Metabolism and Pharmacokinetics, QPS LLC, Research Triangle Park, North Carolina (C.A.L.); Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (M.A.O., M.E.T.); Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, The University of Manchester, Manchester, United Kingdom (A.G.); Pharmacokinetics and Drug Metabolism (B.F.) and Clinical Pharmacology, Global Innovative Pharma Business (J.A.C.), Pfizer Inc., Groton, Connecticut; School of Pharmacy, University of Washington, Seattle, Washington (I.R.-M., T.K.R.); Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Research Triangle Park, North Carolina (M.J.Z.-G., J.W.P.) and King of Prussia, Pennsylvania (H.E.); College of Pharmacy, Washington State University, Spokane, Washington (M.F.P.); and Clinical Pharmacology, Genentech, South San Francisco, California (J.A.W.)
| | - Joseph A Ware
- Drug Metabolism and Pharmacokinetics, QPS LLC, Research Triangle Park, North Carolina (C.A.L.); Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (M.A.O., M.E.T.); Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, The University of Manchester, Manchester, United Kingdom (A.G.); Pharmacokinetics and Drug Metabolism (B.F.) and Clinical Pharmacology, Global Innovative Pharma Business (J.A.C.), Pfizer Inc., Groton, Connecticut; School of Pharmacy, University of Washington, Seattle, Washington (I.R.-M., T.K.R.); Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Research Triangle Park, North Carolina (M.J.Z.-G., J.W.P.) and King of Prussia, Pennsylvania (H.E.); College of Pharmacy, Washington State University, Spokane, Washington (M.F.P.); and Clinical Pharmacology, Genentech, South San Francisco, California (J.A.W.)
| | - Maciej J Zamek-Gliszczynski
- Drug Metabolism and Pharmacokinetics, QPS LLC, Research Triangle Park, North Carolina (C.A.L.); Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (M.A.O., M.E.T.); Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, The University of Manchester, Manchester, United Kingdom (A.G.); Pharmacokinetics and Drug Metabolism (B.F.) and Clinical Pharmacology, Global Innovative Pharma Business (J.A.C.), Pfizer Inc., Groton, Connecticut; School of Pharmacy, University of Washington, Seattle, Washington (I.R.-M., T.K.R.); Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Research Triangle Park, North Carolina (M.J.Z.-G., J.W.P.) and King of Prussia, Pennsylvania (H.E.); College of Pharmacy, Washington State University, Spokane, Washington (M.F.P.); and Clinical Pharmacology, Genentech, South San Francisco, California (J.A.W.)
| |
Collapse
|
45
|
Bircsak KM, Aleksunes LM. Interaction of Isoflavones with the BCRP/ABCG2 Drug Transporter. Curr Drug Metab 2015; 16:124-40. [PMID: 26179608 PMCID: PMC4713194 DOI: 10.2174/138920021602150713114921] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 03/03/2015] [Accepted: 04/08/2015] [Indexed: 12/15/2022]
Abstract
This review will provide a comprehensive overview of the interactions between dietary isoflavones and the ATP-binding cassette (ABC) G2 efflux transporter, which is also named the breast cancer resistance protein (BCRP). Expressed in a variety of organs including the liver, kidneys, intestine, and placenta, BCRP mediates the disposition and excretion of numerous endogenous chemicals and xenobiotics. Isoflavones are a class of naturallyoccurring compounds that are found at high concentrations in commonly consumed foods and dietary supplements. A number of isoflavones, including genistein and daidzein and their metabolites, interact with BCRP as substrates, inhibitors, and/or modulators of gene expression. To date, a variety of model systems have been employed to study the ability of isoflavones to serve as substrates and inhibitors of BCRP; these include whole cells, inverted plasma membrane vesicles, in situ organ perfusion, as well as in vivo rodent and sheep models. Evidence suggests that BCRP plays a role in mediating the disposition of isoflavones and in particular, their conjugated forms. Furthermore, as inhibitors, these compounds may aid in reversing multidrug resistance and sensitizing cancer cells to chemotherapeutic drugs. This review will also highlight the consequences of altered BCRP expression and/or function on the pharmacokinetics and toxicity of chemicals following isoflavone exposure.
Collapse
Affiliation(s)
| | - Lauren M Aleksunes
- Dept. of Pharmacology and Toxicology, Rutgers University, 170 Frelinghuysen Rd. Piscataway, NJ 08854, USA.
| |
Collapse
|
46
|
Natarajan K, Baer MR, Ross DD. Role of Breast Cancer Resistance Protein (BCRP, ABCG2) in Cancer Outcomes and Drug Resistance. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2015. [DOI: 10.1007/978-3-319-09801-2_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
47
|
Ruiz ML, Mottino AD, Catania VA, Vore M. Hormonal regulation of hepatic drug biotransformation and transport systems. Compr Physiol 2014; 3:1721-40. [PMID: 24265243 DOI: 10.1002/cphy.c130018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The human body is constantly exposed to many xenobiotics including environmental pollutants, food additives, therapeutic drugs, etc. The liver is considered the primary site for drug metabolism and elimination pathways, consisting in uptake, phase I and II reactions, and efflux processes, usually acting in this same order. Modulation of biotransformation and disposition of drugs of clinical application has important therapeutic and toxicological implications. We here provide a compilation and analysis of relevant, more recent literature reporting hormonal regulation of hepatic drug biotransformation and transport systems. We provide additional information on the effect of hormones that tentatively explain differences between sexes. A brief discussion on discrepancies between experimental models and species, as well as a link between gender-related differences and the hormonal mechanism explaining such differences, is also presented. Finally, we include a comment on the pathophysiological, toxicological, and pharmacological relevance of these regulations.
Collapse
Affiliation(s)
- María L Ruiz
- Institute of Experimental Physiology, National University of Rosario, Rosario, Argentina
| | | | | | | |
Collapse
|
48
|
Cho E, Montgomery RB, Mostaghel EA. Minireview: SLCO and ABC transporters: a role for steroid transport in prostate cancer progression. Endocrinology 2014; 155:4124-32. [PMID: 25147980 PMCID: PMC4298565 DOI: 10.1210/en.2014-1337] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Androgens play a critical role in the development and progression of prostate cancer (PCa), and androgen deprivation therapy via surgical or medical castration is front-line therapy for patients with advanced PCa. However, intratumoral testosterone levels are elevated in metastases from patients with castration-resistant disease, and residual intratumoral androgens have been implicated in mediating ligand-dependent mechanisms of androgen receptor activation. The source of residual tissue androgens present despite castration has not been fully elucidated, but proposed mechanisms include uptake and conversion of adrenal androgens, such as dehdroepiandrosterone to testosterone and dihydrotestosterone, or de novo androgen synthesis from cholesterol or progesterone precursors. In this minireview, we discuss the emerging evidence that suggests a role for specific transporters in mediating transport of steroids into or out of prostate cells, thereby influencing intratumoral androgen levels and PCa development and progression. We focus on the solute carrier and ATP binding cassette gene families, which have the most published data for a role in PCa-related steroid transport, and review the potential impact of genetic variation on steroid transport activity and PCa outcomes. Continued assessment of transport activity in PCa models and human tumor tissue is needed to better delineate the different roles these transporters play in physiologic and neoplastic settings, and in order to determine whether targeting the uptake of steroid substrates by specific transporters may be a clinically feasible therapeutic strategy.
Collapse
Affiliation(s)
- Eunpi Cho
- School of Medicine (E.C., R.B.M.), University of Washington, Seattle, Washington 98195; and Division of Clinical Research (E.A.M.), Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | | | | |
Collapse
|
49
|
Fu ZD, Cui JY, Klaassen CD. Atorvastatin induces bile acid-synthetic enzyme Cyp7a1 by suppressing FXR signaling in both liver and intestine in mice. J Lipid Res 2014; 55:2576-86. [PMID: 25278499 DOI: 10.1194/jlr.m053124] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Statins are effective cholesterol-lowering drugs to treat CVDs. Bile acids (BAs), the end products of cholesterol metabolism in the liver, are important nutrient and energy regulators. The present study aims to investigate how statins affect BA homeostasis in the enterohepatic circulation. Male C57BL/6 mice were treated with atorvastatin (100 mg/kg/day po) for 1 week, followed by BA profiling by ultra-performance LC-MS/MS. Atorvastatin decreased BA pool size, mainly due to less BA in the intestine. Surprisingly, atorvastatin did not alter total BAs in the serum or liver. Atorvastatin increased the ratio of 12α-OH/non12α-OH BAs. Atorvastatin increased the mRNAs of the BA-synthetic enzymes cholesterol 7α-hydroxylase (Cyp7a1) (over 10-fold) and cytochrome P450 27a1, the BA uptake transporters Na⁺/taurocholate cotransporting polypeptide and organic anion transporting polypeptide 1b2, and the efflux transporter multidrug resistance-associated protein 2 in the liver. Noticeably, atorvastatin suppressed the expression of BA nuclear receptor farnesoid X receptor (FXR) target genes, namely small heterodimer partner (liver) and fibroblast growth factor 15 (ileum). Furthermore, atorvastatin increased the mRNAs of the organic cation uptake transporter 1 and cholesterol efflux transporters Abcg5 and Abcg8 in the liver. The increased expression of BA-synthetic enzymes and BA transporters appear to be a compensatory response to maintain BA homeostasis after atorvastatin treatment. The Cyp7a1 induction by atorvastatin appears to be due to suppressed FXR signaling in both the liver and intestine.
Collapse
Affiliation(s)
- Zidong Donna Fu
- Departments of Pharmacology, Toxicology, and Therapeutics University of Kansas Medical Center, Kansas City, KS 66160 Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, Heilongjiang Province, People's Republic of China 150081
| | - Julia Yue Cui
- Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Curtis D Klaassen
- Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| |
Collapse
|
50
|
Szafraniec MJ, Szczygieł M, Urbanska K, Fiedor L. Determinants of the activity and substrate recognition of breast cancer resistance protein (ABCG2). Drug Metab Rev 2014; 46:459-74. [DOI: 10.3109/03602532.2014.942037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|