1
|
Mohanty SK, Mohanty AK, Kumar MS, Suchiang K. Triiodothyronine enhances various forms of kidney-specific Klotho protein and suppresses the Wnt/β-catenin pathway: Insights from in-vitro, in-vivo and in-silico investigations. Cell Signal 2024; 120:111214. [PMID: 38729322 DOI: 10.1016/j.cellsig.2024.111214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/21/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Age-related diseases are intricately linked to the molecular processes underlying aging, with the decline of the antiaging protein Klotho being a key factor. Investigating these processes is crucial for developing therapeutic strategies. The age-associated reduction in Klotho expression, coupled with a decline in the endocrine hormone triiodothyronine (T3), prompted a detailed exploration of their potential interplay. Our research, conducted through both in-vitro and in-vivo studies on BALB/c mice, unveiled a significant capacity of T3 to upregulate various forms of Klotho via ATF-3/p-c-Jun transcription factor. This effect was particularly noteworthy in aged individuals, where Klotho expression had waned compared to their younger counterparts. Importantly, T3 demonstrated a promising therapeutic impact in rejuvenating Klotho expression in this context. Further investigations elucidated the molecular mechanisms underlying T3's impact on aging-related pathways. In-vitro and in-vivo experiments established T3's ability to downregulate the Wnt/β-Catenin pathway by enhancing Klotho expression. In-silico analyses provided insights into Klotho's intricate role, showing its capacity to inhibit Wnt ligands such as Wnt3 and Wnt8a, consequently disrupting their interaction with the Wnt receptor. Additionally, T3 was found to downregulate kidney-specific GSK-3β expression through the augmentation of Klotho expression. The study also highlighted T3's role in maintaining calcium and phosphate homeostasis via Klotho. This comprehensive investigation not only sheds light on the intricate mechanisms governing aging processes but also presents promising avenues for therapeutic interventions targeting the Wnt/β-Catenin pathway implicated in various age-associated diseases.
Collapse
Affiliation(s)
- Saswat Kumar Mohanty
- Department of Biochemistry and Molecular Biology, Pondicherry University, Pondicherry 605 014, India.
| | | | | | - Kitlangki Suchiang
- Department of Biochemistry, North Eastern Hill University, Shillong, Meghalaya 793022, India.
| |
Collapse
|
2
|
The Anti-Aging Hormone Klotho Promotes Retinal Pigment Epithelium Cell Viability and Metabolism by Activating the AMPK/PGC-1α Pathway. Antioxidants (Basel) 2023; 12:antiox12020385. [PMID: 36829944 PMCID: PMC9952846 DOI: 10.3390/antiox12020385] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
Initially discovered by Makuto Kuro-o in 1997, Klotho is a putative aging-suppressor gene when overexpressed and accelerates aging when deleted in mice. Previously, we showed that α-Klotho regulates retinal pigment epithelium (RPE) functions and protects against oxidative stress. However, the mechanisms by which Klotho influences RPE and retinal homeostasis remain elusive. Here, by performing a series of in vitro and in vivo experiments, we demonstrate that Klotho regulates cell viability under oxidative stress, mitochondrial gene expression and activity by inducing the phosphorylation of AMPK and p38MAPK, which in turn phosphorylate and activate CREB and ATF2, respectively, triggering PGC-1α transcription. The inhibition of Klotho in human RPE cells using CRISPR-Cas9 gene editing confirmed that a lack of Klotho negatively affects RPE functions, including mitochondrial activity and cell viability. Proteomic analyses showed that myelin sheath and mitochondrial-related proteins are downregulated in the RPE/retina of Kl-/- compared to WT mice, further supporting our biochemical observations. We conclude that Klotho acts upstream of the AMPK/PGC-1α pathway and regulates RPE/retinal resistance to oxidative stress, mitochondrial function, and gene and protein expressions. Thus, KL decline during aging could negatively impact retinal health, inducing age-related retinal degeneration.
Collapse
|
3
|
Amitani H, Chiba S, Amitani M, Michihara S, Takemoto R, Han L, Fujita N, Takahashi R, Inui A. Impact of Ninjin’yoeito on frailty and short life in klotho-hypomorphic (kl/kl) mice. Front Pharmacol 2022; 13:973897. [DOI: 10.3389/fphar.2022.973897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
With the recent aging of society, the prevention of frailty has become an important issue because people desire both a long and healthy lifespan. Klotho-hypomorphic (kl/kl) mice are known to show phenotypes of premature aging. Ninjin’yoeito (NYT) is a traditional Japanese Kampo medicine used to treat patients with vulnerable constitution, fatigue or physical exhaustion caused by aging and illness. Recent studies have reported the potential efficacy of NYT against frailty. We therefore evaluated the effect of NYT on the gait function, activity, the histopathological status of organs and survival using kl/kl mice as a model of aging-related frailty. Two sets of 28-day-old male kl/kl mice were assigned to the vehicle (non-treated; NT), 3% or 5% NYT dietary groups. One set of groups (NT, n = 18; 3% NYT, n = 11; 5% NYT, n = 11) was subjected to the analysis of free walking, rotarod, and spontaneous activity tests at approximately 58 days old. Thereafter, we measured triceps surae muscles weight and myofiber cross-sectional area (CSA), and quantified its telomere content. In addition, we evaluated bone strength and performed histopathological examinations of organs. Survival was measured in the second set of groups (NT, 3% NYT and 5% NYT group, n = 8 each). In the walking test, several indicators such as gait velocity were improved in the NYT 3% group. Similar results were obtained for the latency to fall in the rotarod test and spontaneous motor activity. Triceps muscle mass, CSA and its telomere content were significantly improved in the NYT 3% group. Bone density, pulmonary alveolus destruction and testicular atrophy were also significantly improved in the NYT 3% group. Survival rate and body weight were both significantly improved in the NYT3% group compared with those in the NT group. Continuous administration of NYT from the early stage of aging improved not only gait performance, but also the survival in the aging-related frailty model. This effect may be associated with the improvements in aging-related organ changes such as muscle atrophy. Intervention with NYT against the progression of frailty may contribute to a longer, healthier life span among the elderly individuals.
Collapse
|
4
|
Yokoyama A, Hasegawa T, Hiraga T, Yamada T, Hongo H, Yamamoto T, Abe M, Yoshida T, Imanishi Y, Kuroshima S, Sasaki M, de Fraitas PHL, Li M, Amizuka N, Yamazaki Y. Altered immunolocalization of FGF23 in murine femora metastasized with human breast carcinoma MDA-MB-231 cells. J Bone Miner Metab 2021; 39:810-823. [PMID: 33834310 DOI: 10.1007/s00774-021-01220-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 02/28/2021] [Indexed: 11/27/2022]
Abstract
INTRODUCTION After the onset of bone metastasis, tumor cells appear to modify surrounding microenvironments for their benefit, and particularly, the levels of circulating fibroblast growth factor (FGF) 23 in patients with tumors have been highlighted. MATERIALS AND METHODS We have attempted to verify if human breast carcinoma MDA-MB-231 cells metastasized in the long bone of nu/nu mice would synthesize FGF23. Serum concentrations of calcium, phosphate (Pi) and FGF23 were measured in control nu/nu mice, bone-metastasized mice, and mice with mammary gland injected with MDA-MB-231 cells mimicking primary mammary tumors. RESULTS AND CONCLUSIONS MDA-MB-231 cells revealed intense FGF23 reactivity in metastasized lesions, whereas MDA-MB-231 cells cultured in vitro or when injected into the mammary glands (without bone metastasis) showed weak FGF23 immunoreactivity. Although the bone-metastasized MDA-MB-231 cells abundantly synthesized FGF23, osteocytes adjacent to the FGF23-immunopositive tumors, unlike intact osteocytes, showed no FGF23. Despite significantly elevated serum FGF23 levels in bone-metastasized mice, there was no significant decrease in the serum Pi concentration when compared with the intact mice and mice with a mass of MDA-MB-231 cells in mammary glands. The metastasized femora showed increased expression and FGFR1 immunoreactivity in fibroblastic stromal cells, whereas femora of control mice showed no obvious FGFR1 immunoreactivity. Taken together, it seems likely that MDA-MB-231 cells synthesize FGF23 when metastasized to a bone, and thus affect FGFR1-positive stromal cells in the metastasized tumor nest in a paracrine manner.
Collapse
Affiliation(s)
- Ayako Yokoyama
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Kita-13, Nishi-7, Kita-Ku, Sapporo, Japan
- Gerodontology, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Tomoka Hasegawa
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Kita-13, Nishi-7, Kita-Ku, Sapporo, Japan.
| | - Toru Hiraga
- Department of Oral Anatomy, Matsumoto Dental University, Shiojiri, Japan
| | - Tamaki Yamada
- Oral and Maxillofacial Surgery, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Hiromi Hongo
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Kita-13, Nishi-7, Kita-Ku, Sapporo, Japan
| | - Tomomaya Yamamoto
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Kita-13, Nishi-7, Kita-Ku, Sapporo, Japan
- Northern Army Medical Unit, Camp Makomanai, Japan Ground Self-Defense Forces,, Sapporo, Japan
| | - Miki Abe
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Kita-13, Nishi-7, Kita-Ku, Sapporo, Japan
| | - Taiji Yoshida
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Kita-13, Nishi-7, Kita-Ku, Sapporo, Japan
| | - Yasuo Imanishi
- Department of Nephrology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Shinichiro Kuroshima
- Department of Applied Prosthodontics, Unit of Translational Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Muneteru Sasaki
- Department of Applied Prosthodontics, Unit of Translational Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | | | - Minqi Li
- Division of Basic Science of Stomatology, The School of Stomatology, Shandong University, Jinan, China
| | - Norio Amizuka
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Kita-13, Nishi-7, Kita-Ku, Sapporo, Japan
| | - Yutaka Yamazaki
- Gerodontology, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
5
|
Thongprayoon C, Neyra JA, Hansrivijit P, Medaura J, Leeaphorn N, Davis PW, Kaewput W, Bathini T, Salim SA, Chewcharat A, Aeddula NR, Vallabhajosyula S, Mao MA, Cheungpasitporn W. Serum Klotho in Living Kidney Donors and Kidney Transplant Recipients: A Meta-Analysis. J Clin Med 2020; 9:jcm9061834. [PMID: 32545510 PMCID: PMC7355868 DOI: 10.3390/jcm9061834] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023] Open
Abstract
α-Klotho is a known anti-aging protein that exerts diverse physiological effects, including phosphate homeostasis. Klotho expression occurs predominantly in the kidney and is significantly decreased in patients with chronic kidney disease. However, changes in serum klotho levels and impacts of klotho on outcomes among kidney transplant (KTx) recipients and kidney donors remain unclear. A literature search was conducted using MEDLINE, EMBASE, and Cochrane Database from inception through October 2019 to identify studies evaluating serum klotho levels and impacts of klotho on outcomes among KTx recipients and kidney donors. Study results were pooled and analyzed utilizing a random-effects model. Ten cohort studies with a total of 431 KTx recipients and 5 cohort studies with a total of 108 living kidney donors and were identified. After KTx, recipients had a significant increase in serum klotho levels (at 4 to 13 months post-KTx) with a mean difference (MD) of 243.11 pg/mL (three studies; 95% CI 67.41 to 418.81 pg/mL). Although KTx recipients had a lower serum klotho level with a MD of = -234.50 pg/mL (five studies; 95% CI -444.84 to -24.16 pg/mL) compared to healthy unmatched volunteers, one study demonstrated comparable klotho levels between KTx recipients and eGFR-matched controls. Among kidney donors, there was a significant decrease in serum klotho levels post-nephrectomy (day 3 to day 5) with a mean difference (MD) of -232.24 pg/mL (three studies; 95% CI -299.41 to -165.07 pg/mL). At one year following kidney donation, serum klotho levels remained lower than baseline before nephrectomy with a MD of = -110.80 pg/mL (two studies; 95% CI 166.35 to 55.24 pg/mL). Compared to healthy volunteers, living kidney donors had lower serum klotho levels with a MD of = -92.41 pg/mL (two studies; 95% CI -180.53 to -4.29 pg/mL). There is a significant reduction in serum klotho levels after living kidney donation and an increase in serum klotho levels after KTx. Future prospective studies are needed to assess the impact of changes in klotho on clinical outcomes in KTx recipients and living kidney donors.
Collapse
Affiliation(s)
- Charat Thongprayoon
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA;
- Correspondence: (C.T.); (W.C.)
| | - Javier A. Neyra
- Division of Nephrology, Bone and Mineral Metabolism, Department of Internal Medicine, University of Kentucky, Lexington, KY 40506, USA;
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Dallas, TX 75390, USA
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Panupong Hansrivijit
- Department of Internal Medicine, University of Pittsburgh Medical Center Pinnacle, Harrisburg, PA 17105, USA;
| | - Juan Medaura
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA; (J.M.); (P.W.D.); (S.A.S.)
| | - Napat Leeaphorn
- Renal Transplant Program, University of Missouri-Kansas City School of Medicine/Saint Luke’s Health System, Kansas City, MO 64110, USA;
| | - Paul W. Davis
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA; (J.M.); (P.W.D.); (S.A.S.)
| | - Wisit Kaewput
- Department of Military and Community Medicine, Phramongkutklao College of Medicine, Bangkok 10400, Thailand;
| | - Tarun Bathini
- Department of Internal Medicine, University of Arizona, Tucson, AZ 85721, USA;
| | - Sohail Abdul Salim
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA; (J.M.); (P.W.D.); (S.A.S.)
| | - Api Chewcharat
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA;
| | - Narothama Reddy Aeddula
- Division of Nephrology, Department of Medicine, Deaconess Health System, Evansville, IN 47710, USA;
| | | | - Michael A. Mao
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Wisit Cheungpasitporn
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA; (J.M.); (P.W.D.); (S.A.S.)
- Correspondence: (C.T.); (W.C.)
| |
Collapse
|
6
|
Basic Research in Diabetic Nephropathy Health Care: A study of the Renoprotective Mechanism of Metformin. J Med Syst 2019; 43:266. [DOI: 10.1007/s10916-019-1412-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023]
|
7
|
Zeng N, Zhou Y, Zhang S, Singh Y, Shi B, Salker MS, Lang F. 1α,25(OH) 2D3 Sensitive Cytosolic pH Regulation and Glycolytic Flux in Human Endometrial Ishikawa Cells. Cell Physiol Biochem 2017; 41:678-688. [PMID: 28222424 DOI: 10.1159/000458427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/15/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND/AIMS Tumor cell proliferation is modified by 1,25-Dihydroxy-Vitamin D3 (1,25(OH)2D3), a steroid hormone predominantly known for its role in calcium and phosphorus metabolism. Key properties of tumor cells include enhanced glycolytic flux with excessive consumption of glucose and formation of lactate. As glycolysis is highly sensitive to cytosolic pH, maintenance of glycolysis requires export of H+ ions and lactate, which is in part accomplished by Na+/H+ exchangers, such as NHE1 and monocarboxylate transporters, such as MCT4. An effect of 1,25(OH)2D3 on those transport processes has, however, never been reported. As cytosolic pH impacts on apoptosis, the study further explored the effect of 1,25(OH)2D3 on apoptosis and on the apoptosis regulating kinase AKT, transcription factor Forkhead box O-3 (FOXO3A) and B-cell lymphoma protein BCL-2. METHODS In human endometrial adenocarcinoma (Ishikawa) cells, cytosolic pH (pHi) was determined utilizing (2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein [BCECF] fluorescence, Na+/H+ exchanger activity from Na+ dependent realkalinization after an ammonium pulse, NHE1 and MCT4 transcript levels using qRT-PCR, NHE1, MCT4, total & phospho AKT, total & phospho-FOXO3A and BCL-2 protein abundance by Western blotting, lactate concentration in the supernatant utilizing a colorimetric enzyme assay and cell death quantification using CytoTox 96®, Annexin V and Propidium Iodide staining. RESULTS A 24 hours treatment with 1,25(OH)2D3 (100 nM) significantly increased cytosolic pH (pHi), significantly decreased Na+/H+ exchanger activity, NHE1 and MCT4 transcript levels as well as protein abundance and significantly increased lactate concentration in the supernatant. Treatment of Ishikawa cells with 1,25(OH)2D3 (100 nM) further triggered apoptosis, an effect paralleled by decreased phosphorylation of AKT and FOXO3A as well as decreased abundance of BCL-2. CONCLUSIONS In Ishikawa cells 1,25(OH)2D3 is a powerful stimulator of glycolysis, an effect presumably due to cytosolic alkalinization. Despite stimulation of glycolysis, 1,25(OH)2D3 stimulates slightly but significantly suicidal cell death, an effect presumably in part due to decreased activation of AKT with decreased inhibition of pro-apoptotic transcription factor FOXO3A and downregulation of the anti-apoptotic protein BCL-2.
Collapse
|
8
|
Hikone K, Hasegawa T, Tsuchiya E, Hongo H, Sasaki M, Yamamoto T, Kudo A, Oda K, Haraguchi M, de Freitas PHL, Li M, Iida J, Amizuka N. Histochemical Examination on Periodontal Tissues of Klotho-Deficient Mice Fed With Phosphate-Insufficient Diet. J Histochem Cytochem 2017; 65:207-221. [PMID: 28122194 DOI: 10.1369/0022155416689670] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
To elucidate which of elevated serum concentration of inorganic phosphate (Pi) or disrupted signaling linked to αklotho/fibroblast growth factor 23 (FGF23) is a predominant regulator for senescence-related degeneration seen in αKlotho-deficient mice, we have examined histological alteration of the periodontal tissues in the mandibular interalveolar septum of αKlotho-deficient mice fed with Pi-insufficient diet. We prepared six groups of mice: wild-type, kl/kl, and αKlotho-/- mice with normal diet or low-Pi diet. As a consequence, kl/klnorPi and αKlotho-/-norPi mice showed the same abnormalities in periodontal tissues: intensely stained areas with hematoxylin in the interalveolar septum, dispersed localization of alkaline phosphatase-positive osteoblasts and tartrate-resistant acid phosphatase-reactive osteoclasts, and accumulation of dentin matrix protein 1 in the osteocytic lacunae. Although kl/kllowPi mice improved these histological abnormalities, αKlotho-/- lowPi mice failed to normalize those. Gene expression of αKlotho was shown to be increased in kl/kl lowPi specimens. It seems likely that histological abnormalities of kl/kl mice have been improved by the rescued expression of αKlotho, rather than low concentration of serum Pi. Thus, the histological malformation in periodontal tissues in αKlotho-deficient mice appears to be due to not only increased concentration of Pi but also disrupted αklotho/FGF23 signaling.
Collapse
Affiliation(s)
- Kumiko Hikone
- Department of Developmental Biology of Hard Tissue (KH, TH, ET, HH, TY, AK, MH, NA), Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan.,Department of Orthodontics (KH, JI), Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Tomoka Hasegawa
- Department of Developmental Biology of Hard Tissue (KH, TH, ET, HH, TY, AK, MH, NA), Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Erika Tsuchiya
- Department of Developmental Biology of Hard Tissue (KH, TH, ET, HH, TY, AK, MH, NA), Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Hiromi Hongo
- Department of Developmental Biology of Hard Tissue (KH, TH, ET, HH, TY, AK, MH, NA), Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Muneteru Sasaki
- Department of Applied Prosthodontics, Unit of Translational Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan (MS)
| | - Tomomaya Yamamoto
- Department of Developmental Biology of Hard Tissue (KH, TH, ET, HH, TY, AK, MH, NA), Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Ai Kudo
- Department of Developmental Biology of Hard Tissue (KH, TH, ET, HH, TY, AK, MH, NA), Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Kimimitsu Oda
- Division of Biochemistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan (KO)
| | - Mai Haraguchi
- Department of Developmental Biology of Hard Tissue (KH, TH, ET, HH, TY, AK, MH, NA), Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | | | - Minqi Li
- Shandong Provincial Key Laboratory of Oral Biomedicine, School of Stomatology, Shandong University, Jinan, China (ML)
| | - Junichiro Iida
- Department of Orthodontics (KH, JI), Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Norio Amizuka
- Department of Developmental Biology of Hard Tissue (KH, TH, ET, HH, TY, AK, MH, NA), Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
9
|
Rurali E, Bassetti B, Perrucci GL, Zanobini M, Malafronte C, Achilli F, Gambini E. BM ageing: Implication for cell therapy with EPCs. Mech Ageing Dev 2016; 159:4-13. [PMID: 27045606 DOI: 10.1016/j.mad.2016.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/22/2016] [Accepted: 04/01/2016] [Indexed: 12/17/2022]
Abstract
The bone marrow (BM) is a well-recognized source of stem/progenitor cells for cell therapy in cardiovascular diseases (CVDs). Preclinical and clinical studies suggest that endothelial progenitor cells (EPCs) contribute to reparative process of vascular endothelium and participate in angiogenesis. As for all organs and cells across the lifespan, BM and EPCs are negatively impacted by ageing due to microenvironment modifications and EPC progressive dysfunctions. The encouraging results in terms of neovascularization observed in young animals after EPC administration were mitigated in aged patients treated for ischemic CVDs. The limited efficacy of EPC-based therapy in clinical setting might be ascribed at least partly to ageing. In this review, we comprehensively discussed the age-related changes of BM and EPCs and their implication for cardiovascular cell-therapies. Finally, we examined alternative approaches under investigation to enhance EPC potency.
Collapse
Affiliation(s)
- Erica Rurali
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Beatrice Bassetti
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Gianluca Lorenzo Perrucci
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino, IRCCS, Milan, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Marco Zanobini
- Department of Cardiovascular Surgery, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | | | - Felice Achilli
- Cardiology Department, Azienda Ospedaliera San Gerardo, Monza, Italy
| | - Elisa Gambini
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino, IRCCS, Milan, Italy.
| |
Collapse
|
10
|
Sopjani M, Dërmaku-Sopjani M. Klotho-Dependent Cellular Transport Regulation. VITAMINS AND HORMONES 2016; 101:59-84. [PMID: 27125738 DOI: 10.1016/bs.vh.2016.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Klotho is a transmembrane protein that in humans is encoded by the hKL gene. This protein is known to have aging suppressor effects and is predominantly expressed in the distal convoluted tubule of the kidney, parathyroid glands, and choroid plexus of the brain. The Klotho protein exists in both full-length membrane form and a soluble secreted form, which exerts numerous distinct functions. The extracellular domain of Klotho can be enzymatically cleaved off and released into the systemic circulation where it functions as β-glucuronidase and a hormone. Soluble Klotho is a multifunction protein present in the biological fluids including blood, urine, and cerebrospinal fluid of mammals. Klotho deficiency leads to multiple organ failure accompanied by early appearance of multiple age-related disorders and early death, whereas overexpression of Klotho results in the opposite effects. Klotho, an enzyme and hormone, has been reported to participate in the regulation of cellular transport processes across the plasma membrane either indirectly through inhibiting calcitriol (1,25(OH)2D3) formation or other mechanism, or by directly affecting transporter proteins, including ion channels, cellular carriers, and Na(+)/K(+)-ATPase. Accordingly, Klotho protein serves as a powerful regulator of cellular transport across the plasma membrane. Importantly, Klotho-dependent cellular transport regulation implies stimulatory or inhibitory effects. Klotho has been shown to play a key role in the regulation of multiple calcium and potassium ion channels, and various cellular carriers including the Na(+)-coupled cotransporters such as NaPi-IIa, NaPi-IIb, EAAT3, and EAAT4, CreaT1 as well as Na(+)/K(+)-ATPase. These regulations are parts of the antiaging function of Klotho, which will be discussing throughout this chapter. Clearly, further experimental efforts are required to investigate the effect of Klotho on other transport proteins and underlying molecular mechanisms by which Klotho exerts its effect.
Collapse
Affiliation(s)
- M Sopjani
- University of Prishtina, Prishtinë, Republic of Kosova.
| | | |
Collapse
|
11
|
Brown RB, Haq A, Stanford CF, Razzaque MS. Vitamin D, phosphate, and vasculotoxicity. Can J Physiol Pharmacol 2015; 93:1077-82. [DOI: 10.1139/cjpp-2015-0083] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Vascular calcification is a complex process that results in the ectopic deposition of calcium-phosphate hydroxyapatite. Medial and intimal vascular calcification is frequently present in patients with diabetes mellitus and chronic kidney disease (CKD), and markedly increases the morbidity and mortality of these patients. Increased serum levels of calcium and phosphate, along with the use of active vitamin D metabolites, are commonly implicated in the evolvement of vascular wall mineralization in CKD patients. Because CKD patients have lower serum levels of vitamin D, they are routinely prescribed vitamin D supplements that exert a dualistic role that is both healthful and harmful in these patients, perhaps protecting bone health, but at the expense of promoting vascular pathology. This review briefly explains how reducing the phosphate burden in CKD patients could minimize vitamin-D-associated vascular wall calcification.
Collapse
Affiliation(s)
- Ronald B. Brown
- College of Human Ecology, Kansas State University, Manhattan, KS 66506, USA
| | - Afrozul Haq
- Division of Research & Development, VPS Healthcare, Abu Dhabi, UAE
| | | | - Mohammed S. Razzaque
- Division of Research & Development, VPS Healthcare, Abu Dhabi, UAE
- Department of Applied Oral Sciences, Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
| |
Collapse
|
12
|
Razzaque MS. Bone-kidney axis in systemic phosphate turnover. Arch Biochem Biophys 2014; 561:154-8. [PMID: 24997362 DOI: 10.1016/j.abb.2014.06.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/18/2014] [Accepted: 06/24/2014] [Indexed: 12/20/2022]
Abstract
An adequate phosphate balance is essential for the maintenance of skeletal growth, development and function. It is also crucial in basic cellular functions, ranging from cell signaling to energy metabolism. Bone-derived fibroblast growth factor 23 (FGF23), through activating FGF receptor system, plays an important role in the systemic regulation of phosphate metabolism. Under physiological conditions, FGF23 exerts serum phosphate-lowering effects by inducing urinary phosphate excretion. Increased FGF23 activities are associated with hypophosphatemic diseases (i.e., rickets/osteomalacia), while reduced FGF23 activity are linked to hyperphosphatemic diseases (i.e., tumoral calcinosis). Unlike most of the FGF family members, FGF23 needs klotho, as a co-factor to activate its receptor system. In vivo studies have convincingly demonstrated that, in absence of klotho, FGF23 is unable to influence systemic phosphate metabolism. Available information suggests that interactions of FGF23, klotho, and FGFRs regulate renal phosphate metabolism by suppressing sodium-phosphate transporters in the proximal tubular epithelial cells. This article briefly summarizes how bone-kidney communication contributes to physiologic phosphate balance.
Collapse
Affiliation(s)
- Mohammed Shawkat Razzaque
- Department of Applied Oral Sciences, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA.
| |
Collapse
|
13
|
Klotho mice: a novel wound model of aged skin. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2014; 2:e101. [PMID: 25289288 PMCID: PMC4174222 DOI: 10.1097/gox.0000000000000045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 12/10/2013] [Indexed: 11/29/2022]
Abstract
Background: As the elderly population continues to expand, it becomes increasingly important to develop treatments to improve wound healing in the elderly. One problem limiting the research is the lack of appropriate animal models for wound healing in elderly patients. We hypothesized that the Klotho mouse of premature aging is a suitable animal model to shed light on many of the biological processes involved in aging skin. Methods: Klotho mice (kl/kl), Klotho-heterozygous mice (kl/+), and wild-type mice (+/+) were wounded, and the area of the wound was measured every 3 days until the wound was healed. To compare the klotho phenotype with wild-type mice, wounds were also harvested at 4 and 7 days after wounding. For histological examination, paraffin-embedded sections were stained with hematoxylin and eosin and Masson trichrome. Collagen expression in the wound was also studied by analyzing messenger RNA using real-time polymerase chain reaction. Results: Klotho mice showed a significantly slower rate of wound closure compared with Klotho-heterozygous mice and wild-type mice. Histology showed substantial less healing and collagen deposition in the wounds of the Klotho mice. The expression of collagen messenger RNA in Klotho mice was also less than that in heterozygous and wild-type mice. The Klotho mice exhibited significant phenotypic similarities with aged skin, such as atrophy and delayed wound healing. Conclusion: These preliminary data suggest that the Klotho mouse may be a model to further investigate wound healing in the elderly.
Collapse
|
14
|
Abstract
The skeleton is an endocrine organ that regulates energy metabolism through the release of the osteoblast-derived hormone, osteocalcin (Ocn), and phosphate and vitamin D homeostasis through the secretion by osteoblasts and osteocytes of the novel hormone, FGF23 Ocn activates a widely expressed G-protein coupled receptor, GPRC6A, to regulate insulin secretion by pancreatic β-cells, testosterone secretion by testicular Leydig cells, fatty acid metabolism in the liver, and insulin sensitivity of muscle and fat, as well as other functions. FGF23 targets a limited number of tissues, including kidney, parathyroid gland, choroid plexus, and pituitary gland that co-express FGF receptors and α-Klotho complexes. Ectodomain shedding and secretion of a soluble form of Klotho also is purported to act as an anti-ageing hormone. Further elucidation of these novel endocrine networks is likely to lead to new appreciation of the cooperation between various organ systems to regulate phosphate, vitamin D, and energy metabolism.
Collapse
Affiliation(s)
- Min Pi
- Division of Nephrology, The University of Tennessee Health Science Center, 956 Court Ave, Suite B266, Memphis, TN, 38163, USA
| | | |
Collapse
|
15
|
Sasaki M, Hasegawa T, Yamada T, Hongo H, de Freitas PHL, Suzuki R, Yamamoto T, Tabata C, Toyosawa S, Yamamoto T, Oda K, Li M, Inoue N, Amizuka N. Altered distribution of bone matrix proteins and defective bone mineralization in klotho-deficient mice. Bone 2013; 57:206-19. [PMID: 23954506 DOI: 10.1016/j.bone.2013.08.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 07/24/2013] [Accepted: 08/05/2013] [Indexed: 12/16/2022]
Abstract
In an attempt to identify the histological properties of the klotho-deficient (kl/kl) bone matrix, bone mineralization and the localization of Ca(2+)-binding bone matrix proteins - osteocalcin, dentin matrix protein-1 (DMP-1) and matrix Gla protein (MGP) - were examined in kl/kl tibiae. While a widespread osteocalcin staining could be verified in the wild-type bone matrix, localization of the same protein in the kl/kl tibiae seemed rather restricted to osteocytes with only a faint staining of the whole bone matrix. In wild-type mice, MGP immunoreactivity was present at the junction between the epiphyseal bone and cartilage, and at the insertion of the cruciate ligaments. In kl/kl mice, however, MGP was seen around the cartilaginous cores of the metaphyseal trabeculae and in the periphery of some cells of the bone surface. DMP-1 was identified in the osteocytic canalicular system of wild-type tibiae, but in the kl/kl tibiae this protein was mostly found in the osteocytic lacunae and in the periphery of some cells of the bone surface. Mineralization of the kl/kl bone seemed somewhat defective, with broad unmineralized areas within its matrix. In these areas, mineralized osteocytes along with their lacunae and osteocytic cytoplasmic processes were found to have intense osteocalcin and DMP-1 staining. Taken together, it might be that the excessive production of Ca(2+)-binding molecules such as osteocalcin and DMP-1 by osteocytes concentrates mineralization around such cells, disturbing the completeness of mineralization in the kl/kl bone matrix.
Collapse
Affiliation(s)
- Muneteru Sasaki
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan; Department of Gerodontology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abed M, Towhid ST, Feger M, Schmidt S, Kuro-o M, Gawaz M, Lang F. Adhesion of klotho-deficient eryptotic erythrocytes to endothelial cells. Acta Physiol (Oxf) 2013; 207:485-93. [PMID: 23216570 DOI: 10.1111/apha.12046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 11/16/2012] [Accepted: 11/29/2012] [Indexed: 12/13/2022]
Abstract
AIM Suicidal erythrocyte death or eryptosis is characterized by cell shrinkage and phosphatidylserine exposure at the cell surface. Eryptotic erythrocytes may adhere to the vascular wall by binding of phosphatidylserine to endothelial CXC chemokine ligand 16 (CXCL16). Triggers of eryptosis include osmotic shock or energy depletion. Susceptibility to eryptosis is modified by Klotho, a protein with profound effect on ageing and lifespan. Klotho deficiency leads to accelerated ageing and early death. The percentage of eryptotic erythrocytes is significantly larger in klotho-deficient mice (klotho(-/-) ) than in their wild-type littermates (klotho(+/+) ). The present study explored whether the accelerated eryptosis of klotho-deficient mice is paralleled by enhanced adhesion. METHODS Phosphatidylserine-exposing erythrocytes were identified by measurement of annexin V binding and adhesion to human umbilical vein endothelial cells (HUVEC) from trapping of labelled erythrocytes in a flow chamber. RESULTS Annexin V binding was higher in klotho(-/-) erythrocytes than in klotho(+/+) erythrocytes. Osmotic shock for 1 h (addition of 550 mm sucrose) and energy depletion (12-h glucose depletion) increased annexin V binding to values again significantly larger in klotho(-/-) erythrocytes than in klotho(+/+) erythrocytes. klotho(-/-) erythrocytes were particularly sensitive to osmotic shock. Both osmotic shock and energy depletion enhanced erythrocyte adhesion, an effect again more pronounced in klotho(-/-) erythrocytes than in klotho(+/+) erythrocytes. The adhesion was significantly decreased by coating of phospatidylserine with annexin V (5 μL mL(-1) ) or by coating of CXCL16 with neutralizing antibodies (4 μg mL(-1) ). CONCLUSIONS klotho(-/-) erythrocytes are particularly sensitive to osmotic shock, and enhanced eryptosis of klotho(-/-) erythrocytes is paralleled by enhanced adhesion to endothelial CXCL16.
Collapse
Affiliation(s)
| | - S. T. Towhid
- Department of Physiology; University of Tuebingen; Tuebingen; Germany
| | - M. Feger
- Department of Physiology; University of Tuebingen; Tuebingen; Germany
| | - S. Schmidt
- Department of Physiology; University of Tuebingen; Tuebingen; Germany
| | - M. Kuro-o
- Department of Pathology; The University of Texas Southwestern Medical Center; Dallas; TX; USA
| | - M. Gawaz
- Department of Cardiology and Cardiovascular Medicine; University of Tuebingen; Tuebingen; Germany
| | - F. Lang
- Department of Physiology; University of Tuebingen; Tuebingen; Germany
| |
Collapse
|
17
|
Paroni G, Seripa D, Panza F, Addante F, Copetti M, D’Onofrio G, Pellegrini F, Fontana L, Pilotto A. Klotho locus, metabolic traits, and serum hemoglobin in hospitalized older patients: a genetic association analysis. AGE (DORDRECHT, NETHERLANDS) 2012; 34:949-968. [PMID: 21695423 PMCID: PMC3682056 DOI: 10.1007/s11357-011-9273-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 05/23/2011] [Indexed: 05/30/2023]
Abstract
Klotho (KL) gene has been involved in severe alterations of physiological biochemical parameters leading to premature aging-like phenotypes and strikingly shortening lifespan. KL participates to the regulation of a number of intracellular biochemical pathways, including lipid profile and glucose metabolism. Aim of this study was to investigate the possible association between KL locus and biological parameters commonly accepted as indicators of the clinical status in hospitalized older patients. We genotyped the single-nucleotide polymorphisms (SNPs) rs9536314, rs1207568, and rs564481 at the KL locus in 594 hospitalized older patients (65-99 years), consecutively attending a geriatric ward, and tested the association of these KL variants with biological quantitative traits using analyses of covariance and genetic risk score models. Significant associations of rs9536314 with serum levels of hemoglobin, albumin, and high-density lipoprotein cholesterol (HDL-C) as well as significant associations of rs564481 with serum levels of hemoglobin, fasting insulin, and fasting glucose were observed. Gender-segregated analyses confirmed these associations, and suggested that the associations of KL genotypes with HDL-C, fasting glucose and fasting insulin levels may be driven by the female gender, while the association with serum levels of hemoglobin may be driven by the male gender. The association of KL genotypes with creatinine levels was found only in females, while the association with insulin-like growth factor-1 (IGF-1) and lymphocytes count (LC) was found only in males. The genetic risk score (GRS) models further confirmed significant associations among KL SNPs and hemoglobin, total cholesterol, and HDL-C. Gender-segregated analyses with the GRS-tagged approach confirmed the associations with HDL-C, fasting glucose, and fasting insulin levels in females, and with hemoglobin and LC in males. Our findings suggested that KL locus may influence quantitative traits such as serum levels of lipid, fasting glucose, albumin and hemoglobin in hospitalized older patients, with some gender differences suggested for creatinine, IGF-1 levels, and LC, thus being one of the genetic factors possibly contributing to age-related diseases and longevity.
Collapse
Affiliation(s)
- Giulia Paroni
- />Geriatric Unit and Gerontology-Geriatric Research Laboratory, Department of Medical Sciences, I.R.C.C.S. “Casa Sollievo della Sofferenza, Viale Cappuccini 1, 71013 San Giovanni Rotondo, Foggia Italy
| | - Davide Seripa
- />Geriatric Unit and Gerontology-Geriatric Research Laboratory, Department of Medical Sciences, I.R.C.C.S. “Casa Sollievo della Sofferenza, Viale Cappuccini 1, 71013 San Giovanni Rotondo, Foggia Italy
| | - Francesco Panza
- />Geriatric Unit and Gerontology-Geriatric Research Laboratory, Department of Medical Sciences, I.R.C.C.S. “Casa Sollievo della Sofferenza, Viale Cappuccini 1, 71013 San Giovanni Rotondo, Foggia Italy
| | - Filomena Addante
- />Geriatric Unit and Gerontology-Geriatric Research Laboratory, Department of Medical Sciences, I.R.C.C.S. “Casa Sollievo della Sofferenza, Viale Cappuccini 1, 71013 San Giovanni Rotondo, Foggia Italy
| | - Massimiliano Copetti
- />Unit of Biostatistic, I.R.C.C.S. “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Foggia Italy
| | - Grazia D’Onofrio
- />Geriatric Unit and Gerontology-Geriatric Research Laboratory, Department of Medical Sciences, I.R.C.C.S. “Casa Sollievo della Sofferenza, Viale Cappuccini 1, 71013 San Giovanni Rotondo, Foggia Italy
| | - Fabio Pellegrini
- />Unit of Biostatistic, I.R.C.C.S. “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Foggia Italy
- />Laboratory of Clinical Epidemiology of Diabetes and Chronic Diseases, Consorzio Mario Negri Sud, Chieti, Italy
| | - Luigi Fontana
- />Division of Nutrition and Aging, Istituto Superiore di Sanità, Rome, Italy
| | - Alberto Pilotto
- />Geriatric Unit and Gerontology-Geriatric Research Laboratory, Department of Medical Sciences, I.R.C.C.S. “Casa Sollievo della Sofferenza, Viale Cappuccini 1, 71013 San Giovanni Rotondo, Foggia Italy
| |
Collapse
|
18
|
Hiyama A, Arai F, Sakai D, Yokoyama K, Mochida J. The effects of oxygen tension and antiaging factor Klotho on Wnt signaling in nucleus pulposus cells. Arthritis Res Ther 2012; 14:R105. [PMID: 22551380 PMCID: PMC3446482 DOI: 10.1186/ar3830] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 05/02/2012] [Indexed: 01/10/2023] Open
Abstract
Introduction The goals of this study were to examine the oxemic regulation of Wnt signaling to explore whether Wnt signaling accelerates the age-related degeneration of nucleus pulposus cells, and if so, to define the mechanism underlying this effect. We investigated the expression of Klotho, a newly identified antiaging gene, and whether its regulation is attributable to the suppression of Wnt signaling. Methods Rat nucleus pulposus cells were cultured under normoxic (21% O2) or hypoxic (2% O2) conditions, and the expression and promoter activity of Wnt signaling and Klotho were evaluated. The effect of Klotho protein was examined with transfection experiments, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, senescence-associated β-galactosidase staining, and cell-cycle analysis. To determine the methylation status of the Klotho promoter region, bisulfite genomic sequencing analysis was performed. Its relation with the activation of Wnt signaling was assessed. We also examined whether the expression of Klotho could block the effects of pathological Wnt expression in nucleus pulposus cells. Results Nucleus pulposus cells exhibited increased β-catenin mRNA and protein under the hypoxic condition. Klotho protein was expressed in vivo, and protein and messenger RNA expression decreased under the hypoxic condition. Klotho treatment decreased cell proliferation and induced the quiescence of nucleus pulposus cells. In addition, Klotho treatment inhibited expression of β-catenin gene and protein compared with untreated control cells. Conclusions These data indicate that Wnt signaling and Klotho form a negative-feedback loop in nucleus pulposus cells. These results suggest that the expression of Klotho is regulated by the balance between upregulation and downregulation of Wnt signaling.
Collapse
Affiliation(s)
- Akihiko Hiyama
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| | | | | | | | | |
Collapse
|
19
|
Huang CL. Regulation of ion channels by secreted Klotho. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 728:100-6. [PMID: 22396165 DOI: 10.1007/978-1-4614-0887-1_7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Klotho is an anti-aging protein predominantly expressed in the kidney, parathyroid glands and choroid plexus of the brain. Klotho exists in two forms, a membrane form and a soluble secreted form. Recent studies show that the secreted Klotho possess sialidase activity and regulates several ion channels via the activity. Removal of terminal sialic acids from N-glycan chains of the epithelial Ca(2+) channel TRPV5 and the renal K(+) channel ROMK by secreted Klotho exposes the underlying disaccharide galactose-N-acetylglucosamine, a ligand for galectin-1. Binding to galectin-1 at the extracellular surface prevents internalization and leads to accumulation of the channels on the plasma membrane. Future studies will investigate whether secreted Klotho regulates cell-surface expression of other membrane glycoproteins via the same mechanism.
Collapse
Affiliation(s)
- Chou-Long Huang
- Department of Medicine, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
20
|
Osuka S, Razzaque MS. Can features of phosphate toxicity appear in normophosphatemia? J Bone Miner Metab 2012; 30:10-8. [PMID: 22219005 PMCID: PMC3804315 DOI: 10.1007/s00774-011-0343-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Accepted: 12/11/2011] [Indexed: 11/28/2022]
Abstract
Phosphate is an indispensable nutrient for the formation of nucleic acids and the cell membrane. Adequate phosphate balance is a prerequisite for basic cellular functions ranging from energy metabolism to cell signaling. More than 85% of body phosphate is present in the bones and teeth. The remaining phosphate is distributed in various soft tissues, including skeletal muscle. A tiny amount, around 1% of total body phosphate, is distributed both in the extracellular fluids and within the cells. Impaired phosphate balance can affect the functionality of almost all human systems, including muscular, skeletal, and vascular systems, leading to an increase in morbidity and mortality of the involved patients. Currently, measuring serum phosphate level is the gold standard to estimate the overall phosphate status of the body. Despite the biological and clinical significance of maintaining delicate phosphate balance, serum levels do not always reflect the amount of phosphate uptake and its distribution. This article briefly discusses the potential that some of the early consequences of phosphate toxicity might not be evident from serum phosphate levels.
Collapse
Affiliation(s)
- Satoko Osuka
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Room: 304, 188 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
21
|
Abstract
Calcium (Ca(2+)) and phosphate (PO(4)(3-)) homeostasis are coordinated by systemic and local factors that regulate intestinal absorption, influx and efflux from bone, and kidney excretion and reabsorption of these ions through a complex hormonal network. Traditionally, the parathyroid hormone (PTH)/vitamin D axis provided the conceptual framework to understand mineral metabolism. PTH secreted by the parathyroid gland in response to hypocalcemia functions to maintain serum Ca(2+) levels by increasing Ca(2+) reabsorption and 1,25-dihydroxyvitamin D [1,25(OH)(2)D] production by the kidney, enhancing Ca(2+) and PO(4)(3-) intestinal absorption and increasing Ca(2+) and PO(4)(3-) efflux from bone, while maintaining neutral phosphate balance through phosphaturic effects. FGF23 is a recently discovered hormone, predominately produced by osteoblasts/osteocytes, whose major functions are to inhibit renal tubular phosphate reabsorption and suppress circulating 1,25(OH)(2)D levels by decreasing Cyp27b1-mediated formation and stimulating Cyp24-mediated catabolism of 1,25(OH)(2)D. FGF23 participates in a new bone/kidney axis that protects the organism from excess vitamin D and coordinates renal PO(4)(3-) handling with bone mineralization/turnover. Abnormalities of FGF23 production underlie many inherited and acquired disorders of phosphate homeostasis. This review discusses the known and emerging functions of FGF23, its regulation in response to systemic and local signals, as well as the implications of FGF23 in different pathological and physiological contexts.
Collapse
Affiliation(s)
- Aline Martin
- University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | | | | |
Collapse
|
22
|
Razzaque MS. Osteo-renal regulation of systemic phosphate metabolism. IUBMB Life 2011; 63:240-7. [PMID: 21438115 DOI: 10.1002/iub.437] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 01/29/2011] [Indexed: 01/29/2023]
Abstract
Impaired kidney function and subsequent skeletal responses play a critical role in disrupting phosphate balance in chronic kidney disease (CKD) patients with mineral and bone disorder (CKD-MBD). In patients with CKD-MBD, the inability of the kidney to maintain normal mineral ion balance affects bone remodeling to induce skeletal fracture and extraskeletal vascular calcification. In physiological conditions, bone-derived fibroblast growth factor 23 (FGF23) acts on the kidney to reduce serum phosphate and 1,25-dihydroxyvitamin D levels. In humans, increased bioactivity of FGF23 leads to increased urinary phosphate excretion, which induces hypophosphatemic diseases (e.g., rickets/osteomalacia). However, reduced FGF23 activity is associated with hyperphosphatemic diseases (e.g., tumoral calcinosis). In patients with CKD, high serum levels of FGF23 fail to reduce serum phosphate levels and lead to numerous complications, including vascular calcification, one of the important determinants of mortality of CKD-MBD patients. Of particular significance, molecular, biochemical and morphological changes in patients with CKD-MBD are mostly due to osteo-renal dysregulation of mineral ion metabolism. Furthermore, hyperphosphatemia can partly contribute to the development of secondary hyperparathyroidism in patients with CKD-MBD. Relatively new pharmacological agents including sevelamer hydrochloride, calcitriol analogs and cinacalcet hydrochloride are used either alone, or in combination, to minimize hyperphosphatemia and hyperparathyroidism associated complications to improve morbidity and mortality of CKD-MBD patients. This article will briefly summarize how osteo-renal miscommunication can induce phosphate toxicity, resulting in extensive tissue injuries.
Collapse
Affiliation(s)
- Mohammed Shawkat Razzaque
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA.
| |
Collapse
|
23
|
Abstract
Phosphorus is an essential nutrient required for critical biological reactions that maintain the normal homoeostatic control of the cell. This element is an important component of different cellular structures, including nucleic acids and cell membranes. Adequate phosphorus balance is vital for maintaining basic cellular functions, ranging from energy metabolism to cell signalling. In addition, many intracellular pathways utilize phosphate ions for important cellular reactions; therefore, homoeostatic control of phosphate is one of the most delicate biological regulations. Impaired phosphorus balance can affect the functionality of almost every human system, including musculoskeletal and cardiovascular systems, ultimately leading to an increase in morbidity and mortality of the affected patients. Human and experimental studies have found that delicate balance among circulating factors, like vitamin D, PTH (parathyroid hormone) and FGF23 (fibroblast growth factor 23), are essential for regulation of physiological phosphate balance. Dysregulation of these factors, either alone or in combination, can induce phosphorus imbalance. Recent studies have shown that suppression of the FGF23-klotho system can lead to hyperphosphataemia with extensive tissue damage caused by phosphate toxicity. The cause and consequences of phosphate toxicity will be briefly summarized in the present review.
Collapse
Affiliation(s)
- M Shawkat Razzaque
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA.
| |
Collapse
|
24
|
Camilli TC, Xu M, O'Connell MP, Chien B, Frank BP, Subaran S, Indig FE, Morin PJ, Hewitt SM, Weeraratna AT. Loss of Klotho during melanoma progression leads to increased filamin cleavage, increased Wnt5A expression, and enhanced melanoma cell motility. Pigment Cell Melanoma Res 2010; 24:175-86. [PMID: 20955350 DOI: 10.1111/j.1755-148x.2010.00792.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We have previously shown that Wnt5A-mediated signaling can promote melanoma metastasis. It has been shown that Wnt signaling is antagonized by the protein Klotho, which has been implicated in aging. We show here that in melanoma cells, expressions of Wnt5A and Klotho are inversely correlated. In the presence of recombinant Klotho (rKlotho), we show that Wnt5A internalization and signaling is decreased in high Wnt5A-expressing cells. Moreover, in the presence of rKlotho, we observe an increase in Wnt5A remaining in the medium, coincident with an increase in sialidase activity, and decrease in syndecan expression. These effects can be inhibited using a sialidase inhibitor. In addition to its effects on Wnt5A internalization, we also demonstrate that Klotho decreases melanoma cell invasive potential by a second mechanism that involves the inhibition of calpain and a resultant decrease in filamin cleavage, which we demonstrate is critical for melanoma cell motility.
Collapse
Affiliation(s)
- Tura C Camilli
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Iida RH, Kanko S, Suga T, Morito M, Yamane A. Autophagic-lysosomal pathway functions in the masseter and tongue muscles in the klotho mouse, a mouse model for aging. Mol Cell Biochem 2010; 348:89-98. [DOI: 10.1007/s11010-010-0642-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 10/28/2010] [Indexed: 12/19/2022]
|
26
|
Abstract
Vitamin D is a multifunctional hormone that can affect many essential biological functions, ranging from the immune regulation to mineral ion metabolism. A close association between altered activity of vitamin D and vascular calcification has been reported in various human diseases, including in patients with atherosclerosis, osteoporosis, and chronic kidney disease (CKD). Vascular calcification is a progressive disorder and is a major determinant of morbidity and mortality of the affected patients. Experimental studies have shown that excessive vitamin D activities can induce vascular calcification, and such vascular pathology can be reversed by reducing vitamin D activities. The human relevance of these experimental studies is not clear, as vitamin D toxicity is relatively rare in the general population. Contrary to the relationship between vitamin D and vascular calcification, in experimental uremic models, low levels of vitamin D were shown to be associated with extensive vascular calcification, a phenomenon that is very similar to the vascular pathology seen in patients with CKD. The current treatment approach of providing vitamin D analogs to patients with CKD often poses a dilemma, as studies linked vitamin D treatment to subsequent vascular calcification. Recent genetic studies, however, have shown that vascular calcification can be prevented by reducing serum phosphate levels, even in the presence of extremely high serum 1,25-dihydroxyvitamin D and calcium levels. This article will briefly summarize the dual effects of vitamin D in vascular calcification and will provide evidence of vitamin D-dependent and -independent vascular calcification.
Collapse
|
27
|
Kempe DS, Ackermann TF, Fischer SS, Koka S, Boini KM, Mahmud H, Föller M, Rosenblatt KP, Kuro-O M, Lang F. Accelerated suicidal erythrocyte death in Klotho-deficient mice. Pflugers Arch 2009; 458:503-12. [PMID: 19184092 DOI: 10.1007/s00424-009-0636-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 12/23/2008] [Accepted: 01/08/2009] [Indexed: 01/30/2023]
Abstract
Klotho, a membrane protein mainly expressed in parathyroid glands, kidney, and choroid plexus, counteracts aging and increases the life span. Accordingly, life span is significantly shorter in Klotho-deficient mice (klotho(-/-)) than in their wild-type littermates (klotho(+/+)). The pleotropic effects of Klotho include inhibition of 1,25-dihydroxyvitamin D(3)(1,25(OH)(2)D(3)) formation. Vitamin D-deficient diet reverses the shortening of life span in klotho(-/-) mice. In a variety of cells, 1,25(OH)(2)D(3) stimulates Ca(2+) entry. In erythrocytes, increased Ca(2+) entry stimulates suicidal erythrocyte death, which is characterized by cell shrinkage and phosphatidylserine exposure at the erythrocyte surface. The present study explored the putative impact of Klotho on eryptosis. According to Fluo3 fluorescence, cytosolic Ca(2+) concentration was significantly larger in klotho(-/-) erythrocytes as compared to klotho(+/+) erythrocytes. According to annexin V-binding, phosphatidylserine exposure was significantly enhanced, and according to forward scatter, cell volume significantly decreased in klotho(-/-) erythrocytes as compared to klotho(+/+) erythrocytes. Energy depletion (13 h glucose depletion) and oxidative stress (35 min 1 mM tert-butyl-hydroxyl-peroxide [tert-BOOH]) increased phosphatidylserine exposure to values again significantly larger in klotho(-/-) erythrocytes as compared to klotho(+/+) erythrocytes. Reticulocyte number was significantly increased in klotho (-/-) mice, pointing to enhanced erythrocyte turnover. Vitamin D-deficient diet reversed the enhanced Ca(2+) entry and annexin V-binding of klotho(-/-) erythrocytes. The present observations reveal a novel function of Klotho, i.e., the at least partially vitamin D-dependent regulation of cytosolic Ca(2+) activity in and suicidal death of erythrocytes.
Collapse
Affiliation(s)
- Daniela S Kempe
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wang Y, Sun Z. Current understanding of klotho. Ageing Res Rev 2009; 8:43-51. [PMID: 19022406 PMCID: PMC2637560 DOI: 10.1016/j.arr.2008.10.002] [Citation(s) in RCA: 226] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2008] [Revised: 10/22/2008] [Accepted: 10/22/2008] [Indexed: 01/20/2023]
Abstract
Klotho is a new anti-aging gene. Genetic mutation of klotho causes multiple premature aging-like phenotypes and strikingly shortens lifespan. Overexpression of the klotho gene in mice suppresses aging and extends lifespan which may involve the mechanism of suppression of insulin signaling and oxidant stress. Klotho functions as a cofactor/coreceptor regulating fibroblast growth factor (FGF) 23 signaling. Klotho acts as a glucuronidase and activates ion channel TRPV5. Klotho protects against endothelial dysfunction and regulates the production of nitric oxide. Klotho also influences intracellular signaling pathways including p53/p21, cAMP, protein kinase C (PKC) and Wnt signaling pathways. The discovery of klotho has a great impact on aging research. The purpose of this review is to provide the recent progress and future directions of klotho research. Specifically, this review will cover: klotho and aging, structure and expression of the klotho gene, localization of klotho expression, source of circulating klotho, current understanding of klotho functions, and signaling pathways of klotho.
Collapse
Affiliation(s)
- Yuhong Wang
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK 73104-0901, USA
| | | |
Collapse
|
29
|
Abstract
Cell therapy is a promising option for treating ischemic diseases and heart failure. Adult stem and progenitor cells from various sources have experimentally been shown to augment the functional recovery after ischemia, and clinical trials have confirmed that autologous cell therapy using bone marrow-derived or circulating blood-derived progenitor cells is safe and provides beneficial effects. However, aging and risk factors for coronary artery disease affect the functional activity of the endogenous stem/progenitor cell pools, thereby at least partially limiting the therapeutic potential of the applied cells. In addition, age and disease affect the tissue environment, in which the cells are infused or injected. The present review article will summarize current evidence for cell impairment during aging and disease but also discuss novel approaches how to reverse the dysfunction of cells or to refresh the target tissue. Pretreatment of cells or the target tissue by small molecules, polymers, growth factors, or a combination thereof may provide useful approaches for enhancement of cell therapy for cardiovascular diseases.
Collapse
Affiliation(s)
- Stefanie Dimmeler
- Molecular Cardiology, Department of Internal Medicine III, University of Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| | | |
Collapse
|
30
|
Memon F, El-Abbadi M, Nakatani T, Taguchi T, Lanske B, Razzaque MS. Does Fgf23-klotho activity influence vascular and soft tissue calcification through regulating mineral ion metabolism? Kidney Int 2008; 74:566-70. [PMID: 18528324 DOI: 10.1038/ki.2008.218] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Recent studies describe a novel role of fibroblast growth factor-23 (Fgf23)-klotho activity in the systemic regulation of calcium and phosphate homeostasis. Both Fgf23 and klotho ablated mice develop extensive vascular and soft tissue calcification. Inability to clear the required amount of phosphate by the kidney, due to the absence of Fgf23-klotho activity, leads to increased accumulation of serum phosphate in these genetically modified mice, causing extensive calcification. Serum calcium and 1,25 hydroxyvitamin D levels are also elevated in both Fgf23 and klotho ablated mice. Moreover, increased sodium phosphate co-transporter activity in both Fgf23 and klotho ablated mice increases renal phosphate reabsorption which in turn can facilitate calcification. Collectively, these observations bring new insights into our understanding of the roles of the Fgf23-klotho axis in the development of vascular and soft tissue calcification.
Collapse
Affiliation(s)
- Fahad Memon
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
31
|
A putative protein structurally related to zygote arrest 1 (Zar1), Zar1-like, is encoded by a novel gene conserved in the vertebrate lineage. Comp Biochem Physiol B Biochem Mol Biol 2008; 150:233-9. [PMID: 18442940 DOI: 10.1016/j.cbpb.2008.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 03/13/2008] [Accepted: 03/13/2008] [Indexed: 12/28/2022]
Abstract
Identification and characterization of a bovine cDNA and the corresponding gene coding for a novel protein structurally related to Zar1, therefore called Zar1-like, are here reported for the first time. Structure of Zar1-like is similar to Zar1 gene, nevertheless they are located on distinct chromosomes. We demonstrated that the new gene as well as its genomic context are conserved along the whole vertebrate lineage. Analysis of the deduced protein primary structure showed a high conservation, among vertebrates, of the C-terminal region, where the putative presence of both zinc finger motifs and classical nuclear localization signals is also shared with Zar1. Bovine Zar1-like and the only two other available mRNA leader sequences (human and chicken) exhibit a number of upstream AUGs, suggesting that they are likely to be regulated at translational level. Expression patterns of the cattle transcripts show that Zar1-like is absent in early stages of embryo development, whereas Zar1 is expressed in matured oocytes and in in vitro produced pre-implantation embryos. In adult tissues Zar1-like transcript expression appears to be less restricted than Zar1, nevertheless, at least in bovine, both mRNAs are co-expressed in gonads, raising the question of a possible functional link.
Collapse
|
32
|
Current World Literature. Curr Opin Nephrol Hypertens 2007; 16:388-93. [PMID: 17565283 DOI: 10.1097/mnh.0b013e3282472fd5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Abstract
PURPOSE OF REVIEW The regulation of phosphate homeostasis was thought to be passively mediated by the calciotrophic hormones parathyroid hormone and 1,25(OH)2D3. This article summarizes the emerging trends that show an active regulation of phosphate homeostasis by fibroblast growth factor 23 (FGF-23) - a process fairly independent of calcium homeostasis - and how altered mineral ion metabolism may affect the aging process. RECENT FINDINGS A major breakthrough in FGF-23 biology has been achieved by the demonstration of strikingly similar physical/biochemical phenotypes of Fgf-23(-/-) and klotho hypomorph mice, which eventually led to the identification of klotho as a cofactor in FGF-23 and its receptor interactions. Furthermore, FGF-23 has emerged as a counter regulator of the renal 1alpha(OH)ase and sodium-phosphate cotransporter activities to modulate phosphate homeostasis. Finally, studies point towards a role of dentine matrix protein 1 in affecting phosphate homeostasis, in coordination with FGF-23. SUMMARY Recent mouse genetic studies have broadened our understanding of biochemical/molecular pathways involved in phosphate homeostasis, and linked FGF-23 to such regulation. Understanding the molecular interactions of essential calcium and phosphate regulators will enhance our knowledge of the coordinated regulation of mineral ion metabolism, and will help to redefine the molecular pathology of age-associated lesions accompanied by abnormal mineral ion metabolism such as vascular calcifications and osteoporosis.
Collapse
Affiliation(s)
- Beate Lanske
- Department of Developmental Biology, Harvard School of Dental Medicine, Research and Educational Building, 190 Longwood Ave, Boston, MA 02115, USA
| | - M. Shawkat Razzaque
- Department of Developmental Biology, Harvard School of Dental Medicine, Research and Educational Building, 190 Longwood Ave, Boston, MA 02115, USA
| |
Collapse
|
34
|
Tribolo S, Berrin JG, Kroon PA, Czjzek M, Juge N. The Crystal Structure of Human Cytosolic β-Glucosidase Unravels the Substrate Aglycone Specificity of a Family 1 Glycoside Hydrolase. J Mol Biol 2007; 370:964-75. [PMID: 17555766 DOI: 10.1016/j.jmb.2007.05.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 04/27/2007] [Accepted: 05/12/2007] [Indexed: 11/22/2022]
Abstract
Human cytosolic beta-glucosidase (hCBG) is a xenobiotic-metabolizing enzyme that hydrolyses certain flavonoid glucosides, with specificity depending on the aglycone moiety, the type of sugar and the linkage between them. In this study, the substrate preference of this enzyme was investigated by mutational analysis, X-ray crystallography and homology modelling. The crystal structure of hCBG was solved by the molecular replacement method and refined at 2.7 A resolution. The main-chain fold of the enzyme belongs to the (beta/alpha)(8) barrel structure, which is common to family 1 glycoside hydrolases. The active site is located at the bottom of a pocket (about 16 A deep) formed by large surface loops, surrounding the C termini of the barrel of beta-strands. As for all the clan of GH-A enzymes, the two catalytic glutamate residues are located on strand 4 (the acid/base Glu165) and on strand 7 (the nucleophile Glu373). Although many features of hCBG were shown to be very similar to previously described enzymes from this family, crucial differences were observed in the surface loops surrounding the aglycone binding site, and these are likely to strongly influence the substrate specificity. The positioning of a substrate molecule (quercetin-4'-glucoside) by homology modelling revealed that hydrophobic interactions dominate the binding of the aglycone moiety. In particular, Val168, Trp345, Phe225, Phe179, Phe334 and Phe433 were identified as likely to be important in determining substrate specificity in hCBG, and site-directed mutagenesis supported a key role for some of these residues.
Collapse
Affiliation(s)
- Sandra Tribolo
- Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, UK
| | | | | | | | | |
Collapse
|
35
|
Imura A, Tsuji Y, Murata M, Maeda R, Kubota K, Iwano A, Obuse C, Togashi K, Tominaga M, Kita N, Tomiyama KI, Iijima J, Nabeshima Y, Fujioka M, Asato R, Tanaka S, Kojima K, Ito J, Nozaki K, Hashimoto N, Ito T, Nishio T, Uchiyama T, Fujimori T, Nabeshima YI. alpha-Klotho as a regulator of calcium homeostasis. Science 2007; 316:1615-8. [PMID: 17569864 DOI: 10.1126/science.1135901] [Citation(s) in RCA: 294] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
alpha-klotho was identified as a gene associated with premature aging-like phenotypes characterized by short lifespan. In mice, we found the molecular association of alpha-Klotho (alpha-Kl) and Na+,K+-adenosine triphosphatase (Na+,K+-ATPase) and provide evidence for an increase of abundance of Na+,K+-ATPase at the plasma membrane. Low concentrations of extracellular free calcium ([Ca2+]e) rapidly induce regulated parathyroid hormone (PTH) secretion in an alpha-Kl- and Na+,K+-ATPase-dependent manner. The increased Na+ gradient created by Na+,K+-ATPase activity might drive the transepithelial transport of Ca2+ in cooperation with ion channels and transporters in the choroid plexus and the kidney. Our findings reveal fundamental roles of alpha-Kl in the regulation of calcium metabolism.
Collapse
Affiliation(s)
- Akihiro Imura
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Suitable mammalian models for aging with a wide range of age-associated pathology are desirable to study molecular mechanisms of human aging. Recent studies have identified that fibroblast growth factor 23 (Fgf-23) null mice and klotho hypomorphs could generate multiple premature aging-like features, including shortened lifespan, infertility, kyphosis, atherosclerosis, extensive soft tissue calcifications, skin atrophy, muscle wasting, T cell dysregulation, pulmonary emphysema, osteoporosis/osteopenia, abnormal mineral ion metabolism, and impaired vitamin-D homeostasis. The strikingly similar in vivo phenotypes of two separate genetically altered mouse lines implicate that the premature aging-like features may be partly regulated through a common signaling pathway involving both Fgf-23 and klotho; such speculation is experimentally supported by the observation that Fgf-23 requires klotho as a cofactor to exert its functions. Despite about 2000-fold higher serum levels of Fgf-23 in klotho mutants (compared to wild-type animals), these mice show physical, biochemical and morphological features similar to Fgf-23 null mice, but not as Fgf-23 transgenic mice; these observations suggest that widely encountered premature aging-like features in klotho mutant mice are due to the inability of Fgf-23 to exert its bioactivities in absence of klotho. The results of recent studies showing klotho as a cofactor in Fgf-23 signaling consequently explains that the premature aging-like features in klotho-deficient mice is not a primary cause, rather a consequence of lacking Fgf-23 activity. These understandings will help us to redefine the role of klotho as an aging factor.
Collapse
Affiliation(s)
- Beate Lanske
- Department of Developmental Biology, Harvard School of Dental Medicine, Research and Educational Building, 190 Longwood Avenue, Boston, MA 02115, USA.
| | | |
Collapse
|
37
|
Segawa H, Yamanaka S, Ohno Y, Onitsuka A, Shiozawa K, Aranami F, Furutani J, Tomoe Y, Ito M, Kuwahata M, Imura A, Nabeshima Y, Miyamoto KI. Correlation between hyperphosphatemia and type II Na-Pi cotransporter activity in klotho mice. Am J Physiol Renal Physiol 2007; 292:F769-79. [PMID: 16985213 DOI: 10.1152/ajprenal.00248.2006] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies have demonstrated that klotho protein plays a role in calcium/phosphate homeostasis. The goal of the present study was to investigate the regulation of Na-Pi cotransporters in klotho mutant (kl/kl) mice. The kl/kl mice displayed hyperphosphatemia, high plasma 1,25(OH)2D3 levels, increased activity of the renal and intestinal sodium-dependent Pi cotransporters, and increased levels of the type IIa, type IIb, and type IIc transporter proteins compared with wild-type mice. Interestingly, transcript levels of the type IIa/type IIc transporter mRNA abundance, but not transcripts levels of type IIb transporter mRNA, were markedly decreased in kl/kl mice compared with wild-type mice. Furthermore, plasma fibroblast growth factor 23 (FGF23) levels were 150-fold higher in kl/kl mice than in wild-type mice. Feeding of a low-Pi diet induced the expression of klotho protein and decreased plasma FGF23 levels in kl/kl mice, whereas colchicine treatment experiments revealed evidence of abnormal membrane trafficking of the type IIa transporter in kl/kl mice. Finally, feeding of a low-Pi diet resulted in increased type IIa Na-Pi cotransporter protein in the apical membrane in the wild-type mice, but not in kl/kl mice. These results indicate that hyperphosphatemia in klotho mice is due to dysregulation of expression and trafficking of the renal type IIa/IIc transporters rather than to intestinal Pi uptake.
Collapse
Affiliation(s)
- Hiroko Segawa
- Dept. of Molecular Nutrition, Institution of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
A subset of TRP channel proteins undergoes regulatory N-linked glycosylation. A glycosylation site in the first extracellular loop of TRPV5 is enzymatically cleaved by a secreted glucuronidase, indirectly regulating channel function. Members of the TRPC family share a similar site, although details about a regulatory role are lacking. A second conserved TRP channel glycosylation site is found immediately adjacent to the channel pore-forming loop; both TRPV1 and TRPV4--and perhaps other TRPV family members--are influenced by glycosylation at this site. N-linked glycosylation, and the dynamic regulation of this process, substantially impacts function and targeting of TRP channels.
Collapse
Affiliation(s)
- David M Cohen
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health & Science University, Portland Veterans Affairs Medical Center, Portland, OR 97239, USA.
| |
Collapse
|
39
|
Bellino FL. Advances in endocrinology of aging research, 2005-2006. Exp Gerontol 2006; 41:1228-33. [PMID: 17110071 PMCID: PMC1804294 DOI: 10.1016/j.exger.2006.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 09/08/2006] [Accepted: 09/11/2006] [Indexed: 12/30/2022]
Abstract
The purpose of this brief review is to highlight some of the more important advances in endocrinology of aging research over the past year. Four advances were chosen and briefly described. First, exploration of the early steps in the generation of the internal steroidal hormonal signal involved in lifespan extension via the insulin/IGF-like signaling pathway in the nematode by two research groups revealed that the product of cholestanoic acid derivatives metabolized by a cytochrome P-450-like protein activates a protein with homology to the mammalian nuclear receptor superfamily, a process strikingly similar to the steroid hormone signaling pathway documented in mammalian systems. Second is the discovery that sirtuins, proteins that regulate lifespan in model organisms, enhance pancreatic insulin secretion in mice following a glucose challenge, suggesting the potential to regulate mammalian lifespan through regulation of the insulin signaling pathway. Third, the newly discovered hormone klotho, which also plays a role in regulating lifespan, in this case in mice, is reported to not only negatively affect insulin sensitivity but, perhaps more importantly, significantly affects calcium and phosphate metabolism as a required cofactor of Fgf-23 signaling. Finally the gonadotropin FSH is shown to directly affect bone density in mice separate from any direct effect of estrogen, suggesting that reproductive hormones other than estrogen can directly impact menopause-associated pathophysiology in non-reproductive tissues.
Collapse
Affiliation(s)
- Francis L Bellino
- Biology of Aging Program, National Institute on Aging Bethesda, MD 20891, USA.
| |
Collapse
|