1
|
Zubair I, Martínez-Crespo L, Webb SJ. Foldamer-mediated transport across phospholipid bilayers. Curr Opin Chem Biol 2025; 84:102549. [PMID: 39616809 DOI: 10.1016/j.cbpa.2024.102549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 02/04/2025]
Abstract
Crucial physiological processes, like neural communication and muscle contraction, are mediated by protein channels in cell membranes. These natural channels typically have a central hydrophilic pore with tightly defined dimensions, which can be opened or closed ('gated') by external stimuli. Mimicking natural ion channels using synthetic molecules is a long-standing goal in artificial channel research. Although current synthetic channels have not yet achieved the same combination of high activity, high selectivity, and gating as natural channels, foldamers offer a new approach. Foldamers are unnatural oligomers that fold into defined three-dimensional shapes, similar to the way that natural polypeptides fold into secondary structures. With defined shapes and often multi-nanometre dimensions, foldamers have become valuable tools to mimic the behaviour of natural proteins in membranes. This review highlights selected recent examples of foldamer channels, examples that indicate how foldamer architectures may lead to controllable channels with high activity and selectivity.
Collapse
Affiliation(s)
- Iqra Zubair
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Luis Martínez-Crespo
- Department of Chemistry, Universitat de les Illes Balears, Cra. Valldemossa Km. 7.5, 07122, Palma de Mallorca, Spain
| | - Simon J Webb
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| |
Collapse
|
2
|
Li Y, Harris BS, Li Z, Shi C, Abdullah J, Majumder S, Berhanu S, Vorobieva AA, Myers SK, Hettige J, Baer MD, De Yoreo JJ, Baker D, Noy A. Water, Solute, and Ion Transport in De Novo-Designed Membrane Protein Channels. ACS NANO 2025; 19:2185-2195. [PMID: 39714958 DOI: 10.1021/acsnano.4c11317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Biological organisms engineer peptide sequences to fold into membrane pore proteins capable of performing a wide variety of transport functions. Synthetic de novo-designed membrane pores can mimic this approach to achieve a potentially even larger set of functions. Here we explore water, solute, and ion transport in three de novo designed β-barrel membrane channels in the 5-10 Å pore size range. We show that these proteins form passive membrane pores with high water transport efficiencies and size rejection characteristics consistent with the pore size encoded in the protein structure. Ion conductance and ion selectivity measurements also show trends consistent with the pore size, with the two larger pores showing weak cation selectivity. MD simulations of water and ion transport and solute size exclusion are consistent with the experimental trends and provide further insights into structure-function correlations in these membrane pores.
Collapse
Affiliation(s)
- Yuhao Li
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Bradley S Harris
- Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Zhongwu Li
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Chenyang Shi
- Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Jobaer Abdullah
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- School of Natural Sciences, University of California Merced, Merced, California 95343, United States
| | - Sagardip Majumder
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | - Samuel Berhanu
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | - Anastassia A Vorobieva
- Structural Biology Brussel, Vrije Universiteit Brussel, Brussels 1050, Belgium
- VUB-VIB Center for Structural Biology, Brussels 1050, Belgium
| | - Sydney K Myers
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Jeevapani Hettige
- Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Marcel D Baer
- Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - James J De Yoreo
- Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - David Baker
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, United States
| | - Aleksandr Noy
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- School of Natural Sciences, University of California Merced, Merced, California 95343, United States
| |
Collapse
|
3
|
Oh H, Samineni L, Vogler RJ, Yao C, Behera H, Dhiman R, Horner A, Kumar M. Approaching Ideal Selectivity with Bioinspired and Biomimetic Membranes. ACS NANO 2025; 19:31-53. [PMID: 39718215 DOI: 10.1021/acsnano.4c09699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
The applications of polymeric membranes have grown rapidly compared to traditional separation technologies due to their energy efficiency and smaller footprint. However, their potential is not fully realized due, in part, to their heterogeneity, which results in a "permeability-selectivity" trade-off for most membrane applications. Inspired by the intricate architecture and excellent homogeneity of biological membranes, bioinspired and biomimetic membranes (BBMs) aim to emulate biological membranes for practical applications. This Review highlights the potential of BBMs to overcome the limitations of polymeric membranes by utilizing the "division of labor" between well-defined permeable pores and impermeable matrix molecules seen in biological membranes. We explore the exceptional performance of membranes in biological organisms, focusing on their two major components: membrane proteins (biological channels) and lipid matrix molecules. We then discuss how these natural materials can be replaced with artificial mimics for enhanced properties and how macro-scale BBMs are developed. We highlight key demonstrations in the field of BBMs that draw upon the factors responsible for transport through biological membranes. Additionally, current state-of-the-art methods for fabrication of BBMs are reviewed with potential challenges and prospects for future applications. Finally, we provide considerations for future research that could enable BBMs to progress toward scale-up and enhanced applicability.
Collapse
Affiliation(s)
- Hyeonji Oh
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Laxmicharan Samineni
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | - Ronald J Vogler
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Chenhao Yao
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Harekrushna Behera
- Maseeh Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Raman Dhiman
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Andreas Horner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstraße 40, 4020 Linz, Austria
| | - Manish Kumar
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
- Maseeh Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
4
|
Thirunavukarasu A, Szleper K, Tanriver G, Marchlewski I, Mitusinska K, Gora A, Brezovsky J. Water Migration through Enzyme Tunnels Is Sensitive to the Choice of Explicit Water Model. J Chem Inf Model 2025; 65:326-337. [PMID: 39680044 PMCID: PMC11733929 DOI: 10.1021/acs.jcim.4c01177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/31/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024]
Abstract
The utilization of tunnels and water transport within enzymes is crucial for their catalytic function as water molecules can stabilize bound substrates and help with unbinding processes of products and inhibitors. Since the choice of water models for molecular dynamics simulations was shown to determine the accuracy of various calculated properties of the bulk solvent and solvated proteins, we have investigated if and to what extent water transport through the enzyme tunnels depends on the selection of the water model. Here, we focused on simulating enzymes with various well-defined tunnel geometries. In a systematic investigation using haloalkane dehalogenase as a model system, we focused on the well-established TIP3P, OPC, and TIP4P-Ew water models to explore their impact on the use of tunnels for water molecule transport. The TIP3P water model showed significantly faster migration, resulting in the transport of approximately 2.5 times more water molecules compared to that of the OPC and 1.7 times greater than that of the TIP4P-Ew. Finally, the transport was 1.4-fold more pronounced in TIP4P-Ew than in OPC. The increase in migration of TIP3P water molecules was mainly due to faster transit times through dehalogenase tunnels. We observed similar behavior in two different enzymes with buried active sites and different tunnel network topologies, i.e., alditol oxidase and cytochrome P450, indicating that our findings are likely not restricted to a particular enzyme family. Overall, this study showcases the critical importance of water models in comprehending the use of enzyme tunnels for small molecule transport. Given the significant role of water availability in various stages of the catalytic cycle and the solvation of substrates, products, and drugs, choosing an appropriate water model may be crucial for accurate simulations of complex enzymatic reactions, rational enzyme design, and predicting drug residence times.
Collapse
Affiliation(s)
- Aravind
Selvaram Thirunavukarasu
- Laboratory
of Biomolecular Interactions and Transport, Department of Gene Expression,
Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
- International
Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Katarzyna Szleper
- Tunneling
Group, Biotechnology Centre, Silesian University
of Technology, 44-100 Gliwice, Poland
| | - Gamze Tanriver
- Tunneling
Group, Biotechnology Centre, Silesian University
of Technology, 44-100 Gliwice, Poland
| | - Igor Marchlewski
- Laboratory
of Biomolecular Interactions and Transport, Department of Gene Expression,
Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Karolina Mitusinska
- Tunneling
Group, Biotechnology Centre, Silesian University
of Technology, 44-100 Gliwice, Poland
| | - Artur Gora
- Tunneling
Group, Biotechnology Centre, Silesian University
of Technology, 44-100 Gliwice, Poland
| | - Jan Brezovsky
- Laboratory
of Biomolecular Interactions and Transport, Department of Gene Expression,
Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
- International
Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| |
Collapse
|
5
|
Vrettou CS, Issaris V, Kokkoris S, Poupouzas G, Keskinidou C, Lotsios NS, Kotanidou A, Orfanos SE, Dimopoulou I, Vassiliou AG. Exploring Aquaporins in Human Studies: Mechanisms and Therapeutic Potential in Critical Illness. Life (Basel) 2024; 14:1688. [PMID: 39768394 PMCID: PMC11676363 DOI: 10.3390/life14121688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Aquaporins (AQPs) are membrane proteins facilitating water and other small solutes to be transported across cell membranes. They are crucial in maintaining cellular homeostasis by regulating water permeability in various tissues. Moreover, they regulate cell migration, signaling pathways, inflammation, tumor growth, and metastasis. In critically ill patients, such as trauma, sepsis, and patients with acute respiratory distress syndrome (ARDS), which are frequently encountered in intensive care units (ICUs), water transport regulation is crucial for maintaining homeostasis, as dysregulation can lead to edema or dehydration, with the latter also implicating hemodynamic compromise. Indeed, AQPs are involved in fluid transport in various organs, including the lungs, kidneys, and brain, where their dysfunction can exacerbate conditions like ARDS, acute kidney injury (AKI), or cerebral edema. In this review, we discuss the implication of AQPs in the clinical entities frequently encountered in ICUs, such as systemic inflammation and sepsis, ARDS, AKI, and brain edema due to different types of primary brain injury from a clinical perspective. Current and possible future therapeutic implications are also considered.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Alice G. Vassiliou
- First Department of Critical Care Medicine, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (C.S.V.); (V.I.); (S.K.); (G.P.); (C.K.); (N.S.L.); (A.K.); (S.E.O.); (I.D.)
| |
Collapse
|
6
|
Caviglia A, Espinoza‐Muñoz N, Alvear‐Arias JJ, Galizia L, Guastaferri F, Zimmermann R, Sigaut L, Amodeo G, González C, Ozu M, Garate JA. Membrane tension-dependent conformational change of Isoleucine 106 of loop B diminishes water permeability in FaPIP2;1. Protein Sci 2024; 33:e5204. [PMID: 39565066 PMCID: PMC11577455 DOI: 10.1002/pro.5204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/21/2024]
Abstract
Aquaporins (AQPs) are membrane proteins specialized in facilitating water transport across membranes. Mechanical stress is one of the various stimuli that regulate AQPs. Briefly, there are several studies that report a decrease in permeability upon an increase in membrane tension. However, the molecular details of this mechanosensitive (MS) response are still a matter of debate. Our work attempts to close that gap in knowledge by providing evidence of a conformational change that occurs inside the pore of the strawberry aquaporin FaPIP2;1. Via osmotic shock experiments and molecular dynamics (MD) simulations, we found that a residue of loop B, I106, is key to the blocking of the permeation pathway and such a change is almost exclusively found under membrane tensile stress. In detail, osmotic shock experiments exhibited a nonlinear increment in water fluxes for increasing osmolarities, evidencing a decrease in the FaPIP2;1 permeability. MD simulations under membrane tension showed the same trend, with a significant increase in states with a low water permeability. The latter was correlated with a conformational change in I106 that generates a permeation barrier of around 18 kJ mol-1, effectively closing the pore. This work constitutes the first report of a PIP type aquaporin reacting to tensile stress in the membrane. Our findings could pave the way to test whether this conformational change is also responsible for mechanical gating in the other MS aquaporins, both those already reported and those still waiting to be found.
Collapse
Affiliation(s)
- Agustín Caviglia
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA)Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
| | - Nicolás Espinoza‐Muñoz
- Centro Interdisciplinario de Neurociencias de Valparaíso (CINV)Chile
- Millennium Nucleus in NanoBioPhysics (NNBP)Universidad San SebastiánSantiagoChile
| | - Juan José Alvear‐Arias
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA)Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
- Millennium Nucleus in NanoBioPhysics (NNBP)Universidad San SebastiánSantiagoChile
| | - Luciano Galizia
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA)Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
| | - Florencia Guastaferri
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA)Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
- Present address:
Instituto de Biología Molecular y Celular de Rosario (IBR‐CONICET‐UNR)RosarioArgentina
| | - Rosario Zimmermann
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA)Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
| | - Lorena Sigaut
- Departamento de Física, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Física de Buenos Aires (IFIBA)Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
| | - Gabriela Amodeo
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA)Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
| | - Carlos González
- Millennium Nucleus in NanoBioPhysics (NNBP)Universidad San SebastiánSantiagoChile
- Molecular Bioscience DepartmentUniversity of TexasAustinUSA
| | - Marcelo Ozu
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA)Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
| | - José Antonio Garate
- Millennium Nucleus in NanoBioPhysics (NNBP)Universidad San SebastiánSantiagoChile
- Facultad de Ingeniería, Arquitectura y DiseñoUniversidad San SebastiánChile
- Centro Científico y Tecnológico de ExcelenciaFundacion Ciencia & VidaSantiagoChile
| |
Collapse
|
7
|
Obewhere OA, Acurio-Cerda K, Sutradhar S, Dike M, Keloth R, Dishari SK. Unravel-engineer-design: a three-pronged approach to advance ionomer performance at interfaces in proton exchange membrane fuel cells. Chem Commun (Camb) 2024; 60:13114-13142. [PMID: 39356467 PMCID: PMC11560688 DOI: 10.1039/d4cc03221g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Proton exchange membrane fuel cells (PEMFCs), which use hydrogen as fuel, present an eco-friendly alternative to internal combustion engines (ICEs) for powering low-to-heavy-duty vehicles and various devices. Despite their promise, PEMFCs must meet strict cost, performance, and durability standards to reach their full potential. A key challenge lies in optimizing the electrode, where a thin ionomer layer is responsible for proton conduction and binding catalyst particles to the electrode. Enhancing ion transport within these sub-μm thick films is critical to improving the oxygen reduction reaction (ORR) at the cathodes of PEMFCs. For the past 15 years, our research has targeted this limitation through a comprehensive "Unravel - Engineer - Design" approach. We first unraveled the behavior of ionomers, gaining deeper insights into both the average and distributed proton conduction properties within sub-μm thick films and at interfaces that mimic catalyst binder layers. Next, we engineered ionomer-substrate interfaces to gain control over interfacial makeup and boost proton conductivity, essential for PEMFC efficiency. Finally, we designed novel nature-derived or nature-inspired, fluorine-free ionomers to tackle the ion transport limitations seen in state-of-the-art ionomers under thin-film confinement. Some of these ionomers even pave the way to address cost and sustainability challenges in PEMFC materials. This feature article highlights our contributions and their importance in advancing PEMFCs and other sustainable energy conversion and storage technologies.
Collapse
Affiliation(s)
| | - Karen Acurio-Cerda
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
| | - Sourav Sutradhar
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
| | - Moses Dike
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
| | - Rajesh Keloth
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
| | - Shudipto Konika Dishari
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
| |
Collapse
|
8
|
Chevriau J, De Palma GZ, Jozefkowicz C, Vitali V, Canessa Fortuna A, Ayub N, Soto G, Bienert GP, Zeida A, Alleva K. Permeation mechanisms of hydrogen peroxide and water through Plasma Membrane Intrinsic Protein aquaporins. Biochem J 2024; 481:1329-1347. [PMID: 39136178 DOI: 10.1042/bcj20240310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/26/2024]
Abstract
Hydrogen peroxide (H2O2) transport by aquaporins (AQP) is a critical feature for cellular redox signaling. However, the H2O2 permeation mechanism through these channels remains poorly understood. Through functional assays, two Plasma membrane Intrinsic Protein (PIP) AQP from Medicago truncatula, MtPIP2;2 and MtPIP2;3 have been identified as pH-gated channels capable of facilitating the permeation of both water (H2O) and H2O2. Employing a combination of unbiased and enhanced sampling molecular dynamics simulations, we investigated the key barriers and translocation mechanisms governing H2O2 permeation through these AQP in both open and closed conformational states. Our findings reveal that both H2O and H2O2 encounter their primary permeation barrier within the selectivity filter (SF) region of MtPIP2;3. In addition to the SF barrier, a second energetic barrier at the NPA (asparagine-proline-alanine) region that is more restrictive for the passage of H2O2 than for H2O, was found. This behavior can be attributed to a dissimilar geometric arrangement and hydrogen bonding profile between both molecules in this area. Collectively, these findings suggest mechanistic heterogeneity in H2O and H2O2 permeation through PIPs.
Collapse
Affiliation(s)
- Jonathan Chevriau
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Fisicoquímica Biológica (IQUIFIB), Buenos Aires, Argentina
| | - Gerardo Zerbetto De Palma
- Facultad de Farmacia y Bioquímica, Departamento de Fisicomatemática, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cintia Jozefkowicz
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA) and Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Hurlingham, Argentina
- Instituto de Genética (IGEAF), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Argentina
| | - Victoria Vitali
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Fisicoquímica Biológica (IQUIFIB), Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Departamento de Fisicomatemática, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Agustina Canessa Fortuna
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Fisicoquímica Biológica (IQUIFIB), Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Departamento de Fisicomatemática, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nicolas Ayub
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA) and Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Hurlingham, Argentina
- Instituto de Genética (IGEAF), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Argentina
| | - Gabriela Soto
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA) and Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Hurlingham, Argentina
- Instituto de Genética (IGEAF), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Argentina
| | - Gerd Patrick Bienert
- Crop Physiology, TUM School of Life Sciences, Technical University of Munich, Alte Akademie 12, Freising, Germany
- HEF World Agricultural Systems Center, Technical University of Munich, 85354 Freising, Germany
| | - Ari Zeida
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (Ceinbio), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Karina Alleva
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Fisicoquímica Biológica (IQUIFIB), Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Departamento de Fisicomatemática, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
9
|
Lu N, Liu F. Tempospatially Confined Catalytic Membranes for Advanced Water Remediation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311419. [PMID: 38345861 DOI: 10.1002/adma.202311419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/03/2024] [Indexed: 02/28/2024]
Abstract
The application of homogeneous catalysts in water remediation is limited by their excessive chemical and energy input, weak regenerability, and potential leaching. Heterogeneous catalytic membranes (CMs) offer a new approach to facilitate efficient, selective, and continuous pollutant degradation. Thus, integrating membranes and continuous filtration with heterogeneous advanced oxidation processes (AOPs) can promote thermodynamic and kinetic mass transfers in spatially confined intrapores and facilitate diffusion-reaction processes. Despite the remarkable advantages of heterogeneous CMs, their engineering application is practically restricted due to the fuzzy design criteria for specific applications. Herein, the recent advances in CMs for advanced water remediation are critically reviewed and the design flow for tempospatially confined CMs is proposed. Further, state-of-the-art CM materials and their catalytic mechanisms are reviewed, after which the tempospatial confinement mechanisms comprising the nanoconfinement effect, interface effect, and kinetic mass transfer are emphasized, thus clarifying their roles in the construction and performance optimization of CMs. Additionally, the fabrication methods for CMs based on their catalysts and pore sizes are summarized and an overview of their application and performance evaluations is presented. Finally, future directions for CMs in materials research and water treatment, are presented.
Collapse
Affiliation(s)
- Na Lu
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo, 315201, China
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Fu Liu
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo, 315201, China
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| |
Collapse
|
10
|
Tan H, Duan M, Xie H, Zhao Y, Liu H, Yang M, Liu M, Yang J. Fast collective motions of backbone in transmembrane α helices are critical to water transfer of aquaporin. SCIENCE ADVANCES 2024; 10:eade9520. [PMID: 38718112 PMCID: PMC11078191 DOI: 10.1126/sciadv.ade9520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/04/2024] [Indexed: 05/12/2024]
Abstract
Fast collective motions are widely present in biomolecules, but their functional relevance remains unclear. Herein, we reveal that fast collective motions of backbone are critical to the water transfer of aquaporin Z (AqpZ) by using solid-state nuclear magnetic resonance (ssNMR) spectroscopy and molecular dynamics (MD) simulations. A total of 212 residue site-specific dipolar order parameters and 158 15N spin relaxation rates of the backbone are measured by combining the 13C- and 1H-detected multidimensional ssNMR spectra. Analysis of these experimental data by theoretic models suggests that the small-amplitude (~10°) collective motions of the transmembrane α helices on the nanosecond-to-microsecond timescales are dominant for the dynamics of AqpZ. The MD simulations demonstrate that these collective motions are critical to the water transfer efficiency of AqpZ by facilitating the opening of the channel and accelerating the water-residue hydrogen bonds renewing in the selectivity filter region.
Collapse
Affiliation(s)
- Huan Tan
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Mojie Duan
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Huayong Xie
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Yongxiang Zhao
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Hui Liu
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Minghui Yang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Maili Liu
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Jun Yang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
11
|
Sharma Y, Thakral V, Raturi G, Dutta Dubey K, Sonah H, Pareek A, Sharma TR, Deshmukh R. Structural assessment of OsNIP2;1 highlighted critical residues defining solute specificity and functionality of NIP class aquaporins. J Adv Res 2024; 58:1-11. [PMID: 37164213 PMCID: PMC10982858 DOI: 10.1016/j.jare.2023.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/30/2023] [Accepted: 04/30/2023] [Indexed: 05/12/2023] Open
Abstract
INTRODUCTION Nodulin-26-like intrinsic proteins (NIPs) are integral membrane proteins belonging to the aquaporin family, that facilitate the transport of neutral solutes across the bilayer. The OsNIP2;1 a member of NIP-III class of aquaporins is permeable to beneficial elements like silicon and hazardous arsenic. However, the atomistic cross-talk of these molecules traversing the OsNIP2;1 channel is not well understood. OBJECTIVE Due to the lack of genomic variation but the availability of high confidence crystal structure, this study aims to highlight structural determinants of metalloid permeation through OsNIP2;1. METHODS The molecular simulations, combined with site-directed mutagenesis were used to probe the role of specific residues in the metalloid transport activity of OsNIP2;1. RESULTS We drew energetic landscape of OsNIP2;1, for silicic and arsenous acid transport. Potential Mean Force (PMF) construction illuminate three prominent energetic barriers for metalloid passage through the pore. One corresponds to the extracellular molecular entry in the channel, the second located on ar/R filter, and the third size constriction in the cytoplasmic half. Comparative PMF for silicic acid and arsenous acid elucidate a higher barrier for silicic acid at the cytoplasmic constrict resulting in longer residence time for silicon. Furthermore, our simulation studies explained the importance of conserved residues in loop-C and loop-D with a direct effect on pore dynamics and metalloid transport. Next we assessed contribution of predicted key residues for arsenic uptake, by functional complementation in yeast. With the aim of reducing arsenic uptake while maintaining beneficial elements uptake, we identified novel OsNIP2;1 mutants with substantial reduction in arsenic uptake in yeast. CONCLUSION We provide a comprehensive assessment of pore lining residues of OsNIP2;1 with respect to metalloid uptake. The findings will expand mechanistic understanding of aquaporin's metalloid selectivity and facilitate variant interpretation to develop novel alleles with preference for beneficial metalloid species and reducing hazardous ones.
Collapse
Affiliation(s)
- Yogesh Sharma
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India; Regional Centre for Biotechnology, Faridabad, Haryana (NCR Delhi), India
| | - Vandana Thakral
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India; Department of Biotechnology, Panjab University, Chandigarh, India
| | - Gaurav Raturi
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India; Department of Biotechnology, Panjab University, Chandigarh, India
| | - Kshatresh Dutta Dubey
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institute of Eminence, Gautam Buddha Nagar, Uttar Pradesh, India
| | - Humira Sonah
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India; Department of Biotechnology, Central University of Haryana, Mahendragarh, Haryana, India
| | - Ashwani Pareek
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Tilak Raj Sharma
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India; Indian Council of Agricultural Research, Division of Crop Science, Krishi Bhavan, New Delhi, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India; Plaksha University, Mohali, Punjab, India; Department of Biotechnology, Central University of Haryana, Mahendragarh, Haryana, India.
| |
Collapse
|
12
|
Qin L, Zhou J. Finely tuned water structure and transport in functionalized carbon nanotube membranes during desalination. RSC Adv 2024; 14:10560-10573. [PMID: 38567322 PMCID: PMC10985590 DOI: 10.1039/d4ra01217h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
Molecular dynamics simulations were performed to tune the transport of water molecules in nanostructured membrane in a desalination process. Four armchair-type (7,7), (8,8), (9,9) and (10,10) carbon nanotubes (CNTs) with pore diameters around 1 nm were chosen, their interior surfaces were modified with -OH, -CH3 and -F groups. Simulation results show that water transport in nanochannel depends on confined water structures which could be regulated by precisely controlled channel diameter and chemical functionalization. Increasing CNT diameter changes water structures from single-file-like to be square and hexagonal-like, then into a disordered pattern, resulting in a concave-shaped trend of water permeance. The -OH functional groups promote structural ordering of water molecules in (7,7) CNT, but disrupt water structures in (8,8) and (9,9) CNTs, and reduce the order degree of water molecules in (10,10) CNT, moreover, exert an attraction to enhance surface friction inside channel. The -CH3 groups induce more strictly single-file movement of water molecules in (7,7) CNT, turning water structures in (8,8) and (9,9) CNTs into two and triangular column arrangements, improving water transport, however, causing again square-like water structure in (10,10) CNT. Fluorinations of CNT make water structure more disordered in (7,7), (9,9) and (10,10) CNTs, while enhance the square water structure in (8,8) CNT with a lower water permeance. Through changing channel diameter and functionalization, the low tetrahedral order corresponds to a more single-file-like water structure, associated with rapid water diffusion and high permeability; an increase in tetrahedrality results in more ice-like water structures, lower water diffusion coefficients, and permeability. The results of this study demonstrate that water transport could be finely regulated via a functionalized CNT membrane.
Collapse
Affiliation(s)
- Lanlan Qin
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology Guangzhou 510640 P. R. China
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology Guangzhou 510640 P. R. China
| |
Collapse
|
13
|
Kaneko S, Hirotaka S, Tsujii M, Maruyama H, Uozumi N, Arai F. Instantaneous extracellular solution exchange for concurrent evaluation of membrane permeability of single cells. LAB ON A CHIP 2024; 24:281-291. [PMID: 38086698 DOI: 10.1039/d3lc00633f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The osmotic stress imposed on microorganisms by hypotonic conditions is perceived to regulate water and solute flux via cell membranes, which are crucial for survival. Some cells that fail to perceive osmotic stress die because this results in the rupture of the cell membrane. The flux through the membrane is characterized by the membrane permeability, which is measured using a stopped-flow apparatus in response to a millisecond-order osmolarity change. However, the obtained data are an ensemble average of each cell response. Additionally, the measurement of permeability, considering cellular viability, contributes to a more accurate evaluation of osmoadaptation. Here, we present a novel on-chip instantaneous extracellular solution exchange method using an air-liquid interface. The presented method provides a concurrent evaluation at the single-cell level in response to a millisecond-order osmotic shock, considering cellular viability by solution exchange. This method utilizes a liquid bridge with a locally formed droplet on the surface of a micropillar fabricated inside a microchannel. We evaluated a solution exchange time of 3.6 ms and applied this method to Synechocystis PCC 6803 under two different osmolarity conditions. The live/dead ratio of 1 M to 0.5 M osmotic down shock condition was 78.8/21.2% while that of 1 M to 0.25 M osmotic down shock condition was 40.0/60.0%. We evaluated the water permeability of two groups: cells that were still live before and after osmotic shock (hereafter named cell type 1), and cells that were live before but were dead 10 minutes after osmotic shock (hereafter named cell type 2). The results indicated that the water permeability of cell type 2 was higher than that of cell type 1. The results obtained using the presented methods confirmed that the effect of osmotic stress can be accurately evaluated using single-cell analysis.
Collapse
Affiliation(s)
- Shingo Kaneko
- Department of Mechanical Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Sugiura Hirotaka
- Department of Mechanical Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Masaru Tsujii
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-07, Aobayama, Aoba-ku, Sendai 980-8579, Japan
| | - Hisataka Maruyama
- Department of Micro-Nano Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-07, Aobayama, Aoba-ku, Sendai 980-8579, Japan
| | - Fumihito Arai
- Department of Mechanical Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
14
|
Knyazev DG, Winter L, Vogt A, Posch S, Öztürk Y, Siligan C, Goessweiner-Mohr N, Hagleitner-Ertugrul N, Koch HG, Pohl P. YidC from Escherichia coli Forms an Ion-Conducting Pore upon Activation by Ribosomes. Biomolecules 2023; 13:1774. [PMID: 38136645 PMCID: PMC10741985 DOI: 10.3390/biom13121774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
The universally conserved protein YidC aids in the insertion and folding of transmembrane polypeptides. Supposedly, a charged arginine faces its hydrophobic lipid core, facilitating polypeptide sliding along YidC's surface. How the membrane barrier to other molecules may be maintained is unclear. Here, we show that the purified and reconstituted E. coli YidC forms an ion-conducting transmembrane pore upon ribosome or ribosome-nascent chain complex (RNC) binding. In contrast to monomeric YidC structures, an AlphaFold parallel YidC dimer model harbors a pore. Experimental evidence for a dimeric assembly comes from our BN-PAGE analysis of native vesicles, fluorescence correlation spectroscopy studies, single-molecule fluorescence photobleaching observations, and crosslinking experiments. In the dimeric model, the conserved arginine and other residues interacting with nascent chains point into the putative pore. This result suggests the possibility of a YidC-assisted insertion mode alternative to the insertase mechanism.
Collapse
Affiliation(s)
- Denis G. Knyazev
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, A-4020 Linz, Austria; (D.G.K.); (L.W.); (S.P.); (C.S.); (N.G.-M.); (N.H.-E.)
| | - Lukas Winter
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, A-4020 Linz, Austria; (D.G.K.); (L.W.); (S.P.); (C.S.); (N.G.-M.); (N.H.-E.)
| | - Andreas Vogt
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert Ludwig University of Freiburg, 79104 Freiburg, Germany (Y.Ö.); (H.-G.K.)
- Spemann-Graduate School of Biology and Medicine (SGBM), Albert Ludwig University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, Albert Ludwig University of Freiburg, 79104 Freiburg, Germany
| | - Sandra Posch
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, A-4020 Linz, Austria; (D.G.K.); (L.W.); (S.P.); (C.S.); (N.G.-M.); (N.H.-E.)
| | - Yavuz Öztürk
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert Ludwig University of Freiburg, 79104 Freiburg, Germany (Y.Ö.); (H.-G.K.)
| | - Christine Siligan
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, A-4020 Linz, Austria; (D.G.K.); (L.W.); (S.P.); (C.S.); (N.G.-M.); (N.H.-E.)
| | - Nikolaus Goessweiner-Mohr
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, A-4020 Linz, Austria; (D.G.K.); (L.W.); (S.P.); (C.S.); (N.G.-M.); (N.H.-E.)
| | - Nora Hagleitner-Ertugrul
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, A-4020 Linz, Austria; (D.G.K.); (L.W.); (S.P.); (C.S.); (N.G.-M.); (N.H.-E.)
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert Ludwig University of Freiburg, 79104 Freiburg, Germany (Y.Ö.); (H.-G.K.)
- Spemann-Graduate School of Biology and Medicine (SGBM), Albert Ludwig University of Freiburg, 79104 Freiburg, Germany
| | - Peter Pohl
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, A-4020 Linz, Austria; (D.G.K.); (L.W.); (S.P.); (C.S.); (N.G.-M.); (N.H.-E.)
| |
Collapse
|
15
|
Zhang J, Pei R, Tan J, Ni Z, Ye S, Luo Y. Visualizing Water Monomers and Chiral OH -(H 2O) Complexes Infiltrated in a Macroscopic Hydrophobic Teflon Matrix. J Am Chem Soc 2023. [PMID: 38048434 DOI: 10.1021/jacs.3c09950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Insights into the interaction of fluoroalkyl groups with water are crucial to understanding the polar hydrophobicity of fluorinated compounds, such as Teflon. While an ordered hydrophobic-like 2D water layer has been demonstrated to be present on the surface of macroscopically hydrophobic fluorinated polymers, little is known about how the water infiltrates into the Teflon and what is the molecular structure of the water infiltrated into the Teflon. Using highly sensitive femtosecond sum frequency generation vibrational spectroscopy (SFG-VS), we observe for the first time that monomeric H2O and chiral OH-(H2O) complexes are present in macroscopically hydrophobic Teflon. The species are inhomogeneously distributed inside the Teflon matrix and at the Teflon surface. No water clusters or single-file water "wires" are observed in the matrix. SFG free induction decay (SFG-FID) experiments demonstrate that the OH oscillators of physically absorbed molecular water at the surface dephase on the time scale of <230 fs, whereas the water monomers and hydrated hydroxide ions infiltrated in the Teflon matrix dephase much more slowly (680-830 fs), indicating that the embedded monomeric H2O and OH-(H2O) complexes are decoupled from the outer environment. Our findings can well interpret ultrafast water permeation through fluorous nanochannels and the charging mechanism of Teflon, which may tailor the desired applications of organofluorines.
Collapse
Affiliation(s)
- Jiahui Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Ruoqi Pei
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Junjun Tan
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Zijian Ni
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Yi Luo
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| |
Collapse
|
16
|
Ozu M, Galizia L, Alvear-Arias JJ, Fernández M, Caviglia A, Zimmermann R, Guastaferri F, Espinoza-Muñoz N, Sutka M, Sigaut L, Pietrasanta LI, González C, Amodeo G, Garate JA. Mechanosensitive aquaporins. Biophys Rev 2023; 15:497-513. [PMID: 37681084 PMCID: PMC10480384 DOI: 10.1007/s12551-023-01098-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/04/2023] [Indexed: 09/09/2023] Open
Abstract
Cellular systems must deal with mechanical forces to satisfy their physiological functions. In this context, proteins with mechanosensitive properties play a crucial role in sensing and responding to environmental changes. The discovery of aquaporins (AQPs) marked a significant breakthrough in the study of water transport. Their transport capacity and regulation features make them key players in cellular processes. To date, few AQPs have been reported to be mechanosensitive. Like mechanosensitive ion channels, AQPs respond to tension changes in the same range. However, unlike ion channels, the aquaporin's transport rate decreases as tension increases, and the molecular features of the mechanism are unknown. Nevertheless, some clues from mechanosensitive ion channels shed light on the AQP-membrane interaction. The GxxxG motif may play a critical role in the water permeation process associated with structural features in AQPs. Consequently, a possible gating mechanism triggered by membrane tension changes would involve a conformational change in the cytoplasmic extreme of the single file region of the water pathway, where glycine and histidine residues from loop B play a key role. In view of their transport capacity and their involvement in relevant processes related to mechanical forces, mechanosensitive AQPs are a fundamental piece of the puzzle for understanding cellular responses.
Collapse
Affiliation(s)
- Marcelo Ozu
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Luciano Galizia
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Juan José Alvear-Arias
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, 2360102 Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Santiago, Chile
| | - Miguel Fernández
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, 2360102 Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Santiago, Chile
| | - Agustín Caviglia
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Rosario Zimmermann
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Florencia Guastaferri
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Present Address: Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Rosario, Argentina
| | - Nicolás Espinoza-Muñoz
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, 2360102 Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Santiago, Chile
| | - Moira Sutka
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lorena Sigaut
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Buenos Aires, Argentina
- Instituto de Física de Buenos Aires (IFIBA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lía Isabel Pietrasanta
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Buenos Aires, Argentina
- Instituto de Física de Buenos Aires (IFIBA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Carlos González
- Millennium Nucleus in NanoBioPhysics, Santiago, Chile
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136 USA
- Present Address: Molecular Bioscience Department, University of Texas, Austin, TX 78712 USA
| | - Gabriela Amodeo
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - José Antonio Garate
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, 2360102 Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Santiago, Chile
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia y Vida, Universidad San Sebastián, 7750000 Santiago, Chile
| |
Collapse
|
17
|
Afshinpour M, Parsi P, Mahdiuni H. Investigation of molecular details of a bacterial cationic amino acid transporter (GkApcT) during arginine transportation using molecular dynamics simulation and umbrella sampling techniques. J Mol Model 2023; 29:260. [PMID: 37479900 DOI: 10.1007/s00894-023-05670-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
CONTEXT Cationic amino acid transporters (CATs) facilitate arginine transport across membranes and maintain its levels in various tissues and organs, but their overexpression has been associated with severe cancers. A recent study identified the alternating access mechanism and critical residues involved in arginine transportation in a cationic amino acid transporter from Geobacillus kaustophilus (GkApcT). Here, we used molecular dynamics (MD) simulation methods to investigate the transportation mechanism of arginine (Arg) through GkApcT. The results revealed that arginine strongly interacts with specific binding site residues (Thr43, Asp111, Glu115, Lys191, Phe231, Ile234, and Asp237). Based on the umbrella sampling, the main driving force for arginine transport is the polar interactions of the arginine with channel-lining residues. An in-depth description of the dissociation mechanism and binding energy analysis brings valuable insight into the interactions between arginine and transporter residues, facilitating the design of effective CAT inhibitors in cancer cells. METHODS The membrane-protein system was constructed by uploading the prokaryotic CAT (PDB ID: 6F34) to the CHARMM-GUI web server. Molecular dynamics simulations were done using the GROMACS package, version 5.1.4, with the CHARMM36 force field and TIP3P water model. The MM-PBSA approach was performed for determining the arginine binding free energy. Furthermore, the hotspot residues were identified through per-residue decomposition analysis. The characteristics of the channel such as bottleneck radius and channel length were analyzed using the CaverWeb 1.1 web server. The proton wire inside the transporter was investigated based on the classic Grotthuss mechanism. We also investigated the atomistic details of arginine transportation using the path-based free energy umbrella sampling technique (US).
Collapse
Affiliation(s)
- Maral Afshinpour
- Bioinformatics Lab, Department of Biology, School of Sciences, Razi University, P.O. Box, Kermanshah, 67149-67346, Iran
- Department of Chemistry and Biochemistry, South Dakota State University (SDSU), Brookings, SD, USA
| | - Parinaz Parsi
- Bioinformatics Lab, Department of Biology, School of Sciences, Razi University, P.O. Box, Kermanshah, 67149-67346, Iran
| | - Hamid Mahdiuni
- Bioinformatics Lab, Department of Biology, School of Sciences, Razi University, P.O. Box, Kermanshah, 67149-67346, Iran.
| |
Collapse
|
18
|
Wachlmayr J, Fläschner G, Pluhackova K, Sandtner W, Siligan C, Horner A. Entropic barrier of water permeation through single-file channels. Commun Chem 2023; 6:135. [PMID: 37386127 PMCID: PMC10310842 DOI: 10.1038/s42004-023-00919-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 06/02/2023] [Indexed: 07/01/2023] Open
Abstract
Facilitated water permeation through narrow biological channels is fundamental for all forms of life. Despite its significance in health and disease as well as for biotechnological applications, the energetics of water permeation are still elusive. Gibbs free energy of activation is composed of an enthalpic and an entropic component. Whereas the enthalpic contribution is readily accessible via temperature dependent water permeability measurements, estimation of the entropic contribution requires information on the temperature dependence of the rate of water permeation. Here, we estimate, by means of accurate activation energy measurements of water permeation through Aquaporin-1 and by determining the accurate single channel permeability, the entropic barrier of water permeation through a narrow biological channel. Thereby the calculated value for [Formula: see text] = 2.01 ± 0.82 J/(mol·K) links the activation energy of 3.75 ± 0.16 kcal/mol with its efficient water conduction rate of ~1010 water molecules/second. This is a first step in understanding the energetic contributions in various biological and artificial channels exhibiting vastly different pore geometries.
Collapse
Affiliation(s)
- Johann Wachlmayr
- Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Gotthold Fläschner
- Department of Biosystems Science and Engineering, Eidgenössiche Technische Hochschule (ETH) Zürich, Basel, Switzerland
| | - Kristyna Pluhackova
- Stuttgart Center for Simulation Science, Cluster of Excellence EXC 2075, University of Stuttgart, Universitätsstr. 32, 70569, Stuttgart, Germany
| | - Walter Sandtner
- Center of Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Schwarzspanierstr. 17A, 1090, Vienna, Austria
| | - Christine Siligan
- Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Andreas Horner
- Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria.
| |
Collapse
|
19
|
Arai N, Yamamoto E, Koishi T, Hirano Y, Yasuoka K, Ebisuzaki T. Wetting hysteresis induces effective unidirectional water transport through a fluctuating nanochannel. NANOSCALE HORIZONS 2023; 8:652-661. [PMID: 36883765 DOI: 10.1039/d2nh00563h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We propose a water pump that actively transports water molecules through nanochannels. Spatially asymmetric noise fluctuations imposed on the channel radius cause unidirectional water flow without osmotic pressure, which can be attributed to hysteresis in the cyclic transition between the wetting/drying states. We show that the water transport depends on fluctuations, such as white, Brownian, and pink noises. Because of the high-frequency components in white noise, fast switching of open and closed states inhibits channel wetting. Conversely, pink and Brownian noises generate high-pass filtered net flow. Brownian fluctuation leads to a faster water transport rate, whereas pink noise has a higher capability to overcome pressure differences in the opposite direction. A trade-off relationship exists between the resonant frequency of the fluctuation and the flow amplification. The proposed pump can be considered as an analogy for the reversed Carnot cycle, which is the upper limit of the energy conversion efficiency.
Collapse
Affiliation(s)
- Noriyoshi Arai
- Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Japan.
- Computational Astrophysics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | - Eiji Yamamoto
- Department of System Design Engineering, Keio University, Yokohama, 223-8522, Japan
| | - Takahiro Koishi
- Department of Applied Physics, University of Fukui, Bunkyo, Fukui 910-8507, Japan
| | - Yoshinori Hirano
- Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Japan.
| | - Kenji Yasuoka
- Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Japan.
| | | |
Collapse
|
20
|
Surya W, Yong CPY, Tyagi A, Bhushan S, Torres J. Anomalous Oligomerization Behavior of E. coli Aquaporin Z in Detergent and in Nanodiscs. Int J Mol Sci 2023; 24:ijms24098098. [PMID: 37175807 PMCID: PMC10178869 DOI: 10.3390/ijms24098098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Aquaporins are tetrameric integral membrane proteins that act as water channels, and can also permeabilize membranes to other solutes. The monomer appears to be the functional form despite all aquaporins being organized as tetramers, which therefore must provide a clear functional advantage. In addition to this quaternary organization, some aquaporins can act as adhesion molecules in membrane junctions, when tetramers located in opposing membranes interact via their extracellular domains. These stacked forms have been observed in a range of aquaporins, whether using lipidic membrane environments, in electron crystallography, or using detergent micelles, in single-particle cryo-electron microscopy (cryo-EM). In the latter technique, structural studies can be performed when the aquaporin is reconstituted into nanodiscs of lipids that are surrounded by a protein scaffold. During attempts to study E. coli Aquaporin Z (AqpZ), we have found that in some conditions these nanodiscs tend to form filaments that appear to be either thicker head-to-tail or thinner side-to-side stacks of nanodiscs. Nanodisc oligomerization was observed using orthogonal analytical techniques analytical ultra-centrifugation and mass photometry, although the nature of the oligomers (head-to-tail or side-to-side) could not be determined. Using the latter technique, the AqpZ tetramer itself formed oligomers of increasing size when solubilized only in detergent, which is consistent with multiple stacking of AqpZ tetramers. We observed images consistent with both of these filaments in negative staining EM conditions, but only thicker filaments in cryo-EM conditions. We hypothesize that the apparent nanodisc side-to-side arrangement that can only be visualized in negative staining conditions is related to artifacts due to the sample preparation. Filaments of any kind were not observed in EM when nanodiscs did not contain AqpZ, or after addition of detergent into the nanodisc cryo-EM preparation, at concentrations that did not disrupt nanodisc formation. To our knowledge, these filaments have not been observed in nanodiscs preparations of other membrane proteins. AqpZ, like other aquaporins has a charge asymmetry between the cytoplasmic (more positive) and the extracellular sides, which may explain the likely head-to-tail stacking observed, both in nanodisc preparations and also in detergent micelles.
Collapse
Affiliation(s)
- Wahyu Surya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Clare Pei Yii Yong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Anu Tyagi
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Shashi Bhushan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Jaume Torres
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
21
|
Boytsov D, Brescia S, Chaves G, Koefler S, Hannesschlaeger C, Siligan C, Goessweiner-Mohr N, Musset B, Pohl P. Trapped Pore Waters in the Open Proton Channel H V 1. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205968. [PMID: 36683221 DOI: 10.1002/smll.202205968] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/13/2022] [Indexed: 06/17/2023]
Abstract
The voltage-gated proton channel, HV 1, is crucial for innate immune responses. According to alternative hypotheses, protons either hop on top of an uninterrupted water wire or bypass titratable amino acids, interrupting the water wire halfway across the membrane. To distinguish between both hypotheses, the water mobility for the putative case of an uninterrupted wire is estimated. The predicted single-channel water permeability 2.3 × 10-12 cm3 s-1 reflects the permeability-governing number of hydrogen bonds between water molecules in single-file configuration and pore residues. However, the measured unitary water permeability does not confirm the predicted value. Osmotic deflation of reconstituted lipid vesicles reveals negligible water permeability of the HV 1 wild-type channel and the D174A mutant open at 0 mV. The conductance of 1400 H+ s-1 per wild-type channel agrees with the calculated diffusion limit for a ≈2 Å capture radius for protons. Removal of a charged amino acid (D174) at the pore mouth decreases H+ conductance by reducing the capture radius. At least one intervening amino acid contributes to H+ conductance while interrupting the water wire across the membrane.
Collapse
Affiliation(s)
- Danila Boytsov
- Institute of Biophysics, Johannes Kepler University, 4020 Linz, 40, Gruberstr, Austria
| | - Stefania Brescia
- Institute of Biophysics, Johannes Kepler University, 4020 Linz, 40, Gruberstr, Austria
| | - Gustavo Chaves
- Institute of Physiology, Pathophysiology and Biophysics, CPPB, Paracelsus Medical University, 90419, Nuremberg, Germany
| | - Sabina Koefler
- Institute of Biophysics, Johannes Kepler University, 4020 Linz, 40, Gruberstr, Austria
| | | | - Christine Siligan
- Institute of Biophysics, Johannes Kepler University, 4020 Linz, 40, Gruberstr, Austria
| | | | - Boris Musset
- Institute of Physiology, Pathophysiology and Biophysics, CPPB, Paracelsus Medical University, 90419, Nuremberg, Germany
| | - Peter Pohl
- Institute of Biophysics, Johannes Kepler University, 4020 Linz, 40, Gruberstr, Austria
| |
Collapse
|
22
|
Aluru NR, Aydin F, Bazant MZ, Blankschtein D, Brozena AH, de Souza JP, Elimelech M, Faucher S, Fourkas JT, Koman VB, Kuehne M, Kulik HJ, Li HK, Li Y, Li Z, Majumdar A, Martis J, Misra RP, Noy A, Pham TA, Qu H, Rayabharam A, Reed MA, Ritt CL, Schwegler E, Siwy Z, Strano MS, Wang Y, Yao YC, Zhan C, Zhang Z. Fluids and Electrolytes under Confinement in Single-Digit Nanopores. Chem Rev 2023; 123:2737-2831. [PMID: 36898130 PMCID: PMC10037271 DOI: 10.1021/acs.chemrev.2c00155] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Confined fluids and electrolyte solutions in nanopores exhibit rich and surprising physics and chemistry that impact the mass transport and energy efficiency in many important natural systems and industrial applications. Existing theories often fail to predict the exotic effects observed in the narrowest of such pores, called single-digit nanopores (SDNs), which have diameters or conduit widths of less than 10 nm, and have only recently become accessible for experimental measurements. What SDNs reveal has been surprising, including a rapidly increasing number of examples such as extraordinarily fast water transport, distorted fluid-phase boundaries, strong ion-correlation and quantum effects, and dielectric anomalies that are not observed in larger pores. Exploiting these effects presents myriad opportunities in both basic and applied research that stand to impact a host of new technologies at the water-energy nexus, from new membranes for precise separations and water purification to new gas permeable materials for water electrolyzers and energy-storage devices. SDNs also present unique opportunities to achieve ultrasensitive and selective chemical sensing at the single-ion and single-molecule limit. In this review article, we summarize the progress on nanofluidics of SDNs, with a focus on the confinement effects that arise in these extremely narrow nanopores. The recent development of precision model systems, transformative experimental tools, and multiscale theories that have played enabling roles in advancing this frontier are reviewed. We also identify new knowledge gaps in our understanding of nanofluidic transport and provide an outlook for the future challenges and opportunities at this rapidly advancing frontier.
Collapse
Affiliation(s)
- Narayana R Aluru
- Oden Institute for Computational Engineering and Sciences, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, 78712TexasUnited States
| | - Fikret Aydin
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Daniel Blankschtein
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Alexandra H Brozena
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
| | - J Pedro de Souza
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut06520-8286, United States
| | - Samuel Faucher
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - John T Fourkas
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland20742, United States
- Maryland NanoCenter, University of Maryland, College Park, Maryland20742, United States
| | - Volodymyr B Koman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Matthias Kuehne
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Hao-Kun Li
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| | - Yuhao Li
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Zhongwu Li
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Arun Majumdar
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| | - Joel Martis
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| | - Rahul Prasanna Misra
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Aleksandr Noy
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
- School of Natural Sciences, University of California Merced, Merced, California95344, United States
| | - Tuan Anh Pham
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Haoran Qu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
| | - Archith Rayabharam
- Oden Institute for Computational Engineering and Sciences, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, 78712TexasUnited States
| | - Mark A Reed
- Department of Electrical Engineering, Yale University, 15 Prospect Street, New Haven, Connecticut06520, United States
| | - Cody L Ritt
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut06520-8286, United States
| | - Eric Schwegler
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Zuzanna Siwy
- Department of Physics and Astronomy, Department of Chemistry, Department of Biomedical Engineering, University of California, Irvine, Irvine92697, United States
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
- Maryland NanoCenter, University of Maryland, College Park, Maryland20742, United States
| | - Yun-Chiao Yao
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
- School of Natural Sciences, University of California Merced, Merced, California95344, United States
| | - Cheng Zhan
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Ze Zhang
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| |
Collapse
|
23
|
Pfeffermann J, Pohl P. Tutorial for Stopped-Flow Water Flux Measurements: Why a Report about "Ultrafast Water Permeation through Nanochannels with a Densely Fluorous Interior Surface" Is Flawed. Biomolecules 2023; 13:431. [PMID: 36979366 PMCID: PMC10046062 DOI: 10.3390/biom13030431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/02/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
Millions of years of evolution have produced proteinaceous water channels (aquaporins) that combine perfect selectivity with a transport rate at the edge of the diffusion limit. However, Itoh et al. recently claimed in Science that artificial channels are 100 times faster and almost as selective. The published deflation kinetics of vesicles containing channels or channel elements indicate otherwise, since they do not demonstrate the facilitation of water transport. In an illustrated tutorial on the experimental basis of stopped-flow measurements, we point out flaws in data processing. In contrast to the assumption voiced in Science, individual vesicles cannot simultaneously shrink with two different kinetics. Moreover, vesicle deflation within the dead time of the instrument cannot be detected. Since flawed reports of ultrafast water channels in Science are not a one-hit-wonder as evidenced by a 2018 commentary by Horner and Pohl in Science, we further discuss the achievable limits of single-channel water permeability. After analyzing (i) diffusion limits for permeation through narrow channels and (ii) hydrodynamics in the surrounding reservoirs, we conclude that it is unlikely to fundamentally exceed the evolutionarily optimized water-channeling performance of the fastest aquaporins while maintaining near-perfect selectivity.
Collapse
Affiliation(s)
| | - Peter Pohl
- Institute of Biophysics, Johannes Kepler University, Gruberstraße 40, 4020 Linz, Austria
| |
Collapse
|
24
|
Groszmann M, De Rosa A, Chen W, Qiu J, McGaughey SA, Byrt CS, Evans JR. A high-throughput yeast approach to characterize aquaporin permeabilities: Profiling the Arabidopsis PIP aquaporin sub-family. FRONTIERS IN PLANT SCIENCE 2023; 14:1078220. [PMID: 36760647 PMCID: PMC9907170 DOI: 10.3389/fpls.2023.1078220] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Engineering membrane transporters to achieve desired functionality is reliant on availability of experimental data informing structure-function relationships and intelligent design. Plant aquaporin (AQP) isoforms are capable of transporting diverse substrates such as signaling molecules, nutrients, metalloids, and gases, as well as water. AQPs can act as multifunctional channels and their transport function is reliant on many factors, with few studies having assessed transport function of specific isoforms for multiple substrates. METHODS High-throughput yeast assays were developed to screen for transport function of plant AQPs, providing a platform for fast data generation and cataloguing of substrate transport profiles. We applied our high-throughput growth-based yeast assays to screen all 13 Arabidopsis PIPs (AtPIPs) for transport of water and several neutral solutes: hydrogen peroxide (H2O2), boric acid (BA), and urea. Sodium (Na+) transport was assessed using elemental analysis techniques. RESULTS All AtPIPs facilitated water and H2O2 transport, although their growth phenotypes varied, and none were candidates for urea transport. For BA and Na+ transport, AtPIP2;2 and AtPIP2;7 were the top candidates, with yeast expressing these isoforms having the most pronounced toxicity response to BA exposure and accumulating the highest amounts of Na+. Linking putative AtPIP isoform substrate transport profiles with phylogenetics and gene expression data, enabled us to align possible substrate preferences with known and hypothesized biological roles of AtPIPs. DISCUSSION This testing framework enables efficient cataloguing of putative transport functionality of diverse AQPs at a scale that can help accelerate our understanding of AQP biology through big data approaches (e.g. association studies). The principles of the individual assays could be further adapted to test additional substrates. Data generated from this framework could inform future testing of AQP physiological roles, and address knowledge gaps in structure-function relationships to improve engineering efforts.
Collapse
Affiliation(s)
- Michael Groszmann
- Australian Research Council (ARC) Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Annamaria De Rosa
- Australian Research Council (ARC) Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Weihua Chen
- Australian Research Council (ARC) Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Jiaen Qiu
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
| | - Samantha A. McGaughey
- Australian Research Council (ARC) Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Caitlin S. Byrt
- Australian Research Council (ARC) Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - John R. Evans
- Australian Research Council (ARC) Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
25
|
Sokolov SS, Popova MM, Pohl P, Horner A, Akimov SA, Kireeva NA, Knorre DA, Batishchev OV, Severin FF. Structural Role of Plasma Membrane Sterols in Osmotic Stress Tolerance of Yeast Saccharomyces cerevisiae. MEMBRANES 2022; 12:1278. [PMID: 36557185 PMCID: PMC9781751 DOI: 10.3390/membranes12121278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Yeast S. cerevisiae has been shown to suppress a sterol biosynthesis as a response to hyperosmotic stress. In the case of sodium stress, the failure to suppress biosynthesis leads to an increase in cytosolic sodium. The major yeast sterol, ergosterol, is known to regulate functioning of plasma membrane proteins. Therefore, it has been suggested that the suppression of its biosynthesis is needed to adjust the activity of the plasma membrane sodium pumps and channels. However, as the sterol concentration is in the range of thirty to forty percent of total plasma membrane lipids, it is believed that its primary biological role is not regulatory but structural. Here we studied how lowering the sterol content affects the response of a lipid bilayer to an osmotic stress. In accordance with previous observations, we found that a decrease of the sterol fraction increases a water permeability of the liposomal membranes. Yet, we also found that sterol-free giant unilamellar vesicles reduced their volume during transient application of the hyperosmotic stress to a greater extent than the sterol-rich ones. Furthermore, our data suggest that lowering the sterol content in yeast cells allows the shrinkage to prevent the osmotic pressure-induced plasma membrane rupture. We also found that mutant yeast cells with the elevated level of sterol accumulated propidium iodide when exposed to mild hyperosmotic conditions followed by hypoosmotic stress. It is likely that the decrease in a plasma membrane sterol content stimulates a drop in cell volume under hyperosmotic stress, which is beneficial in the case of a subsequent hypo-osmotic one.
Collapse
Affiliation(s)
- Svyatoslav S. Sokolov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskie Gory, 119991 Moscow, Russia
| | - Marina M. Popova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiyprospekt, 119071 Moscow, Russia
| | - Peter Pohl
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstraße 40, 4020 Linz, Austria
| | - Andreas Horner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstraße 40, 4020 Linz, Austria
| | - Sergey A. Akimov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiyprospekt, 119071 Moscow, Russia
| | - Natalia A. Kireeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskie Gory, 119991 Moscow, Russia
| | - Dmitry A. Knorre
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskie Gory, 119991 Moscow, Russia
| | - Oleg V. Batishchev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiyprospekt, 119071 Moscow, Russia
| | - Fedor F. Severin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskie Gory, 119991 Moscow, Russia
| |
Collapse
|
26
|
Biophysical quantification of unitary solute and solvent permeabilities to enable translation to membrane science. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
27
|
Constructing semi-oriented single-walled carbon nanotubes artificial water channels for realized efficient desalination of nanocomposite RO membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Ozu M, Alvear-Arias JJ, Fernandez M, Caviglia A, Peña-Pichicoi A, Carrillo C, Carmona E, Otero-Gonzalez A, Garate JA, Amodeo G, Gonzalez C. Aquaporin Gating: A New Twist to Unravel Permeation through Water Channels. Int J Mol Sci 2022; 23:12317. [PMID: 36293170 PMCID: PMC9604103 DOI: 10.3390/ijms232012317] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
Aquaporins (AQPs) are small transmembrane tetrameric proteins that facilitate water, solute and gas exchange. Their presence has been extensively reported in the biological membranes of almost all living organisms. Although their discovery is much more recent than ion transport systems, different biophysical approaches have contributed to confirm that permeation through each monomer is consistent with closed and open states, introducing the term gating mechanism into the field. The study of AQPs in their native membrane or overexpressed in heterologous systems have experimentally demonstrated that water membrane permeability can be reversibly modified in response to specific modulators. For some regulation mechanisms, such as pH changes, evidence for gating is also supported by high-resolution structures of the water channel in different configurations as well as molecular dynamics simulation. Both experimental and simulation approaches sustain that the rearrangement of conserved residues contributes to occlude the cavity of the channel restricting water permeation. Interestingly, specific charged and conserved residues are present in the environment of the pore and, thus, the tetrameric structure can be subjected to alter the positions of these charges to sustain gating. Thus, is it possible to explore whether the displacement of these charges (gating current) leads to conformational changes? To our knowledge, this question has not yet been addressed at all. In this review, we intend to analyze the suitability of this proposal for the first time.
Collapse
Affiliation(s)
- Marcelo Ozu
- Department of Biodiversity and Experimental Biology, Faculty of Exact & Natural Sciences, University of Buenos Aires, Buenos Aires C1053, Argentina
- CONICET—Institute of Biodiversity and Experimental and Applied Biology CONICET (IBBEA), University of Buenos Aires, Buenos Aires C1053, Argentina
| | - Juan José Alvear-Arias
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, Valparaíso 2360102, Chile
- Millennium Nucleus in NanoBioPhysics, Scientific and Technologic Center of Excellence of Science and Life, Santiago 7750000, Chile
| | - Miguel Fernandez
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, Valparaíso 2360102, Chile
- Millennium Nucleus in NanoBioPhysics, Scientific and Technologic Center of Excellence of Science and Life, Santiago 7750000, Chile
| | - Agustín Caviglia
- CONICET—Institute of Biodiversity and Experimental and Applied Biology CONICET (IBBEA), University of Buenos Aires, Buenos Aires C1053, Argentina
| | - Antonio Peña-Pichicoi
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, Valparaíso 2360102, Chile
- Millennium Nucleus in NanoBioPhysics, Scientific and Technologic Center of Excellence of Science and Life, Santiago 7750000, Chile
| | - Christian Carrillo
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, Valparaíso 2360102, Chile
- Millennium Nucleus in NanoBioPhysics, Scientific and Technologic Center of Excellence of Science and Life, Santiago 7750000, Chile
| | - Emerson Carmona
- Cell Physiology and Molecular Biophysics Department and the Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Anselmo Otero-Gonzalez
- Center of Protein Study, Faculty of Biology, University of Havana, La Habana 10400, Cuba
| | - José Antonio Garate
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, Valparaíso 2360102, Chile
- Millennium Nucleus in NanoBioPhysics, Scientific and Technologic Center of Excellence of Science and Life, Santiago 7750000, Chile
- Faculty of Engineering and Technology, University of San Sebastian, Santiago 8420524, Chile
| | - Gabriela Amodeo
- Department of Biodiversity and Experimental Biology, Faculty of Exact & Natural Sciences, University of Buenos Aires, Buenos Aires C1053, Argentina
- CONICET—Institute of Biodiversity and Experimental and Applied Biology CONICET (IBBEA), University of Buenos Aires, Buenos Aires C1053, Argentina
| | - Carlos Gonzalez
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, Valparaíso 2360102, Chile
- Millennium Nucleus in NanoBioPhysics, Scientific and Technologic Center of Excellence of Science and Life, Santiago 7750000, Chile
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
29
|
Pluhackova K, Schittny V, Bürkner P, Siligan C, Horner A. Multiple pore lining residues modulate water permeability of GlpF. Protein Sci 2022; 31:e4431. [PMID: 36173178 PMCID: PMC9490802 DOI: 10.1002/pro.4431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/11/2022]
Abstract
The water permeability of aquaporins (AQPs) varies by more than an order of magnitude even though the pore structure, geometry, as well as the channel lining residues are highly conserved. However, channel gating by pH, divalent ions or phosphorylation was only shown for a minority of AQPs. Structural and in silico indications of water flux modulation by flexible side chains of channel lining residues have not been experimentally confirmed yet. Hence, the aquaporin "open state" is still considered to be a continuously open pore with water molecules permeating in a single-file fashion. Using protein mutations outside the selectivity filter in the aqua(glycerol)facilitator GlpF of Escherichia coli we, to the best of our knowledge, for the first time, modulate the position of the highly conserved Arg in the selectivity filter. This in turn enhances or reduces the unitary water permeability of GlpF as shown in silico by molecular dynamics (MD) simulations and in vitro with purified and reconstituted GlpF. This finding suggests that AQP water permeability can indeed be regulated by lipid bilayer asymmetry and the transmembrane potential. Strikingly, our long-term MD simulations reveal that not only the conserved Arg in the selectivity filter, but the position and dynamics of multiple other pore lining residues modulate water passage through GlpF. This finding is expected to trigger a wealth of future investigations on permeability and regulation of AQPs among others with the aim to tune water permeability for biotechnological applications.
Collapse
Affiliation(s)
- Kristyna Pluhackova
- Stuttgart Center for Simulation Science, Cluster of Excellence EXC 2075University of StuttgartStuttgartGermany
| | - Valentin Schittny
- Department of Biosystems Science and EngineeringEidgenössische Technische Hochschule (ETH) ZurichBaselSwitzerland
| | - Paul‐Christian Bürkner
- Stuttgart Center for Simulation Science, Cluster of Excellence EXC 2075University of StuttgartStuttgartGermany
| | | | - Andreas Horner
- Institute of BiophysicsJohannes Kepler UniversityLinzAustria
| |
Collapse
|
30
|
Song W, Kumar M. Beyond Aquaporins: Recent Developments in Artificial Water Channels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9085-9091. [PMID: 35862878 DOI: 10.1021/acs.langmuir.2c01605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A molecular scale understanding of the fast and selective water transport in biological water channels, aquaporins (AQPs), has inspired attempts to mimic its performance in synthetic structures. These synthetic structures, referred to as artificial water channels (AWCs), present several advantages over AQPs in applications. After over a decade of efforts, the unique transport properties of AQPs have been reproduced in AWCs. Further, recent developments have shown that the performance of benchmark AQP channels can be exceeded by new AWC designs using novel features not seen in biology. In this Perspective, we provide a brief overview of recent AWC developments, and share our perspective on forward-looking AWC research.
Collapse
Affiliation(s)
- Woochul Song
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Manish Kumar
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
31
|
Gössweiner-Mohr N, Siligan C, Pluhackova K, Umlandt L, Koefler S, Trajkovska N, Horner A. The Hidden Intricacies of Aquaporins: Remarkable Details in a Common Structural Scaffold. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202056. [PMID: 35802902 DOI: 10.1002/smll.202202056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Evolution turned aquaporins (AQPs) into the most efficient facilitators of passive water flow through cell membranes at no expense of solute discrimination. In spite of a plethora of solved AQP structures, many structural details remain hidden. Here, by combining extensive sequence- and structural-based analysis of a unique set of 20 non-redundant high-resolution structures and molecular dynamics simulations of four representatives, key aspects of AQP stability, gating, selectivity, pore geometry, and oligomerization, with a potential impact on channel functionality, are identified. The general view of AQPs possessing a continuous open water pore is challenged and it is depicted that AQPs' selectivity is not exclusively shaped by pore-lining residues but also by the relative arrangement of transmembrane helices. Moreover, this analysis reveals that hydrophobic interactions constitute the main determinant of protein thermal stability. Finally, a numbering scheme of the conserved AQP scaffold is established, facilitating direct comparison of, for example, disease-causing mutations and prediction of potential structural consequences. Additionally, the results pave the way for the design of optimized AQP water channels to be utilized in biotechnological applications.
Collapse
Affiliation(s)
| | - Christine Siligan
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, Linz, 4020, Austria
| | - Kristyna Pluhackova
- Stuttgart Center for Simulation Science, University of Stuttgart, Cluster of Excellence EXC 2075, Universitätsstr. 32, 70569, Stuttgart, Germany
| | - Linnea Umlandt
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, Linz, 4020, Austria
| | - Sabina Koefler
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, Linz, 4020, Austria
| | - Natasha Trajkovska
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, Linz, 4020, Austria
| | - Andreas Horner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, Linz, 4020, Austria
| |
Collapse
|
32
|
Shen J, Roy A, Joshi H, Samineni L, Ye R, Tu YM, Song W, Skiles M, Kumar M, Aksimentiev A, Zeng H. Fluorofoldamer-Based Salt- and Proton-Rejecting Artificial Water Channels for Ultrafast Water Transport. NANO LETTERS 2022; 22:4831-4838. [PMID: 35674810 DOI: 10.1021/acs.nanolett.2c01137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Here, we report on a novel class of fluorofoldamer-based artificial water channels (AWCs) that combines excellent water transport rate and selectivity with structural simplicity and robustness. Produced by a facile one-pot copolymerization reaction under mild conditions, the best-performing channel (AWC 1) is an n-C8H17-decorated foldamer nanotube with an average channel length of 2.8 nm and a pore diameter of 5.2 Å. AWC 1 demonstrates an ultrafast water conduction rate of 1.4 × 1010 H2O/s per channel, outperforming the archetypal biological water channel, aquaporin 1, while excluding salts (i.e., NaCl and KCl) and protons. Unique to this class of channels, the inwardly facing C(sp2)-F atoms being the most electronegative in the periodic table are proposed as being critical to enabling the ultrafast and superselective water transport properties by decreasing the channel's cavity and enhancing the channel wall smoothness via reducing intermolecular forces with water molecules or hydrated ions.
Collapse
Affiliation(s)
- Jie Shen
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Arundhati Roy
- Department of Pharmacy, Ludwig Maximilian University Munich Butenandtstraße 5-13, Munich 81377, Germany
| | - Himanshu Joshi
- Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Laxmicharan Samineni
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ruijuan Ye
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Yu-Ming Tu
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Woochul Song
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Matthew Skiles
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Manish Kumar
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Aleksei Aksimentiev
- Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Huaqiang Zeng
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| |
Collapse
|
33
|
Güvensoy-Morkoyun A, Velioğlu S, Ahunbay MG, Tantekin-Ersolmaz ŞB. Desalination Potential of Aquaporin-Inspired Functionalization of Carbon Nanotubes: Bridging Between Simulation and Experiment. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28174-28185. [PMID: 35675202 PMCID: PMC9227712 DOI: 10.1021/acsami.2c03700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/23/2022] [Indexed: 05/22/2023]
Abstract
Outstanding water/ion selectivity of aquaporins paves the way for bioinspired desalination membranes. Since the amino acid asparagine (Asn) plays a critical role in the fast water conduction of aquaporins through hydrogen bonding interactions, we adapted this feature by functionalizing carbon nanotubes (CNTs) with Asn. We also studied a nonpolar amino acid and carboxylate functional groups for comparison. Computation of the ideal performance of individual CNTs at atomistic scale is a powerful tool for probing the effect of tip-functionalized CNTs on water and ion transport mechanism. Molecular simulation study suggests that steric effects required for ion rejection compromise fast water conductivity; however, an Asn functional group having polarity and hydrogen bonding capability can be used to balance this trade-off to some extent. To test our hypothesis, we incorporated functionalized CNTs (f-CNTs) into the in situ polymerized selective polyamide (PA) layer of thin film nanocomposite membranes and compared their experimental RO desalination performance. The f-CNTs were found to change the separation environment through modification of cross-linking density, thickness, and hydrophilicity of the PA layer. Asn functionalization led to more cross-linked and thinner PA layer while hydrophilicity is improved compared to other functional groups. Accordingly, water permeance is increased by 25% relative to neat PA with a salt rejection above 98%. Starting from the nanomaterial itself and benefiting from molecular simulation, it is possible to design superior membranes suited for practical applications.
Collapse
Affiliation(s)
- Aysa Güvensoy-Morkoyun
- Department
of Chemical Engineering, Istanbul Technical
University, Maslak, Istanbul, 34469, Turkey
| | - Sadiye Velioğlu
- Department
of Chemical Engineering, Istanbul Technical
University, Maslak, Istanbul, 34469, Turkey
- Institute
of Nanotechnology, Gebze Technical University, Kocaeli, 41400, Turkey
| | - M. Göktuğ Ahunbay
- Department
of Chemical Engineering, Istanbul Technical
University, Maslak, Istanbul, 34469, Turkey
| | - Ş. Birgül Tantekin-Ersolmaz
- Department
of Chemical Engineering, Istanbul Technical
University, Maslak, Istanbul, 34469, Turkey
- . Tel.: +90-212-2856152
| |
Collapse
|
34
|
Barta T, Sandtner W, Wachlmayr J, Hannesschlaeger C, Ebert A, Speletz A, Horner A. Modeling of SGLT1 in Reconstituted Systems Reveals Apparent Ion-Dependencies of Glucose Uptake and Strengthens the Notion of Water-Permeable Apo States. Front Physiol 2022; 13:874472. [PMID: 35784872 PMCID: PMC9242095 DOI: 10.3389/fphys.2022.874472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
The reconstitution of secondary active transporters into liposomes shed light on their molecular transport mechanism. The latter are either symporters, antiporters or exchangers, which use the energy contained in the electrochemical gradient of ions to fuel concentrative uptake of their cognate substrate. In liposomal preparations, these gradients can be set by the experimenter. However, due to passive diffusion of the ions and solutes through the membrane, the gradients are not stable and little is known on the time course by which they dissipate and how the presence of a transporter affects this process. Gradient dissipation can also generate a transmembrane potential (VM). Because it is the effective ion gradient, which together with VM fuels concentrative uptake, knowledge on how these parameters change within the time frame of the conducted experiment is key to understanding experimental outcomes. Here, we addressed this problem by resorting to a modelling approach. To this end, we mathematically modeled the liposome in the assumed presence and absence of the sodium glucose transporter 1 (SGLT1). We show that 1) the model can prevent us from reaching erroneous conclusions on the driving forces of substrate uptake and we 2) demonstrate utility of the model in the assignment of the states of SGLT1, which harbor a water channel.
Collapse
Affiliation(s)
- Thomas Barta
- Department of Molecular Biophysics and Membrane Biophysics, Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Walter Sandtner
- Center of Physiology and Pharmacology, Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Medical University of Vienna, Vienna, Austria
| | - Johann Wachlmayr
- Department of Molecular Biophysics and Membrane Biophysics, Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Christof Hannesschlaeger
- Department of Molecular Biophysics and Membrane Biophysics, Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Andrea Ebert
- Department of Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
| | - Armin Speletz
- Department of Molecular Biophysics and Membrane Biophysics, Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Andreas Horner
- Department of Molecular Biophysics and Membrane Biophysics, Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| |
Collapse
|
35
|
Lim YJ, Goh K, Wang R. The coming of age of water channels for separation membranes: from biological to biomimetic to synthetic. Chem Soc Rev 2022; 51:4537-4582. [PMID: 35575174 DOI: 10.1039/d1cs01061a] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Water channels are one of the key pillars driving the development of next-generation desalination and water treatment membranes. Over the past two decades, the rise of nanotechnology has brought together an abundance of multifunctional nanochannels that are poised to reinvent separation membranes with performances exceeding those of state-of-the-art polymeric membranes within the water-energy nexus. Today, these water nanochannels can be broadly categorized into biological, biomimetic and synthetic, owing to their different natures, physicochemical properties and methods for membrane nanoarchitectonics. Furthermore, against the backdrop of different separation mechanisms, different types of nanochannel exhibit unique merits and limitations, which determine their usability and suitability for different membrane designs. Herein, this review outlines the progress of a comprehensive amount of nanochannels, which include aquaporins, pillar[5]arenes, I-quartets, different types of nanotubes and their porins, graphene-based materials, metal- and covalent-organic frameworks, porous organic cages, MoS2, and MXenes, offering a comparative glimpse into where their potential lies. First, we map out the background by looking into the evolution of nanochannels over the years, before discussing their latest developments by focusing on the key physicochemical and intrinsic transport properties of these channels from the chemistry standpoint. Next, we put into perspective the fabrication methods that can nanoarchitecture water channels into high-performance nanochannel-enabled membranes, focusing especially on the distinct differences of each type of nanochannel and how they can be leveraged to unlock the as-promised high water transport potential in current mainstream membrane designs. Lastly, we critically evaluate recent findings to provide a holistic qualitative assessment of the nanochannels with respect to the attributes that are most strongly valued in membrane engineering, before discussing upcoming challenges to share our perspectives with researchers for pathing future directions in this coming of age of water channels.
Collapse
Affiliation(s)
- Yu Jie Lim
- Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore. .,School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore.,Interdisciplinary Graduate Programme, Graduate College, Nanyang Technological University, 637553, Singapore
| | - Kunli Goh
- Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore.
| | - Rong Wang
- Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore. .,School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| |
Collapse
|
36
|
Itoh Y, Chen S, Hirahara R, Konda T, Aoki T, Ueda T, Shimada I, Cannon JJ, Shao C, Shiomi J, Tabata KV, Noji H, Sato K, Aida T. Ultrafast water permeation through nanochannels with a densely fluorous interior surface. Science 2022; 376:738-743. [PMID: 35549437 DOI: 10.1126/science.abd0966] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ultrafast water permeation in aquaporins is promoted by their hydrophobic interior surface. Polytetrafluoroethylene has a dense fluorine surface, leading to its strong water repellence. We report a series of fluorous oligoamide nanorings with interior diameters ranging from 0.9 to 1.9 nanometers. These nanorings undergo supramolecular polymerization in phospholipid bilayer membranes to form fluorous nanochannels, the interior walls of which are densely covered with fluorine atoms. The nanochannel with the smallest diameter exhibits a water permeation flux that is two orders of magnitude greater than those of aquaporins and carbon nanotubes. The proposed nanochannel exhibits negligible chloride ion (Cl-) permeability caused by a powerful electrostatic barrier provided by the electrostatically negative fluorous interior surface. Thus, this nanochannel is expected to show nearly perfect salt reflectance for desalination.
Collapse
Affiliation(s)
- Yoshimitsu Itoh
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Shuo Chen
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ryota Hirahara
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takeshi Konda
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tsubasa Aoki
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takumi Ueda
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ichio Shimada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - James J Cannon
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Cheng Shao
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Junichiro Shiomi
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kazuhito V Tabata
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroyuki Noji
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kohei Sato
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takuzo Aida
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
37
|
Truelsen SF, Missel JW, Gotfryd K, Pedersen PA, Gourdon P, Lindorff-Larsen K, Hélix-Nielsen C. The role of water coordination in the pH-dependent gating of hAQP10. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2022; 1864:183809. [PMID: 34699768 DOI: 10.1016/j.bbamem.2021.183809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/23/2022]
Abstract
Human aquaporin 10 (hAQP10) is an aquaglyceroporin that assists in maintaining glycerol flux in adipocytes during lipolysis at low pH. Hence, a molecular understanding of the pH-sensitive glycerol conductance may open up for drug development in obesity and metabolically related disorders. Control of hAQP10-mediated glycerol flux has been linked to the cytoplasmic end of the channel, where a unique loop is regulated by the protonation status of histidine 80 (H80). Here, we performed unbiased molecular dynamics simulations of three protonation states of H80 to unravel channel gating. Strikingly, at neutral pH, we identified a water coordination pattern with an inverted orientation of the water molecules in vicinity of the loop. Protonation of H80 results in a more hydrophobic loop conformation, causing loss of water coordination and leaving the pore often dehydrated. Our results indicate that the loss of such water interaction network may be integral for the destabilization of the loop in the closed configuration at low pH. Additionally, a residue unique to hAQP10 (F85) reveals structural importance by flipping into the channel in correlation with loop movements, indicating a loop-stabilizing role in the closed configuration. Taken together, our simulations suggest a unique gating mechanism combining complex interaction networks between water molecules and protein residues at the loop interface. Considering the role of hAQP10 in adipocytes, the detailed molecular insights of pH-regulation presented here will help to understand glycerol pathways in these cells and may assist in drug discovery for better management of human adiposity and obesity.
Collapse
Affiliation(s)
- Sigurd Friis Truelsen
- Technical University of Denmark, Department of Environmental Engineering, Bygningstorvet Building 115, DK-2800 Kgs Lyngby, Denmark
| | - Julie Winkel Missel
- University of Copenhagen, Department of Biomedical Sciences, Nørre Allé 14, DK-2200 Copenhagen N, Denmark
| | - Kamil Gotfryd
- University of Copenhagen, Department of Biomedical Sciences, Nørre Allé 14, DK-2200 Copenhagen N, Denmark
| | - Per Amstrup Pedersen
- University of Copenhagen, Department of Biology, Universitetsparken 13, DK-2100 Copenhagen OE, Denmark
| | - Pontus Gourdon
- Lund University, Department of Experimental Medical Science, Sölvegatan 19, SE-221 84 Lund, Sweden; Structural Biology and NMR Laboratory & Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory & Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Claus Hélix-Nielsen
- Technical University of Denmark, Department of Environmental Engineering, Bygningstorvet Building 115, DK-2800 Kgs Lyngby, Denmark; University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova 17, SI-2000 Maribor, Slovenia.
| |
Collapse
|
38
|
Shen Y, Fei F, Zhong Y, Fan C, Sun J, Hu J, Gong B, Czajkowsky DM, Shao Z. Controlling Water Flow through a Synthetic Nanopore with Permeable Cations. ACS CENTRAL SCIENCE 2021; 7:2092-2098. [PMID: 34963901 PMCID: PMC8704043 DOI: 10.1021/acscentsci.1c01218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Indexed: 05/19/2023]
Abstract
There is presently intense interest in the development of synthetic nanopores that recapitulate the functional properties of biological water channels for a wide range of applications. To date, all known synthetic water channels have a hydrophobic lumen, and while many exhibit a comparable rate of water transport as biological water channels, there is presently no rationally designed system with the ability to regulate water transport, a critical property of many natural water channels. Here, we describe a self-assembling nanopore consisting of stacked macrocyclic molecules with a hybrid hydrophilic/hydrophobic lumen exhibiting water transport that can be regulated by alkali metal ions. Stopped-flow kinetic assays reveal a non-monotonic-dependence of transport on cation size as well as a strikingly broad range of water flow, from essentially none in the presence of the sodium ion to as high a flow as that of the biological water channel, aquaporin 1, in the absence of the cations. All-atom molecular dynamics simulations show that the mechanism underlying the observed sensitivity is the binding of cations to defined sites within this hybrid pore, which perturbs water flow through the channel. Thus, beyond revealing insights into factors that can modulate a high-flux water transport through sub-nm pores, the obtained results provide a proof-of-concept for the rational design of next-generation, controllable synthetic water channels.
Collapse
Affiliation(s)
- Yi Shen
- School
of Biomedical Engineering, Shanghai Jiao
Tong University, Shanghai 200240, China
| | - Fan Fei
- School
of Biomedical Engineering, Shanghai Jiao
Tong University, Shanghai 200240, China
| | - Yulong Zhong
- Department
of Chemistry, The State University of New
York at Buffalo, Buffalo, New York 14260, United States
| | - Chunhai Fan
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, Shanghai 200240, China
| | - Jielin Sun
- Shanghai
Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine
(Ministry of Education), Shanghai Jiao Tong
University, Shanghai 200240, China
| | - Jun Hu
- Key
Laboratory of Interfacial Physics and Technology, Shanghai Synchrotron
Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Bing Gong
- Department
of Chemistry, The State University of New
York at Buffalo, Buffalo, New York 14260, United States
| | - Daniel M. Czajkowsky
- School
of Biomedical Engineering, Shanghai Jiao
Tong University, Shanghai 200240, China
| | - Zhifeng Shao
- School
of Biomedical Engineering, Shanghai Jiao
Tong University, Shanghai 200240, China
| |
Collapse
|
39
|
Wachlmayr J, Hannesschlaeger C, Speletz A, Barta T, Eckerstorfer A, Siligan C, Horner A. Scattering versus fluorescence self-quenching: more than a question of faith for the quantification of water flux in large unilamellar vesicles? NANOSCALE ADVANCES 2021; 4:58-76. [PMID: 35028506 PMCID: PMC8691418 DOI: 10.1039/d1na00577d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/16/2021] [Indexed: 06/14/2023]
Abstract
The endeavors to understand the determinants of water permeation through membrane channels, the effect of the lipid or polymer membrane on channel function, the development of specific water flow inhibitors, the design of artificial water channels and aquaporins for the use in industrial water filtration applications all rely on accurate ways to quantify water permeabilities (P f). A commonly used method is to reconstitute membrane channels into large unilamellar vesicles (LUVs) and to subject these vesicles to an osmotic gradient in a stopped-flow device. Fast recordings of either scattered light intensity or fluorescence self-quenching signals are taken as a readout for vesicle volume change, which in turn can be recalculated to accurate P f values. By means of computational and experimental data, we discuss the pros and cons of using scattering versus self-quenching experiments or subjecting vesicles to hypo- or hyperosmotic conditions. In addition, we explicate for the first time the influence of the LUVs size distribution, channel distribution between vesicles and remaining detergent after protein reconstitution on P f values. We point out that results such as the single channel water permeability (p f) depend on the membrane matrix or on the direction of the applied osmotic gradient may be direct results of the measurement and analysis procedure.
Collapse
Affiliation(s)
- Johann Wachlmayr
- Institute of Biophysics, Johannes Kepler University Linz Gruberstr. 40 4020 Linz Austria
| | | | - Armin Speletz
- Institute of Biophysics, Johannes Kepler University Linz Gruberstr. 40 4020 Linz Austria
| | - Thomas Barta
- Institute of Biophysics, Johannes Kepler University Linz Gruberstr. 40 4020 Linz Austria
| | - Anna Eckerstorfer
- Institute of Biophysics, Johannes Kepler University Linz Gruberstr. 40 4020 Linz Austria
| | - Christine Siligan
- Institute of Biophysics, Johannes Kepler University Linz Gruberstr. 40 4020 Linz Austria
| | - Andreas Horner
- Institute of Biophysics, Johannes Kepler University Linz Gruberstr. 40 4020 Linz Austria
| |
Collapse
|
40
|
Behera BK, Parhi J, Dehury B, Rout AK, Khatei A, Devi AL, Mandal SC. Molecular characterization and structural dynamics of Aquaporin1 from walking catfish in lipid bilayers. Int J Biol Macromol 2021; 196:86-97. [PMID: 34914911 DOI: 10.1016/j.ijbiomac.2021.12.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 01/17/2023]
Abstract
Aquaporin's (AQPs) are the major superfamily of small integral membrane proteins that facilitates transportation of water, urea, ammonia, glycerol and ions across biological cell membranes. Despite of recent advancements made in understanding the biology of Aquaporin's, only few isoforms of aquaporin 1 (AQP1) some of the teleost fish species have been characterized at molecular scale. In this study, we made an attempt to elucidate the molecular mechanism of water transportation in AQP1 from walking catfish (Clarias batrachus), a model species capable of breathing in air and inhabits in challenging environments. Using state-of-the-art computational modelling and all-atoms molecular dynamics simulation, we explored the structural dynamics of full-length aquaporin 1 from walking catfish (CbAQP1) in lipid mimetic bilayers. Unlike AQP1 of human and bovine, structural ensembles of CbAQP1 from MD revealed discrete positioning of pore lining residues at the intracellular end. Snapshots from MD simulation displayed differential dynamics of aromatic/arginine (ar/R) filter and extracellular loop C bridging transmembrane (TM) helix H3 and H4. Distinct conformation of large extracellular loops, loop bridging TM2 domain and HB helix along with positioning of selectivity filter lining residues controls the permeability of water across the bilayer. Moreover, the identified unique and conserved lipid binding sites with 100% lipid occupancy signifies lipid mediated structural dynamics of CbAQP1. All-together, this is the first ever report on structural-dynamics of aquaporin 1 in walking catfish which will be useful to understand the molecular basis of transportation of water and other small molecules under varying degree of hyperosmotic environment.
Collapse
Affiliation(s)
- Bijay Kumar Behera
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, India.
| | - Janmejay Parhi
- Department of Fish Genetics and Reproduction, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura West, Tripura 799210, India
| | - Budheswar Dehury
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, India; Department of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark.
| | - Ajaya Kumar Rout
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, India
| | - Ananya Khatei
- Department of Fish Genetics and Reproduction, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura West, Tripura 799210, India
| | - Asem Lembika Devi
- Department of Fish Genetics and Reproduction, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura West, Tripura 799210, India
| | - Sagar Chandra Mandal
- Department of Fish Genetics and Reproduction, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura West, Tripura 799210, India
| |
Collapse
|
41
|
Pokhrel R, Bhattarai N, Baral P, Gerstman BS, Park JH, Handfield M, Chapagain PP. Lipid II Binding and Transmembrane Properties of Various Antimicrobial Lanthipeptides. J Chem Theory Comput 2021; 18:516-525. [PMID: 34874159 DOI: 10.1021/acs.jctc.1c00666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There has been an alarming rise in antibacterial resistant infections in recent years due to the widespread use of antibiotics, and there is a dire need for the development of new antibiotics utilizing novel modes of action. Lantibiotics are promising candidates to engage in the fight against resistant strains of bacteria due to their unique modes of action, including interference with cell wall synthesis by binding to lipid II and creating pores in bacterial membranes. In this study, we use atomic-scale molecular dynamics computational studies to compare both the lipid II binding ability and the membrane interactions of five lanthipeptides that are commonly used in antimicrobial research: nisin, Mutacin 1140 (MU1140), gallidermin, NVB302, and NAI107. Among the five peptides investigated, nisin is found to be the most efficient at forming water channels through a membrane, whereas gallidermin and MU1140 are found to be better at binding the lipid II molecules. Nisin's effectiveness in facilitating water transport across the membrane is due to the creation of several different water trajectories along with no significant water delay points along the paths. The shorter peptide deoxyactagardine B (NVB302) was found to not form a water channel. These detailed observations provide insights into the dual mechanisms of the action of lantibiotic peptides and can facilitate the design and development of novel lanthipeptides by strategic placement of different residues.
Collapse
Affiliation(s)
| | | | | | | | - Jae H Park
- Oragenics Inc., Alachua, Florida 32615, United States
| | | | | |
Collapse
|
42
|
Pfeffermann J, Goessweiner-Mohr N, Pohl P. The energetic barrier to single-file water flow through narrow channels. Biophys Rev 2021; 13:913-923. [PMID: 35035593 PMCID: PMC8724168 DOI: 10.1007/s12551-021-00875-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 10/30/2022] Open
Abstract
Various nanoscopic channels of roughly equal diameter and length facilitate single-file diffusion at vastly different rates. The underlying variance of the energetic barriers to transport is poorly understood. First, water partitioning into channels so narrow that individual molecules cannot overtake each other incurs an energetic penalty. Corresponding estimates vary widely depending on how the sacrifice of two out of four hydrogen bonds is accounted for. Second, entropy differences between luminal and bulk water may arise: additional degrees of freedom caused by dangling OH-bonds increase entropy. At the same time, long-range dipolar water interactions decrease entropy. Here, we dissect different contributions to Gibbs free energy of activation, ΔG ‡, for single-file water transport through narrow channels by analyzing experimental results from water permeability measurements on both bare lipid bilayers and biological water channels that (i) consider unstirred layer effects and (ii) adequately count the channels in reconstitution experiments. First, the functional relationship between water permeabilities and Arrhenius activation energies indicates negligible differences between the entropies of intraluminal water and bulk water. Second, we calculate ΔG ‡ from unitary water channel permeabilities using transition state theory. Plotting ΔG ‡ as a function of the number of H-bond donating or accepting pore-lining residues results in a 0.1 kcal/mol contribution per residue. The resulting upper limit for partial water dehydration amounts to 2 kcal/mol. In the framework of biomimicry, our analysis provides valuable insights for the design of synthetic water channels. It thus may aid in the urgent endeavor towards combating global water scarcity.
Collapse
Affiliation(s)
| | | | - Peter Pohl
- Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| |
Collapse
|
43
|
Pohl P. Biophysical Reviews' "Meet the Councilor Series"-a profile of Peter Pohl. Biophys Rev 2021; 13:839-844. [PMID: 35035592 PMCID: PMC8724173 DOI: 10.1007/s12551-021-00897-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 10/30/2022] Open
Abstract
It is my pleasure to write a few words to introduce myself to the readers of Biophysical Reviews as part of the "Meet the Councilor Series." Currently, I am serving the second period as IUPAB councilor after having been elected first in 2017. Initially, I studied Biophysics in Moscow (Russia) and later Medicine in Halle (Germany). My scientific carrier took me from the Medical School of the Martin Luther University of Halle-Wittenberg, via the Leibniz Institute for Molecular Pharmacology (Berlin) and the Institute for Biology at the Humboldt University (Berlin) to the Physics Department of the Johannes Kepler University in Linz (Austria). My key research interests lie in the molecular mechanisms of transport phenomena occurring at the lipid membrane, including (i) spontaneous and facilitated transport of water and other small molecules across membranes in reconstituted systems, (ii) proton migration along the membrane surface, (iii) protein translocation, and (iv) bilayer mechanics. Training of undergraduate, graduate, and postdoctoral researchers from diverse academic disciplines has been-and shall remain-a consistent part of my work.
Collapse
Affiliation(s)
- Peter Pohl
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
| |
Collapse
|
44
|
Perez-Gil J, Watts A. Translational Biophysics - 20 th IUPAB Congress Session Commentary. Biophys Rev 2021; 13:875-877. [PMID: 34815814 PMCID: PMC8601867 DOI: 10.1007/s12551-021-00867-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 01/15/2023] Open
Affiliation(s)
- Jesus Perez-Gil
- Facultad de Biología, Dpto. Bioquímica y Biología Molecular, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Anthony Watts
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU UK
| |
Collapse
|
45
|
Barden DR, Vashisth H. Water Dynamics in a Peptide-appended Pillar[5]arene Artificial Channel in Lipid and Biomimetic Membranes. Front Chem 2021; 9:753635. [PMID: 34778209 PMCID: PMC8586425 DOI: 10.3389/fchem.2021.753635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/04/2021] [Indexed: 11/21/2022] Open
Abstract
Peptide-appended Pillar[5]arene (PAP) is an artificial water channel that can be incorporated into lipid and polymeric membranes to achieve high permeability and enhanced selectivity for angstrom-scale separations [Shen et al. Nat. Commun.9:2294 (2018)]. In comparison to commonly studied rigid carbon nanotubes, PAP channels are conformationally flexible, yet these channels allow a high water permeability [Y. Liu and H. Vashisth Phys. Chem. Chem. Phys.21:22711 (2019)]. Using molecular dynamics (MD) simulations, we study water dynamics in PAP channels embedded in biological (lipid) and biomimetic (block-copolymer) membranes to probe the effect of the membrane environment on water transport characteristics of PAP channels. We have resolved the free energy surface and local minima for water diffusion within the channel in each type of membrane. We find that water follows single file transport with low free-energy barriers in regions surroundings the central ring of the PAP channel and the single file diffusivity of water correlates with the number of hydrogen bonding sites within the channel, as is known for other sub-nm pore-size synthetic and biological water channels [Horner et al. Sci. Adv.1:e1400083 (2015)].
Collapse
Affiliation(s)
- Daniel Ryan Barden
- Department of Chemical Engineering, University of New Hampshire, Durham, NH, United States
| | - Harish Vashisth
- Department of Chemical Engineering, University of New Hampshire, Durham, NH, United States
| |
Collapse
|
46
|
Gonzalez MA, Zaragoza A, Lynch CI, Sansom MSP, Valeriani C. Influence of water models on water movement through AQP1. J Chem Phys 2021; 155:154502. [PMID: 34686053 DOI: 10.1063/5.0063986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Water diffusion through membrane proteins is a key aspect of cellular function. Essential processes of cellular metabolism are driven by osmotic pressure, which depends on water channels. Membrane proteins such as aquaporins (AQPs) are responsible for enabling water permeation through the cell membrane. AQPs are highly selective, allowing only water and relatively small polar molecules to cross the membrane. Experimentally, estimation of water flux through membrane proteins is still a challenge, and hence, accurate simulations of water permeation are of particular importance. We present a numerical study of water diffusion through AQP1 comparing three water models: TIP3P, OPC, and TIP4P/2005. Bulk diffusion, diffusion permeability, and osmotic permeability are computed and compared among all models. The results show that there are significant differences between TIP3P (a particularly widespread model for simulations of biological systems) and the more recently developed TIP4P/2005 and OPC models. We demonstrate that OPC and TIP4P/2005 reproduce protein-water interactions and dynamics in very good agreement with experimental data. From this study, we find that the choice of the water model has a significant effect on the computed water dynamics as well as its molecular behavior within a biological nanopore.
Collapse
Affiliation(s)
| | - Alberto Zaragoza
- Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112-0850, USA
| | - Charlotte I Lynch
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, United Kingdom
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, United Kingdom
| | - Chantal Valeriani
- Universidad Complutense de Madrid, Facultad de Ciencias Fícias, Departamento de Estructura de la Materia, Física Térmica y Electrónica, 28040 Madrid, Spain
| |
Collapse
|
47
|
Huang J, Xu Q, Liu Z, Jain N, Tyagi M, Wei DQ, Hong L. Controlling the Substrate Specificity of an Enzyme through Structural Flexibility by Varying the Salt-Bridge Density. Molecules 2021; 26:5693. [PMID: 34577164 PMCID: PMC8470667 DOI: 10.3390/molecules26185693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/03/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022] Open
Abstract
Many enzymes, particularly in one single family, with highly conserved structures and folds exhibit rather distinct substrate specificities. The underlying mechanism remains elusive, the resolution of which is of great importance for biochemistry, biophysics, and bioengineering. Here, we performed a neutron scattering experiment and molecular dynamics (MD) simulations on two structurally similar CYP450 proteins; CYP101 primarily catalyzes one type of ligands, then CYP2C9 can catalyze a large range of substrates. We demonstrated that it is the high density of salt bridges in CYP101 that reduces its structural flexibility, which controls the ligand access channel and the fluctuation of the catalytic pocket, thus restricting its selection on substrates. Moreover, we performed MD simulations on 146 different kinds of CYP450 proteins, spanning distinct biological categories including Fungi, Archaea, Bacteria, Protista, Animalia, and Plantae, and found the above mechanism generally valid. We demonstrated that, by fine changes of chemistry (salt-bridge density), the CYP450 superfamily can vary the structural flexibility of its member proteins among different biological categories, and thus differentiate their substrate specificities to meet the specific biological needs. As this mechanism is well-controllable and easy to be implemented, we expect it to be generally applicable in future enzymatic engineering to develop proteins of desired substrate specificities.
Collapse
Affiliation(s)
- Juan Huang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Qin Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Zhuo Liu
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China;
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Nitin Jain
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA;
| | - Madhusudan Tyagi
- NIST Center for Neutron Research, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA;
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
- Peng Cheng Laboratory, Shenzhen 518055, China
| | - Liang Hong
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China;
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
48
|
Yao YC, Li Z, Gillen AJ, Yosinski S, Reed MA, Noy A. Electrostatic gating of ion transport in carbon nanotube porins: A modeling study. J Chem Phys 2021; 154:204704. [PMID: 34241182 DOI: 10.1063/5.0049550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Carbon nanotube porins (CNTPs) are biomimetic membrane channels that demonstrate excellent biocompatibility and unique water and ion transport properties. Gating transport in CNTPs with external voltage could increase control over ion flow and selectivity. Herein, we used continuum modeling to probe the parameters that enable and further affect CNTP gating efficiency, including the size and composition of the supporting lipid membrane, slip flow in the carbon nanotube, and the intrinsic electronic properties of the nanotube. Our results show that the optimal gated CNTP device consists of a semiconducting CNTP inserted into a small membrane patch containing an internally conductive layer. Moreover, we demonstrate that the ionic transport modulated by gate voltages is controlled by the charge distribution along the CNTP under the external gate electric potential. The theoretical understanding developed in this study offers valuable guidance for the design of gated CNTP devices for nanofluidic studies, novel biomimetic membranes, and cellular interfaces in the future.
Collapse
Affiliation(s)
- Yun-Chiao Yao
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Zhongwu Li
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Alice J Gillen
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Shari Yosinski
- Department of Electrical Engineering, Yale University, New Haven, Connecticut 06520, USA
| | - Mark A Reed
- Department of Electrical Engineering, Yale University, New Haven, Connecticut 06520, USA
| | - Aleksandr Noy
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| |
Collapse
|
49
|
Roy A, Shen J, Joshi H, Song W, Tu YM, Chowdhury R, Ye R, Li N, Ren C, Kumar M, Aksimentiev A, Zeng H. Foldamer-based ultrapermeable and highly selective artificial water channels that exclude protons. NATURE NANOTECHNOLOGY 2021; 16:911-917. [PMID: 34017100 DOI: 10.1038/s41565-021-00915-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
The outstanding capacity of aquaporins (AQPs) for mediating highly selective superfast water transport1-7 has inspired recent development of supramolecular monovalent ion-excluding artificial water channels (AWCs). AWC-based bioinspired membranes are proposed for desalination, water purification and other separation applications8-18. While some recent progress has been made in synthesizing AWCs that approach the water permeability and ion selectivity of AQPs, a hallmark feature of AQPs-high water transport while excluding protons-has not been reproduced. We report a class of biomimetic, helically folded pore-forming polymeric foldamers that can serve as long-sought-after highly selective ultrafast water-conducting channels with performance exceeding those of AQPs (1.1 × 1010 water molecules per second for AQP1), with high water-over-monovalent-ion transport selectivity (~108 water molecules over Cl- ion) conferred by the modularly tunable hydrophobicity of the interior pore surface. The best-performing AWC reported here delivers water transport at an exceptionally high rate, namely, 2.5 times that of AQP1, while concurrently rejecting salts (NaCl and KCl) and even protons.
Collapse
Affiliation(s)
- Arundhati Roy
- Department of Chemistry, College of Science, Hainan University, Haikou, Hainan, China
- NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore
| | - Jie Shen
- Department of Chemistry, College of Science, Hainan University, Haikou, Hainan, China
| | - Himanshu Joshi
- Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Woochul Song
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Yu-Ming Tu
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Ratul Chowdhury
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Ruijuan Ye
- Department of Chemistry, College of Science, Hainan University, Haikou, Hainan, China
| | - Ning Li
- NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore
| | | | - Manish Kumar
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Aleksei Aksimentiev
- Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Huaqiang Zeng
- Department of Chemistry, College of Science, Hainan University, Haikou, Hainan, China.
- Institute of Advanced Synthesis, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
| |
Collapse
|
50
|
Hardiagon A, Murail S, Huang LB, van der Lee A, Sterpone F, Barboiu M, Baaden M. Molecular dynamics simulations reveal statistics and microscopic mechanisms of water permeation in membrane-embedded artificial water channel nanoconstructs. J Chem Phys 2021; 154:184102. [PMID: 34241013 DOI: 10.1063/5.0044360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Understanding water transport mechanisms at the nanoscale level remains a challenge for theoretical chemical physics. Major advances in chemical synthesis have allowed us to discover new artificial water channels, rivaling with or even surpassing water conductance and selectivity of natural protein channels. In order to interpret experimental features and understand microscopic determinants for performance improvements, numerical approaches based on all-atom molecular dynamics simulations and enhanced sampling methods have been proposed. In this study, we quantify the influence of microscopic observables, such as channel radius and hydrogen bond connectivity, and of meso-scale features, such as the size of self-assembly blocks, on the permeation rate of a self-assembled nanocrystal-like artificial water channel. Although the absolute permeation rate extrapolated from these simulations is overestimated by one order of magnitude compared to the experimental measurement, the detailed analysis of several observed conductive patterns in large assemblies opens new pathways to scalable membranes with enhanced water conductance for the future design.
Collapse
Affiliation(s)
- Arthur Hardiagon
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, F-75005 Paris, France
| | - Samuel Murail
- Université de Paris, CNRS UMR 8251, INSERM ERL U1133, Paris, France
| | - Li-Bo Huang
- Institut Européen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM, CNRS, Place Eugène Bataillon, CC 047, F-34095 Montpellier, France
| | - Arie van der Lee
- Institut Européen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM, CNRS, Place Eugène Bataillon, CC 047, F-34095 Montpellier, France
| | - Fabio Sterpone
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, F-75005 Paris, France
| | - Mihail Barboiu
- Institut Européen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM, CNRS, Place Eugène Bataillon, CC 047, F-34095 Montpellier, France
| | - Marc Baaden
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, F-75005 Paris, France
| |
Collapse
|