1
|
Liu Y, Shao YT, Ward R, Ma L, Gui HX, Hao Q, Mu X, Yang Y, An S, Guo XX, Xu TR. The C-terminal of the α1b-adreneroceptor is a key determinant for its structure integrity and biological functions. Biosci Biotechnol Biochem 2021; 85:1128-1139. [PMID: 33693487 DOI: 10.1093/bbb/zbab034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/19/2021] [Indexed: 12/13/2022]
Abstract
The C-terminal of G protein-coupled receptors is now recognized as being important for G protein activation and signaling function. To detect the role of C-terminal tail in receptor activation, we used the α1b-AR, which has a long C-terminal of 164 amino acids. We constructed the intramolecular FRET sensors, in which the C-terminal was truncated to 10 (∆C-10), 20 (∆C-20), 30 (∆C-30), 50 (∆C-50), 70 (∆C-70), or 90 (∆C-90). The truncated mutants of ∆C-10, ∆C-20, or ∆C-30 cannot induce FRET signal changes and downstream ERK1/2 phosphorylation. However, the truncated mutants of ∆C-50, ∆C-70, or ∆C-90 induce significant FRET signal changes and downstream ERK1/2 phosphorylation, especially ∆C-90. This is particularly true in the case of the ∆C-90, ∆C-70, or ∆C-50 which retained the potential phosphorylation sites (Ser401, Ser404, Ser408, or Ser410). The ∆C-90 showed an increase in agonist-induced FRET signal changes and ERK1/2 phosphorylation in PKC- or endocytosis-dependent and EGFR-, src-, or β-arrestin2-independent.
Collapse
Affiliation(s)
- Ying Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China.,Institute of Life Sciences, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yu-Ting Shao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Richard Ward
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Li Ma
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Hao-Xin Gui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Qian Hao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xi Mu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yang Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Su An
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiao-Xi Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Tian-Rui Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
2
|
Johnstone EKM, See HB, Abhayawardana RS, Song A, Rosengren KJ, Hill SJ, Pfleger KDG. Investigation of Receptor Heteromers Using NanoBRET Ligand Binding. Int J Mol Sci 2021; 22:1082. [PMID: 33499147 PMCID: PMC7866079 DOI: 10.3390/ijms22031082] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/20/2022] Open
Abstract
Receptor heteromerization is the formation of a complex involving at least two different receptors with pharmacology that is distinct from that exhibited by its constituent receptor units. Detection of these complexes and monitoring their pharmacology is crucial for understanding how receptors function. The Receptor-Heteromer Investigation Technology (Receptor-HIT) utilizes ligand-dependent modulation of interactions between receptors and specific biomolecules for the detection and profiling of heteromer complexes. Previously, the interacting biomolecules used in Receptor-HIT assays have been intracellular proteins, however in this study we have for the first time used bioluminescence resonance energy transfer (BRET) with fluorescently-labeled ligands to investigate heteromerization of receptors on the cell surface. Using the Receptor-HIT ligand binding assay with NanoBRET, we have successfully investigated heteromers between the angiotensin II type 1 (AT1) receptor and the β2 adrenergic receptor (AT1-β2AR heteromer), as well as between the AT1 and angiotensin II type 2 receptor (AT1-AT2 heteromer).
Collapse
Affiliation(s)
- Elizabeth K. M. Johnstone
- Molecular Endocrinology and Pharmacology Group, Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia; (H.B.S.); (R.S.A.); (S.J.H.)
- Centre for Medical Research, The University of Western Australia, Crawley, WA 6009, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Canberra, NSW 2609, Australia
| | - Heng B. See
- Molecular Endocrinology and Pharmacology Group, Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia; (H.B.S.); (R.S.A.); (S.J.H.)
- Centre for Medical Research, The University of Western Australia, Crawley, WA 6009, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Canberra, NSW 2609, Australia
| | - Rekhati S. Abhayawardana
- Molecular Endocrinology and Pharmacology Group, Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia; (H.B.S.); (R.S.A.); (S.J.H.)
- Centre for Medical Research, The University of Western Australia, Crawley, WA 6009, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Canberra, NSW 2609, Australia
| | - Angela Song
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD 4072, Australia; (A.S.); (K.J.R.)
| | - K. Johan Rosengren
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD 4072, Australia; (A.S.); (K.J.R.)
| | - Stephen J. Hill
- Molecular Endocrinology and Pharmacology Group, Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia; (H.B.S.); (R.S.A.); (S.J.H.)
- Centre for Medical Research, The University of Western Australia, Crawley, WA 6009, Australia
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham Medical School, Nottingham NG7 2UH, UK
- Centre of Membrane Proteins and Receptors, University of Nottingham, Midlands NG7 2UH, UK
| | - Kevin D. G. Pfleger
- Molecular Endocrinology and Pharmacology Group, Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia; (H.B.S.); (R.S.A.); (S.J.H.)
- Centre for Medical Research, The University of Western Australia, Crawley, WA 6009, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Canberra, NSW 2609, Australia
- Dimerix Limited, Nedlands, WA 6009, Australia
| |
Collapse
|
3
|
Docherty JR. The pharmacology of α 1-adrenoceptor subtypes. Eur J Pharmacol 2019; 855:305-320. [PMID: 31067439 DOI: 10.1016/j.ejphar.2019.04.047] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/17/2019] [Accepted: 04/29/2019] [Indexed: 01/30/2023]
Abstract
This review examines the functions of α1-adrenoceptor subtypes, particularly in terms of contraction of smooth muscle. There are 3 subtypes of α1-adrenoceptor, α1A- α1B- and α1D-adrenoceptors. Evidence is presented that the postulated α1L-adrenoceptor is simply the native α1A-adrenoceptor at which prazosin has low potency. In most isolated tissue studies, smooth muscle contractions to exogenous agonists are mediated particularly by α1A-, with a lesser role for α1D-adrenoceptors, but α1B-adrenoceptors are clearly involved in contractions of some tissues, for example, the spleen. However, nerve-evoked responses are the most crucial physiologically, so that these studies of exogenous agonists may overestimate the importance of α1A-adrenoceptors. The major α1-adrenoceptors involved in blood pressure control by sympathetic nerves are the α1D- and the α1A-adrenoceptors, mediating peripheral vasoconstrictor actions. As noradrenaline has high potency at α1D-adrenceptors, these receptors mediate the fastest response and seem to be targets for neurally released noradrenaline especially to low frequency stimulation, with α1A-adrenoceptors being more important at high frequencies of stimulation. This is true in rodent vas deferens and may be true in vasopressor nerves controlling peripheral resistance and tissue blood flow. The αlA-adrenoceptor may act mainly through Ca2+ entry through L-type channels, whereas the α1D-adrenoceptor may act mainly through T-type channels and exhaustable Ca2+ stores. α1-Adrenoceptors may also act through non-G-protein linked second messenger systems. In many tissues, multiple subtypes of α-adrenoceptor are present, and this may be regarded as the norm rather than exception, although one receptor subtype is usually predominant.
Collapse
Affiliation(s)
- James R Docherty
- Department of Physiology, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
| |
Collapse
|
4
|
White CW, da Silva Junior ED, Lim L, Ventura S. What makes the α 1A -adrenoceptor gene product assume an α 1L -adrenoceptor phenotype? Br J Pharmacol 2019; 176:2358-2365. [PMID: 30719698 DOI: 10.1111/bph.14599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/19/2018] [Accepted: 01/05/2019] [Indexed: 02/05/2023] Open
Abstract
The α1A -adrenoceptor is abundantly expressed in the lower urinary tract and is the principal therapeutic target for the symptomatic treatment of lower urinary tract symptoms in men. Prazosin has a lower affinity for the lower urinary tract α1A -adrenoceptor than α1A -adrenoceptors found in other parts of the body. This has led to the lower urinary tract α1A -adrenoceptor being subclassified as an α1L -adrenoceptor. It was demonstrated that this pharmacologically distinct α1L -adrenoceptor is a product of the α1A -adrenoceptor gene, but the mechanism by which this altered phenotype is achieved remains a mystery. Hypotheses for this altered pharmacology include the presence of an interacting protein such as cysteine-rich with EGF-like domain (CRELD) 1 or other GPCRs such as the CXCR2 chemokine or 5-HT1B receptor. Alternatively, the influence of breast cancer resistance protein (BCRP) efflux transporters on the pharmacology of α1A -adrenoceptors has also been investigated. These and other hypotheses will be described and discussed in this review. LINKED ARTICLES: This article is part of a themed section on Adrenoceptors-New Roles for Old Players. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.14/issuetoc.
Collapse
Affiliation(s)
- Carl W White
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | | | - Linzi Lim
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Sabatino Ventura
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
5
|
Gendron L, Cahill CM, von Zastrow M, Schiller PW, Pineyro G. Molecular Pharmacology of δ-Opioid Receptors. Pharmacol Rev 2017; 68:631-700. [PMID: 27343248 DOI: 10.1124/pr.114.008979] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Opioids are among the most effective analgesics available and are the first choice in the treatment of acute severe pain. However, partial efficacy, a tendency to produce tolerance, and a host of ill-tolerated side effects make clinically available opioids less effective in the management of chronic pain syndromes. Given that most therapeutic opioids produce their actions via µ-opioid receptors (MOPrs), other targets are constantly being explored, among which δ-opioid receptors (DOPrs) are being increasingly considered as promising alternatives. This review addresses DOPrs from the perspective of cellular and molecular determinants of their pharmacological diversity. Thus, DOPr ligands are examined in terms of structural and functional variety, DOPrs' capacity to engage a multiplicity of canonical and noncanonical G protein-dependent responses is surveyed, and evidence supporting ligand-specific signaling and regulation is analyzed. Pharmacological DOPr subtypes are examined in light of the ability of DOPr to organize into multimeric arrays and to adopt multiple active conformations as well as differences in ligand kinetics. Current knowledge on DOPr targeting to the membrane is examined as a means of understanding how these receptors are especially active in chronic pain management. Insight into cellular and molecular mechanisms of pharmacological diversity should guide the rational design of more effective, longer-lasting, and better-tolerated opioid analgesics for chronic pain management.
Collapse
Affiliation(s)
- Louis Gendron
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Catherine M Cahill
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Mark von Zastrow
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Peter W Schiller
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Graciela Pineyro
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| |
Collapse
|
6
|
Goryashchenko AS, Khrenova MG, Bochkova AA, Ivashina TV, Vinokurov LM, Savitsky AP. Genetically Encoded FRET-Sensor Based on Terbium Chelate and Red Fluorescent Protein for Detection of Caspase-3 Activity. Int J Mol Sci 2015; 16:16642-54. [PMID: 26204836 PMCID: PMC4519970 DOI: 10.3390/ijms160716642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/30/2015] [Accepted: 07/06/2015] [Indexed: 12/01/2022] Open
Abstract
This article describes the genetically encoded caspase-3 FRET-sensor based on the terbium-binding peptide, cleavable linker with caspase-3 recognition site, and red fluorescent protein TagRFP. The engineered construction performs two induction-resonance energy transfer processes: from tryptophan of the terbium-binding peptide to Tb(3+) and from sensitized Tb(3+) to acceptor--the chromophore of TagRFP. Long-lived terbium-sensitized emission (microseconds), pulse excitation source, and time-resolved detection were utilized to eliminate directly excited TagRFP fluorescence and background cellular autofluorescence, which lasts a fraction of nanosecond, and thus to improve sensitivity of analyses. Furthermore the technique facilitates selective detection of fluorescence, induced by uncleaved acceptor emission. For the first time it was shown that fluorescence resonance energy transfer between sensitized terbium and TagRFP in the engineered construction can be studied via detection of microsecond TagRFP fluorescence intensities. The lifetime and distance distribution between donor and acceptor were calculated using molecular dynamics simulation. Using this data, quantum yield of terbium ions with binding peptide was estimated.
Collapse
Affiliation(s)
| | - Maria G Khrenova
- M. V. Lomonosov Moscow State University, Department of Chemistry, 119991 Moscow, Russia.
| | - Anna A Bochkova
- M. V. Lomonosov Moscow State University, Department of Chemistry, 119991 Moscow, Russia.
| | - Tatiana V Ivashina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia.
| | - Leonid M Vinokurov
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia.
| | - Alexander P Savitsky
- A. N. Bach Institute of Biochemistry, Russian Academy of Sciences, 119071 Moscow, Russia.
- M. V. Lomonosov Moscow State University, Department of Chemistry, 119991 Moscow, Russia.
| |
Collapse
|
7
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: G protein-coupled receptors. Br J Pharmacol 2013; 170:1459-581. [PMID: 24517644 PMCID: PMC3892287 DOI: 10.1111/bph.12445] [Citation(s) in RCA: 505] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. G protein-coupled receptors are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen PH Alexander
- School of Life Sciences, University of Nottingham Medical SchoolNottingham, NG7 2UH, UK
| | - Helen E Benson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Elena Faccenda
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Adam J Pawson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Joanna L Sharman
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | | | - John A Peters
- Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of DundeeDundee, DD1 9SY, UK
| | - Anthony J Harmar
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| |
Collapse
|
8
|
Ward RJ, Milligan G. Structural and biophysical characterisation of G protein-coupled receptor ligand binding using resonance energy transfer and fluorescent labelling techniques. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:3-14. [PMID: 23590995 DOI: 10.1016/j.bbamem.2013.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/22/2013] [Accepted: 04/07/2013] [Indexed: 11/29/2022]
Abstract
The interaction between ligands and the G protein-coupled receptors (GPCRs) to which they bind has long been the focus of intensive investigation. The signalling cascades triggered by receptor activation, due in most cases to ligand binding, are of great physiological and medical importance; indeed, GPCRs are targeted by in excess of 30% of small molecule therapeutic medicines. Attempts to identify further pharmacologically useful GPCR ligands, for receptors with known and unknown endogenous ligands, continue apace. In earlier days direct assessment of such interactions was restricted largely to the use of ligands incorporating radioactive isotope labels as this allowed detection of the ligand and monitoring its interaction with the GPCR. This use of such markers has continued with the development of ligands labelled with fluorophores and their application to the study of receptor-ligand interactions using both light microscopy and resonance energy transfer techniques, including homogenous time-resolved fluorescence resonance energy transfer. Details of ligand-receptor interactions via X-ray crystallography are advancing rapidly as methods suitable for routine production of substantial amounts and stabilised forms of GPCRs have been developed and there is hope that this may become as routine as the co-crystallisation of serine/threonine kinases with ligands, an approach that has facilitated widespread use of rapid structure-based ligand design. Conformational changes involved in the activation of GPCRs, widely predicted by biochemical and biophysical means, have inspired the development of intramolecular FRET-based sensor forms of GPCRs designed to investigate the events following ligand binding and resulting in a signal propagation across the cell membrane. Finally, a number of techniques are emerging in which ligand-GPCR binding can be studied in ways that, whilst indirect, are able to monitor its results in an unbiased and integrated manner. This article is part of a Special Issue entitled: Structural and biophysical characterisation of membrane protein-ligand binding.
Collapse
Affiliation(s)
- Richard J Ward
- Molecular Pharmacology Group, Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | | |
Collapse
|
9
|
Zherdeva VV, Savitsky AP. Using lanthanide-based resonance energy transfer for in vitro and in vivo studies of biological processes. BIOCHEMISTRY (MOSCOW) 2013; 77:1553-74. [DOI: 10.1134/s0006297912130111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Ventura S. What makes the α(1A)-adrenoceptor gene express the α(1L)-adrenoceptor functional phenotype? Br J Pharmacol 2012; 165:1223-5. [PMID: 21913893 DOI: 10.1111/j.1476-5381.2011.01663.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The α(1A)-adrenoceptor is therapeutically exploited because of its prevalence in the lower urinary tract. The pharmacology shown by this lower urinary tract α(1A)-adrenoceptor is different from that shown by other α(1A)-adrenoceptors, which has led to it being subclassified as an α(1L)-adrenoceptor. Only in the last few years was it shown that this pharmacologically distinct α(1L)-adrenoceptor is a product of the α(1A)-adrenoceptor gene. In this issue of the BJP, Nishimune et al. review the literature on α(1L)-adrenoceptor pharmacology and discuss the possible molecular mechanisms by which the α(1A)-adrenoceptor gene is able to produce two pharmacologically distinct adrenoceptor subtypes. Based primarily from their own research using cell lines transfected with α(1A)-adrenoceptors, they conclude that a protein that interacts with the receptor is the most plausible explanation. The challenge remains to identify any such interacting protein and show how it is able to change the pharmacology of the receptor for different ligands.
Collapse
Affiliation(s)
- Sabatino Ventura
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Vic., Australia.
| |
Collapse
|
11
|
Mustafa S, See HB, Seeber RM, Armstrong SP, White CW, Ventura S, Ayoub MA, Pfleger KDG. Identification and profiling of novel α1A-adrenoceptor-CXC chemokine receptor 2 heteromer. J Biol Chem 2012; 287:12952-65. [PMID: 22371491 PMCID: PMC3340001 DOI: 10.1074/jbc.m111.322834] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 02/20/2012] [Indexed: 01/14/2023] Open
Abstract
We have provided the first evidence for specific heteromerization between the α(1A)-adrenoceptor (α(1A)AR) and CXC chemokine receptor 2 (CXCR2) in live cells. α(1A)AR and CXCR2 are both expressed in areas such as the stromal smooth muscle layer of the prostate. By utilizing the G protein-coupled receptor (GPCR) heteromer identification technology on the live cell-based bioluminescence resonance energy transfer (BRET) assay platform, our studies in human embryonic kidney 293 cells have identified norepinephrine-dependent β-arrestin recruitment that was in turn dependent upon co-expression of α(1A)AR with CXCR2. These findings have been supported by co-localization observed using confocal microscopy. This norepinephrine-dependent β-arrestin recruitment was inhibited not only by the α(1)AR antagonist Terazosin but also by the CXCR2-specific allosteric inverse agonist SB265610. Furthermore, Labetalol, which is marketed for hypertension as a nonselective β-adrenoceptor antagonist with α(1)AR antagonist properties, was identified as a heteromer-specific-biased agonist exhibiting partial agonism for inositol phosphate production but essentially full agonism for β-arrestin recruitment at the α(1A)AR-CXCR2 heteromer. Finally, bioluminescence resonance energy transfer studies with both receptors tagged suggest that α(1A)AR-CXCR2 heteromerization occurs constitutively and is not modulated by ligand. These findings support the concept of GPCR heteromer complexes exhibiting distinct pharmacology, thereby providing additional mechanisms through which GPCRs can potentially achieve their diverse biological functions. This has important implications for the use and future development of pharmaceuticals targeting these receptors.
Collapse
MESH Headings
- Adrenergic alpha-1 Receptor Antagonists/pharmacology
- Adrenergic alpha-Agonists/pharmacology
- Allosteric Regulation/physiology
- Animals
- Arrestins/metabolism
- CHO Cells
- Chemokines/metabolism
- Cricetinae
- HEK293 Cells
- Humans
- Inositol Phosphates/metabolism
- Labetalol/pharmacology
- Male
- Mice
- Mice, Inbred C57BL
- Norepinephrine/pharmacology
- Prazosin/analogs & derivatives
- Prazosin/pharmacology
- Prostate/metabolism
- Protein Structure, Quaternary
- Receptors, Adrenergic, alpha-1/chemistry
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Interleukin-8B/chemistry
- Receptors, Interleukin-8B/metabolism
- beta-Arrestins
Collapse
Affiliation(s)
- Sanam Mustafa
- From the Laboratory for Molecular Endocrinology-G Protein-Coupled Receptors, Western Australian Institute for Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, Western Australia 6009
| | - Heng B. See
- From the Laboratory for Molecular Endocrinology-G Protein-Coupled Receptors, Western Australian Institute for Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, Western Australia 6009
| | - Ruth M. Seeber
- From the Laboratory for Molecular Endocrinology-G Protein-Coupled Receptors, Western Australian Institute for Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, Western Australia 6009
| | - Stephen P. Armstrong
- From the Laboratory for Molecular Endocrinology-G Protein-Coupled Receptors, Western Australian Institute for Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, Western Australia 6009
| | - Carl W. White
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052 and
| | - Sabatino Ventura
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052 and
| | - Mohammed Akli Ayoub
- From the Laboratory for Molecular Endocrinology-G Protein-Coupled Receptors, Western Australian Institute for Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, Western Australia 6009
| | - Kevin D. G. Pfleger
- From the Laboratory for Molecular Endocrinology-G Protein-Coupled Receptors, Western Australian Institute for Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, Western Australia 6009
- Dimerix Bioscience Pty Ltd, Nedlands, Perth, Western Australia 6009, Australia
| |
Collapse
|
12
|
Nishimune A, Yoshiki H, Uwada J, Anisuzzaman ASM, Umada H, Muramatsu I. Phenotype pharmacology of lower urinary tract α(1)-adrenoceptors. Br J Pharmacol 2012; 165:1226-34. [PMID: 21745191 PMCID: PMC3372711 DOI: 10.1111/j.1476-5381.2011.01591.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 06/20/2011] [Accepted: 06/28/2011] [Indexed: 12/01/2022] Open
Abstract
α(1)-Adrenoceptors are involved in numerous physiological functions, including micturition. However, the pharmacological profile of the α(1)-adrenoceptor subtypes remains controversial. Here, we review the literature regarding α(1)-adrenoceptors in the lower urinary tract from the standpoint of α(1L) phenotype pharmacology. Among three α(1)-adrenoceptor subtypes (α(1A), α(1B) and α(1D)), α(1a)-adrenoceptor mRNA is the most abundantly transcribed in the prostate, urethra and bladder neck of many species, including humans. In prostate homogenates or membrane preparations, α(1A)-adrenoceptors with high affinity for prazosin have been detected as radioligand binding sites. Functional α(1)-adrenoceptors in the prostate, urethra and bladder neck have low affinity for prazosin, suggesting the presence of an atypical α(1)-adrenoceptor phenotype (designated as α(1L)). The α(1L)-adrenoceptor occurs as a distinct binding entity from the α(1A)-adrenoceptor in intact segments of variety of tissues including prostate. Both the α(1L)- and α(1A)-adrenoceptors are specifically absent from Adra1A (α(1a)) gene-knockout mice. Transfection of α(1a)-adrenoceptor cDNA predominantly expresses α(1A)-phenotype in several cultured cell lines. However, in CHO cells, such transfection expresses α(1L)- and α(1A)-phenotypes. Under intact cell conditions, the α(1L)-phenotype is predominant when co-expressed with the receptor interacting protein, CRELD1α. In summary, recent pharmacological studies reveal that two distinct α(1)-adrenoceptor phenotypes (α(1A) and α(1L)) originate from a single Adra1A (α(1a)-adrenoceptor) gene, but adrenergic contractions in the lower urinary tract are predominantly mediated via the α(1L)-adrenoceptor. From the standpoint of phenotype pharmacology, it is likely that phenotype-based subtypes such as the α(1L)-adrenoceptor will become new targets for drug development and pharmacotherapy.
Collapse
Affiliation(s)
- A Nishimune
- Division of Pharmacology, Department of Biochemistry and Bioinformative Sciences, Organization for Life Science Advancement Programs, and Child Development Research Center, School of Medicine, University of Fukui, Eiheiji, Fukui, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Drinovec L, Kubale V, Nøhr Larsen J, Vrecl M. Mathematical models for quantitative assessment of bioluminescence resonance energy transfer: application to seven transmembrane receptors oligomerization. Front Endocrinol (Lausanne) 2012; 3:104. [PMID: 22973259 PMCID: PMC3428587 DOI: 10.3389/fendo.2012.00104] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 08/08/2012] [Indexed: 11/24/2022] Open
Abstract
The idea that seven transmembrane receptors (7TMRs; also designated G-protein coupled receptors, GPCRs) might form dimers or higher order oligomeric complexes was formulated more than 20 years ago and has been intensively studied since then. In the last decade, bioluminescence resonance energy transfer (BRET) has been one of the most frequently used biophysical methods for studying 7TMRs oligomerization. This technique enables monitoring physical interactions between protein partners in living cells fused to donor and acceptor moieties. It relies on non-radiative transfer of energy between donor and acceptor, depending on their intermolecular distance (1-10 nm) and relative orientation. Results derived from BRET-based techniques are very persuasive; however, they need appropriate controls and critical interpretation. To overcome concerns about the specificity of BRET-derived results, a set of experiments has been proposed, including negative control with a non-interacting receptor or protein, BRET dilution, saturation, and competition assays. This article presents the theoretical background behind BRET assays, then outlines mathematical models for quantitative interpretation of BRET saturation and competition assay results, gives examples of their utilization and discusses the possibilities of quantitative analysis of data generated with other RET-based techniques.
Collapse
|
14
|
Cottet M, Faklaris O, Maurel D, Scholler P, Doumazane E, Trinquet E, Pin JP, Durroux T. BRET and Time-resolved FRET strategy to study GPCR oligomerization: from cell lines toward native tissues. Front Endocrinol (Lausanne) 2012; 3:92. [PMID: 22837753 PMCID: PMC3401989 DOI: 10.3389/fendo.2012.00092] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/03/2012] [Indexed: 11/13/2022] Open
Abstract
The concept of oligomerization of G protein-coupled receptor (GPCR) opens new perspectives regarding physiological function regulation. The capacity of one GPCR to modify its binding and coupling properties by interacting with a second one can be at the origin of regulations unsuspected two decades ago. Although the concept is interesting, its validation at a physiological level is challenging and probably explains why receptor oligomerization is still controversial. Demonstrating direct interactions between two proteins is not trivial since few techniques present a spatial resolution allowing this precision. Resonance energy transfer (RET) strategies are actually the most convenient ones. During the last two decades, bioluminescent resonance energy transfer and time-resolved fluorescence resonance energy transfer (TR-FRET) have been widely used since they exhibit high signal-to-noise ratio. Most of the experiments based on GPCR labeling have been performed in cell lines and it has been shown that all GPCRs have the propensity to form homo- or hetero-oligomers. However, whether these data can be extrapolated to GPCRs expressed in native tissues and explain receptor functioning in real life, remains an open question. Native tissues impose different constraints since GPCR sequences cannot be modified. Recently, a fluorescent ligand-based GPCR labeling strategy combined to a TR-FRET approach has been successfully used to prove the existence of GPCR oligomerization in native tissues. Although the RET-based strategies are generally quite simple to implement, precautions have to be taken before concluding to the absence or the existence of specific interactions between receptors. For example, one should exclude the possibility of collision of receptors diffusing throughout the membrane leading to a specific FRET signal. The advantages and the limits of different approaches will be reviewed and the consequent perspectives discussed.
Collapse
Affiliation(s)
- Martin Cottet
- Institut de Génomique Fonctionnelle CNRS, UMR 5203,Montpellier, France
- INSERM, U.661, Montpellier and Université Montpellier 1,2,Montpellier, France
| | - Orestis Faklaris
- Institut de Génomique Fonctionnelle CNRS, UMR 5203,Montpellier, France
- INSERM, U.661, Montpellier and Université Montpellier 1,2,Montpellier, France
| | - Damien Maurel
- Institut de Génomique Fonctionnelle CNRS, UMR 5203,Montpellier, France
- INSERM, U.661, Montpellier and Université Montpellier 1,2,Montpellier, France
| | - Pauline Scholler
- Institut de Génomique Fonctionnelle CNRS, UMR 5203,Montpellier, France
- INSERM, U.661, Montpellier and Université Montpellier 1,2,Montpellier, France
| | - Etienne Doumazane
- Institut de Génomique Fonctionnelle CNRS, UMR 5203,Montpellier, France
- INSERM, U.661, Montpellier and Université Montpellier 1,2,Montpellier, France
| | | | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle CNRS, UMR 5203,Montpellier, France
- INSERM, U.661, Montpellier and Université Montpellier 1,2,Montpellier, France
| | - Thierry Durroux
- Institut de Génomique Fonctionnelle CNRS, UMR 5203,Montpellier, France
- INSERM, U.661, Montpellier and Université Montpellier 1,2,Montpellier, France
- *Correspondence: Thierry Durroux, Institut de Génomique Fonctionnelle CNRS, UMR 5203, Montpellier, France; INSERM U661, Montpellier and Université Montpellier 1,2, 141 Rue de la Cardonille, 34094 Montpellier Cedex 5, France. e-mail:
| |
Collapse
|
15
|
Ventura S, Oliver VL, White CW, Xie JH, Haynes JM, Exintaris B. Novel drug targets for the pharmacotherapy of benign prostatic hyperplasia (BPH). Br J Pharmacol 2011; 163:891-907. [PMID: 21410684 DOI: 10.1111/j.1476-5381.2011.01332.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Benign prostatic hyperplasia (BPH) is the major cause of lower urinary tract symptoms in men aged 50 or older. Symptoms are not normally life threatening, but often drastically affect the quality of life. The number of men seeking treatment for BPH is expected to grow in the next few years as a result of the ageing male population. Estimates of annual pharmaceutical sales of BPH therapies range from $US 3 to 10 billion, yet this market is dominated by two drug classes. Current drugs are only effective in treating mild to moderate symptoms, yet despite this, no emerging contenders appear to be on the horizon. This is remarkable given the increasing number of patients with severe symptoms who are required to undergo invasive and unpleasant surgery. This review provides a brief background on prostate function and the pathophysiology of BPH, followed by a brief description of BPH epidemiology, the burden it places on society, and the current surgical and pharmaceutical therapies. The recent literature on emerging contenders to current therapies and novel drug targets is then reviewed, focusing on drug targets which are able to relax prostatic smooth muscle in a similar way to the α(1) -adrenoceptor antagonists, as this appears to be the most effective mechanism of action. Other mechanisms which may be of benefit are also discussed. It is concluded that recent basic research has revealed a number of novel drug targets such as muscarinic receptor or P2X-purinoceptor antagonists, which have the potential to produce more effective and safer drug treatments.
Collapse
Affiliation(s)
- S Ventura
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
16
|
Dietis N, Rowbotham DJ, Lambert DG. Opioid receptor subtypes: fact or artifact? Br J Anaesth 2011; 107:8-18. [PMID: 21613279 DOI: 10.1093/bja/aer115] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
There is a vast amount of pharmacological evidence favouring the existence of multiple subtypes of opioid receptors. In addition to the primary classification of µ (mu: MOP), δ (delta: DOP), κ (kappa: KOP) receptors, and the nociceptin/orphanin FQ peptide receptor (NOP), various groups have further classified the pharmacological µ into µ(1-3), the δ into δ(1-2)/δ(complexed/non-complexed), and the κ into κ(1-3). From an anaesthetic perspective, the suggestions that µ(1) produced analgesia and µ(2) produced respiratory depression are particularly important. However, subsequent to the formal identification of the primary opioid receptors (MOP/DOP/KOP/NOP) by cloning and the use of this information to produce knockout animals, evidence for these additional subtypes is lacking. Indeed, knockout of a single gene (and hence receptor) results in a loss of all function associated with that receptor. In the case of MOP knockout, analgesia and respiratory depression is lost. This suggests that further sub-classification of the primary types is unwise. So how can the wealth of pharmacological data be reconciled with new molecular information? In addition to some simple misclassification (κ(3) is probably NOP), there are several possibilities which include: (i) alternate splicing of a common gene product, (ii) receptor dimerization, (iii) interaction of a common gene product with other receptors/signalling molecules, or (iv) a combination of (i)-(iii). Assigning variations in ligand activity (pharmacological subtypes) to one or more of these molecular suggestions represents an interesting challenge for future opioid research.
Collapse
Affiliation(s)
- N Dietis
- Department of Cardiovascular Sciences (Pharmacology and Therapeutics Group), Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Leicester Royal Infirmary, Leicester LE1 5WW, UK
| | | | | |
Collapse
|
17
|
Ibrahim S, Tetruashvily M, Frey AJ, Wilson SJ, Stitham J, Hwa J, Smyth EM. Dominant negative actions of human prostacyclin receptor variant through dimerization: implications for cardiovascular disease. Arterioscler Thromb Vasc Biol 2010; 30:1802-9. [PMID: 20522800 DOI: 10.1161/atvbaha.110.208900] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Prostacyclin and thromboxane mediate opposing cardiovascular effects through their receptors, the prostacyclin receptor (IP) and thromboxane receptor (TP). Individuals heterozygous for an IP variant, IP(R212C), displayed exaggerated loss of platelet IP responsiveness and accelerated cardiovascular disease. We examined association of IP(R212C) into homo- and heterodimeric receptor complexes and the impact on prostacyclin and thromboxane biology. METHODS AND RESULTS Dimerization of the IP, IP(R212C), and TPalpha was examined by bioluminesence resonance energy transfer in transfected HEK293 cells. We observed an equal propensity for formation of IPIP homodimers and IPTPalpha heterodimers. Compared with the IP alone, IP(R212C) displayed reduced cAMP generation and increased endoplasmic reticulum localization but underwent normal homo- and heterodimerization. When the IP(R212C) and IP were coexpressed, a dominant negative action of the variant was evident with enhanced wild-type IP localization to the endoplasmic reticulum and reduced agonist-dependent signaling. Further, the TPalpha activation response, which was shifted from inositol phosphate to cAMP generation following IPTPalpha heterodimerization, was normalized when the TPalpha instead dimerized with IP(R212C). CONCLUSIONS IP(R212C) exerts a dominant action on the wild-type IP and TPalpha through dimerization. This likely contributes to accelerated cardiovascular disease in individuals carrying 1 copy of the variant allele.
Collapse
Affiliation(s)
- Salam Ibrahim
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Alvarez-Curto E, Pediani JD, Milligan G. Applications of fluorescence and bioluminescence resonance energy transfer to drug discovery at G protein coupled receptors. Anal Bioanal Chem 2010; 398:167-80. [DOI: 10.1007/s00216-010-3823-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2010] [Revised: 05/03/2010] [Accepted: 05/03/2010] [Indexed: 10/19/2022]
|
19
|
Docherty JR. Subtypes of functional alpha1-adrenoceptor. Cell Mol Life Sci 2010; 67:405-17. [PMID: 19862476 PMCID: PMC11115521 DOI: 10.1007/s00018-009-0174-4] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 09/11/2009] [Accepted: 10/05/2009] [Indexed: 11/29/2022]
Abstract
In this review, subtypes of functional alpha1-adrenoceptor are discussed. These are cell membrane receptors, belonging to the seven-transmembrane-spanning G-protein-linked family of receptors, which respond to the physiological agonist noradrenaline. alpha1-Adrenoceptors can be divided into alpha1A-, alpha1B- and alpha1D-adrenoceptors, all of which mediate contractile responses involving Gq/11 and inositol phosphate turnover. A fourth alpha1-adrenoceptor, the alpha1L-, represents a functional phenotype of the alpha1A-adrenoceptor. alpha1-Adrenoceptor subtype knock-out mice have refined our knowledge of the functions of alpha-adrenoceptor subtypes, particuarly as subtype-selective agonists and antagonists are not available for all subtypes. alpha1-Adrenoceptors function as stimulatory receptors involved particularly in smooth muscle contraction, especially contraction of vascular smooth muscle, both in local vasoconstriction and in the control of blood pressure and temperature, and contraction of the prostate and bladder neck. Central actions are now being elucidated.
Collapse
MESH Headings
- Animals
- Blood Pressure/physiology
- Body Temperature Regulation
- Drug Inverse Agonism
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- Inositol Phosphates/metabolism
- Mice
- Mice, Knockout
- Muscle, Smooth/physiology
- Muscle, Smooth, Vascular/physiology
- Receptors, Adrenergic, alpha-1/classification
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, Adrenergic, alpha-1/physiology
- Second Messenger Systems/physiology
- Vasoconstriction/physiology
Collapse
Affiliation(s)
- James R Docherty
- Department of Physiology, Royal College of Surgeons in Ireland, 123, St. Stephen's Green, Dublin 2, Ireland.
| |
Collapse
|
20
|
Nishimune A, Suzuki F, Yoshiki H, Morishima S, Muramatsu I. Identification of Cysteine-Rich Epidermal Growth Factor–Like Domain 1α (CRELD1α) as a Novel α1A-Adrenoceptor–Down-Regulating Protein and Establishment of an α1L-Adrenoceptor–Expressing Cell Line. J Pharmacol Sci 2010; 113:169-81. [DOI: 10.1254/jphs.10093fp] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
21
|
|
22
|
Adrenoceptors, �� 1. Br J Pharmacol 2009. [DOI: 10.1111/j.1476-5381.2009.00501_7.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
23
|
Avellar MCW, Lázari MFM, Porto CS. Expression and function of G-protein-coupled receptorsin the male reproductive tract. AN ACAD BRAS CIENC 2009; 81:321-44. [DOI: 10.1590/s0001-37652009000300002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2008] [Accepted: 08/14/2008] [Indexed: 11/22/2022] Open
Abstract
This review focuses on the expression and function of muscarinic acetylcholine receptors (mAChRs), α1-adrenoceptors and relaxin receptors in the male reproductive tract. The localization and differential expression of mAChR and α1-adrenoceptor subtypes in specific compartments of the efferent ductules, epididymis, vas deferens, seminal vesicle and prostate of various species indicate a role for these receptors in the modulation of luminal fluid composition and smooth muscle contraction, including effects on male fertility. Furthermore, the activation of mAChRs induces transactivation of the epidermal growth factor receptor (EGFR) and the Sertoli cell proliferation. The relaxin receptors are present in the testis, RXFP1 in elongated spermatids and Sertoli cells from rat, and RXFP2 in Leydig and germ cells from rat and human, suggesting a role for these receptors in the spermatogenic process. The localization of both receptors in the apical portion of epithelial cells and smooth muscle layers of the vas deferens suggests an involvement of these receptors in the contraction and regulation of secretion.
Collapse
|
24
|
Nishimune A, Suzuki F, Yoshiki H, Morishima S, Muramatsu I. Alpha 1-adrenoceptor pharmacome: alpha 1L-adrenoceptor and alpha 1A-adrenoceptor in the lower urinary tract. Int J Urol 2009; 17:31-7. [PMID: 19694838 DOI: 10.1111/j.1442-2042.2009.02368.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alpha(1)-adrenoceptors are involved in physiological functions such as urinary excretion and ejaculation in the lower urinary tract (LUT). Several alpha(1) antagonists are clinically used for the treatment of urinary obstruction in patients with benign prostatic hyperplasia. At present, three classical alpha(1)-adrenoceptor subtypes (alpha(1A), alpha(1B), and alpha(1D)) have been identified, among which the alpha(1A) and alpha(1D)-adrenoceptor subtypes have been regarded as the main targets of alpha(1) antagonist therapy for LUT symptoms. Prazosin has been used as a prototypic, classical antagonist, to characterize alpha(1)-adrenoceptors pharmacologically, (i.e. all classical alpha(1)-adrenoceptor subtypes show high-affinity for the drug). However, we found that alpha(1)-adrenoceptors in the LUT show atypical low-affinity for prazosin. Therefore, the concept alpha(1L)-receptor, which indicates alpha(1)-adrenoceptor(s) showing low-affinity for prazosin has been introduced. A recent study demonstrated that the alpha(1L)-adrenoceptor is a specific phenotype present in the many intact tissues including human LUT, and that it originates from the ADRA1A gene. Therefore, the alpha(1L)-adrenoceptor in the LUT is now re-defined as alpha(1A(L))-adrenoceptor. The physiological and pharmacological difference between classical alpha(1A(H),) and alpha(1A(L)) which is the native receptor expressed in the LUT is of special interest as it provides fundamental bases for urological alpha(1A)-adrenoceptor blocking pharmacotherapy. Here, we briefly review the alpha(1)-adrenoceptors in the LUT with special reference to phenotype-based (pharmacome) analysis.
Collapse
Affiliation(s)
- Atsushi Nishimune
- Division of Pharmacology, Department of Biochemistry and Bioinformative Sciences, School of Medicine, University of Fukui, Eiheiji, Fukui, Japan
| | | | | | | | | |
Collapse
|
25
|
Abstract
Although traditionally assumed to be monomeric signaling units, G-protein-coupled receptors (GPCRs) have been shown to exist as dimers/oligomers. Many chemokine receptors have been demonstrated to form homo-oligomers, and hetero-oligomerization between both pairs of chemokine receptors and chemokine receptors and other GPCRs has also been demonstrated. This chapter highlights some of the most common techniques used to investigate chemokine receptor oligomerization.
Collapse
Affiliation(s)
- Shirley Appelbe
- Neuroscience and Molecular Pharmacology, University of Glasgow, Glasgow, Scotland, United Kingdom
| | | |
Collapse
|
26
|
Muramatsu I, Morishima S, Suzuki F, Yoshiki H, Anisuzzaman ASM, Tanaka T, Rodrigo MC, Myagmar BE, Simpson PC. Identification of alpha 1L-adrenoceptor in mice and its abolition by alpha 1A-adrenoceptor gene knockout. Br J Pharmacol 2008; 155:1224-34. [PMID: 18806813 DOI: 10.1038/bjp.2008.360] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE The alpha(1L)-adrenoceptor has pharmacological properties that distinguish it from three classical alpha(1)-adrenoceptors (alpha(1A), alpha(1B) and alpha(1D)). The purpose of this was to identify alpha(1L)-adrenoceptors in mice and to examine their relationship to classical alpha(1)-adrenoceptors. EXPERIMENTAL APPROACH Radioligand binding and functional bioassay experiments were performed on the cerebral cortex, vas deferens and prostate of wild-type (WT) and alpha(1A)-, alpha(1B)- and alpha(1D)-adrenoceptor gene knockout (AKO, BKO and DKO) mice. KEY RESULTS The radioligand [(3)H]-silodosin bound to intact segments of the cerebral cortex, vas deferens and prostate of WT, BKO and DKO but not of AKO mice. The binding sites were composed of two components with high and low affinities for prazosin or RS-17053, indicating the pharmacological profiles of alpha(1A)-adrenoceptors and alpha(1L)-adrenoceptors. In membrane preparations of WT mouse cortex, however, [(3)H]-silodosin bound to a single population of prazosin high-affinity sites, suggesting the presence of alpha(1A)-adrenoceptors alone. In contrast, [(3)H]-prazosin bound to two components having alpha(1A)-adrenoceptor and alpha(1B)-adrenoceptor profiles in intact segments of WT and DKO mouse cortices, but AKO mice lacked alpha(1A)-adrenoceptor profiles and BKO mice lacked alpha(1B)-adrenoceptor profiles. Noradrenaline produced contractions through alpha(1L)-adrenoceptors with low affinity for prazosin in the vas deferens and prostate of WT, BKO and DKO mice. However, the contractions were abolished or markedly attenuated in AKO mice. CONCLUSIONS AND IMPLICATIONS alpha(1L)-Adrenoceptors were identified as binding and functional entities in WT, BKO and DKO mice but not in AKO mice, suggesting that the alpha(1L)-adrenoceptor is one phenotype derived from the alpha(1A)-adrenoceptor gene.
Collapse
Affiliation(s)
- I Muramatsu
- Division of Pharmacology, Department of Biochemistry and Bioinformative Sciences, University of Fukui School of Medicine, Eiheiji, Fukui, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
BACKGROUND AND PURPOSE alpha(1)-Adrenoceptors in the rabbit prostate have been studied because of their controversial pharmacological profiles in functional and radioligand binding studies. The purpose of the present study is to determine the native profiles of alpha(1)-adrenoceptor phenotypes and to clarify their relationship. EXPERIMENTAL APPROACH Binding experiments with [3H]-silodosin and [3H]-prazosin were performed using intact tissue segments and crude membrane preparations of rabbit prostate and the results were compared with alpha(1)-adrenoceptor-mediated prostate contraction. KEY RESULTS [3H]-Silodosin at subnanomolar concentrations bound specifically to intact tissue segments of rabbit prostate. However, [3H]-prazosin at the same range of concentrations failed to bind to alpha(1)-adrenoceptors of intact segments. Binding sites of [3H]-silodosin in intact segments were composed of alpha(1L) phenotype with low affinities for prazosin (pKi=7.1), 5-methyurapidil and N-[2-(2-cyclopropylmethoxyphenoxy)ethyl]-5-chloro-alpha,alpha-dimethyl-1H-indole-3-ethamine hydrochloride (RS-17053), and alpha(1A)-like phenotype with moderate affinity for prazosin (pKi=8.8) but high affinity for 5-methyurapidil and RS-17053. In contrast, both radioligands bound to a single population of alpha(1)-adrenoceptors in the membrane preparations at the same density with a subnanomolar affinity, showing a typical profile of 'classical' alpha(1A)-adrenoceptors (pKi for prazosin=9.8). The pharmacological profile of alpha(1)-adrenoceptor-mediated prostate contraction was in accord with the alpha(1L) phenotype observed by intact segment binding approach. CONCLUSIONS AND IMPLICATIONS Three distinct phenotypes (alpha(1L) and alpha(1A)-like phenotypes in the intact segments and a classical alpha(1A) phenotype in the membranes) with different affinities for prazosin were detected in rabbit prostate. It appears that the three phenotypes are phenotypic subtypes of alpha(1A)-adrenoceptors, but are not genetically different subtypes.
Collapse
|
28
|
Gray K, Short J, Ventura S. The alpha1A-adrenoceptor gene is required for the alpha1L-adrenoceptor-mediated response in isolated preparations of the mouse prostate. Br J Pharmacol 2008; 155:103-9. [PMID: 18552869 DOI: 10.1038/bjp.2008.245] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE This study investigated whether deletion of the alpha1A-adrenoceptor gene influences contractile responses of mouse prostate to noradrenaline. Responses of mouse prostate to noradrenaline are known to be mediated by alpha1L-adrenoceptors, which are thought to be a functional phenotype of alpha1A-adrenoceptor. EXPERIMENTAL APPROACH Prostate tissues from alpha1A-adrenoceptor knockout mice which were homozygous (alpha1A -/-) and heterozygous (alpha1A +/-) for the disrupted alpha1A-adrenoceptor gene, as well as wild-type (alpha1A +/+) littermates were mounted in glass-isolated organ baths. Electrical field stimulation of nerves and exogenous application of noradrenaline were used to investigate the effects of alpha1A-adrenoceptor disruption on prostate contractility. KEY RESULTS Frequency-response curves to electrical field stimulation (0.5 ms pulse duration, 60 V, 0.1-20 Hz) yielded frequency-dependent contractions. At frequencies of 10 and 20 Hz, prostates from alpha1A -/- mice elicited an approximately 30% decreased response compared with prostates from alpha(1A)+/+ mice. Prazosin (0.3 muM) attenuated responses to electrical field stimulation in prostates from alpha1A +/+ and alpha1A +/- mice but not from alpha1A -/- mice. Increasing concentrations of exogenously administered noradrenaline (10 nM-1 mM) produced mean concentration-response curves in prostates from alpha1A +/+ and alpha1A +/- mice, which were not different. Maximum responses to noradrenaline were decreased by approximately 80% in prostates from alpha1A -/- mice compared with alpha1A +/+ mice. Prazosin attenuated responses to noradrenaline in all genotypes. CONCLUSIONS AND IMPLICATIONS alpha1L-Adrenoceptor-mediated responses in mouse prostate are abolished in alpha1A -/- mice, demonstrating that the alpha1A-adrenoceptor gene is essential to the manifestation of the prostatic alpha1L-adrenoceptor phenotype. This implies that alpha1L-adrenoceptors are indeed a functional phenotype of alpha1A-adrenoceptor.
Collapse
Affiliation(s)
- Kt Gray
- Prostate Research Co-operative, Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | | | | |
Collapse
|
29
|
Bacart J, Corbel C, Jockers R, Bach S, Couturier C. The BRET technology and its application to screening assays. Biotechnol J 2008; 3:311-24. [DOI: 10.1002/biot.200700222] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
30
|
Identification of the alpha1L-adrenoceptor in rat cerebral cortex and possible relationship between alpha1L- and alpha1A-adrenoceptors. Br J Pharmacol 2008; 153:1485-94. [PMID: 18223667 DOI: 10.1038/sj.bjp.0707679] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE In addition to alpha1A, alpha1B and alpha1D-adrenoceptors (ARs), putative alpha1L-ARs with a low affinity for prazosin have been proposed. The purpose of the present study was to identify the alpha1A-AR and clarify its pharmacological profile using a radioligand binding assay. EXPERIMENTAL APPROACH Binding experiments with [3H]-silodosin and [3H]-prazosin were performed in intact tissue segments and crude membrane preparations of rat cerebral cortex. Intact tissue binding assays were also conducted in rat tail artery. KEY RESULTS [3H]-silodosin at subnanomolar concentrations specifically bound to intact tissue segments and membrane preparations of rat cerebral cortex at the same density (approximately 150 fmol mg(-1) total tissue protein). The binding sites in intact segments consisted of alpha1A and alpha1L-ARs that had different affinities for prazosin, while the binding sites in membranes showed an alpha1A-AR-like profile having single high affinity for prazosin. [3H]-prazosin also bound at subnanomolar concentrations to alpha1A and alpha1B-ARs but not alpha1L-ARs in cerebral cortex; the binding densities being approximately 200 and 290 fmol mg(-1) protein in the segments and the membranes, respectively. In the segments of tail artery, [3H]-silodosin only recognized alpha1A-ARs, whereas [3H]-prazosin bound to alpha1A and alpha1B-ARs. CONCLUSIONS AND IMPLICATIONS The present study clearly reveals the presence of alpha1L-ARs as a pharmacologically distinct entity from alpha1A and alpha1B-ARs in intact tissue segments of rat cerebral cortex but not tail artery. However, the alpha1L-ARs disappeared after tissue homogenization, suggesting their decomposition and/or their pharmacological profile changes to that of alpha1A-ARs.
Collapse
|
31
|
Insel PA, Tang CM, Hahntow I, Michel MC. Impact of GPCRs in clinical medicine: monogenic diseases, genetic variants and drug targets. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1768:994-1005. [PMID: 17081496 PMCID: PMC2169201 DOI: 10.1016/j.bbamem.2006.09.029] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 09/28/2006] [Accepted: 09/29/2006] [Indexed: 12/15/2022]
Abstract
By virtue of their large number, widespread distribution and important roles in cell physiology and biochemistry, G-protein-coupled receptors (GPCR) play multiple important roles in clinical medicine. Here, we focus on 3 areas that subsume much of the recent work in this aspect of GPCR biology: (1) monogenic diseases of GPCR; (2) genetic variants of GPCR; and (3) clinically useful pharmacological agonists and antagonists of GPCR. Diseases involving mutations of GPCR are rare, occurring in <1/1000 people, but disorders in which antibodies are directed against GPCR are more common. Genetic variants, especially single nucleotide polymorphisms (SNPs), show substantial heterogeneity in frequency among different GPCRs but have not been evaluated for some GPCR. Many therapeutic agonists and antagonists target GPCR and show inter-subject variability in terms of efficacy and toxicity. For most of those agents, it remains an open question whether genetic variation in primary sequence of the GPCR is an important contributor to such inter-subject variability, although this is an active area of investigation.
Collapse
Affiliation(s)
- Paul A Insel
- University of California San diego, Department of Pharmacology, La Jolla, CA 92093-0636, USA.
| | | | | | | |
Collapse
|
32
|
Nelson CP, Challiss RAJ. “Phenotypic” pharmacology: The influence of cellular environment on G protein-coupled receptor antagonist and inverse agonist pharmacology. Biochem Pharmacol 2007; 73:737-51. [PMID: 17046719 DOI: 10.1016/j.bcp.2006.09.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 08/31/2006] [Accepted: 09/06/2006] [Indexed: 11/25/2022]
Abstract
A central dogma of G protein-coupled receptor (GPCR) pharmacology has been the concept that unlike agonists, antagonist ligands display equivalent affinities for a given receptor, regardless of the cellular environment in which the affinity is assayed. Indeed, the widespread use of antagonist pharmacology in the classification of receptor expression profiles in vivo has relied upon this 'antagonist assumption'. However, emerging evidence suggests that the same gene-product may exhibit different antagonist pharmacological profiles, depending upon the cellular context in which it is expressed-so-called 'phenotypic' profiles. In this commentary, we review the evidence relating to some specific examples, focusing on adrenergic and muscarinic acetylcholine receptor systems, where GPCR antagonist/inverse agonist pharmacology has been demonstrated to be cell- or tissue-dependent, before going on to examine some of the ways in which the cellular environment might modulate receptor pharmacology. In the majority of cases, the cellular factors responsible for generating phenotypic profiles are unknown, but there is substantial evidence that factors, including post-transcriptional modifications, receptor oligomerization and constitutive receptor activity, can influence GPCR pharmacology and these concepts are discussed in relation to antagonist phenotypic profiles. A better molecular understanding of the impact of cell background on GPCR antagonist pharmacology is likely to provide previously unrealized opportunities to achieve greater specificity in new drug discovery candidates.
Collapse
Affiliation(s)
- Carl P Nelson
- Department of Cell Physiology & Pharmacology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 9HN, UK.
| | | |
Collapse
|
33
|
Hein P, Michel MC. Signal transduction and regulation: are all alpha1-adrenergic receptor subtypes created equal? Biochem Pharmacol 2006; 73:1097-106. [PMID: 17141737 DOI: 10.1016/j.bcp.2006.11.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 10/30/2006] [Accepted: 11/01/2006] [Indexed: 02/06/2023]
Abstract
The current manuscript reviews the evidence whether and how subtypes of alpha(1)-adrenergic receptors, i.e. alpha(1A)-, alpha(1B)- and alpha(1D)-adrenergic receptors, differentially couple to signal transduction pathways and exhibit differential susceptibility to regulation. In both regards studies in tissues or cells natively expressing the subtypes are hampered because the relative expression of the subtypes is poorly controlled and the observed effects may be cell-type specific. An alternative approach, i.e. transfection of multiple subtypes into the same host cell line overcomes this limitation, but it often remains unclear whether results in such artificial systems are representative for the physiological situation. The overall evidence suggests that indeed subtype-intrinsic and cell type-specific factors interact to direct alpha(1)-adrenergic receptor signaling and regulation. This may explain why so many apparently controversial findings have been reported from various tissues and cells. One of the few consistent themes is that alpha(1D)-adrenergic receptors signal less effectively upon agonist stimulation than the other subtypes, most likely because they exhibit spontaneous internalization.
Collapse
Affiliation(s)
- Peter Hein
- Department of Pharmacology, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
34
|
Galés C, Van Durm JJJ, Schaak S, Pontier S, Percherancier Y, Audet M, Paris H, Bouvier M. Probing the activation-promoted structural rearrangements in preassembled receptor-G protein complexes. Nat Struct Mol Biol 2006; 13:778-86. [PMID: 16906158 DOI: 10.1038/nsmb1134] [Citation(s) in RCA: 353] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Accepted: 07/21/2006] [Indexed: 12/12/2022]
Abstract
Activation of heterotrimeric G proteins by their cognate seven transmembrane domain receptors is believed to involve conformational changes propagated from the receptor to the G proteins. However, the nature of these changes remains unknown. We monitored the conformational rearrangements at the interfaces between receptors and G proteins and between G protein subunits by measuring bioluminescence resonance energy transfer between probes inserted at multiple sites in receptor-G protein complexes. Using the data obtained for the alpha(2A)AR-G alpha(i1) beta1gamma2 complex and the available crystal structures of G alpha(i1) beta1gamma2, we propose a model wherein agonist binding induces conformational reorganization of a preexisting receptor-G protein complex, leading the G alpha-G betagamma interface to open but not dissociate. This conformational change may represent the movement required to allow nucleotide exit from the G alpha subunit, thus reflecting the initial activation event.
Collapse
Affiliation(s)
- Céline Galés
- Department of Biochemistry and Groupe de Recherche Universitaire sur le Médicament, Institute for Research in Immunology and Cancer, Université de Montréal, P.O. Box 6128, Downtown station, Montreal, Quebec, Canada H3C 3J7
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Levoye A, Dam J, Ayoub MA, Guillaume JL, Couturier C, Delagrange P, Jockers R. The orphan GPR50 receptor specifically inhibits MT1 melatonin receptor function through heterodimerization. EMBO J 2006; 25:3012-23. [PMID: 16778767 PMCID: PMC1500982 DOI: 10.1038/sj.emboj.7601193] [Citation(s) in RCA: 232] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Accepted: 05/18/2006] [Indexed: 12/21/2022] Open
Abstract
One-third of the approximately 400 nonodorant G protein-coupled receptors (GPCRs) are still orphans. Although a considerable number of these receptors are likely to transduce cellular signals in response to ligands that remain to be identified, they may also have ligand-independent functions. Several members of the GPCR family have been shown to modulate the function of other receptors through heterodimerization. We show that GPR50, an orphan GPCR, heterodimerizes constitutively and specifically with MT(1) and MT(2) melatonin receptors, using biochemical and biophysical approaches in intact cells. Whereas the association between GPR50 and MT(2) did not modify MT(2) function, GPR50 abolished high-affinity agonist binding and G protein coupling to the MT(1) protomer engaged in the heterodimer. Deletion of the large C-terminal tail of GPR50 suppressed the inhibitory effect of GPR50 on MT(1) without affecting heterodimerization, indicating that this domain regulates the interaction of regulatory proteins to MT(1). Pairing orphan GPCRs to potential heterodimerization partners might be of clinical importance and may become a general strategy to better understand the function of orphan GPCRs.
Collapse
MESH Headings
- Arrestins/metabolism
- Cell Line
- Dimerization
- Down-Regulation
- Humans
- Ligands
- Melatonin/metabolism
- Mutation
- Nerve Tissue Proteins/biosynthesis
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/physiology
- Protein Binding
- Receptor, Melatonin, MT1/antagonists & inhibitors
- Receptor, Melatonin, MT1/physiology
- Receptor, Melatonin, MT2/antagonists & inhibitors
- Receptor, Melatonin, MT2/physiology
- Receptors, G-Protein-Coupled/biosynthesis
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/physiology
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/physiology
- Signal Transduction
- beta-Arrestins
Collapse
Affiliation(s)
- Angélique Levoye
- Department of Cell Biology, Institut Cochin, Paris, France
- Inserm U567, Paris, France
- CNRS, UMR 8104, Paris, France
- Université Paris 5, Faculté de Médecine René Descartes, UM 3, Paris, France
| | - Julie Dam
- Department of Cell Biology, Institut Cochin, Paris, France
- Inserm U567, Paris, France
- CNRS, UMR 8104, Paris, France
- Université Paris 5, Faculté de Médecine René Descartes, UM 3, Paris, France
| | - Mohammed A Ayoub
- Department of Cell Biology, Institut Cochin, Paris, France
- Inserm U567, Paris, France
- CNRS, UMR 8104, Paris, France
- Université Paris 5, Faculté de Médecine René Descartes, UM 3, Paris, France
| | - Jean-Luc Guillaume
- Department of Cell Biology, Institut Cochin, Paris, France
- Inserm U567, Paris, France
- CNRS, UMR 8104, Paris, France
- Université Paris 5, Faculté de Médecine René Descartes, UM 3, Paris, France
| | - Cyril Couturier
- Department of Cell Biology, Institut Cochin, Paris, France
- Inserm U567, Paris, France
- CNRS, UMR 8104, Paris, France
- Université Paris 5, Faculté de Médecine René Descartes, UM 3, Paris, France
| | | | - Ralf Jockers
- Department of Cell Biology, Institut Cochin, Paris, France
- Inserm U567, Paris, France
- CNRS, UMR 8104, Paris, France
- Université Paris 5, Faculté de Médecine René Descartes, UM 3, Paris, France
| |
Collapse
|
36
|
Harrison C, van der Graaf PH. Current methods used to investigate G protein coupled receptor oligomerisation. J Pharmacol Toxicol Methods 2006; 54:26-35. [PMID: 16343954 DOI: 10.1016/j.vascn.2005.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Accepted: 11/02/2005] [Indexed: 10/25/2022]
Abstract
Classical models of G protein coupled receptor (GPCR) signalling assume that each receptor functions as a single unit. However, evidence is increasing that GPCRs may form functional assemblies of dimeric or oligomeric units. There are several methods that can be used to give evidence of GPCR oligomerisation that will be discussed in this review. These include co-immunoprecipitation and Western blotting, resonance energy transfer methods and transactivation / complementation of partially functional receptors. One definitive method currently does not exist and there are various advantages and disadvantages to each method depending upon the system considered. Although co-immunoprecipitation and Western blot studies require disruption of the cellular environment and require specific antibodies, they are a good starting point to show that receptor oligomerisation occurs in native systems. Resonance energy transfer techniques provide evidence that receptors are in close proximity, are measured in living cells and some formats may be used for imaging applications. Transactivation / complementation requires extensive modification of the GPCR, but provides evidence that the receptors are in physical contact. Despite great advances being made using these techniques, future challenges involve the development of other methodologies to determine the role of receptor complexes in the pharmacology and physiology of native systems.
Collapse
Affiliation(s)
- Charlotte Harrison
- Discovery Biology, Pfizer Global Research and Development, Ramsgate Road, Sandwich, Kent CT13 9NJ, United Kingdom.
| | | |
Collapse
|
37
|
Goin JC, Nathanson NM. Quantitative Analysis of Muscarinic Acetylcholine Receptor Homo- and Heterodimerization in Live Cells. J Biol Chem 2006; 281:5416-25. [PMID: 16368694 DOI: 10.1074/jbc.m507476200] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although previous pharmacological and biochemical data support the notion that muscarinic acetylcholine receptors (mAChR) form homo- and heterodimers, the existence of mAChR oligomers in live cells is still a matter of controversy. Here we used bioluminescence resonance energy transfer to demonstrate that M(1), M(2), and M(3) mAChR can form constitutive homo- and heterodimers in living HEK 293 cells. Quantitative bioluminescence resonance energy transfer analysis has revealed that the cell receptor population in cells expressing a single subtype of M(1), M(2), or M(3) mAChR is predominantly composed of high affinity homodimers. Saturation curve analysis of cells expressing two receptor subtypes demonstrates the existence of high affinity M(1)/M(2), M(2)/M(3), and M(1)/M(3) mAChR heterodimers, although the relative affinity values were slightly lower than those for mAChR homodimers. Short term agonist treatment did not modify the oligomeric status of homo- and heterodimers. When expressed in JEG-3 cells, the M(2) receptor exhibits much higher susceptibility than the M(3) receptor to agonist-induced down-regulation. Coexpression of M(3) mAChR with increasing amounts of the M(2) subtype in JEG-3 cells resulted in an increased agonist-induced down-regulation of M(3), suggesting a novel role of heterodimerization in the mechanism of mAChR long term regulation.
Collapse
Affiliation(s)
- Juan C Goin
- Centro de Estudios Farmacológicos y Botánicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires 1414, Argentina
| | | |
Collapse
|
38
|
Sasaki M, Miyosawa K, Ohkubo S, Nakahata N. Physiological Significance of Thromboxane A2 Receptor Dimerization. J Pharmacol Sci 2006; 100:263-70. [PMID: 16565578 DOI: 10.1254/jphs.fp0050839] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The thromboxane A(2) receptor (TP), one of the G protein-coupled receptors (GPCRs), consists of two splicing variants, TPalpha and TPbeta, which differ in their C-terminal regions. In the present study, we investigated whether TPalpha and TPbeta formed homo- or hetero-dimers and whether the dimerization changed the function of TP. The immunofluorescent analysis using human embryonic kidney (HEK) 293 cells expressing either FLAG-tagged TPalpha or TPbeta showed that TPalpha is mainly distributed on plasma membranes and TPbeta existed on plasma membranes and within the cells. Co-immunoprecipitation analysis using HEK293 cells expressing both TPalpha and TPbeta showed that TPalpha and TPbeta formed homo- and hetero-dimers. U46619, a TP agonist, caused phosphoinositide hydrolysis and elevation of [Ca(2+)](i) in a concentration-dependent manner in Chinese hamster ovary (CHO) cells expressing TPalpha or TPbeta. The responses were observed to a greater extent in the cells expressing TPalpha than TPbeta. In the cells expressing both TPalpha and TPbeta, U46619-induced responses were observed to a lesser extent than in the cells expressing TPalpha alone. Furthermore, [(3)H]SQ29548 binding showed that the level of the cell surface expression of TP was the following order: the cells expressing TPalpha > TPalpha and TPbeta > TPbeta. These results indicate that TPalpha and TPbeta formed homo- and hetero-dimers, and TP-mediated signaling may be regulated by the hetero-dimer.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- Alternative Splicing
- Animals
- Bridged Bicyclo Compounds, Heterocyclic
- CHO Cells
- Cell Membrane/metabolism
- Cricetinae
- Cricetulus
- Dimerization
- Dose-Response Relationship, Drug
- Fatty Acids, Unsaturated
- Green Fluorescent Proteins
- Humans
- Hydrazines/metabolism
- Microscopy, Confocal
- Oligopeptides
- Peptides
- Protein Isoforms/drug effects
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Receptors, Thromboxane A2, Prostaglandin H2/drug effects
- Receptors, Thromboxane A2, Prostaglandin H2/genetics
- Receptors, Thromboxane A2, Prostaglandin H2/metabolism
- Recombinant Fusion Proteins
- Signal Transduction
- Transfection
Collapse
Affiliation(s)
- Masako Sasaki
- Department of Cellular Signaling, Graduate School of Pharmaceutical Sciences, Tohoku University, Japan
| | | | | | | |
Collapse
|
39
|
Abstract
Alpha1-Adrenergic receptors (AR) play an important role in the regulation of physiological responses mediated by norepinephrine and epinephrine, particularly in the cardiovascular system. The three cloned alpha1-AR subtypes (alpha1A, alpha1B, and alpha1D) are G protein-coupled receptors that signal through the Gq/11 signaling pathway, each showing distinct pharmacological properties and tissue distributions. However, due to the lack of highly subtype-selective drugs, the functional roles of individual subtypes are still not clear. Development of new subtype-specific drugs will greatly facilitate the identification of the functions of each subtype. Conopeptide rho-TIA has been found to be a new alpha1B-AR selective antagonist with different modes of inhibition at alpha1-AR subtypes. In addition, recent studies using genetically engineered mice have shed some light on alpha1-AR functions in vivo, especially in the cardiovascular system and brain. Several proteins have been shown to interact directly with particular alpha1-AR, and may be important in regulating receptor function. Receptor heterodimerization has been shown to be important for cell surface expression, signaling and internalization. These new observations are likely to help elucidate the functional roles of individual alpha1-AR subtypes.
Collapse
Affiliation(s)
- Zhong-jian Chen
- Department of Pharmacology, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
40
|
|
41
|
Abstract
A wide range of approaches has been applied to examine the quaternary structure of G protein-coupled receptors, the basis of such protein-protein interactions and how such interactions might modulate the pharmacology and function of these receptors. These include co-immunoprecipitation, various adaptations of resonance energy transfer techniques, functional complementation studies and the analysis of ligand-binding data. Each of the available techniques has limitations that restrict interpretation of the data. However, taken together, they provide a coherent body of evidence indicating that many, if not all, G protein-coupled receptors exist and function as dimer/oligomers. Herein we assess the widely applied techniques and discuss the relative benefits and limitations of these approaches.
Collapse
Affiliation(s)
- Graeme Milligan
- Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, UK
| | | |
Collapse
|
42
|
Wilson S, Wilkinson G, Milligan G. The CXCR1 and CXCR2 Receptors Form Constitutive Homo- and Heterodimers Selectively and with Equal Apparent Affinities. J Biol Chem 2005; 280:28663-74. [PMID: 15946947 DOI: 10.1074/jbc.m413475200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Both homo- and heterodimeric interactions between the CXCR1 and CXCR2 chemokine receptors were observed following co-expression of forms of these receptors in HEK293 cells using assays, including co-immunoprecipitation, single cell imaging of fluorescence resonance energy transfer, cell surface time-resolved fluorescence resonance energy transfer, and bioluminescence resonance energy transfer. These interactions were constitutive and unaffected by the presence of the agonist interleukin 8 and selective as no significant interactions were noted between either the CXCR1 or CXCR2 receptor and the alpha(1A)-adrenoreceptor. Saturation bioluminescence resonance energy transfer indicated that heteromeric interactions between CXCR1 and CXCR2 were of similar affinity as the corresponding homomeric interactions. A novel endoplasmic reticulum trapping strategy demonstrated that these interactions were initiated during protein synthesis and maturation and prior to cell surface delivery. These studies indicated that CXCR1-CXCR2 heterodimers are as likely to form in cells co-expressing these two chemokine receptors as the corresponding homodimers and stand in contrast to previous studies indicating an inability of the CXCR1 receptor to homodimerize or to interact with the CXCR2 receptor (Trettel, F., Di Bartolomeo, S., Lauro, C., Catalano, M., Ciotti, M. T., and Limatola, C. (2003) J. Biol. Chem. 278, 40980-40988).
Collapse
Affiliation(s)
- Shirley Wilson
- Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | | | | |
Collapse
|
43
|
Hemmilä I, Laitala V. Progress in Lanthanides as Luminescent Probes. J Fluoresc 2005; 15:529-42. [PMID: 16167211 DOI: 10.1007/s10895-005-2826-6] [Citation(s) in RCA: 333] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Accepted: 03/01/2005] [Indexed: 12/20/2022]
Abstract
Lanthanides have recently found applications in different fields of biomolecular and medical research. Luminescent lanthanide chelates have created interest mainly due to their unique luminescent properties, such as their long Stokes' shift and exceptional decay times allowing efficient temporal discrimination of background interferences in the assays, such as immunoassays. Recently, new organometallic complexes have been developed giving opportunities to novel applications, in heterogeneous and homogeneous immunoassays, DNA hybridization assays, high-throughput screening as well as in imaging. In addition, encapsulating the chelates into suitable matrix in beads enables the use of new members of lanthanides extending the emission wavelength to micrometer range and decays from a few microseconds to milliseconds. As the luminescence is derived from complicated intra-chelate energy transfer, it also gives novel opportunities to exploit these levels in different types of energy transfer based applications. This review gives a short overview of recent development of lanthanide chelate-labels and discusses in more details of energy levels and their exploitation in new assay formats.
Collapse
Affiliation(s)
- I Hemmilä
- Perkin Elmer Life and Analytical Sciences, Wallac Oy, P.O. Box 10, FIN-20101, Turku, Finland.
| | | |
Collapse
|
44
|
Milligan G, Pediani J, Fidock M, López-Giménez JF. Dimerization of alpha1-adrenoceptors. Biochem Soc Trans 2005; 32:847-50. [PMID: 15494031 DOI: 10.1042/bst0320847] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Three distinct genes encode alpha(1)-adrenoceptors. Although homodimers of each subtype have been reported, certain but not all combinations of heterodimers of the alpha(1)-adrenoceptors appear to form. Key studies in this field are reviewed and the approaches that have been applied to monitoring the selectivity and the basis of alpha(1)-adrenoceptor dimerization are discussed.
Collapse
Affiliation(s)
- G Milligan
- Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
| | | | | | | |
Collapse
|
45
|
Carrillo JJ, López-Giménez JF, Milligan G. Multiple Interactions between Transmembrane Helices Generate the Oligomeric α1b-Adrenoceptor. Mol Pharmacol 2004; 66:1123-37. [PMID: 15304550 DOI: 10.1124/mol.104.001586] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Combinations of coimmunoprecipitation, single-cell fluorescence resonance energy transfer, and cell-surface time-resolved fluorescence resonance energy transfer demonstrated protein-protein interactions and quaternary structure for the alpha(1b)-adrenoceptor. Self-association of transmembrane domain 1 and its interaction with the full-length receptor indicated a symmetrical interface provided by this domain. Lack of effect of mutation of the glycophorin-A dimerization-like region within this helix demonstrated that this did not provide the molecular mechanism. Multiple interactions were observed between the alpha(1b)-adrenoceptor and fragments derived from its sequence. Fragments comprising transmembrane domains 3 and 4 and transmembrane domains 5 and 6, but not transmembrane domain 7, were also able to interact with the full-length receptor. Transmembrane domain 7 failed to interact significantly with any element of the receptor and was not transported to the cell surface after coexpression with the full-length receptor. Symmetrical interactions were also noted between fragments incorporating transmembrane domain 4, but this segment of the receptor failed to interact with transmembrane domains 1 and 2 or transmembrane domains 5 and 6. Time-resolved fluorescence resonance energy transfer studies were also consistent with contributions of transmembrane domains 1 and/or 2 and transmembrane domains 3 and/or 4 to protein-protein interactions within the quaternary structure of the alpha(1b)-adrenoceptor, and with a contribution of transmembrane domains 5 and/or 6. These data are consistent with a complex oligomeric quaternary structure of the alpha(1b)-adrenoceptor in which major, symmetrical interactions may define intradimeric contacts with other contributions, providing interdimer contacts to generate oligomeric complexes akin to those observed for murine rhodopsin. A model derived from this was developed.
Collapse
Affiliation(s)
- Juan J Carrillo
- Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | | | | |
Collapse
|