1
|
Martin T, Hodson ME, Thompson H, Hutter V, Ashauer R. Can TK-TD modelling bridge the gap between in vitro and in vivo mammalian toxicity data? Toxicol In Vitro 2024; 101:105937. [PMID: 39237057 DOI: 10.1016/j.tiv.2024.105937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/22/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Repeated dietary dose testing is used to assess longer term toxicity of chemicals, such as pesticides, to mammals. However, the internal pesticide concentration varies significantly as feeding rate relative to body size fluctuates over time. Toxicokinetic-toxicodynamic (TK-TD) models can estimate internal toxicant concentration over time and link this directly to observed effects on endpoints such as the growth rate of laboratory rats. Using TK-TD models it is therefore possible to predict the effects that would result from a constant internal concentration of a pesticide. This presents the possibility of comparison with data from in vitro experiments, potentially facilitating quantitative in vitro to in vivo extrapolation (QIVIVE). We used in vivo TK-TD models to identify relevant internal concentrations and then estimated the experimental conditions required to replicate these in cultured cells, using in vitro TK models. Cell population growth was measured, with a view to extrapolating through time and comparing effect sizes with in vivo predictions. However, observed cell proliferation was not significantly affected by the tested concentrations of any of the five pesticides in this study and so extrapolation was not possible. In light of this negative result, we highlight areas for future work towards QIVIVE of graded sublethal effects in mammals. The most pressing objective is improving the accuracy of in vivo TK predictions, which could be achieved with dietary dosing in TK studies.
Collapse
Affiliation(s)
- Thomas Martin
- Rifcon GmbH, Goldbeckstrasse 13, 69493 Hirschberg an der Bergstrasse, Germany; University of York, Dept. Environment & Geography, York, YO10 5NG, UK.
| | - Mark E Hodson
- University of York, Dept. Environment & Geography, York, YO10 5NG, UK
| | - Helen Thompson
- Syngenta, Jealotts Hill, Warfield, Bracknell RG42 6EY, UK
| | - Victoria Hutter
- University of Hertfordshire, School of Life and Medical Sciences, Hatfield, Hertfordshire AL10 9AB, UK
| | - Roman Ashauer
- University of York, Dept. Environment & Geography, York, YO10 5NG, UK; Syngenta Crop Protection AG, Rosentalstrasse 67, 4058 Basel, Switzerland
| |
Collapse
|
2
|
White-Kiely D, Finlayson KA, Limpus CJ, Johnson M, van de Merwe JP. Species-specific bioassays reveal spatial variation in chemical contamination of green sea turtles. MARINE ENVIRONMENTAL RESEARCH 2024; 200:106657. [PMID: 39074438 DOI: 10.1016/j.marenvres.2024.106657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 07/31/2024]
Abstract
The rapid increase of anthropogenic activity at shipping ports and surrounding coastal areas has been correlated with higher chemical contamination entering the surrounding marine environment. Chemical contaminants in marine environments can lead to significant health problems for green turtles (Chelonia mydas), especially when these contaminants accumulate in their foraging grounds. This study examined the exposure and toxicological effects of chemical contaminants on green turtle cells using a species-specific cell viability assay. Using the QuEChERs extraction, organic contaminants were extracted from 60 blood samples collected from green turtles in three foraging locations: Port Curtis, and two reefs (Heron Reef and Hoskyn-Fairfax Reefs) within the Capricorn Bunker Group of the outer Great Barrier Reef. Blood extracts were tested for cytotoxicity against primary green turtle fibroblast cells using an in vitro resazurin bioassay to assess cell viability. Extracts from Gladstone and Heron Reef indicated significant chemical contamination, at levels high enough to cause adverse health effects of green turtles. Very low toxicity values at the Hoskyn-Fairfax Reefs location indicate its potential to be established as a reference site for the southern Great Barrier Reef.
Collapse
Affiliation(s)
- Dylan White-Kiely
- Australian Rivers Institute, Griffith University, Gold Coast, Australia; School of Environment and Science, Griffith University, Gold Coast, Australia.
| | | | - Colin J Limpus
- Department of Environment and Science, Queensland, Australia
| | - Matthew Johnson
- Australian Rivers Institute, Griffith University, Gold Coast, Australia
| | - Jason P van de Merwe
- Australian Rivers Institute, Griffith University, Gold Coast, Australia; School of Environment and Science, Griffith University, Gold Coast, Australia
| |
Collapse
|
3
|
Zhou Y, Zhou XX, Jiang H, Liu W, Chen F, Gardea-Torresdey JL, Yan B. In Vitro Toxicity and Modeling Reveal Nanoplastic Effects on Marine Bivalves. ACS NANO 2024; 18:17228-17239. [PMID: 38877988 DOI: 10.1021/acsnano.4c04607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Nanoplastics (NPs) represent a growing concern for global environmental health, particularly in marine ecosystems where they predominantly accumulate. The impact of NPs on marine benthic organisms, such as bivalves, raises critical questions regarding ecological integrity and food safety. Traditional methods for assessing NP toxicity are often limited by their time-intensive nature and ethical considerations. Herein, we explore the toxicological effects of NPs on the marine bivalve Ruditapes philippinarum, employing a combination of in vitro cellular assays and advanced modeling techniques. Results indicate a range of adverse effects at the organismal level, including growth inhibition (69.5-108%), oxidative stress, lipid peroxidation, and DNA damage in bivalves, following exposure to NPs at concentrations in the range of 1.6 × 109-1.6 × 1011 particles/mL (p/mL). Interestingly, the growth inhibition predicted by models (54.7-104%), based on in vitro cellular proliferation assays, shows strong agreement with the in vivo outcomes of NP exposure. Furthermore, we establish a clear correlation between cytotoxicity observed in vitro and the toxicological responses at the organismal level. Taken together, this work suggests that the integration of computational modeling with in vitro toxicity assays can predict the detrimental effects of NPs on bivalves, offering insightful references for assessing the environmental risk assessment of NPs in marine benthic ecosystems.
Collapse
Affiliation(s)
- Yanfei Zhou
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xiao-Xia Zhou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Hao Jiang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Wenzhi Liu
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Fengyuan Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Jorge L Gardea-Torresdey
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Bing Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
4
|
Schaap I, Buedenbender L, Johann S, Hollert H, Dogruer G. Impact of chemical pollution on threatened marine mammals: A systematic review. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132203. [PMID: 37567134 DOI: 10.1016/j.jhazmat.2023.132203] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
Marine mammals, due to their long life span, key position in the food web, and large lipid deposits, often face significant health risks from accumulating contaminants. This systematic review examines published literature on pollutant-induced adverse health effects in the International Union for Conservation of Nature (IUCN) red-listed marine mammal species. Thereby, identifying gaps in literature across different extinction risk categories, spatial distribution and climatic zones of studied habitats, commonly used methodologies, researched pollutants, and mechanisms from cellular to population levels. Our findings reveal a lower availability of exposure-effect data for higher extinction risk species (critically endangered 16%, endangered 15%, vulnerable 66%), highlighting the need for more research. For many threatened species in the Southern Hemisphere pollutant-effect relationships are not established. Non-destructively sampled tissues, like blood or skin, are commonly measured for exposure assessment. The most studied pollutants are POPs (31%), metals (30%), and pesticides (17%). Research on mixture toxicity is scarce while pollution-effect studies primarily focus on molecular and cellular levels. Bridging the gap between molecular data and higher-level effects is crucial, with computational approaches offering a high potential through in vitro to in vivo extrapolation using (toxico-)kinetic modelling. This could aid in population-level risk assessment for threatened marine mammals.
Collapse
Affiliation(s)
- Iris Schaap
- Farm Technology, Department of Plant Sciences, Wageningen University, 6708PB Wageningen, the Netherlands.
| | - Larissa Buedenbender
- Centro Interdisciplinar de Química e Bioloxía (CICA), Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Sarah Johann
- Department Evolutionary Ecology & Environmental Toxicology, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Henner Hollert
- Department Evolutionary Ecology & Environmental Toxicology, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany; Department Environmental Media Related Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Auf dem Aberg 1, 57392 Schmallenberg, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Gulsah Dogruer
- Wageningen Marine Research, Wageningen Research, 1976CP IJmuiden, the Netherlands
| |
Collapse
|
5
|
Scott J, Mortensen S, Minghetti M. Alternatives to Fish Acute Whole Effluent Toxicity (WET) Testing: Predictability of RTgill-W1 Cells and Fathead Minnow Embryos with Actual Wastewater Samples. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13721-13731. [PMID: 37672649 DOI: 10.1021/acs.est.3c02067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Toxicity assays using fish cells and embryos continue to gain momentum as a more ethical and informative alternative to fish acute toxicity testing. The goal of our study was to test the accuracy of RTgill-W1 cells and the fathead minnow (Pimephales promelas) embryos to predict actual whole effluent toxicity (WET) in the fathead minnow larvae. The three models were compared concurrently using samples of various origins and treatment types. Additionally, the toxicity of reference toxicants (Cd, Cu, NH3-N, 3,4-dichloraniline, and benzalkonium chloride) spiked into a nontoxic wastewater was compared. The toxicity of reference toxicants was tested in isosmotic and hypoosmotic exposure media in RTgill-W1 cells. Of the 28 wastewater samples, 14 induced a toxic response in fish larvae. Embryos predicted 11 of the 14 wastewater samples toxic to the larvae, whereas RTgill-W1 cells predicted the toxicity of all 14 toxic samples to the larvae. In addition, embryos and RTgill-W1 cells predicted toxicity in two and six additional samples, respectively, that were nontoxic to larvae. Exposures in hypoosmotic medium significantly increased sensitivity of RTgill-W1 cells to all reference toxicants, excluding benzalkonium chloride, compared to exposures in isosmotic medium and showed toxicity levels similar to that in larvae. Thus, hypoosmotic exposure medium should be considered for aquatic toxicity testing applications. Overall, both gill cell and embryo models predicted toxicity in the majority of wastewater samples toxic to larvae and demonstrated their applicability for regulatory WET testing.
Collapse
Affiliation(s)
- Justin Scott
- Department of Integrative Biology, Oklahoma State University, 501 Life Sciences West, Stillwater, Oklahoma 74078, United States
- Cove Environmental, 3400 W. Lakeview Rd. Stillwater, Oklahoma 74075, United States
| | - Shannon Mortensen
- Cove Environmental, 3400 W. Lakeview Rd. Stillwater, Oklahoma 74075, United States
| | - Matteo Minghetti
- Department of Integrative Biology, Oklahoma State University, 501 Life Sciences West, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
6
|
Giovanetti L, Casini S, Campani T, Caliani I. State of the art, gaps and future perspectives on common kestrel ecotoxicology. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104237. [PMID: 37481048 DOI: 10.1016/j.etap.2023.104237] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Anthropogenic activities have caused a steady decline of common kestrel (Falco tinnunculus) since the 1980 s. Effects, especially sublethal effects of contaminants, need to be investigated to ensure the conservation of this species. Data about countries, biological material, contaminants classes, and methodological approaches were collected from scientific publications to highlight gaps on common kestrel toxicology and ecotoxicology. We found that most studies have been conducted in Europe and in the field, underlining a lack of in vitro studies. The studies investigated mainly contaminant levels, while sublethal effects, evaluation of emerging contaminants and use of non-invasive or low-invasive samples were scarce. This work shows important gaps on toxicological status of the common kestrel, highlighting the importance of developing a non-lethal approach that combines responses at different levels of biological organization, as well as data on chemical contamination and on the environment in which the different populations inhabit.
Collapse
Affiliation(s)
- Laura Giovanetti
- Department of Physics, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100, Siena, Italy
| | - Silvia Casini
- Department of Physics, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100, Siena, Italy.
| | - Tommaso Campani
- Department of Physics, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100, Siena, Italy
| | - Ilaria Caliani
- Department of Physics, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100, Siena, Italy
| |
Collapse
|
7
|
Barbosa J, Asselman J, Janssen CR. Synthesizing the impact of sea-dumped munition and related chemicals on humans and the environment. MARINE POLLUTION BULLETIN 2023; 187:114601. [PMID: 36652858 DOI: 10.1016/j.marpolbul.2023.114601] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Marine environments are globally impacted by vast quantities of munition disposed following both World Wars. Dumped munitions contain conventional explosives, chemicals warfare agents as well as a variety of metals. Field monitoring studies around marine dumpsites report the presence of munition constituents in water and sediment samples. The growing interest and developments in the ocean as a new economic frontier underline the need to remediate existing dumpsites. Here, we provide a comprehensive assessment of the magnitude and potential risks associated with marine munition dumpsites. An overview of the global distribution of dumpsites identifying the most impacted areas is provided, followed by the currently available data on the detection of munition constituents in environmental samples and evidence of their toxic potential to human and environmental health. Finally, existing data gaps are identified and future research needs promoting better understanding of the impact of the dumped material on the marine environment suggested.
Collapse
Affiliation(s)
- João Barbosa
- Laboratory for Environmental Toxicology and Aquatic Ecology, GhEnToxLab, Ghent University, Belgium; Blue Growth Research Lab, Ghent University, Bluebridge, Wetenschapspark 1, 8400 Ostend, Belgium.
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Bluebridge, Wetenschapspark 1, 8400 Ostend, Belgium
| | - Colin R Janssen
- Laboratory for Environmental Toxicology and Aquatic Ecology, GhEnToxLab, Ghent University, Belgium; Blue Growth Research Lab, Ghent University, Bluebridge, Wetenschapspark 1, 8400 Ostend, Belgium
| |
Collapse
|
8
|
Finlayson KA, Leusch FDL, van de Merwe JP. Review of ecologically relevant in vitro bioassays to supplement current in vivo tests for whole effluent toxicity testing - Part 1: Apical endpoints. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:157817. [PMID: 35970462 DOI: 10.1016/j.scitotenv.2022.157817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/12/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Whole effluent toxicity (WET) testing is commonly used to ensure that wastewater discharges do not pose an unacceptable risk to receiving environments. Traditional WET testing involves exposing animals to (waste)water samples to assess four major ecologically relevant apical endpoints: mortality, growth, development, and reproduction. Recently, with the widespread implementation of the 3Rs to replace, reduce and refine the use of animals in research and testing, there has been a global shift away from in vivo testing towards in vitro alternatives. However, prior to the inclusion of in vitro bioassays in regulatory frameworks, it is critical to establish their ecological relevance and technical suitability. This is part 1 of a two-part review that aims to identify in vitro bioassays that can be used in WET testing and relate them to ecologically relevant endpoints through toxicity pathways, providing the reader with a high-level overview of current capabilities. Part 1 of this review focuses on four apical endpoints currently included in WET testing: mortality, growth, development, and reproduction. For each endpoint, the link between responses at the molecular or cellular level, that can be measured in vitro, and the adverse outcome at the organism level were established through simplified toxicity pathways. Additionally, literature from 2015 to 2020 on the use of in vitro bioassays for water quality assessments was reviewed to identify a list of suitable bioassays for each endpoint. This review will enable the prioritization of relevant endpoints and bioassays for incorporation into WET testing.
Collapse
Affiliation(s)
| | - Frederic D L Leusch
- Australian Rivers Institute, Griffith University, Australia; School of Environment and Science, Griffith University, Gold Coast, Australia
| | - Jason P van de Merwe
- Australian Rivers Institute, Griffith University, Australia; School of Environment and Science, Griffith University, Gold Coast, Australia
| |
Collapse
|
9
|
Hernández-Moreno D, Blázquez M, Navas JM, Fernández-Cruz ML. Fish cell lines as screening tools to predict acute toxicity to fish of biocidal active substances and their relevant environmental metabolites. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 242:106020. [PMID: 34844051 DOI: 10.1016/j.aquatox.2021.106020] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Biocidal substances and their environmental relevant metabolites are highly toxic for fish. However, an important scarcity of toxicity data for metabolites is recognised. This article provides new data about the toxicity to fish of these compounds and evaluates the potential use of fish cell lines as screening tools to assess the acute toxicity of these compounds in fish. To this aim, acute toxicity of 7 substances was tested in Oncorhynchus mykiss (OECD TG203) and cytotoxicity of 16 substances was assessed in fish cell lines from two species; Poeciliopsis lucida (PLHC-1) and O. mykiss (RTH-149, RTG-2 and RTgill-W1) performing three cytotoxicity tests: Alamar-Blue, 5-carboxyfluorescein diacetate, acetoxymethyl ester and Neutral Red Uptake. Additionally, in vitro and in vivo data from the LIFE-COMBASE database were included in a dataset finally comprising 33 biocides and 14 metabolites. Hazard data were categorized into 4 toxicity groups, according to the intervals established in Regulation (EC) 1272/2008. Finally, the Spearman correlation test was performed and coincidences between in vitro-in vivo data established. In vitro and in vivo results revealed a high positive correlation, with a complete coincidence for 56.5% of the substances, a 2% of false positives (non-toxic in vivo) and a 13% of false negatives (toxic in vivo) for the 4 toxicity categories. However, when results were grouped in toxic or non-toxic coincidence was obtained for 85% of the substances. In conclusion, although fish denote a greater sensitivity, the use of at least two fish cell lines and three cytotoxicity endpoints appear to be valid approaches for fish acute toxicity screening of biocides and their metabolites.
Collapse
Affiliation(s)
- D Hernández-Moreno
- National Institute of Agriculture and Food Research and Technology (INIA), Spanish National Research Council (CSIC), Department of Environment and Agronomy, Carretera de la Coruña Km 7 Madrid, Spain
| | - M Blázquez
- Inkoa Sistemas S.L. Polígono Industrial Ribera de Axpe, 11, Erandio, Vizcaya, Spain; CBET Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Basque Country, Spain
| | - J M Navas
- National Institute of Agriculture and Food Research and Technology (INIA), Spanish National Research Council (CSIC), Department of Environment and Agronomy, Carretera de la Coruña Km 7 Madrid, Spain
| | - M L Fernández-Cruz
- National Institute of Agriculture and Food Research and Technology (INIA), Spanish National Research Council (CSIC), Department of Environment and Agronomy, Carretera de la Coruña Km 7 Madrid, Spain.
| |
Collapse
|
10
|
Barraza AD, Finlayson KA, Leusch FDL, van de Merwe JP. Systematic review of reptile reproductive toxicology to inform future research directions on endangered or threatened species, such as sea turtles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117470. [PMID: 34438481 DOI: 10.1016/j.envpol.2021.117470] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/28/2021] [Accepted: 05/24/2021] [Indexed: 06/13/2023]
Abstract
Threatened or endangered reptiles, such as sea turtles, are generally understudied within the field of wildlife toxicology, with even fewer studies on how contaminants affect threatened species reproduction. This paper aimed to better inform threatened species conservation by systematically and quantitatively reviewing available research on the reproductive toxicology of all reptiles, threatened and non-threatened. This review found 178 studies that matched our search criteria. These papers were categorized into location conducted, taxa studied, species studied, effects found, and chemicals investigated. The most studied taxa were turtles (n = 87 studies, 49%), alligators/crocodiles (n = 54, 30%), and lizards (n = 37, 21%). Maternal transfer, sex steroid alterations, sex reversal, altered sexual development, developmental abnormalities, and egg contamination were the most common effects found across all reptile taxa, providing guidance for avenues of research into threatened species. Maternal transfer of contaminants was found across all taxa, and taking into account the foraging behavior of sea turtles, could help elucidate differences in maternal transfer seen at nesting beaches. Sex steroid alterations were a common effect found with contaminant exposure, indicating the potential to use sex steroids as biomarkers along with traditional biomarkers such as vitellogenin. Sex reversal through chemical exposure was commonly found among species that exhibit temperature dependent sex determination, indicating the potential for both environmental pollution and climate change to disrupt population dynamics of many reptile species, including sea turtles. Few studies used in vitro, DNA, or molecular methodologies, indicating the need for more research using high-throughput, non-invasive, and cost-effective tools for threatened species research. The prevalence of developmental abnormalities and altered sexual development and function indicates the need to further study how anthropogenic pollutants affect reproductive output in threatened reptiles.
Collapse
Affiliation(s)
- Arthur D Barraza
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, 4222, Qld, Australia.
| | - Kimberly A Finlayson
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, 4222, Qld, Australia
| | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, 4222, Qld, Australia
| | - Jason P van de Merwe
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, 4222, Qld, Australia
| |
Collapse
|
11
|
Thoré ESJ, Philippe C, Brendonck L, Pinceel T. Towards improved fish tests in ecotoxicology - Efficient chronic and multi-generational testing with the killifish Nothobranchius furzeri. CHEMOSPHERE 2021; 273:129697. [PMID: 33517116 DOI: 10.1016/j.chemosphere.2021.129697] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 05/27/2023]
Abstract
As many freshwaters are chemically polluted, one of the challenges for policy makers is to determine the potential impact of these pollutants on ecosystems and to define safe concentrations. Common practice is the use of ecotoxicological assays to assess the response of model organisms from different trophic levels such as algae, invertebrates and fish during exposure to dilutions of a specific compound. Ideally, ecotoxicological assessments of (pseudo-)persistent chemicals should be performed across the life-cycle or even multiple generations for an accurate risk assessment. Multigenerational tests with fish are, however, impractical and costly given the long lifespan and generation time of classic model species. Here, we suggest a framework for more relevant, time- and cost-efficient fish-based testing in ecotoxicology and align it with accredited test guidelines. Next, we introduce an upcoming fish model, the turquoise killifish Nothobranchius furzeri, and show how it facilitates such research agendas due to a short lifespan and generation time. Through a review of fish-based exposure studies with a set of reference toxicants, we position N. furzeri as a sensitive species, suitable for screening effects of different pollutant types. Ultimately, we perform a cost-benefit analysis and propose a plan of action for the introduction of N. furzeri into accredited test guidelines.
Collapse
Affiliation(s)
- Eli S J Thoré
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium.
| | - Charlotte Philippe
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium
| | - Luc Brendonck
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Tom Pinceel
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium; Centre for Environmental Management, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
12
|
Predicting exposure concentrations of chemicals with a wide range of volatility and hydrophobicity in different multi-well plate set-ups. Sci Rep 2021; 11:4680. [PMID: 33633258 PMCID: PMC7907087 DOI: 10.1038/s41598-021-84109-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 02/03/2021] [Indexed: 11/16/2022] Open
Abstract
Quantification of chemical toxicity in small-scale bioassays is challenging owing to small volumes used and extensive analytical resource needs. Yet, relying on nominal concentrations for effect determination maybe erroneous because loss processes can significantly reduce the actual exposure. Mechanistic models for predicting exposure concentrations based on distribution coefficients exist but require further validation with experimental data. Here we developed a complementary empirical model framework to predict chemical medium concentrations using different well-plate formats (24/48-well), plate covers (plastic lid, or additionally aluminum foil or adhesive foil), exposure volumes, and biological entities (fish, algal cells), focusing on the chemicals’ volatility and hydrophobicity as determinants. The type of plate cover and medium volume were identified as important drivers of volatile chemical loss, which could accurately be predicted by the framework. The model focusing on adhesive foil as cover was exemplary cross-validated and extrapolated to other set-ups, specifically 6-well plates with fish cells and 24-well plates with zebrafish embryos. Two case study model applications further demonstrated the utility of the empirical model framework for toxicity predictions. Thus, our approach can significantly improve the applicability of small-scale systems by providing accurate chemical concentrations in exposure media without resource- and time-intensive analytical measurements.
Collapse
|
13
|
Roeben V, Oberdoerster S, Rakel KJ, Liesy D, Capowiez Y, Ernst G, Preuss TG, Gergs A, Oberdoerster C. Towards a spatiotemporally explicit toxicokinetic-toxicodynamic model for earthworm toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137673. [PMID: 32208236 DOI: 10.1016/j.scitotenv.2020.137673] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/26/2020] [Accepted: 03/01/2020] [Indexed: 05/20/2023]
Abstract
The aim of the environmental risk assessment of chemicals is the prevention of unacceptable adverse effects on the environment. Therefore, the risk assessment for in-soil organisms, such as earthworms, is based on two key elements: the exposure assessment and the effect assessment. In the current risk assessment scheme, these two elements are not linked. While for the exposure assessment, advanced exposure models can take the spatial and temporal scale of substances into account, the effect assessment in the lower tiers considers only a limited temporal and spatial variability. However, for soil organisms, such as earthworms, those scales play a significant role as species move through the soil in response to environmental factors. To overcome this gap, we propose a conceptual integration of pesticide exposure, ecology, and toxicological effects on earthworms using a modular modeling approach. An essential part of this modular approach is the environment module, which utilizes exposure models to provide spatially and temporally explicit information on environmental variables (e.g., temperature, moisture, organic matter content) and chemical concentrations. The behavior module uses this information and simulates the feeding and movement of different earthworm species using a trait-based approach. The resulting exposure can be processed by a toxicokinetic-toxicodynamic (TKTD) module. TKTD models are particularly suitable to make effect predictions for time-variable exposure situations as they include the processes of uptake, elimination, internal distribution, and biotransformation of chemicals and link the internal concentration to an effect at the organism level. The population module incorporates existing population models of different earthworm species. The modular approach is illustrated using a case study with an insecticide. Our results emphasize that using a modular model approach will facilitate the integration of exposure and effects and thus enhance the risk assessment of soil organisms.
Collapse
Affiliation(s)
- Vanessa Roeben
- gaiac - Research Institute for Ecosystem Analysis and Assessment, Kackertstrasse 10, 52072 Aachen, Germany.
| | | | - Kim J Rakel
- gaiac - Research Institute for Ecosystem Analysis and Assessment, Kackertstrasse 10, 52072 Aachen, Germany
| | - Dino Liesy
- gaiac - Research Institute for Ecosystem Analysis and Assessment, Kackertstrasse 10, 52072 Aachen, Germany
| | - Yvan Capowiez
- INRAE, 228 route de l'Aérodrome, 84914 Avignon Cedex 9, France
| | - Gregor Ernst
- Bayer AG, Alfred-Nobel-Straße 50, 40789 Monheim am Rhein, Germany
| | - Thomas G Preuss
- Bayer AG, Alfred-Nobel-Straße 50, 40789 Monheim am Rhein, Germany
| | - André Gergs
- Bayer AG, Alfred-Nobel-Straße 50, 40789 Monheim am Rhein, Germany
| | | |
Collapse
|
14
|
Creusot N, Casado-Martinez C, Chiaia-Hernandez A, Kiefer K, Ferrari BJD, Fu Q, Munz N, Stamm C, Tlili A, Hollender J. Retrospective screening of high-resolution mass spectrometry archived digital samples can improve environmental risk assessment of emerging contaminants: A case study on antifungal azoles. ENVIRONMENT INTERNATIONAL 2020; 139:105708. [PMID: 32294573 DOI: 10.1016/j.envint.2020.105708] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 05/26/2023]
Abstract
Environmental risk assessment associated with aquatic and terrestrial contamination is mostly based on predicted or measured environmental concentrations of a limited list of chemicals in a restricted number of environmental compartments. High resolution mass spectrometry (HRMS) can provide a more comprehensive picture of exposure to harmful chemicals, particularly through the retrospective analysis of digitally stored HRMS data. Using this methodology, our study characterized the contamination of various environmental compartments including 154 surface water, 46 urban effluent, 67 sediment, 15 soil, 34 groundwater, 24 biofilm, 41 gammarid and 49 fish samples at 95 sites widely distributed over the Swiss Plateau. As a proof-of-concept, we focused our investigation on antifungal azoles, a class of chemicals of emerging concern due to their endocrine disrupting effects on aquatic organisms and humans. Our results demonstrated the occurrence of antifungal azoles and some of their (bio)transformation products in all the analyzed compartments (0.1-100 ng/L or ng/g d.w.). Comparison of actual and predicted concentrations showed the partial suitability of level 1 fugacity modelling in predicting the exposure to azoles. Risk quotient calculations additionally revealed risk of exposure especially if some of the investigated rivers and streams are used for drinking water production. The case study clearly shows that the retrospective analysis of HRMS/MS data can improve the current knowledge on exposure and the related risks to chemicals of emerging concern and can be effectively employed in the future for such purposes.
Collapse
Affiliation(s)
- Nicolas Creusot
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland; INRAE, UR EABX, 50 avenue de Verdun, Gazinet, F-33612 Cestas, France.
| | | | - Aurea Chiaia-Hernandez
- Institute of Geography and Oeschger Center for Climate Change Research, University of Bern, Bern, Switzerland
| | - Karin Kiefer
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| | | | - Qiuguo Fu
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland
| | - Nicole Munz
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| | - Christian Stamm
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland
| | - Ahmed Tlili
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland
| | - Juliane Hollender
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland.
| |
Collapse
|
15
|
Wei M, Zhang R, Zhang F, Zhang Y, Li G, Miao R, Shao S. An Evaluation Approach of Cell Viability Based on Cell Detachment Assay in a Single-Channel Integrated Microfluidic Chip. ACS Sens 2019; 4:2654-2661. [PMID: 31502455 DOI: 10.1021/acssensors.9b01061] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Due to the heterogeneity of cancer cell populations, the traditional evaluation approach of cell viability based on the cell counting assay is quite inaccurate for the dose-response test of anticancer drugs, cell toxicology assays, and other biochemical stimulations. In this paper, an evaluation approach of cell viability based on the cell detachment assay in a single-channel integrated microfluidic chip is proposed to improve the accuracy of cell viability assessment. The electrodes are coated by fibronectin for specific cell adhesion, and it is biologically significant to study the cell detachment assay in vitro. The maximum number of cells that can be detected by this sensor is about 105 cells (overgrowing), while the minimum is about 100 cells. This method is calibrated with the half-maximal inhibitory concentration assay, and the results show that the cell viability calculated by adhesion strength is more accurate than that evaluated using the cell counting assay. Meanwhile, the shear rate is transformed into shear stress for the comparability among the results in other papers. The most sensitive frequency is also determined as 1 kHz according to normalized impedance. Besides, the impedance of cell adhesion affected by different shear stresses is monitored to study the optimized plan for long-term culture of cells in the integrated microfluidic chip prepared for the cell detachment assay. Adhesion strength τ25, which is the magnitude of shear stress needed to detach 75% of cell population, is introduced to describe the cell adhesion forces. It is calculated and normalized based on the cell detachment assay to evaluate cell viability. The relative errors of the cell detachment method compared with those of the cell counting method decrease by 0.637 (0% FBS), 0.586 (0.5% FBS), and 0.342 (2% FBS).
Collapse
|
16
|
Perkins EJ, Ashauer R, Burgoon L, Conolly R, Landesmann B, Mackay C, Murphy CA, Pollesch N, Wheeler JR, Zupanic A, Scholz S. Building and Applying Quantitative Adverse Outcome Pathway Models for Chemical Hazard and Risk Assessment. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:1850-1865. [PMID: 31127958 PMCID: PMC6771761 DOI: 10.1002/etc.4505] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/26/2019] [Accepted: 05/21/2019] [Indexed: 05/20/2023]
Abstract
An important goal in toxicology is the development of new ways to increase the speed, accuracy, and applicability of chemical hazard and risk assessment approaches. A promising route is the integration of in vitro assays with biological pathway information. We examined how the adverse outcome pathway (AOP) framework can be used to develop pathway-based quantitative models useful for regulatory chemical safety assessment. By using AOPs as initial conceptual models and the AOP knowledge base as a source of data on key event relationships, different methods can be applied to develop computational quantitative AOP models (qAOPs) relevant for decision making. A qAOP model may not necessarily have the same structure as the AOP it is based on. Useful AOP modeling methods range from statistical, Bayesian networks, regression, and ordinary differential equations to individual-based models and should be chosen according to the questions being asked and the data available. We discuss the need for toxicokinetic models to provide linkages between exposure and qAOPs, to extrapolate from in vitro to in vivo, and to extrapolate across species. Finally, we identify best practices for modeling and model building and the necessity for transparent and comprehensive documentation to gain confidence in the use of qAOP models and ultimately their use in regulatory applications. Environ Toxicol Chem 2019;38:1850-1865. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
Collapse
Affiliation(s)
- Edward J. Perkins
- US Army Engineer Research and Development CenterVicksburgMississippiUSA
| | - Roman Ashauer
- Environment DepartmentUniversity of York, HeslingtonYorkUK
- ToxicodynamicsYorkUK
| | - Lyle Burgoon
- US Army Engineer Research and Development CenterVicksburgMississippiUSA
| | - Rory Conolly
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and DevelopmentUS Environmental Protection Agency, Research Triangle ParkNorth CarolinaUSA
| | | | - Cameron Mackay
- Unilever Safety and Environmental Assurance Centre, SharnbrookBedfordUK
| | - Cheryl A. Murphy
- Department of Fisheries and WildlifeMichigan State UniversityEast LansingMichiganUSA
| | - Nathan Pollesch
- Mid‐Continent Ecology Division, National Health and Environmental Effects Laboratory, Office of Research and DevelopmentUS Environmental Protection AgencyDuluthMinnesotaUSA
| | | | - Anze Zupanic
- Department of Environmental ToxicologySwiss Federal Institute for Aquatic Science and TechnologyDübendorfSwitzerland
| | - Stefan Scholz
- Department of Bioanalytical EcotoxicologyHelmholtz Centre for Environmental Research‐UFZLeipzigGermany
| |
Collapse
|
17
|
Völker J, Stapf M, Miehe U, Wagner M. Systematic Review of Toxicity Removal by Advanced Wastewater Treatment Technologies via Ozonation and Activated Carbon. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7215-7233. [PMID: 31120742 DOI: 10.1021/acs.est.9b00570] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Upgrading wastewater treatment plants (WWTPs) with advanced technologies is one key strategy to reduce micropollutant emissions. Given the complex chemical composition of wastewater, toxicity removal is an integral parameter to assess the performance of WWTPs. Thus, the goal of this systematic review is to evaluate how effectively ozonation and activated carbon remove in vitro and in vivo toxicity. Out of 2464 publications, we extracted 46 relevant studies conducted at 22 pilot or full-scale WWTPs. We performed a quantitative and qualitative evaluation of in vitro (100 assays) and in vivo data (20 species), respectively. Data is more abundant on ozonation (573 data points) than on an activated carbon treatment (162 data points), and certain in vitro end points (especially estrogenicity) and in vivo models (e.g., daphnids) dominate. The literature shows that while a conventional treatment effectively reduces toxicity, residual effects in the effluents may represent a risk to the receiving ecosystem on the basis of effect-based trigger values. In general, an upgrade to ozonation or activated carbon treatment will significantly increase toxicity removal with similar performance. Nevertheless, ozonation generates toxic transformation products that can be removed by a post-treatment. By assessing the growing body of effect-based studies, we identify sensitive and underrepresented end points and species and provide guidance for future research.
Collapse
Affiliation(s)
- Johannes Völker
- Department of Biology , Norwegian University of Science and Technology (NTNU) , Trondheim 7491 , Norway
| | - Michael Stapf
- Berlin Centre of Competence for Water (KWB) , Berlin 10709 , Germany
| | - Ulf Miehe
- Berlin Centre of Competence for Water (KWB) , Berlin 10709 , Germany
| | - Martin Wagner
- Department of Biology , Norwegian University of Science and Technology (NTNU) , Trondheim 7491 , Norway
| |
Collapse
|
18
|
Drieschner C, Vo NTK, Schug H, Burkard M, Bols NC, Renaud P, Schirmer K. Improving a fish intestinal barrier model by combining two rainbow trout cell lines: epithelial RTgutGC and fibroblastic RTgutF. Cytotechnology 2019; 71:835-848. [PMID: 31256301 PMCID: PMC6663964 DOI: 10.1007/s10616-019-00327-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 06/22/2019] [Indexed: 12/16/2022] Open
Abstract
An in vitro model of the fish intestine is of interest for research and application in diverse fields such as fish physiology, aquaculture and chemical risk assessment. The recently developed epithelial barrier model of the fish intestine relies on the RTgutGC cell line from rainbow trout (Oncorhynchus mykiss), cultured in inserts on permeable membranes. Our aim was to extend the current system by introducing intestinal fibroblasts as supportive layer in order to reconstruct the epithelial-mesenchymal interface as found in vivo. We therefore initiated and characterized the first fibroblast cell line from the intestine of rainbow trout, which has been termed RTgutF. Co-culture studies of RTgutGC and RTgutF were performed on commercially available electric cell substrate for impedance sensing (ECIS) and on newly developed ultrathin, highly porous alumina membranes to imitate the cellular interaction with the basement membrane. Cellular events were examined with non-invasive impedance spectroscopy to distinguish between barrier tightness and cell density in the ECIS system and to determine transepithelial electrical resistance for cells cultured on the alumina membranes. We highlight the relevance of the piscine intestinal fibroblasts for an advanced intestinal barrier model, particularly on ultrathin alumina membranes. These membranes enable rapid crosstalk of cells cultured on opposite sides, which led to increased barrier tightening in the fish cell line-based epithelial-mesenchymal model.
Collapse
Affiliation(s)
- Carolin Drieschner
- Department of Environmental Toxicology, Eawag (Swiss Federal Institute of Aquatic Science and Technology), Dübendorf, Switzerland
- Microsystems Laboratory 4, School of Engineering, EPFL (École Polytechnique Fédérale de Lausanne), Lausanne, Switzerland
| | - Nguyen T K Vo
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Hannah Schug
- Department of Environmental Toxicology, Eawag (Swiss Federal Institute of Aquatic Science and Technology), Dübendorf, Switzerland
| | - Michael Burkard
- Department of Environmental Toxicology, Eawag (Swiss Federal Institute of Aquatic Science and Technology), Dübendorf, Switzerland
| | - Niels C Bols
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Philippe Renaud
- Microsystems Laboratory 4, School of Engineering, EPFL (École Polytechnique Fédérale de Lausanne), Lausanne, Switzerland
| | - Kristin Schirmer
- Department of Environmental Toxicology, Eawag (Swiss Federal Institute of Aquatic Science and Technology), Dübendorf, Switzerland.
- Laboratory of Environmental Toxicology, School of Architecture, Civil and Environmental Engineering, EPFL (École Polytechnique Fédérale de Lausanne), Lausanne, Switzerland.
- Department of Environmental Systems Science, ETHZ (Swiss Federal Institute of Technology in Zurich), Zurich, Switzerland.
| |
Collapse
|
19
|
Groothuis FA, Timmer N, Opsahl E, Nicol B, Droge STJ, Blaauboer BJ, Kramer NI. Influence of in Vitro Assay Setup on the Apparent Cytotoxic Potency of Benzalkonium Chlorides. Chem Res Toxicol 2019; 32:1103-1114. [PMID: 31012305 PMCID: PMC6584903 DOI: 10.1021/acs.chemrestox.8b00412] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The nominal concentration
is generally used to express concentration–effect
relationships in in vitro toxicity assays. However, the nominal concentration
does not necessarily represent the exposure concentration responsible
for the observed effect. Surfactants accumulate at interphases and
likely sorb to in vitro system components such as serum protein and
well plate plastic. The extent of sorption and the consequences of
this sorption on in vitro readouts is largely unknown for these chemicals.
The aim of this study was to demonstrate the effect of sorption to
in vitro components on the observed cytotoxic potency of benzalkonium
chlorides (BAC) varying in alkyl chain length (6–18 carbon
atoms, C6–18) in a basal cytotoxicity assay with
the rainbow trout gill cell line (RTgill-W1). Cells were exposed for
48 h in 96-well plates to increasing concentration of BACs in exposure
medium containing 0, 60 μM bovine serum albumin (BSA) or 10%
fetal bovine serum (FBS). Before and after exposure, BAC concentrations
in exposure medium were analytically determined. Based on freely dissolved
concentrations at the end of the exposure, median effect concentrations
(EC50) decreased with increasing alkyl chain length up
to 14 carbons. For BAC with alkyl chains of 12 or more carbons, EC50’s based on measured concentrations after exposure
in supplement-free medium were up to 25-times lower than EC50’s calculated using nominal concentrations. When BSA or FBS
was added to the medium, a decrease in cytotoxic potency of up to
22 times was observed for BAC with alkyl chains of eight or more carbons.
The results of this study emphasize the importance of expressing the
in vitro readouts as a function of a dose metric that is least influenced
by assay setup to compare assay sensitivities and chemical potencies.
Collapse
Affiliation(s)
- Floris A Groothuis
- Institute for Risk Assessment Sciences , Utrecht University , PO Box 80177, 3508 TD Utrecht , The Netherlands
| | - Niels Timmer
- Institute for Risk Assessment Sciences , Utrecht University , PO Box 80177, 3508 TD Utrecht , The Netherlands
| | - Eystein Opsahl
- Institute for Risk Assessment Sciences , Utrecht University , PO Box 80177, 3508 TD Utrecht , The Netherlands
| | - Beate Nicol
- Safety & Environmental Assurance Centre , Unilever U.K. , Colworth Science Park, Sharnbrook, Bedford MK44 1LQ , United Kingdom
| | - Steven T J Droge
- Institute for Risk Assessment Sciences , Utrecht University , PO Box 80177, 3508 TD Utrecht , The Netherlands
| | - Bas J Blaauboer
- Institute for Risk Assessment Sciences , Utrecht University , PO Box 80177, 3508 TD Utrecht , The Netherlands
| | - Nynke I Kramer
- Institute for Risk Assessment Sciences , Utrecht University , PO Box 80177, 3508 TD Utrecht , The Netherlands
| |
Collapse
|
20
|
Goodchild CG, Simpson AM, Minghetti M, DuRant SE. Bioenergetics-adverse outcome pathway: Linking organismal and suborganismal energetic endpoints to adverse outcomes. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:27-45. [PMID: 30259559 DOI: 10.1002/etc.4280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/07/2018] [Accepted: 09/20/2018] [Indexed: 05/21/2023]
Abstract
Adverse outcome pathways (AOPs) link toxicity across levels of biological organization, and thereby facilitate the development of suborganismal responses predictive of whole-organism toxicity and provide the mechanistic information necessary for science-based extrapolation to population-level effects. Thus far AOPs have characterized various acute and chronic toxicity pathways; however, the potential for AOPs to explicitly characterize indirect, energy-mediated effects from toxicants has yet to be fully explored. Indeed, although exposure to contaminants can alter an organism's energy budget, energetic endpoints are rarely incorporated into ecological risk assessment because there is not an integrative framework for linking energetic effects to organismal endpoints relevant to risk assessment (e.g., survival, reproduction, growth). In the present analysis, we developed a generalized bioenergetics-AOP in an effort to make better use of energetic endpoints in risk assessment, specifically exposure scenarios that generate an energetic burden to organisms. To evaluate empirical support for a bioenergetics-AOP, we analyzed published data for links between energetic endpoints across levels of biological organization. We found correlations between 1) cellular energy allocation and whole-animal growth, and 2) metabolic rate and scope for growth. Moreover, we reviewed literature linking energy availability to nontraditional toxicological endpoints (e.g., locomotor performance), and found evidence that toxicants impair aerobic performance and activity. We conclude by highlighting current knowledge gaps that should be addressed to develop specific bioenergetics-AOPs. Environ Toxicol Chem 2019;38:27-45. © 2018 SETAC.
Collapse
Affiliation(s)
| | - Adam M Simpson
- Oklahoma State University, Stillwater, Oklahoma, USA
- Penn State Erie, The Behrend College, Erie, Pennsylvania, USA
| | | | - Sarah E DuRant
- Oklahoma State University, Stillwater, Oklahoma, USA
- University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
21
|
Sneddon LU, Halsey LG, Bury NR. Considering aspects of the 3Rs principles within experimental animal biology. ACTA ACUST UNITED AC 2018; 220:3007-3016. [PMID: 28855318 DOI: 10.1242/jeb.147058] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The 3Rs - Replacement, Reduction and Refinement - are embedded into the legislation and guidelines governing the ethics of animal use in experiments. Here, we consider the advantages of adopting key aspects of the 3Rs into experimental biology, represented mainly by the fields of animal behaviour, neurobiology, physiology, toxicology and biomechanics. Replacing protected animals with less sentient forms or species, cells, tissues or computer modelling approaches has been broadly successful. However, many studies investigate specific models that exhibit a particular adaptation, or a species that is a target for conservation, such that their replacement is inappropriate. Regardless of the species used, refining procedures to ensure the health and well-being of animals prior to and during experiments is crucial for the integrity of the results and legitimacy of the science. Although the concepts of health and welfare are developed for model organisms, relatively little is known regarding non-traditional species that may be more ecologically relevant. Studies should reduce the number of experimental animals by employing the minimum suitable sample size. This is often calculated using power analyses, which is associated with making statistical inferences based on the P-value, yet P-values often leave scientists on shaky ground. We endorse focusing on effect sizes accompanied by confidence intervals as a more appropriate means of interpreting data; in turn, sample size could be calculated based on effect size precision. Ultimately, the appropriate employment of the 3Rs principles in experimental biology empowers scientists in justifying their research, and results in higher-quality science.
Collapse
Affiliation(s)
- Lynne U Sneddon
- Institute of Integrative Biology, Department of Evolution, Ecology and Behaviour, University of Liverpool, The BioScience Building, Liverpool L69 7ZB, UK
| | - Lewis G Halsey
- Department of Life Sciences, University of Roehampton, London SW15 4JD, UK
| | - Nic R Bury
- University of Suffolk, Faculty of Health Sciences and Technology, James Hehir Building, Neptune Quay, Ipswich IP4 1QJ, Suffolk, UK
| |
Collapse
|
22
|
Dong H, Lu G, Yan Z, Liu J, Yang H, Nkoom M. Bioconcentration and effects of hexabromocyclododecane exposure in crucian carp (Carassius auratus). ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:313-324. [PMID: 29404869 DOI: 10.1007/s10646-018-1896-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
As a cycloaliphatic brominated flame retardant, hexabromocyclododecane (HBCD) has been widely used in building thermal insulation and fireproof materials. However, there is little information on the bioconcentration as well as effects with respect to HBCD exposure in the aquatic environment. To investigate the bioconcentration of HBCD in tissues (muscle and liver) and its biochemical and behavioural effects, juvenile crucian carp (Carassius auratus) were exposed to different concentrations of technical HBCD (nominal concentrations, 2, 20, 200 μg/L) for 7 days, using a flow-through exposure system. HBCD was found to concentrate in the liver and muscle with a terminal concentration of 0.60 ± 0.22 μg/g lw (lipid weight) and 0.18 ± 0.02 μg/g lw, respectively, at an environmentally-relevant concentration (2 μg/L). The total thyroxine and total triiodothyronine in the fish plasma were lowered as a result of exposure to the HBCD. Acetylcholinesterase activity in the brain was increased, while swimming activity was inhibited and shoaling inclination was enhanced after exposure to 200 μg/L HBCD. Feeding rate was suppressed in the 20 and 200 μg/L treatment groups. In summary, HBCD concentrations 10-100× higher than the current environmentally-relevant exposures induced adverse effects in the fish species tested in this study. These results suggest that increasing environmental concentrations and/or species with higher sensitivity than carp might be adversely affected by HBCD.
Collapse
Affiliation(s)
- Huike Dong
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 210098, Nanjing, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 210098, Nanjing, China.
- Water Conservancy Project & Civil Engineering College, Tibet Agriculture & Animal Husbandry University, 860000, Linzhi, China.
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 210098, Nanjing, China
| | - Jianchao Liu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 210098, Nanjing, China
| | - Haohan Yang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 210098, Nanjing, China
| | - Matthew Nkoom
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 210098, Nanjing, China
| |
Collapse
|
23
|
Stadnicka-Michalak J, Weiss FT, Fischer M, Tanneberger K, Schirmer K. Biotransformation of Benzo[ a]pyrene by Three Rainbow Trout ( Onchorhynchus mykiss) Cell Lines and Extrapolation To Derive a Fish Bioconcentration Factor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:3091-3100. [PMID: 29400055 DOI: 10.1021/acs.est.7b04548] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Permanent fish cell lines constitute a promising complement or substitute for fish in the environmental risk assessment of chemicals. We demonstrate the potential of a set of cell lines originating from rainbow trout ( Oncorhynchus mykiss) to aid in the prediction of chemical bioaccumulation in fish, using benzo[ a]pyrene (BaP) as a model chemical. We selected three cell lines from different tissues to more fully account for whole-body biotransformation in vivo: the RTL-W1 cell line, representing the liver as major site of biotransformation, and the RTgill-W1 (gill) and RTgutGC (intestine) cell lines, as important environment-organism interfaces, which likely influence chemical uptake. All three cell lines were found to effectively biotransform BaP. However, rates of in vitro clearance differed, with the RTL-W1 cell line being most efficient, followed by RTgutGC. Co-exposures with α-naphthoflavone as potent inhibitor of biotransformation, assessment of CYP1A catalytic activity, and the progression of cellular toxicity upon prolonged BaP exposure revealed that BaP is handled differently in the RTgill-W1 compared to the other two cell lines. Application of the cell-line-derived in vitro clearance rates into a physiology-based toxicokinetic model predicted a BaP bioconcentration factor (BCF) of 909-1057 compared to 920 reported for rainbow trout in vivo.
Collapse
Affiliation(s)
- Julita Stadnicka-Michalak
- Eawag , Überlandstrasse 133 , 8600 Dübendorf , Switzerland
- School of Architecture, Civil and Environmental Engineering , EPF Lausanne , 1015 Lausanne , Switzerland
| | - Frederik T Weiss
- Eawag , Überlandstrasse 133 , 8600 Dübendorf , Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics , ETH Zürich , 8092 Zürich , Switzerland
| | | | - Katrin Tanneberger
- Eawag , Überlandstrasse 133 , 8600 Dübendorf , Switzerland
- Ecosens AG, 8304 Wallisellen , Switzerland
| | - Kristin Schirmer
- Eawag , Überlandstrasse 133 , 8600 Dübendorf , Switzerland
- School of Architecture, Civil and Environmental Engineering , EPF Lausanne , 1015 Lausanne , Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics , ETH Zürich , 8092 Zürich , Switzerland
| |
Collapse
|
24
|
Ashauer R, Jager T. Physiological modes of action across species and toxicants: the key to predictive ecotoxicology. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:48-57. [PMID: 29090718 DOI: 10.1039/c7em00328e] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
As ecotoxicologists we strive for a better understanding of how chemicals affect our environment. Humanity needs tools to identify those combinations of man-made chemicals and organisms most likely to cause problems. In other words: which of the millions of species are at risk from pollution? And which of the tens of thousands of chemicals contribute most to the risk? We identified our poor knowledge on physiological modes of action (how a chemical affects the energy allocation in an organism), and how they vary across species and toxicants, as a major knowledge gap. We also find that the key to predictive ecotoxicology is the systematic, rigorous characterization of physiological modes of action because that will enable more powerful in vitro to in vivo toxicity extrapolation and in silico ecotoxicology. In the near future, we expect a step change in our ability to study physiological modes of action by improved, and partially automated, experimental methods. Once we have populated the matrix of species and toxicants with sufficient physiological mode of action data we can look for patterns, and from those patterns infer general rules, theory and models.
Collapse
Affiliation(s)
- Roman Ashauer
- Environment Department, University of York, Heslington, York YO10 5NG, UK.
| | | |
Collapse
|
25
|
Yuan C, Li M, Zheng Y, Zhou Y, Wu F, Wang Z. Accumulation and detoxification dynamics of Chromium and antioxidant responses in juvenile rare minnow, Gobiocypris rarus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 190:174-180. [PMID: 28728048 DOI: 10.1016/j.aquatox.2017.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/04/2017] [Accepted: 07/09/2017] [Indexed: 06/07/2023]
Abstract
Hexavalent chromium (Cr6+) compounds are hazardous via all exposure routes. To explore the dynamics of Cr accumulation and elimination and to reveal the mechanisms underlying detoxification and antioxidation in juvenile Gobiocypris rarus, one-month old G. rarus larvae were exposed to 0.1mgL-1 Cr6+ for four weeks for accumulation and subsequently placed to clean water for another week for depuration. The contents of Cr were measured weekly in the whole body of G. rarus juveniles. The activities of catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), glutathione S-transferase (GST) and glutathione reductase (GR), and contents of glutathione (GSH) and malonaldehyde (MDA), and transcripts of cat, Cu/Zn-sod, Mn-sod, gpx1, gstpi, gr, mt1, nrf2 and uba52 were determined. The results indicated that G. rarus juveniles had a strong ability to resist the Cr accumulation by Cr6+ exposure and to remove Cr from the body in clean water. In addition, GST and MT proteins may be involved in the detoxification of Cr6+. Moreover, Cr6+-induced GST detoxification in G. rarus juveniles might be accomplished through the Nrf2-mediated regulation of gene expressions. The antioxidant enzyme systems exhibited a response mechanism of the protective enzymes in organisms when they are subjected to external environmental stress. Two weeks of Cr6+ treatments could have led to the damage and consecutive degradation of antioxidant enzymes via ubiquitination, and MT proteins could be involved in protecting the activity of these enzymes. The capability of antioxidant enzyme systems to recover from the Cr6+-induced damage was strong in G. rarus juveniles after Cr6+ was removed from the water.
Collapse
Affiliation(s)
- Cong Yuan
- College of Animal Science Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, 712100, China
| | - Meng Li
- College of Animal Science Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, 712100, China
| | - Yao Zheng
- College of Animal Science Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, 712100, China
| | - Ying Zhou
- College of Animal Science Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, 712100, China
| | - Feili Wu
- College of Animal Science Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, 712100, China
| | - Zaizhao Wang
- College of Animal Science Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
26
|
Völker J, Vogt T, Castronovo S, Wick A, Ternes TA, Joss A, Oehlmann J, Wagner M. Extended anaerobic conditions in the biological wastewater treatment: Higher reduction of toxicity compared to target organic micropollutants. WATER RESEARCH 2017; 116:220-230. [PMID: 28340420 DOI: 10.1016/j.watres.2017.03.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/20/2017] [Accepted: 03/11/2017] [Indexed: 06/06/2023]
Abstract
Extended anaerobic conditions during biological wastewater treatment may enhance the biodegradation of micropollutants. To explore this, we combined iron-reducing or substrate-limited anaerobic conditions and aerobic pilot-scale reactors directly at a wastewater treatment plant. To investigate the detoxification by these processes, we applied two in vitro bioassays for baseline toxicity (Microtox) and reactive toxicity (AREc32) as well as in vivo bioassays with aquatic model species in two laboratory experiments (Desmodesmus subspicatus, Daphnia magna) and two on-site, flow-through experiments (Potamopyrgus antipodarum, Lumbriculus variegatus). Moreover, we analyzed 31 commonly occurring micropollutants and 10 metabolites. The baseline toxicity of raw wastewater was effectively removed in full-scale and reactor scale activated sludge treatment (>85%), while the oxidative stress response was only partially removed (>61%). A combination of an anaerobic pre-treatment under iron reducing conditions and an aerobic nitrification significantly further reduced the residual in vitro toxicities by 46-60% and outperformed the second combination consisting of an aerobic pre-treatment and an anaerobic post-treatment under substrate-limiting conditions (27-43%). Exposure to effluents of the activated sludge treatment did not induce adverse in vivo effects in aquatic invertebrates. Accordingly, no further improvement in water quality could be observed. Compared to that, the removal of persistent micropollutants was increased. However, this observation was restricted to a limited number of compounds and the removal of the sum concentration of all target micropollutants was relative low (14-17%). In conclusion, combinations of strictly anaerobic and aerobic processes significantly enhanced the removal of specific and non-specific in vitro toxicities. Thus, an optimization of biological wastewater treatment can lead to a substantially improved detoxification. These otherwise hidden capacities of a treatment technology can only be uncovered by a complementary biological analysis.
Collapse
Affiliation(s)
- Johannes Völker
- Goethe University Frankfurt am Main, Department Aquatic Ecotoxicology, Max-von-Laue-Str. 13, 60438, Frankfurt, Germany.
| | - Tobias Vogt
- Goethe University Frankfurt am Main, Department Aquatic Ecotoxicology, Max-von-Laue-Str. 13, 60438, Frankfurt, Germany
| | - Sandro Castronovo
- Federal Institute of Hydrology, Am Mainzer Tor 1, 56068, Koblenz, Germany
| | - Arne Wick
- Federal Institute of Hydrology, Am Mainzer Tor 1, 56068, Koblenz, Germany
| | - Thomas A Ternes
- Federal Institute of Hydrology, Am Mainzer Tor 1, 56068, Koblenz, Germany
| | - Adriano Joss
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstr. 133, 8600, Dübendorf, Switzerland
| | - Jörg Oehlmann
- Goethe University Frankfurt am Main, Department Aquatic Ecotoxicology, Max-von-Laue-Str. 13, 60438, Frankfurt, Germany
| | - Martin Wagner
- Goethe University Frankfurt am Main, Department Aquatic Ecotoxicology, Max-von-Laue-Str. 13, 60438, Frankfurt, Germany
| |
Collapse
|
27
|
Putnam JG, Nelson JE, Leis EM, Erickson RA, Hubert TD, Amberg JJ. Using silver and bighead carp cell lines for the identification of a unique metabolite fingerprint from thiram-specific chemical exposure. CHEMOSPHERE 2017; 168:1477-1485. [PMID: 27923506 DOI: 10.1016/j.chemosphere.2016.11.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/07/2016] [Accepted: 11/09/2016] [Indexed: 06/06/2023]
Abstract
Conservation biology often requires the control of invasive species. One method is the development and use of biocides. Identifying new chemicals as part of the biocide registration approval process can require screening millions of compounds. Traditionally, screening new chemicals has been done in vivo using test organisms. Using in vitro (e.g., cell lines) and in silico (e.g., computer models) methods decrease test organism requirements and increase screening speed and efficiency. These methods, however, would be greatly improved by better understanding how individual fish species metabolize selected compounds. We combined cell assays and metabolomics to create a powerful tool to facilitate the identification of new control chemicals. Specifically, we exposed cell lines established from bighead carp and silver carp larvae to thiram (7 concentrations) then completed metabolite profiling to assess the dose-response of the bighead carp and silver carp metabolome to thiram. Forty one of the 700 metabolomic markers identified in bighead carp exhibited a dose-response to thiram exposure compared to silver carp in which 205 of 1590 metabolomic markers exhibited a dose-response. Additionally, we identified 11 statistically significant metabolomic markers based upon volcano plot analysis common between both species. This smaller subset of metabolites formed a thiram-specific metabolomic fingerprint which allowed for the creation of a toxicant specific, rather than a species-specific, metabolomic fingerprint. Metabolomic fingerprints may be used in biocide development and improve our understanding of ecologically significant events, such as mass fish kills.
Collapse
Affiliation(s)
| | | | - Eric M Leis
- U.S. Fish and Wildlife Service, Onalaska, WI 54650, USA
| | | | | | - Jon J Amberg
- U.S. Geological Survey, La Crosse, WI 54603, USA
| |
Collapse
|
28
|
Lillicrap A, Belanger S, Burden N, Pasquier DD, Embry MR, Halder M, Lampi MA, Lee L, Norberg-King T, Rattner BA, Schirmer K, Thomas P. Alternative approaches to vertebrate ecotoxicity tests in the 21st century: A review of developments over the last 2 decades and current status. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:2637-2646. [PMID: 27779828 DOI: 10.1002/etc.3603] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 07/21/2016] [Accepted: 08/24/2016] [Indexed: 05/21/2023]
Abstract
The need for alternative approaches to the use of vertebrate animals for hazard assessment of chemicals and pollutants has become of increasing importance. It is now the first consideration when initiating a vertebrate ecotoxicity test, to ensure that unnecessary use of vertebrate organisms is minimized wherever possible. For some regulatory purposes, the use of vertebrate organisms for environmental risk assessments has been banned; in other situations, the number of organisms tested has been dramatically reduced or the severity of the procedure refined. However, there is still a long way to go to achieve a complete replacement of vertebrate organisms to generate environmental hazard data. The development of animal alternatives is based not just on ethical considerations but also on reducing the cost of performing vertebrate ecotoxicity tests and in some cases on providing better information aimed at improving environmental risk assessments. The present Focus article provides an overview of the considerable advances that have been made toward alternative approaches for ecotoxicity assessments over the last few decades. Environ Toxicol Chem 2016;35:2637-2646. © 2016 SETAC.
Collapse
Affiliation(s)
- Adam Lillicrap
- Norwegian Institute for Water Research (NIVA), Oslo, Norway.
| | - Scott Belanger
- Environmental Safety and Sustainability, Global Product Stewardship, Procter & Gamble, Mason, Ohio, USA
| | - Natalie Burden
- National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), London, United Kingdom
| | | | - Michelle R Embry
- ILSI Health and Environmental Sciences Institute, Washington, DC, USA
| | | | - Mark A Lampi
- ExxonMobil Biomedical Sciences, Annandale, New Jersey, USA
| | - Lucy Lee
- Faculty of Science, University of the Fraser Valley, Abbotsford, British Columbia, Canada
| | - Teresa Norberg-King
- National Health and Environmental Effects Laboratory, Office of Research and Development, Mid-Continent Ecology Division-Duluth, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Barnett A Rattner
- Patuxent Wildlife Research Center, US Geological Survey, Beltsville, Maryland, USA
| | - Kristin Schirmer
- Eawag-Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Swiss Federal Institute of Technology, Zürich, Switzerland
- School of Architecture, Civil and Environmental Engineering, EPF Lausanne, Lausanne, Switzerland
| | - Paul Thomas
- Consultancy for Environmental & Human Toxicology & Risk Assessment (Lyon Agency), L'Isle d'Abeau, France
| |
Collapse
|
29
|
Rohr JR, Salice CJ, Nisbet RM. The pros and cons of ecological risk assessment based on data from different levels of biological organization. Crit Rev Toxicol 2016; 46:756-84. [PMID: 27340745 PMCID: PMC5141515 DOI: 10.1080/10408444.2016.1190685] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 01/15/2023]
Abstract
Ecological risk assessment (ERA) is the process used to evaluate the safety of manufactured chemicals to the environment. Here we review the pros and cons of ERA across levels of biological organization, including suborganismal (e.g., biomarkers), individual, population, community, ecosystem and landscapes levels. Our review revealed that level of biological organization is often related negatively with ease at assessing cause-effect relationships, ease of high-throughput screening of large numbers of chemicals (it is especially easier for suborganismal endpoints), and uncertainty of the ERA because low levels of biological organization tend to have a large distance between their measurement (what is quantified) and assessment endpoints (what is to be protected). In contrast, level of biological organization is often related positively with sensitivity to important negative and positive feedbacks and context dependencies within biological systems, and ease at capturing recovery from adverse contaminant effects. Some endpoints did not show obvious trends across levels of biological organization, such as the use of vertebrate animals in chemical testing and ease at screening large numbers of species, and other factors lacked sufficient data across levels of biological organization, such as repeatability, variability, cost per study and cost per species of effects assessment, the latter of which might be a more defensible way to compare costs of ERAs than cost per study. To compensate for weaknesses of ERA at any particular level of biological organization, we also review mathematical modeling approaches commonly used to extrapolate effects across levels of organization. Finally, we provide recommendations for next generation ERA, submitting that if there is an ideal level of biological organization to conduct ERA, it will only emerge if ERA is approached simultaneously from the bottom of biological organization up as well as from the top down, all while employing mathematical modeling approaches where possible to enhance ERA. Because top-down ERA is unconventional, we also offer some suggestions for how it might be implemented efficaciously. We hope this review helps researchers in the field of ERA fill key information gaps and helps risk assessors identify the best levels of biological organization to conduct ERAs with differing goals.
Collapse
Affiliation(s)
| | | | - Roger M. Nisbet
- University of California at Santa Barbara, Santa Barbara, CA 93106-9620
| |
Collapse
|
30
|
Finlayson KA, Leusch FDL, van de Merwe JP. The current state and future directions of marine turtle toxicology research. ENVIRONMENT INTERNATIONAL 2016; 94:113-123. [PMID: 27236406 DOI: 10.1016/j.envint.2016.05.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/13/2016] [Accepted: 05/14/2016] [Indexed: 05/14/2023]
Abstract
Chemical contamination of marine turtles has been well documented in the literature, although information on the toxicological effects of these contaminants is poorly understood. This paper systematically and quantitatively presents the available marine turtle toxicological research (excluding oil chemicals and natural toxins) and the related fields of cell line establishment and biomarkers as indicators of exposure. Examination of the published literature identified a total of 49 papers on marine turtle toxicology, which were split into three categories: toxicity studies (n=33, 67%), cell line establishment (n=7, 14%), and publications using biomarkers (n=13, 27%). Toxicity studies were further broken down into four subcategories: those correlating contaminants with toxicological endpoints (n=16, 48%); in vitro exposure experiments (n=11, 33%); in vivo exposure experiments (n=5, 15%); and screening risk assessments using hazard quotients (n=3, 9%). In quantitatively assessing the literature, trends and gaps in this field of research were identified. This paper highlights the need for more marine turtle toxicology research on all species, particularly using high throughput and non-invasive in vitro assays developed for marine turtle cells, including investigations into further toxicological endpoints and mixture effects. This will provide more comprehensive species-specific assessment of the impacts of chemical contaminants on these threatened animals, and improve conservation and management strategies globally.
Collapse
Affiliation(s)
- Kimberly A Finlayson
- Smart Water Research Centre, Australian Rivers Institute, Griffith School of Environment, Griffith University, Gold Coast, Australia.
| | - Frederic D L Leusch
- Smart Water Research Centre, Australian Rivers Institute, Griffith School of Environment, Griffith University, Gold Coast, Australia
| | - Jason P van de Merwe
- Smart Water Research Centre, Australian Rivers Institute, Griffith School of Environment, Griffith University, Gold Coast, Australia
| |
Collapse
|
31
|
Ashauer R, Albert C, Augustine S, Cedergreen N, Charles S, Ducrot V, Focks A, Gabsi F, Gergs A, Goussen B, Jager T, Kramer NI, Nyman AM, Poulsen V, Reichenberger S, Schäfer RB, Van den Brink PJ, Veltman K, Vogel S, Zimmer EI, Preuss TG. Modelling survival: exposure pattern, species sensitivity and uncertainty. Sci Rep 2016; 6:29178. [PMID: 27381500 PMCID: PMC4933929 DOI: 10.1038/srep29178] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/13/2016] [Indexed: 02/02/2023] Open
Abstract
The General Unified Threshold model for Survival (GUTS) integrates previously published toxicokinetic-toxicodynamic models and estimates survival with explicitly defined assumptions. Importantly, GUTS accounts for time-variable exposure to the stressor. We performed three studies to test the ability of GUTS to predict survival of aquatic organisms across different pesticide exposure patterns, time scales and species. Firstly, using synthetic data, we identified experimental data requirements which allow for the estimation of all parameters of the GUTS proper model. Secondly, we assessed how well GUTS, calibrated with short-term survival data of Gammarus pulex exposed to four pesticides, can forecast effects of longer-term pulsed exposures. Thirdly, we tested the ability of GUTS to estimate 14-day median effect concentrations of malathion for a range of species and use these estimates to build species sensitivity distributions for different exposure patterns. We find that GUTS adequately predicts survival across exposure patterns that vary over time. When toxicity is assessed for time-variable concentrations species may differ in their responses depending on the exposure profile. This can result in different species sensitivity rankings and safe levels. The interplay of exposure pattern and species sensitivity deserves systematic investigation in order to better understand how organisms respond to stress, including humans.
Collapse
Affiliation(s)
- Roman Ashauer
- Environment Department, University of York, Heslington, York YO10 5NG, United Kingdom
| | - Carlo Albert
- Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Überlandstrasse 133, Switzerland
| | - Starrlight Augustine
- Akvaplan-niva, Fram - High North Research Centre for Climate and the Environment, 9296 Tromsø, Norway
| | - Nina Cedergreen
- Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Sandrine Charles
- Univ Lyon, Université Lyon 1, UMR CNRS 5558, Laboratoire de Biométrie et Biologie Évolutive, F-69100 Villeurbanne, France
| | - Virginie Ducrot
- Bayer CropScience Aktiengesellschaft, BCS AG-R&D-D-EnSa-ETX-AQ, Monheim, Deutschland
| | - Andreas Focks
- Alterra, Wageningen University and Research centre, P.O. Box 47, 6700 AA, The Netherlands
| | - Faten Gabsi
- RIFCON GmbH, Goldbeckstraße 13, 69493 Hirschberg, Germany
| | - André Gergs
- Research Institute for Ecosystem Analysis and Assessment (gaiac), Kackertstrasse 10, 52072, Aachen, Germany
| | - Benoit Goussen
- Environment Department, University of York, Heslington, York YO10 5NG, United Kingdom.,Safety and Environmental Assurance Centre, Colworth Science Park, Unilever, Sharnbrook, Bedfordshire, United Kingdom
| | | | - Nynke I Kramer
- Utrecht University, Institute for Risk Assessment Sciences (IRAS), 3584 Utrecht, Netherlands
| | - Anna-Maija Nyman
- European Chemicals Agency, Annankatu 18, FI-00121, Helsinki, Finland
| | - Veronique Poulsen
- French Agency for Food, Environmental and Occupational Health Safety (ANSES), Regulated Product Assessment Directorate, 14 rue Pierre et Marie Curie 94704 Maisons Alfort, France
| | | | - Ralf B Schäfer
- Institute for Environmental Sciences, University Koblenz-Landau, Fortstraße 7, 76829 Landau, Germany
| | - Paul J Van den Brink
- Alterra, Wageningen University and Research centre, P.O. Box 47, 6700 AA, The Netherlands.,Department of Aquatic Ecology and Water Quality Management, Wageningen University, Wageningen University and Research centre, P.O. Box 47, 6700 AA, The Netherlands
| | - Karin Veltman
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109-2029, USA
| | - Sören Vogel
- Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Überlandstrasse 133, Switzerland
| | - Elke I Zimmer
- Ibacon GmbH, Arheilger Weg 17, 64380 Roßdorf, Germany
| | - Thomas G Preuss
- Bayer CropScience Aktiengesellschaft, BCS AG-R&D-D-EnSa-Emod, Monheim, Germany
| |
Collapse
|
32
|
Yue Y, Behra R, Sigg L, Schirmer K. Silver nanoparticles inhibit fish gill cell proliferation in protein-free culture medium. Nanotoxicology 2016; 10:1075-83. [PMID: 27030289 DOI: 10.3109/17435390.2016.1172677] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
While short-term exposures of vertebrate cells, such as from fish, can be performed in defined, serum-free media, long-term cultures generally require addition of growth factors and proteins, normally supplied with a serum supplement. However, proteins are known to alter nanoparticle properties by binding to nanoparticles. Therefore, in order to be able to study nanoparticle-cell interactions for extended periods, the rainbow trout (Oncorhynchus mykiss) gill cell line, RTgill-W1, was adapted to proliferate in a commercial, serum-free medium, InVitrus VP-6. The newly adapted cell strain was named RTgill-W1-pf (protein free). These cells proliferate at a speed similar to the RTgill-W1 cells cultured in a fully supplemented medium containing 5% fetal bovine serum. As well, they were successfully cryopreserved in liquid nitrogen and fully recovered after thawing. Yet, senescence set in after about 10 passages in InVitrus VP-6 medium, revealing that this medium cannot fully support long-term culture of the RTgill-W1 strain. The RTgill-W1-pf cell line was subsequently applied to investigate the effect of silver nanoparticles (AgNP) on cell proliferation over a period of 12 days. Indeed, cell proliferation was inhibited by 10 μM AgNP. This effect correlated with high levels of silver being associated with the cells. The new cell line, RTgill-W1-pf, can serve as a unique representation of the gill cell-environment interface, offering novel opportunities to study nanoparticle-cell interactions without serum protein interference.
Collapse
Affiliation(s)
- Yang Yue
- a Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology , Dübendorf , Switzerland .,b École Polytechnique Fédérale de Lausanne, School of Architecture, Civil and Environmental Engineering , Lausanne , Switzerland , and
| | - Renata Behra
- a Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology , Dübendorf , Switzerland .,c ETH (EidgenÖssische Technische Hochschule) Zürich, Department of Environmental Systems Sciences , Zürich , Switzerland
| | - Laura Sigg
- a Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology , Dübendorf , Switzerland .,c ETH (EidgenÖssische Technische Hochschule) Zürich, Department of Environmental Systems Sciences , Zürich , Switzerland
| | - Kristin Schirmer
- a Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology , Dübendorf , Switzerland .,b École Polytechnique Fédérale de Lausanne, School of Architecture, Civil and Environmental Engineering , Lausanne , Switzerland , and.,c ETH (EidgenÖssische Technische Hochschule) Zürich, Department of Environmental Systems Sciences , Zürich , Switzerland
| |
Collapse
|
33
|
Procedures for the reconstruction, primary culture and experimental use of rainbow trout gill epithelia. Nat Protoc 2016; 11:490-8. [DOI: 10.1038/nprot.2016.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|